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Abstract. — We establish, in the setting of Arakelov geometry adelic curves,

an arithmetic Hilbert-Samuel theorem describing the asymptotic behaviour of the
metrized graded linear series of an adelic line bundle in terms of its arithmetic inter-
section number.

1. Introduction

In algebraic geometry, Hilbert function measures the growth of graded linear series
of a line bundle on a projective variety. Let k be a field, X be an integral projective
scheme of degree d € N over Speck, and L be an invertible Ox-module. The Hilbert
function of L is defined as

Hp:N— N, Hp(n):=dimg(H(X,L®™)).
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If L is ample, then the following asymptotic estimates holds:
d

Hp(n) = (Z—')nd + o(n?). (1.1)
This formula, which relates the asymptotic behaviour of the Hilbert function and the
auto-intersection number of L, is for example a consequence of Hirzebruch-Riemann-
Roch theorem and Serre’s vanishing theorem. It turns out that the construction and
the asymptotic estimate of Hilbert function have analogue in various context, such as
graded algebra, local multiplicity, relative volume of two metrics, etc.

In Arakelov geometry, an arithmetic analogue of Hilbert function has been intro-
duced by Gillet and Soulé [I8] and an analogue of the asymptotic formula has
been deduced from their arithmetic Riemann-Roch theorem. This result is called an
arithmetic Hilbert-Samuel theorem. Let 2" be a regular integral projective scheme
of dimension d + 1 over SpecZ, and .Z = (£, ¢) be a Hermitian line bundle on .2,
namely an invertible O g--module . equipped with a smooth metric ¢ on £ (C). For
any integer n € N, we let ||-||,,,, be the norm on the real vector space H*(2", ) @z R
defined as follows

Vse H'(Z,2)2zR C HY(2c, Z2™), |Islne = sup [s|ne(2).
zeZ (C)
Then the couple (H°(2Z", £%"),|||ney) forms a lattice in a normed vector space.
Recall that its arithmetic Euler-Poincaré characteristic is
vol({s € HY (2", £%") @z R : ||s|lny < 1})
VOl HO(Z, 257, [[lmp)

XUH(Z, Z297), ||-lng) = In

where vol(-) denotes a Haar measure on the real vector space HY(2",.¢) ®z R, and
covol(H)(Z', £®™),||*|lny) denotes the covolume of the lattice H(2, . Z2®") with
respect to the Haar measure vol(+), that is, the volume of any fundamental domain of
this lattice. In this setting the arithmetic Hilbert-Samuel theorem shows that, in the
case where . is relatively ample and the metric ¢ is positive, the sequence

X(H(Z, 2%, || lne)
T/ d+ 1)

neN, n>1

—d+1 J—
converges to the arithmetic intersection number (& - ). In the case where . is
ample, the arithmetic Hilbert-Samuel theorem also permits to relate the asymptotic
behaviour (when n — +00) of

card({s € H* (2", Z%™) : ||s|lnp < 1})

to the arithmetic intersection number of .Z. These results have various applications
in arithmetic geometry, such as Vojta’s proof of Mordell conjecture, equidistribution
problem and Bogomolov conjecture, etc. The arithmetic Hilbert-Samuel theorem has
then been reproved in various setting and also been generalized in works such as
1, 16, 21].
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Recently, a new framework of Arakelov geometry has been proposed in [13], which
allows to consider arithmetic geometry over any countable field. Let K be a field.
A structure of proper adelic curve with underlying field K is given by a family of
absolute values (]-|,)weq on K parametrized by a measure space (€2,.4,v), which
satisfies a product formula of the form

Vae K™, /1n|a|wu(dw):0.
Q

We assume that, either K is countable, or the o-algebra A is discrete. The geometry
of numbers and the arithmetic intersection theory in the setting of adelic curves have
been developed respectively in the works [13] and [I5]. Note that in general it is not
possible to consider global integral models of an adelic curve. Several classic notions
and constructions, such as integral lattice and its covolume, do not have adequate
analogue over adelic curves. It turns out that a modified and generalized form of
normed lattice — adelic vector bundle — has a natural avatar in the setting of adelic
curves. An adelic vector bundle consists of a finite-dimensional vector space V over
K equipped with a family of norms (||-||w)weq on vector spaces V,, = V@ K, (where
K, denotes the completion of K with respect to the absolute value |-|,,), which satisfy
dominancy and measurability conditions. The Arakelov degree of the adelic vector
bundle

V=V, (Ile)wen)

is then defined as

doa(V) = _/ I ls1 A -+ A sl v(dw),
Q
where (s;)7_; is an arbitrary basis of E over K. This notion is a good candidate to
replace the Euler-Poincaré characteristic.

Let m : X — Spec K be a projective scheme over Spec K. For any w € 2, let
Xow = X Xgpeck Spec K, and let X2" be the analytic variety associated with X,
(in the sense of Berkovich if ||, is non-Archimedean). If E is a vector bundle on
X, namely a locally free Ox-module of finite rank, we denote by E, the pull-back
of E on X,. As adelic vector bundle on X, we refer to the data E = (E, ({,)weq)
consisting of a vector bundle £ on X and a family (¢,)weq of continuous metrics
on E,, w € Q, which satisfy dominancy and measurability conditions. It turns out
that, if X is geometrically reduced, then the vector space of global sections H°(X, E)
equipped with supremum norms (|-||y,, )weq forms an adelic vector bundle 7, (E) on
the base adelic curve.

Let m : X — Spec K be a geometrically integral projective scheme of dimension
d > 0 over Spec K and L = (L,¢) be an adelic line bundle on X, that is, an adelic
vector bundle of rank 1 on X. Assume that the line bundle L is ample. We introduce
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the notion of x-volume as

o = . deg(’fr* (L®n))

VOh(E) = I )
In view of the similarity between Arakelov degree and Euler-Poincaré characteristic
of Euclidean lattices, the notion of x-volume is analogous to that of sectional capacity
introduced in [22]. Moreover, similarly to the number field case, we show in Theorem-
Definition [5.5] that the above superior limit defining the y-volume is actually a limite.
However, from the methodological view, we do not follow the classic approaches,
which are difficultly implantable in the adelic curve setting. Our strategy consists
in casting the Arakelov geometry over an adelic curve to that in the particular case
where the adelic curve contains a single copy of the trivial absolute value on K, that
is, the absolute value |-|o such that |a|o = 1 for any a € K \ {0}. More precisely,
to each adelic vector bundle V = (V, (||-|w)weq), We associate an ultrametric norm
I-llo on V' (where we consider the trivial absolute value |-|g) via Harder-Narasimhan
theory in the form of R-filtrations, such that

[TV, (- )wcn) — Ao (Y, [Hlo)| < 5v(9ec) dimc (V) Infelimge (V).

where ., denotes the set of w € Q such that |-|,, is Archimedean. Then the conver-
gence of the suite defining \781X (L) follows from a limite theorem of normed graded
linear series as follows (see Theorem and Corollary for this result in a more
general form and for more details):

Theorem 1.1. — Assume that the graded K-algebra @, oy HO(X, L®") is of finite
type. For any integer n > 1, let ||-||, be a norm on HY(X,L®™) (where we consider
the trivial absolute value on K). Assume that

(a) infsev,\ oy In |5l = O(n) when n — +o0,
(b) for any (n,m) € N%, and any (sn,sm) € Vi, X Vin, one has

180 Smllntm < llsnlln - lsmlm-

Then the sequence

deg(Viu, |11n)
— eN,n>1
@+ e
converges in R.

In view of the classic Hilbert-Samuel theorems in algebraic geometry and in
Arakelov geometry, it is natural to compare the y-volume to the arithmetic inter-
section number of adelic line bundles that we have introduced in [15] (see also the
work [19] on heights of varieties over M-fields). Let m : X — Spec K be a projective
scheme of dimension d > 0 over K and L = (L,¢) be an adelic line bundle on X
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such that L is ample and the metrics in the family ¢ are semi-positive. Then the
arithmetic self-intersection number of L is written in a recursive way as

) = | ) = [ [ mlsle @ atep @ @] a2

where N is a positive integer, and s is a global section of L&Y which intersect properly
with all irreducible components of the projective scheme X. The main result of the
article is then the following theorem (see Theorem [10.1)):

Theorem 1.2. — Let X be a geometrically integral projective scheme over Spec K
and L = (L, ) be an adelic line bundle on X. Assume that L is ample and all metrics
in the family ¢ are semi-positive, then the following equality holds:

voly (I) = (T*1).

Note that in the literature there exists a local version of the Hilbert-Samuel theorem
which establishes an equality between the relative volume of two metrics and the
relative Monge-Ampére energy between them. We refer the readers to [3] for the
Archimedean case and to [8), [6] for the non-Archimedean case (see also [7]). These
results show that, for a fixed ample line bundle L on X, the difference between \Tc:lx (L)
and (L9*1) does not depend on the choice of the metric family on L (see Proposition
and Remark. Moreover, by an argument of projection to a projective space (on
which the arithmetic Hilbert-Samuel theorem can be proved by explicit computation,
see Proposition , one can show that the inequality \7(;1X (L) > (L) holds (see
Step 2 of the proof of Theorem [10.1]).

In view of the recursive formula defining the self-intersection number, a natu-
ral idea to prove the above theorem could be an argument of induction, following the
approach of [I] by using an adaptation to non-Archimedean setting of some technics in
complex analytic geometry developed in [6), [I7]. However, it seems that a refinement
in the form of an asymptotic development of the function defining the local relative
volume is needed to realize this strategy. Unfortunately such refinement is not yet
available. Our approach consists in casting the arithmetic data of L to a series of
metrics over a trivially valued field. This could be considered as a higher-dimensional
generalization of the approach of Harder-Narasimhan R-filtration mentioned above.
What is particular in the trivial valuation case is that the local geometry becomes
automatically global, thanks to the trivial “product formula”. In this case, the arith-
metic Hilbert-Samuel theorem follows from the equality between the relative volume
and the relative Monge-Ampére energy with respect to the trivial metric (see Theo-
rem [8.2)). Note that this result also shows that, in the case of a projective curve over a
trivially valued field, the arithmetic intersection number defined in [I5] coincides with
that constructed in a combinatoric way in [14] (see Remark . The comparison of
divers invariants of L with respect to its casting to the trivial valuation case provides
the opposite inequality vol, (L) < (L4+1).
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As a sequel to the above arguments in terms of trivially valued fields, our way to-
wards the arithmetic Hilbert-Samuel theorem over a adelic curve gives a new approach
even for the classical case.

As an application, we prove the following higher dimensional generalization of

Hodge index theorem (see Corollaries and [10.4)).

Theorem 1.3. — Let X be a geometrically integral projective scheme of dimension
d > 0 over Spec K and L = (L, ) be an adelic line bundle on X. Assume that L is nef
and all metrics in the family ¢ are semi-positive, then the inequality \a(f) > (L1
holds. In particular, if (L) > 0, then the line bundle L is big.

Theorem naturally leads to the following refinement of the arithmetic Hilbert-
Samuel theorem, in introducing a tensor product by an adelic vector bundle on X

(see Corollary [10.5).

Theorem 1.4. — Let X be a geometrically integral projective scheme over Spec K,
d be the dimension of X, L = (L, ) be an adelic line bundle on X and E = (E,1))
be an adelic vector bundle on X. Assume that L is ample and the metrics in ¢ are
semi-positive. Moreover we suppose that either tk(E) =1 or X is normal. Then one
has

iy 98U (X LE" @ E), (||l +9u Jwen)

im

n—+oo ndt1/(d+1)!

= 1k(E)(T%).

The rest of the article is organized as follows. In the second section we introduce
the notation that we use all through the article. In the third second, we consider
metric families on vector bundles and discuss their dominancy and measurability. In
the fourth section, we study normed graded linear series over a trivially valued field
and prove the limite theorem of their volumes. Then in the fifth section we deduce
the limite theorem for graded algebra of adelic vector bundles over a general adelic
curve, which proves in particular that the sequence defining the arithmetic volume
function actually converges. in the sixth section we show that the arithmetic Hilbert-
Samuel theorem in the original form implies the generalized form with tensor product
by an adelic vector bundle. In the seventh section, we prove that the difference of the
x-volume and the arithmetic intersection product does not depend on the choice of
the metric family. In the eighth section, we prove the main theorem in the particular
case where the adelic curve contains a single copy of the trivial absolute value. In the
ninth section, we explain the method of casting to the trivial valuation case. Finally,
in the tenth and last section, we prove the main theorem and deduce the generalized
Hodge index theorem.

2. Notation and preliminaries
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2.1. — Throughout the article, we fix a proper adelic curve S = (K, (Q2, A,v), ¢),
where K is a commutative field, (2,.4,v) is a measure space and ¢ = (|| )weq is
a family of absolute values on K parametrized by 2, such that, for any a € K*,
(w € Q) — Inlal, is integrable on (,.4,v), and the following “product formula”
holds:

VaeK, /ln|a\w v(dw) = 0.
Q

For any w € 1, we denote by K, the completion of K with respect to the absolute
value |-|y.

We assume that, either the o-algebra A is discrete, or the field K is countable.
Moreover, we denote by Q. the set of w € Q such that |-|,, is Archimedean. Note
that v(Qs) < +00.

Moreover, for w € Q, we always assume that |a|, = a for any a € Q0.

2.2. — Let V be a finite-dimensional vector space over K. As norm family on V,
we refer to a family (||||w)weq, where ||-||,, is a norm on V,, :==V @ K.
Let £ = (|||lw)wen and & = (||||.,)weq be norm families on V. For any w € £, we
denote by d,, (&, £’) the following number
sup (In||sfl, —In sl |.
seV\{0}
In the case where V = 0, by convention d,,(&,¢') = 0.

2.3. — As adelic vector bundle on S, we refer to the data V = (V,£) which consists
of a finite-dimensional vector space V over K and a family of norms & = (||-||.)wea
on V, =V ®k K,, satisfying the following conditions:
(1) the norm family ¢ is strongly dominated, that is, there exist an integrable func-
tion C' : Q@ — Rx( and a basis (e;)]_; of V over K, such that, for any w € Q
and any (A1,...,\.) € K2\ {(0,...,0)},

In|[Arer + -+ Aerl|lw —In max  |A,| < C(w).
1e{l,...,r}
(2) the norm family £ is measurable, that is, for any s € V, the function (w € Q) —

||s]lw is A-measurable.

In the article, we only consider adelic vector bundles which are ultrametric over non-
Archimedean places, namely we assume that the norm |||, is ultrametric once the
absolute value ||, is non-Archimedean. If in addition the norm ||-||,, is induced by
an inner product whenever |-|, is Archimedean, we say that V is Hermitian. If
dimg (V) = 1, we say that V is an adelic line bundle (note that an adelic line bundle
is necessarily Hermitian).

If V is an adelic vector bundle on S, any vector subspace (resp. quotient vector
space) of V together with the family of restricted norms (resp. quotient norms) forms
also an adelic vector bundle on S, which is called an adelic vector subbundle (resp.



8 HUAYI CHEN & ATSUSHI MORIWAKI

quotient adelic vector bundle) of V. Note that if V is Hermitian, then all its adelic
vector subbundles and quotient adelic vector bundles are Hermitian.

24. — Let V = (V,(|||lw)wen) be an adelic vector bundle on S, we define the
Arakelov degree of V as

&%(V) = — /Q Injles A+ Aerllw,det ¥(dw),

where (e;)7_; is a basis of V over K, and ||-||w,det denotes the determinant norm of
Ill» which is defined as (where r = dimg (V)

Ve det(V) = AT(V), Inllotec = _int lsill -+ o]

Let d/e\g + (V) be the positive degree of V, which is defined as
deg, (V) = sup deg(W),
wcv

where W runs over the set of vector subspaces of V', and in the adelic vector bundle
structure of W we consider the restricted norms. In the case where V is non-zero, we
denote by 7i(V) the quotient d/eTg(V)/dimK(V), called the slope of V. We define the
minimal slope of V as

Amin V)= inf Aia
Fmin(V) := b, AW)

where W runs over the set of all non-zero quotient adelic vector bundles of V.

2.5. — Let V be a non-zero adelic vector bundle on S. For any t € R, we let
Fvy= Y W
{0y#WCV
Bmin (W) >t

where W runs over the set of all non-zero vector subspaces of V' such that the minimal
slope of W equipped with the family of restricted norms is > t. We call (F*(V))ser
the Harder-Narasimhan R-filtration of V. In the case where V is Hermitian, the
following equality holds (see [13], Theorem 4.3.44]):

deg(V) = - [ tddimc(F(7),
R
. o0 o +o0 -
dog, (V) = — / td(dim g (F' (V) = / dim g (F4(V)) d.
0 0
In general one has (see [13] Propositions 4.3.50 and 4.3.51, and Corollary 4.3.52])

0 < der(V)+ [ i (F(V))) < 5() dim (V) In(lim (V)

— p— +OO J—
0 < deg, (V) —/0 dimg (F'(V)) dt < =v(Qs0) dimp (V) In(dimg (V).

N | =
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2.6. — Let V = (V,(||-|lvw)wen) and W = (W, (||-lw.w)wea) be adelic vector bundles
on S. For any w € Q such that ||, is non-Archimedean, let ||-||, be the e-tensor
product on V,, @k, W, of the norms ||-|v. and ||-[[w.. Note that, for any T €
Vw ®K, W, one has

neN, (e)i, € V], (fi)ie, € W }

Tw:min{ max eillve 1 fillwew :
I maxfledllves - Wfilwe = 500 S0 ST VU

In the case where ||, is Archimedean, let ||-||,, be 7-tensor product of ||-||v,. of ||-||w,w-
Recall that for any 7' € V,, ® ¢, W,,, one has

neN, (e)iiy € VI, (fi)ity € WS }

n
Tw:min{ eillvw - I fillwew :
Tl Dl Wi s 25 0 S

The pair
V ®e,7r W = (V QK I/Va (H'Hw)weﬂ)

is called the €, w-tensor product of V and W.

Assume that V and W are Hermitian. If |-|,, is non-Archimedean, let ||-|Z be the
e-tensor product of |||y and ||-||w; otherwise let ||-|Z be the orthogonal tensor of
the Euclidean or Hermitian norms ||-||y,. and ||-|[w.w. Then the pair

VoW =V ax W, (15 wea)

is called the Hermitian tensor product of V and W.

2.7. — Let (k,|]) be a field equipped with a complete absolute value, X be a pro-
jective scheme over Spec k. We denote by X?" the analytic space associated with X.
Recall that a point x of X" is of the form (j(z),|-|s), where j(x) is a scheme point
of X, || is an absolute value on the residue field of j(z), which extends the absolute
value || on the base field k. We denote by %(z) the completion of the residue field of
j(x) with respect to the absolute value |-|,, on which |-|, extends by continuity.

3. Metric families on vector bundles

The purpose of this section is to generalize dominancy and measurability conditions
in [13, Chapter 6] to metrized locally free modules, and to develop related topics. Let
S =(K,(Q,A,v),¢) be an adelic curve as introduced in

3.1. Metric family. — Let p : X — Spec K be a quasi-projective scheme over
Spec K. Let E be a vector bundle on X, that is, a locally free Ox-module of finite
rank. For any w € , let ¥, be a metric on E,, (see §2.7). By definition 1, is a
family (||, (7))zexan parametrized by X", where each |-|y,, is a norm on E, () :=
E, ®ox, k(r). We assume that the norm |[-|y,, (2) is ultrametric if the absolute value
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|| is non-Archimedean. Moreover, we assume that the metric v, is continuous,
namely, for any section s of E over a Zariski open subset U of X, the function

(z € U™) — [s]y, (2)

is continuous. The data ¥ = (¢, )weq is called a metric family on the vector bundle
E.

Assume that X is projective and geometrically reduced. For any w € €2, we denote
by |||, the supremum norm on H°(X,,, E,,), which is defined as

Vs € H'(Xy, Bo), lsllu, = sup |s(@)ly, (2).

We denote by p.(F, 1) the couple (HY(X, E), (|||, )wea)-
If ¢ and v are two metric families of E. For any w € Q we denote by d, (¢, 1) the
element
sup sup In|s|,, (z) —In|s|y, (x)] € [0, +00],
zeXam seE, (x)\{0}
which is called the local distance at w between ¢ and .

We denote by Og(1) the universal invertible sheaf on the projective bundle 7 :
P(E) — SpecK. For any w € Q, the metric v, induces by passing to quotient a
continuous metric on Og (1), = Og_ (1), which we denote by ¥FS. Recall that, if
y is an element of P(E,)*" and x = 73"(y), then the norm |-[yrs on Og(1), is the
quotient metric induced by the universal surjective homomorphism

E,(z) ®z(2) K(y) — Op(1)y,

where we consider the e-extension of ||y, (z) to E,(7) ®z@) k(y) if |-, is non-
Archimedean, and m-extension of |-y, (z) if |-|, is Archimedean (see [13] §1.3 and
§2.2.3]). Note that, if ¢ and v are two metric families of E, then one has (see [13]
Proposition 2.2.20])

VYweQ, du(",9") < du(p, ). (3.1)

3.2. Dominancy and measurability. — In this subsection, we fix a projective
scheme X over Spec K.

Definition 3.1. — Let E be a vector bundle on X.

(1) We say the metric family ¢ = (¢ )weq on the locally free Ox-module E is
dominated (resp. measurable) if the metric family ¢S = (F%),cq on Op(1)
is dominated (resp. measurable). We refer the readers to [13] Definitions 6.1.9
and 6.1.27] for the dominancy and measurability conditions of metrized line
bundles.

(2) We say (E,) is an adelic locally free Ox-module or an adelic vector bundle if
® is dominated and measurable, or equivalently, (Og(1),%"3) is an adelic line
bundle on P(E).
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Proposition 3.2. — (1) Ifv is dominated, then the norm family &y = (||| ¢, )wea
on H°(X, E) is strongly dominated.
(2) If the metric family ¢ on E is measurable, then the norm family &, on H°(X, F)
s measurable.

Proof. — 1If we identify H(X, E) with H°(P(E),Og(1)), then for any w € Q one

has [|-[|ly,, = [|-[lyrs by [13} Remark 2.2.14]. Therefore the assertions follow from [13]
Theorems 6.1.13 and 6.1.32]. O

Proposition 3.3. — Let E be a vector bundle on X, and ¢ and i be two metric
families of E. Suppose that ¢ is dominated and that the local distance function

(W e Q) — du(p,¥)

is bounded from above by an integrable function. Then the metric family 1 is also
dominated.

Proof. — This is a consequence of [13] Proposition 6.1.12] and (3.1)). O

Definition 3.4. — Let f : Y — X be a projective K-morphism from a geometrically
reduced projective K-scheme Y to X. Let E be a vector bundle on X and 9 =
($w)wea be a metric family on E. We denote by f*(¢) the metric family on E such

#* @) (y) on

[ (E)u(y) = Eu(z) @r(z) R(Y)
is induced by ||, (f**(y)) by e-extension of scalars if |-|, is non-Archimedean, and
by m-extension of scalars if |-|,, is Archimedean.

that, for any y € Y2, the norm |-

Proposition 3.5. — We keep the notation and the assumptions of Definition [3.]}
Suppose that the metric family ¥ is dominated (resp. measurable), then its pull-back
f*(@) is also dominated (resp. measurable).

Proof. — The universal property of projective bundle induces a projective morphism
F:P(f*(F)) = P(F) such that the following diagramme is cartesian.

P(f*(E)) —— P(E)

”.f*(E)l lﬂ'E

Y X

Moreover, one has Of«(g)(1) = F*(Og(1)) and F*(¢"5) = f*(¢)F5. Hence the
assertion follows from [I3] Propositions 6.1.12 and 6.1.28]. O

Definition 8.6. — Let E be a vector bundle on X and ¢ = (¢,,)ueq be a metric
family of E. If F' is a vector subbundle of E, for any w € Q and any x € X2", we
denote by ||y, (x) the restriction of |-|y, () to F,,(z). Note that Yr = (Vrw)weca
forms a metric family of F, called the restriction of ¢» to F. Similarly, if G is a
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quotient vector bundle of E, we denote by ||y o (x) the quotient norm of ||y, ()
on Gy (z). Then ¢ = (Vg .w)wea is a metric family of G, called the quotient metric
family of ¢ on G.

Proposition 3.7. — Let E be a vector bundle on X and G be a quotient vector
bundle of E. Let v be a metric family on E. If 1 is dominated (resp. measurable),
then the quotient metric family vq is also dominated (resp. measurable).

Proof. — Let i : P(G) — P(E) be the closed embedding induced by the quotient
homomorphism E — G. Then one has i*(¢S) = @[Jgs. Hence the assertion of the
proposition follows from [1I3] Propositions 6.1.12 and 6.1.28]. O

Definition 3.8. — Let E and F be vector bundles on X, equipped with metric
families ¥ and tp, respectively. For any w € Q and any x € X2, if ||, is non-
Archimedean, we denote by |-|(y gy, )., () the e-tensor product of the norms |-|, , ()
and |-y, (), if |-, is Archimedean, we denote by |-|(y, @y )., () the m-tensor product
of the norms ||y () and |-|y. , (x). Thus we obtain a metric family 1 ®¢r on the
vector bundle F ® F', called the tensor product of metric families ¥ g and ¥ . In the
case where one of the vector bundles F and F is of rank 1, we also write the tensor

product metric family of ¢ and ¢r in an additive way as ¥g + ¥p.

Proposition 3.9. — Let E and F be vector bundles on X, equipped with metric
families Y and g respectively. We assume that E is a line bundle. If both metric
families Yg and yr are dominated (resp. measurable), then Yg+ir is also dominated
(resp. measurable).

Proof. — Since E is of rank 1, we can identify P(F ® F') with P(F'). Moreover, if we
denote by 7 : P(F) — X the structural morphism, one has Oggr(1) = 7*(E)@0r(1),
and the metric family (g + 1) identifies with the tensor product of 7*(¢g) and
’z,/}f;s. Hence the assertions follow from [13] Propositions 6.1.12 and 6.1.28]. O

Proposition 3.10. — Let E be a vector bundle on X. Then there exists a dominated
and measurable metric family of E.

Proof. — Let L be an ample line bundle on X and ¢ be a dominated and measurable
metric family of LY. Then, one can find a positive integer m such that L™ ® E is
ample and generated by global sections. If L™ ® E has a dominated and measurable
metric family ¢’, then the tensor product of m¢ with v’ is a dominated and measur-
able metric family of E by Proposition so we may assume that F is ample and
generated by global sections.
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Let H(X,E) ® Ox — E be the natural surjective homomorphism. Fix a basis
e1,...,en of H'(X, E) and, for each w € Q and (ay,...,an) € K[V, we set

Vi +--+lan?  ifw € Qu,
laier + - +anenllw =
max{|a1|y, .-, |an|w} Hw e Q\ Qoo

and ¢ be the norm family (||-||u)weq. Let ¥ be a metric family of E induced by
H°(X,E) ® Ox — E and &. Let m : P(E) — X be the projective bundle of E
and Og(1) be the tautological line bundle of P(E). Note that the metric family 1S
of Og(1) is induced by H°(X,E) ® Opgy — Op(1) and &, so it is dominated and

measurable. Thus the assertion follows. O
3.3. Dual metric family. — In this subsection, let X be a projective scheme over
Spec K.

Definition 3.11. — Let E be a vector bundle on X, equipped with a metric fam-

ily ¥ = (Yu)wen. For any w € Q and any z € X2, the norm |-|y_(x) on E,(x)
induces a dual norm on E,(z)¥, which we denote by |-]yy(z). It turns out that
¥y = (|lpy (7))zexan forms a continuous metric on EY. Hence ¥V = (¢))ueq is a
metric family on EV, called the dual metric family of 1.

Proposition 3.12. — Let E be a vector bundle on X and v be a metric family of
E. If is dominated, then the dual metric family ¥V is also dominated.

Proof. — Let mg : P(F) — X and 7gv : P(EV) — X be the projective bundles
associated with F and EV respectively. We consider the fiber product P(E) x x P(EV)
of projective bundles and denote by

p1:P(E) xx P(EY) — P(E) and py:P(E)®x P(EY) — P(EY)
the morphisms of projection. Let
Op(1) ¥ Opv (1) := p1(Op(1)) ® p3(Opv (1))
and let
s € H'(P(E) xx P(EY),0p(1) B Opv (1))

be the trace section of Og(1) X Ogv (1), which corresponds to the composition of the
following universal homomorphisms

P2(Opv (1)) — p2(7pv (E)) = pi(7p(E)) — pi(Op(1)).

Claim 3.13. — Let 1 = (Y1,0)weq and P2 = (Y2.4)weq be metric families on E
and EY respectively. We equip Og(1) & Opv (1) with the metric family » = (¢, )wen
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which is the tensor product of the metric families pi(F>) and pi(5S). Then, for
any w € Q and x € X2, one has

[flyy, (@)
sup = < sl -
ferY @\ {0} [flyps. (T)
Proof. — Let f be a non-zero element of E) (z). The one-dimensional &(z)-vector

space of EY (x) spanned by f determines a point Py of P(E,,)*" valued in (RK(x),||s)
which lies over z € X?". Suppose @ is a point of P(E))*" valued in (%(z),|-|..) which
lies over x. Then s(Pf,@Q) corresponds to the following composition of universal
homomorphisms

Opv(=1)(Q) — Eu(z) — Op(1)(Py), (3-2)

and |s|,, (Pf, Q) is the operator norm of this homomorphism. We pick an arbitrary
non-zero element ¢ of Opv(—1)(Q). The dual element in Og(—1)(Pf) of the image
of £ by (3.2)) is f(¢)~!f. Therefore one has

O
|5|<pw (Pf7Q) - |£|¢1,w(x) : |f|¢2,u (x)

Taking the supremum with respect to £, we obtain the required inequality. O

< lsllg.-

In the above claim, if both metric families ¥; and 5 are dominated, then the
metric family ¢ on Og(1) X Opgv (1) is also dominated. In particular, the function

(we Q) — In|s|e.,

is bounded from above by an integrable function. Then the claim shows that the
function

we) — swp s (In[flyy, (2) —1n|fly.(2))
reXgr feEy (z)\{0} ’

is bounded from above by an integrable function. Therefore, the function

(weQ)—  sup sup In|f|,v.rs(Q) —In|f[yrs (Q)
1111 2w
QeP(EY)*» fGO;};c;é(Ol)(Q) “ '

is bounded from above by an integrable function. For the same reason, by exchanging
the roles of E and EV we obtain that the function

(we®)r— swp s (m ] (P) = In [t s (P))
€P(E)an tEOE?E]())(P)
t

is also bounded from above by an integrable function. In particular, if we denote by @
the tensor product of the metric families pt (3" and p3(y)""), then the function

(we Q) — In|s|a,
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is still bounded from above by an integrable function. Hence the above claim implies
that the function

e — s sup (In|flys (@)~ In|fluy (@)
zeXgr feEy (x)\{0} ’
is bounded from above by an integrable function. Therefore we obtain that the local
distance function
(w € Q) — dw('l/)lvan)

is bounded from above by an integrable function. By Proposition the metric
family 1y is dominated. By Proposition there exists at least a dominated
metric family on EV, the assertion is thus proved. O

Definition 3.14. — Let E be a vector bundle on X, ¥ = (1,,),eq be a metric family
of E. Let K'/K be a finite extension and let P : Spec K’ — X be a K-morphism.
Let

(K/a (9/7-’4/7 Vl)7 ¢I) =5 QK K'
Recall that ' is a disjoint union
o =] .
weN
where 0/, denotes the set of all absolute values on Q' extending |-|,,. For any w €
and any x € Q/, we let P, : Spec K. — X, be the morphism induced by
Spec K/, —» Spec K’ -2 X

and the canonical morphism Spec K — Spec K.

Spec K, — Spec K
We denote by ||-||, the norm on
(E ®K K/) ®K’ K; = Ew ®KW K;

which is induced by ||y, (Pz) by e-extension of scalars if ||, is non-Archimedean,
and by m-extension of scalars if ||, in Archimedean. Then, (||||;)zeq forms a norm
family of P*(E), which we denote by P*(¢).

Definition 3.15. — Let g be the set of w € Q such that the absolute value ||,
is trivial. Let x = (K, |-|s, Px) be a triplet, where (K, ||.) is a valued extension of
the trivially valued field (K, |-|o), and P, : Spec K, — X is a K-morphism. Assume
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that F is a vector bundle on X and 9 = (¥,,),eq be a metric family of E. Denote
by E, the K, -vector space P;(E). We consider the following adelic curve

(Kxa (QOaAO7 VO)a (|'|1‘)w690)7

where Ag is the restriction of the o-algebra A to g, and vq is the restriction of v
to (0, Ap). We denote by z* (1) the norm family (|-|y, (PY))weq, on E;, where P
denotes the point of X2" determined by (Py, |-|z)-

Assume that the transcendence degree of K,/K is < 1. Then ||, is a discrete
absolute value on K. Let ord,(-) : K, — Z U {400} be the corresponding discrete
valuation, which is defined as

ord,(a) =sup{n € Z : a € m},

where
m, ={be K, : |b, <1}.

Then there is a non-negative real number g such that

|-l = exp(—qord.(-)).

This non-negative real number is called the exponent of x.

Proposition 3.16. — Let E be a vector bundle on X and v = (¢y,)wea be a metric
family of E. Then the metric family v is measurable if and only if both of the following
conditions are satisfied:

(1) for any finite extension K'/K and any K-morphism P : Spec K' — X, the
norm family P*(v) is measurable,

(2) for any triplet x = (K4, | |z, Px), where (K, |-|z) is a valued extension of tran-
scendence degree < 1 and of rational exponent of the trivially valued field (K, |-|o)
and P, : Spec K, — X is a K-morphism, the norm family x*(¢) is measurable.

Proof. — 1t suffices to treat the case where the field K is countable. Recall that the
measurability of the metric family 1 signifies that the following two conditions are
satisfied:
(") for any finite extension K’/K and any K-morphism @ : Spec K’ — P(E), the
norm family Q* (/") is measurable,
(2”) for any triplet y = (K, ||y, Qy), where (K, ]||,) is a valued extension of tran-
scendence degree < 1 and of rational exponent of the trivially valued field
(K, |'lo), and @, : Spec K, — P(E) is a K-morphism, the norm family Q;@/)FS)
is measurable.

Let K'/K be a finite extension. Any K-morphism @ : Spec K’ — P(E) corres
ponds to a K-morphisme P : Spec K’ — X together with a one-dimensional quotient
vector space L of P*(E), which identifies with @*(Og(1)). Moreover, the norm family
Q* (¥"®) identifies with the quotient norm family of P*(¢). If the norm family P*(v))
is measurable, by [13, Proposition 4.1.24], we obtain that Q*(¢"®) is also measurable.
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Conversely, if for any one-dimensional quotient vector space of P*(E), the quotient
norm family of P*(¢) on it is measurable, by passing to dual we obtain from [13]
Proposition 4.1.24] that P*(¢)" is measurable and therefore P*(¢) is also measurable.

Let © = (K, ||z, P:) be a triplet, where (K, |-|;) is a valued extension of tran-
scendence degree < 1 and rational exponent of the trivially valued field (K, |-|o), and
P, : Spec K, — X be a K-morphism. Note that the field K is countable. Similarly
to the above argument, the norm family P*(¢) is measurable if and only if all its
quotient norm families on one-dimensional quotient subspaces are measurable. The
proposition is thus proved. O

Proposition 3.17. — Let E be a vector bundle on X and ¥ = (¢y)weq be a met-
ric family on E. If 1 is measurable, then the dual metric family ¢V of EV is also
measurable.

Proof. — Let K’'/K be a finite extension and P : Spec K/ — X be a K-morphism.
If P*(1)) is measurable, by [13], Proposition 4.1.24] we obtain that P*(¢)Y) = P* ()Y
is measurable. Similarly, for any triplet = (K, ||, Px), where (K, |-|,) is a valued
extension of transcendence degree < 1 and of rational exponent of the trivially valued
field (K,||o) and P, : Spec K; — X is a K-morphism, if the norm family P}(v)
is measurable, then P}(¢") = P¥(¢)V is also measurable. The proposition is thus
proved. O

Corollary 3.18. — Let E be a vector bundle on X, F be a vector subbundle of E,
YE be a metric family of E, and ¥ be the restriction of g to F. If the metric
family Yg is dominated (resp. measurable), then the restricted metric family Y is
also dominated (resp. measurable).

Proof. — The homomorphism of inclusion F' — FE induces by passing to dual a
surjective homomorphism EY — FY. Thus FV can be considered as a quotient
vector bundle of EV. Note that ¢}, identifies with the quotient metric family of ).
Hence the assertion follows from Propositions [3.12} [3.17] and [3.7] O

3.4. Metric families on torsion-free sheaves. — In this subsection, we assume
that the K-scheme X is geometrically integral.

Definition 3.19. — Let E be a torsion free Ox-module and U be a non-empty
Zariski open set of X such that F is locally free over U. For any w € , let ¢, be a
continuous metric of E,, over U such that, for any s € H°(X,,, E,),

l[8llg., = sup{[sfy. () : x € US"} < +oo.

We set ¥ = (Yu)wea and &y = (||'||lp. Jwen. We say (E,U, ) is a sectionally adelic
torsion free Ox-module if (H°(X, E), &) is an adelic vector bundle on S. By Propo-
sition [3.9] an adelic locally free O x-module is sectionally adelic.
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Definition 3.20. — Let E be a torsion free sheaf on X and U be a non-empty
Zariski open set of X such that E|, is locally free. Let 1 = (¢)weq be a metric
family of E|y. We say (E,U, ) is a birationally adelic torsion free Ox-module if it
satisfies the following properties:

(1) There exist a birational morphism p : X’ — X of geometrically integral projec-
tive schemes over K such that u=1(U) — U is an isomorphism, an adelic vector
bundle (E’,9’) on X', and an injective morphism of Ox,-modules E — p.(E’)
whose restriction to U gives an isomorphism El|; — p.(E')|; = E'| -1 ).

(2) The isomorphism El|;; = E'[, ., yields an isometry

(Evz/))|U — (E/’wl”pfl(U)'
By definition, for s € H°(X, F) and each w € €,
[[8[lp., == sup{]sly, (€) : € € US"}
exists. Note that [|-||y,, is the restriction of ||-||y; to H(X, E) by using the injective
homomorphism H°(X, F) — H°(X', E’), so that (H°(X, E), (|||ly., )wea) is an adelic

vector bundle on S, that is, a birationally adelic torsion free Ox-module is sectionally
adelic in the sense of Definition [3.19)

Lemma 3.21. — Let m: X — Y be a continuous map of locally compact Hausdorff
spaces such that w is open and proper. Let f : X — R be a continuous function on X
and f:Y — R be a function on'Y given by

f(y) = max{f(z) : n(x) = y}.

Then f is continuous on Y .

Proof. — Fix yp € Y. Since 7~ 1(yo) is compact, for € > 0, there exist z1,...,z, €
7 Y(yo) and open subsets Uy, ..., U, of X such that

ﬂ_l(yo) ctyu---uv,,
x; €U; foralli e {1,...,n} and |f(x) — f(z;)| < e forallie {1,...,n} and z € U;.
If weset Z=X\UpU---UU,, then n(2) is closed and yo ¢ 7(Z). We choose an
open set W of Y such that yo € W and
W Crn(U)Nn---Na(U,) N (Y \7(Z)).
Note that 7= (W) C U U---UU,. Let y € W and
Xi =sup{f(z) : x € U; and y = mw(x)}.

Then f(y) = max{\,..., Ay} and \; — e < f(z;) < \j+ ¢ forall i € {1,...,n}, so
that

fly) —e < flyo) < fly) +e,

as required. ]
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Let 7 : X — Y be a generically finite morphism of geometrically integral projective
schemes over Spec K and (M, U, ) be a sectionally adelic torsion free Ox-module.
Note that 7. (M) is a torsion free Oy-module. The pushforward (1) is defined as
follows: We choose a non-empty Zariski open set V' of Y such that

T 10y N V) —V

7|-71

is étale and 71(V) C U. Note that m.(M) is locally free over V. For y € V2" and
5 € (M) ® A(y), |5|x. ()., () is defined to be

|8l () () := max{|s]y,, (2) : @ € (72") 7 (1)}

Since 7=1(V)22 — V2 is proper and open (c.f. [2, Lemma 3.2.4]), by Lemma
7« (1), yields a continuous metric of m, (M), over V3*. We denote (7.(%)y)wen by
7. (). For s € HO(Y,7.(M)) = H°(X, M), as

). (W) © Yy € VE"Y = sup{lsly, (¢) : x € 77 (V)F'),

one has |[s]/r, ()., = [Isllg, < 00, so that (m.(M),V,7.(¢)) forms a sectionally
adelic torsion free Oy-module and (H°(Y,m,(M)), (|||lx, (¢). )weq) is isometric to
(HO(X, M), (Il 4 )wen). We call V an open subscheme of definition of m.(1)).

sup{|s

4. Volumes of normed graded linear series

In this section, we let k be a commutative field and we denote by |-|o the trivial
absolute value on k. Recall that |a|o = 1 for any a € k*. Moreover, Sy = (k, {0}, ]-|o)
forms an adelic curve.

4.1. Adelic vector bundle on Sy. — Adelic vector bundles on Sy are just finite-
dimensional ultrametrically normed vector space over k. If V = (V,|-]|) is an adelic
vector bundle on Sy, then the function ||-|| only takes finitely many values. Moreover,
if the vector space V is non-zero, then one has (see [13] Remark 4.3.63])

Amax V = - 1 5 Amin V = — 1 .
fmax(V) = = min ls]l,  fimin (V) = —maxIn s

The Harder-Narasimhan R-filtration of V is give by
VteR, FY(V)={seV :|s|<e'}

Note that

deg, (V) := sup deg(WW) :/ dimy (F*(V)) dt,
wcv 0

doa(V) = /R d dig (FL(V)) dt.
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4.2. Normed graded algebra. — Let V, = @, .y Vi be a graded k-algebra. We
assume that each V/, is a finite-dimensional vector space over k. For any n € N>, let
||l be an ultrametric norm on V,,. Then the pair V, = (V,, (||-|ln)nen.,) is called
a normed graded algebra over (k,||o). Let f : N5; — Ry be a function. If, for all
£ €Nsq, (nq,...,m) € Nél and (s1,...,8¢) € Vi, X -+ x V,,, one has

51+ Sellnytgne < VT CD g [l (5] (4.1)

we say that V, is f-sub-multiplicative. In the particular case where f is the constant
function taking value 0, we just say the V, is sub-mutiplicative. If there exists two
constant Cy and Cy such that, for any n € N and any s € V,, \ {0}, one has

1" |8l < e©27, (4.2)
we say that V, is bounded.

Proposition 4.1. — Let V, be a normed graded algebra over (k, |-|o) and f : N1 —
R>o be a function such that

lim ——= =0.
n—-+oo n

Assume that V, is an integral domain and that V, is f-sub-multiplicative and bounded.

(1) For any n € N>y and any s € V,,, the sequence
IsNlx, NeN N>1

converges.

(2) For any n € N>y, the map
. . N 1/N
g : Voo — Boo, 50— T [s™ 144

18 an ultrametric norm on V,.
(3) The family of norms (||||sp,n)nen satisfies the following sub-multiplicativity con-
dition: for any (n,m) € N* and any (sn, sm) € Vo X Vi,
[$n8mllsp,ntm < l[Snllspn « [|8mllsp,m-
(4) For any n € N1 and any s € V,, \ {0}, one has
Isllspn < €]l (4.3)

Proof. — It suffices to treat the case where s # 0. By (4.1)), for £ € N>, and
(N1,...,Ny) € Ngl, one has

4
I [l s™ N vy <IN [l + S (V).
=1

Moreover, by (4.2)), the sequence

1
N1n||sN||nN7 NeN, N>1
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is bounded. Therefore this sequence converges in R (see [9], Proposition 1.3.1]), which
shows that the sequence
Is¥lws NeN, N>1
converges to a positive real number.
It suffices to show that ||-||sp,. satisfies the strong triangle inequality. Let s and
t be two elements of V,,. For any N € N3, one has

(s+t)N = iv: (7) SN

i=0
and hence
I+ e < a1y
Let )
M = je%l%él 5 max{ln ||s’||,;,1n [|t’|,;,0}.

Let () en be a sequence of real numbers in [0, %] such that

Jim e; =0, lim jej =+oo, lim (j - je;) = +oo.

If i/N < e, one has

1 i N—i N —i 1 N—i f(ni)  f(n(N —1i))
v sy SenM A —— = W [t v o) + T N
Similarly, if (N —¢)/N < ey, one has
1 P N—i i1 i ni n(N —1
N]HHS%N ||nN<N'21n||S||7Li+€NM+ng)+f( (N ))
If Ney <i< N — Ney, one has
1 i N—i i1 i N—1 1 N—i
Sy < s+ e Iy
fni)  fn(N —1i)
+ N + N .

Taking the superior limit when N — +o00, we obtain that

th—1

. 1
limsup _max I [ e < max[lsllsp.n, [1llspn -

N oo i€{0,....N

Let (n,m) € N2 and (sp, $) € Vi, X Vpp,. For any N € N such that N > 1, one
has

||(3n3m)NH(n+m)N nN * ||5%||mN

Taking the N-th root and letting N — +o0o we obtain
[$n8mllsp,ntm < l[Snllspn « [|8mllsp,m-
For any N € N3, the following inequality holds:

5™ 1y < M1l
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Taking the N-th root and then letting N — 400, we obtain
Isllsp,n < 5]l

O

4.3. Reminder on graded linear series. — In this subsection, we let k'/k be a
finitely generated extension of fields. As graded linear series of k' /k, we refer to a
graded sub-k-algebra V, of
KT =@rT"
neN

such that Vp = k. We denote by N(V,) the set of n € N such that V,, #0. If V, is a
graded linear series and N(V,) # {0}, we denote by k(V,) the sub-extension of k'/k
generated by

U {f/gl(f.g) € Vo x (Va \ {0})}
neN(Ve)\{0}
over k. If N(V,) # {0}, then we denote by dim(V,) the transcendence degree of
the extension k(V,)/k, and call it the Kodaira-Iitaka dimension of V,. In the case
where V;, = {0} for any n € N3, by convention dim(V,) is defined to be —oco. If
N(V,) # {0} and if the field k(V,) coincides with k', we say that the graded linear
series V, is birational.

We say that V, is of sub-finite type if there exists a graded linear series W, of
k'/k which is a k-algebra of finite type and contains V, as a sub-k-algebra. By [12]
Theorem 3.7], there exists a graded sub-k-algebra of finite type W, of the polynomial
ring

KVOIT] = @ k(vaT"
neN
such that k(W,) = k(V,), which contains V, as a sub-k-algebra. In other words, V,
viewed as a graded linear series of k(V,)/k is sub-finite.

Let V, be a graded linear series of sub-finite type, and d be its Kodaria-litaka

dimension. If N(V,) # {0}, we define the volume of V, as the limit (see [12], Theorem

6.2] for the convergence)
(V,) = _—
vol(Va) neN(v.l)I,r}z—>+oo nd/d!

Note that V, satisfies the Fujita approximation property, namely, one has

vol(V,) = sup vol(W,),
WeCV,
dim(Wae)=dim(Va)
where W, runs over the set of all graded sub-k-algebras of V, such that dim(W,) =
dim(V,).
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4.4. Normed graded series. — In this subsection, we fix a finitely generated
extension k'/k, a graded linear series V, of k'/k which is of sub-finite type, and a
f : N>1 — R20 such that

lim ——= =0.
n—+oo N

Let d be the Kodaira-litaka dimension of V,. We assume that d > 0 (namely N(V,) =
{n €N :V, #0} # {0}) and we equip the graded algebra V, with a family of norms
([Iln)nen such that V, = (V.. (||-ln)nens,) forms a normed graded algebra which is
f-sub-multiplicative and bounded (see . For any n € Nx1, let |||lspn : Vo = Rxo
be the map defined as

N H 1/N

Islopn 1= tim s

Then (V,, ([|llsp,n)nens, ) forms a normed graded algebra which is sub-multiplicative

and bounded. Moreover, we denote by 12, (V,) the asymptotic mazimal slope of V,,
which is defined as

sy (v, lim min ln lim Lmax (Vs [|]]7)-
L) == Jm o owin Shafl= dm (Ve

Note that the existence of the limite is ensured by the inequality (4.1), which implies
that

~

ﬁmaX(anJr"'Jrne’ H'||n1+-~+nz Z (Nmax s I-llns) — f(m))

i=1

We refer the readers to [9, Corollary 1.3.2] for a proof of the convergence.

Proposition 4.2. — The following equality holds:

_ 1
sy (v, li —max (Vi | |lsp,n)-
Hana (V) = ey P (Vas - lsp,n)

Proof. — By Proposition [I.1] one has
S I,

[ -llspn <

and hence for n € N(V,) the following inequality holds

Fmax (Vi Illspn) = Bmax(Va, [|-ln) — f(n).
This implies

N 1.

1
lim s > li — Vo, ll-ln)-
e Vi ) 2l (Vi )

Conversely, for any fixed n € N(V,) and s € V,, \ {0} such that

In HSHSPJL = —Hmax(Va, ||'HSIJ,71)’
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one has
P . 1
oo (Ve) = Ngr_ri_loo nwﬂmaX(VnN» [[llnnv)
> lim sVl = == 15l = = Fimas (Vo [ lapn)
/N—1>I—Ii-1<>c N n|s " ||ny = " n|S|sp,n = n,umax ns sp,n)-

Taking the limit when n — +o00, we obtain

Fimmase (Va) 2 Hd (Ve (|- lsp.n)mens, )

O

Definition 4.3. — We define the arithmetic volume of V, as (see for the defi-

nition of deg, )
o~ deg, (Vo [Ill)

vol(V,) := lim sup .
( ) neN(V,), n—+o0 nd+1/(d + 1)'

Theorem 4.4. — The superior limit in the formula (4.4]) defining the arithmetic
volume function is actually a limite. Moreover, the following equalities hold:

— . deg,, (Vi [|-lsp.n)
1 V. — 1 + ’ P,
vol(V2) neN(V.l){Ileﬂo ndt1/(d + 1)!
where fort € R,
Vi=ko @ Vecty({s € Vi, ¢ ||8]lspn < e7™}).

neN, n>1

(4.4)

=(d+1) /Om vol(V}) dt,

Proof. — By replacing k' by k(V,), we may assume that the graded linear series V, is
birational. For simplifying the notation, we let M be the asymptotic maximal slope
of V,. Note that M is also the asymptotic maximal slope of (V,, (|||lsp.n)nen) (see
Proposition . Moreover, since V, is bounded, there exists a constant A > 0 such
that [|s||,, < e™ for any n € N5 and any s € V,.

By the same argument as the proof of [12], Proposition 6.6], we obtain that, for any
t < M, one has k(V}) = k(V.). Moreover, for any ¢ > M and any n € N>1, one has
Vi = 0. Therefore, combining the construction of Newton-Okounkov bodies in [11],
Theorem 1.1] and that of the concave transform developed in [5] §1.3], we obtain, in
a similar way as [5, Corollary 1.13] that

_ . deg, (Vi | lsp.n)
1 an “llsp,n/n = 1 - ’ =
vol(Ve, (Illlsp.n)nen) nEN(V.l){I’}l—)-FOO nd+1/(d 4+ 1)!

Moreover, by (4.3) we obtain that
deg Vi, [[llsp,n) = degy (Va, [[-[ln) — dime (Vi) f(n),

=(d+1) /O+oo vol(V}) dt.

which leads to

deg+(Vm ll-1l)

hmsup nd+1/<d + 1)| < VOI(‘/., (H’”Sp»n)n6N>1)

ne€N(V,), n—+oo
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since dimg(V},) = O(n?) when n € N(V,), n — +o0.
Let € be an element of |0, M|, t be an element of [¢, M[. Let W! be a graded sub-k-
algebra of finite type of V!, which is generated by a family of homogeneous elements

81, - .-, 8¢ of homogeneous degrees ny, . .., ny respectively. For any i € {1,...,£}, there
exists a; € N> such that the inequalities
s llniv < € N2 1551 5, < N 2D (4.5)

hold for any integer N > a;. Therefore, by the inequality (4.1)) we obtain that, for
any (Ni,...,Ng) € Nél, one has

14

N N, N;

In Hsl P Sy £||n1N1+“'+neNe < Z (ln ”Sz 7'|
i=1

nit; + f(niN;)).

By (4.5), we obtain that

N N, €
In |53 50 oy Ny < Y ”z‘Ni(§ - t) + ) A
ie{l,...,0} ie{l,....0}
Niza; N;<a;

14 4 14 l
< (g — t) an(Nz - ai) + ZniaiA < (% — t) ZniNi + anaz(A + M)
i=1 =1 i=1 =1

Therefore, for (Ny,...,Ny) € Nél such that ny Ny + --- + ngNy is sufficiently large,
one has
A T A
In particular, for n € N(V,) sufficiently large, one has Wt c F¢==)"(V,,, ||-||), which
leads to (o)
di (Vs [l-lin
L A POV )

neN(Vs), n—+oo nd/d'

> vol(WY).

Taking the supremum when W! varies, by the Fujita approximation property of V}
we obtain that
dimk(]:(t_a)n(vm [-[I))

lim inf > (V. 4.6
perpint 7 vol(V,) (4.6)
Note that
— +oo +oo "
d%ﬁwmw»z/ defm%wm»wznA dimy (F™ (Vi [-[l)) dt
0

M
> n/ dimy (F" 79 (V. [|-]|n)) dt.
€
Taking the integral with respect to ¢, by Fatou’s lemma we deduce from (4.6) that

deg.. (Vo |I-lln 1)!
lim inf M > lim inf (d+1)
neN(Vy),n—+o0 ’IldJrl/(d + 1)' n€N(V,), n—+o00 nd

> (d+ 1)/M vol(VH)dt = (d + 1) /m vol(V1).

M
[ i I )
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Finally, taking the supremum with respect to €, we obtain the inequality

deg+(Vn, ||Hn)

lim inf 2 > vol(Va, (Il llspn)ners,)-

n€N(V,),n—+00 nd“‘l/(d =+ 1)

The theorem is thus proved. O

Corollary 4.5. — The sequences
deg(Vp, ”Hn)

m, n € N(V,)
and
dee Vo llnn) ey

R d+ 1)

converge to the same real number, which is equal to
—/ tdvol(V}).
R

Proof. — Let A be a positive constant such that ||s||,, < e"4 for any n € N5 and any
s € V. For any n € Nxy, let |||}, = e™*||-[|n. Then, (Vi,(e™"[||ln)nens,) forms
a normed graded algebra over (k,|-|o), which is f-sub-multiplicative and bounded.
Moreover, for any n € N>, one has

deg(Va, |I-l12) = degy (Vi [I-1%) = nA dimy,(Vy,) + deg(Vau, [|-[ln)

where the first equality comes from the fact that the image of ||-||/, is contained in
[0,1]. For any n € N one has

—nA
I-lep.n = €7 M- lsp,n-

By (4.3), for any n € N> and any s € V,,, one has

YN €Nz, sllspn = sV [0y < ef NNV LT < of (nN)/N4nA,

nA /

Taking the limite when N — +oo, we obtain ||s|[sp» < €"” and hence |[-[|{, ,, also

takes value in [0, 1]. Therefore, for any n € N>, one has
deg(Var, [|"ll5p,n) = degy Vi, [I-15p,) = nA dimy (Vi) + deg(Va, [|[lsp,n),
Hence Theorem [£.4] leads to the convergence of the sequences

deg(V, [ [ln) +nA dimg (V,,)
nd 1 J(d 1 1)! :

n € N(V,)

and
deg(Vi, [|“llsp,n) + nAdimy (Vi)
nd+1/(d + 1)! ’

n € N(,)
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to the same limite, which is equal to

(d+ 1)/0+Oo vol(VI=4)dt = (d + 1)/:0 vol(V}) dt

= A(d+ 1) vol(V,) — / tdvol(V}),
R
where the last equality comes from the fact that V! = V, when t < —A. By the

formula

1 ———— = vol(V,),
neN(v.l)r,I}HJroo nd/d! vol(V2)

we obtain the assertion. O

Definition 4.6. — We define the y-volume of the normed graded linear series V,
as

deg(V. [|-[ln)
neN(Ve), n—+oo ndt1 /(d + 1)’

By Corollary [4.5] we obtain that voly (V) = voly(Va, ([[-[lsp.n)ners, ).

‘70\1x (V-) =

5. Arithmetic volumes over a general adelic curve

In this section, we use the results of the previous section to study the volume func-
tions of a normed graded algebra over a general adelic curve. Let S = (K, (Q, A, v), ¢)
be the adelic curve defined in We let |-|p be the trivial absolute value on K, and
denote by Sy = (K, {0}, |-]o) the adelic curve consisting of a single copy of the trivial
absolute value |-|g on K.

5.1. Graded algebra of adelic vector bundles. — In this subsection, we con-
sider basic facts on graded algebras of adelic vector bundles.

Definition 5.1. — Let E, = @, oy En be a graded K-algebra. We assume that
each vector space E,, is finite-dimensional over K. For any n € N, let &, = (||-||n,w)wen
be a norm family on E,, such that E,, = (E,,&,) forms an adelic vector bundle on S.
We call E, = (E,)nen a graded algebra of adelic vector bundles on S. For any n € N
such that n > 1, let (F'(E,))ter be the Harder-Narasimhan R-filtration of V,, (see
. We denote by ||-||HN the norm on E,, (viewed as a vector space over (K, |-|o))
defined as

Vs€E,, |[s|iN=exp(—sup{teR:seF(E,)}).

Then, the couple (E,, (||-[[N)nen,,) forms a normed graded algebra over (K, |-|o)
(see §4.2)). Moreover if we view (E,,, ||-||2!N) as an adelic vector bundle on Sy, then its
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Harder-Narasimhan filtration coincides with that of (E,, ||-||»). In particular, by the
results recalled in the following estimates holds:

— — 1
0 < deg(En, |[[ln) — deg(En, [I-]nY) < 37 (Qoc) dimg (En) In(dimg (En)),  (5.1)
— — 1 . .
0< deg+(En, ll-ll) — deg+(En, ||H7}LIN) < 5”(900) dimg (E,) In(dimg (E,)).  (5.2)

Let b = (bn)nens, be a sequence of non-negative integrable functions on (£2, A, v).
We say that a graded algebra of adelic vector bundles E, is b-sub-multiplicative if for
all w € Q, ¢ € Nyg, (ny,...,my) € Nél and (s1,...,8¢) € Epyw X -+ X Ep, o, the
following inequality holds

81+ Sellng4tnew < ebm (W)t bn, (v ||51Hn1w"' llsellng- (5.3)

If for any n, b, is the constant function taking 0 as its value, we simply say that F,
is sub-multiplicative.

Proposition 5.2. — Assume that the field K is perfect. Let b = (by)nens, be a
sequence of non-negative integrable functions on (Q, A,v), and E, be a graded algebra
of adelic vector bundles on S, which is b-sub-multiplicative. Let f : N>; — Ry be
the function defined as

fln) = gu(Qoo)ln(dimK(En)) —|—/ by, (w) v(dw).

Q

Then the normed graded algebra (E,, (||[|FN nens,) is f-sub-multiplicative.

Proof. — Let ¢ € N3 and (n4,...,n) € Nél. For any ¢ € {1,...,¢}, let F,, be a
K-vector subspace of E,,,. For any w € (), we consider the K,-linear map

Fnhw K- Fnl7w — En1+~-'+ne,w

induced by the K-algebra structure of F,. If we equip with F,,, , ® --- ® Fy,, ,, with
the e-tensor product of the norms |||l .- - -, ||lng,w When ||, is non-Archimedean,
and with the 7-tensor product when ||, is Archimedean, then the operator norm of
the above map is bounded from above by exp(by, (w) + -+ + by, (w)). Moreover, by
13l Corollary 5.6.2] (although this result has been stated under the assumption that
char(K') = 0, this assumption is only used in the application of Theorem 5.4.3 of [13],
which actually applies to any perfect field), one has

(A (Fr) = S0(00) (B,

MN

ﬁmin(ﬁnl ®E77T : ®6 T n

i=1

Let Fp, 4...4n, be the image of the map By [13], Proposition 4.3.31], we obtain that

‘ 3
ﬁmin( ny+-- +nz Z(len n; iy(QDO)IH(Em)*/Qbm( w)v (dw)) (5.4)
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Therefore, we obtain that, for any (¢y,...,%) € R, one has
]:tl (Em) o ']:tz (E’ﬂe) C ]:tl+m+t€_f(n1)_m_f(m)(En1+---+nz)a

which shows that the normed graded algebra (E,, (||-[F™)nen., ) is f-sub-multiplicative.
O

Corollary-Definition 5.3. — Assume that the field K is perfect. Letb = (bn)nens,
be a sequence of non-negative integrable functions on (2, A,v) such that

1 _
lim —/an(w) v(dw) = 0.

n—+oco n

Let E, be a graded algebra of adelic vector bundles on S, which is b-sub-multiplicative.
Denote by N(E,) the set of n € N such that E,, # 0. Assume that

(1) E, isisomorphic to a graded linear series of sub-finite type of a finitely generated
extension of K, which is of Kodaira-Iitaka dimension d > 0,
(2) there exists C > 0 such that, for any n € N(E,),

—Cn < //J\min(En) < ﬁmaX(En) < Cn.

Then the sequences

deg(E,)
m, n e N(E.)
and .
deg. (En) n € N(E,)

nd T/ (d+ 1)

converge to two real numbers @X(E.) and \7(;1(@.), which we call x-volume and
volume of E,, respectively.

Proof. — These results follow from Proposition [5.2] Theorem [£.4] Corollary [4.5] and

the comparisons (5.1)), (5.2]) and the convergence of the sequence

T/d!, n e N(E.)
O

Remark 5.4. — Assume that the field K is perfect. Let b = (bn)nens, be a sequence

of non-negative integrable functions on (£2, 4, v) such that
1
lim — [ by(w)v(dw)=0.

n—+4oo N O

Let E, be a graded algebra of adelic vector bundles on .S, which is b-sub-multiplicative.
We assume that nq,...,ny are elements of N(E,) \ {0} such that

Ko P E.

neN, n>1
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is generated as K-algebra by E,, U---UE,,. By (5.4) we obtain that, for any
(ai,...,ar) € N\ {(0,...,0)}, the canonical image of

Bg @@ B2

in Eq,n,+-+apn, nas a minimal slope
‘ 3
> a; <ﬁmin(El-) - 51/((200) In(E,,) — / by, (w) V(dw)).
i=1 Q

Therefore we deduce that, for any n € N(E,)\{0}, the minimal slope of E,, is bounded
from below by

14

min E a; <ﬁmin(E¢) — §V(Qoo)ln(En1> */ by, (W) y(dw)),
(a1,...,ap)EN" = 9 : o
=1
n=aini+--+agng

Hence there exists C' > 0 such that fimin(E,) = —Cn holds for any n € N(E,).

5.2. Arithmetic y-volumes of adelic line bundles. — In this subsection, we
introduce the arithmetic x-volume of an adelic line bundle.

Theorem-Definition 5.5. — Let p: X — Spec K be a geometrically integral pro-
jective scheme over Spec K, d be the dimension of X, and L = (L,¢) be an adelic
line bundle on X. Assume that L is big and the graded K-algebra

D HO(xX, L=")

neN
is of finite type. We denote the adelic vector bundle (H°(X, L®™), (||-||ng. )wen) over
S by p.(L®™). Then the sequence

deg(p.(L%™))

_— N >1 5.5
nd+ 1/ (d+ 1) nely, n (5.5)

converges to a real number, which we denote by ;(;IX(Z) and which we call the x-
volume of L.

Proof. — Let KP¢ be the perfect closure of K. Recall that, if K2 denotes the alge-
braic closure of K, then KP¢ is the intersection of all subfields of K2¢ containing K
which are perfect fields. Note that KP°/K is a purely inseparable algebraic extension
of K. Therefore, for any w € Q, the absolute value |-|,, extends in a unique way to
KP¢/K. In other words, the measure space in the adelic curve structure of S ®y KP°¢
coincides with (Q, A, v).

For any n € N, let

E, = HO(X, L®n) Q KP¢ = HO(XKpc,L%Tch)-
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The norm family of p, (f®n) induces by extension of scalars a norm family on E,,
which we denote by &,. By [13| Proposition 4.3.14], the equality

deg(En, &,) = deg(p.(L&™))

E.:@En

neN

holds. Moreover,

is a graded KP¢-algebra of finite type, which is isomorphic to a graded linear series of
the function field of X gpe over KP¢. As a graded KP¢-algebra of adelic vector bundles

on S @y KP°, E, = (E,)nen is sub-multiplicative. By [13, Proposition 6.2.7], we
obtain, following the proof of [13], Proposition 6.4.4], that the sequence

Amax En
Panx(Bn) o >
n
is bounded from above. Therefore the assertion follows from Corollary-Definition [5.3]
(see also Remark [5.4)). O
Remark 5.6. — Under the notation and the assumption of the above theorem-
definition, the following relation holds
L (@) vl (D)

n—+oo ndimg (HO(X, L®"))  (d+1)vol(L)"

5.3. Normed graded module. — Let R, = (R, ),en be a graded algebra of adelic
vector bundles on S, where R,, = (R, (||||ln.w)weq). Let M, = @,,cyy My be a graded
module over R, = @neN R,,. If each M, is a finite-dimensional vector space over K
and is equipped with a norm family (||-]|,)weq such that M, = (M, (|13, )wea)
is an adelic vector bundle on S, we say that M, = (Mn)neN is a graded R.-module of
adelic vector bundles on S.

Assume that R, is sub-multiplicative (see Definition [5.1). If, for all (n,m) € N2,

weQand (a,s) € Ry X My, ., one has
M M
||a’8||n+m7w < HG’HTL#—U ' ||8Hm,w7
we say that M, is sub-multiplicative.
Lemma 5.7. — Let M, = ((M,,,€1,))nen be a graded R,-module of adelic vector
bundle on S. Let Q = @ZOZO Q. be a graded quotient R-module of M, that is, Qy, is a
quotient vector space of M,, over K for alln and ag- : M,, — M, ¢ induces by passing

to quotient a;- : Qn, — Qnir for ap € Ry. Let &g, be the quotient norm family of Q,
induced by M, — Q, and &, Then Q, = ((Qn, €0, ))nen is a graded R,-algebra.

Proof. — Assume that &y, and &g, are of the form (||[|3,)weq and (||-|9,)wen;
respectively. Let (n,n') € N2, w € Q, a € R, and ¢ € Q. For any s € M,
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which represents the class ¢ € Q7 ,, one has

lag 2y < llasllynr o < lallne - Il -
Taking the infimum with respect to s, we obtain

lagll%, o < llallne - 1519 o

as required. ]
Proposition 5.8. — Suppose that R, is a K-algebra of finite type. Let M, =

(M, €a1,,))nen be a graded R,-module of adelic vector bundle on S, such that M, is
an R,-module of finite type. Suppose that

di M,
lim inf 7lch(l n) =0
n— 00 n
for some non-negative integer d, then
. deg(My, Ear,)
liminf == >0
Proof. — Let x1,...,z, be homogeneous elements of R which generate R as K-
algebra. We choose non-zero homogeneous elements my, ..., my of M such that M
is generated by mg,...,my over R. We set e; = deg(z;) and f; = deg(m;) for
i€ {l,...,r}. For a« = (a1,...,a,) € N, we denote z{* ---z% by z*. If we set
d, = dimg(M,), then, for n > max{fi,..., fr}, we can find aq,...,a4, € N" and
Miys - ,My, € {m1,...,my} such that z%m;,,...,2%n=m;, form a basis of M,.
Note that
I ) A A (e, ke ae < N2 mi g, ol ma,, 1,
<l ||n7fi17w N Eaad ”n*fz‘dn w * lma, %1 w ' ”mid,n %dn W
<max{l, 1 fley s o l2rlle, w} " max{l, [mallF o, lmellf 3
so that
deg(M.,, &) = ndn/ min{0, —In |z1 e, w; - -, — I |21 ||e,. 0 } ¥(dw)
Q
+d, / min{0, —In Hm1||§\/1[7w, .o.,—In ||mg|\%,w} v(dw).
Q
Thus the assertion follows. O

6. Bounds of y-volume with auxiliary torsion free module
Let us begin with the following lemma.

Lemma 6.1. — Let X be an integral projective scheme over a field k, L be an
iwvertible Ox-module and F be a coherent Ox-module. We assume that there exist
a surjective morphism f : X — Y of integral projective schemes over k and an
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ample invertible Oy -module A such that f*(A) = L. Then R = @, , H°(X,L®")
s a finitely generated algebra over k and M = @ZO:O HY(X,F ® L®") is a finitely
generated R-module.

Proof. — By [20], §1.8], there exist positive integers d and ng such that
HO(Y, A%Y) @ HO(Y, A®" @ f.(F)) — HO(Y, A%+ @ f,(F))
is surjective for all n > ng, and hence
HO(X, L% @ H(X,L®" @ F) — H°(X,L®@*) @ F)

is surjective for all n > ng because f.(L®") = A®" @ f.(Ox), f«(L®" @ F) =
A®" @ f (F), Oy C f.(Ox). Thus, by the arguments in [20] §1.8], one can see the
assertion. O

In the rest of the section, let p : X — Spec K be a d-dimensional geometrically
integral projective variety over K. Let L = (L, ¢) be an adelic invertible O x-module.
Let E be a torsion free Ox-module and U be a non-empty Zariski open set of X
such that E is locally free over U. Let ¥ = (¢,,)uecq be a metric family of E|y. We
assume that (L®" @ E, U, np + 1) is a sectionally adelic torsion free Ox-module (see
Definition for all n € N. Note that, if the sectional algebra €, .y H°(X, L®")
is of finite type over K (this condition is true notably when L satisfies the hypothesis
of Lemma [6.1)), by Theorem-Definition the sequence

deg(p. (Z®™))

m, nEN,n>1

converges to a real number denoted by \781X (L).

Theorem 6.2. — If there are a birational morphism f : X — Z of geometrically
integral projective schemes over Spec K and an ample invertible Oz-module A such
that L = f*(A), then the following inequality holds:

() < limint 9B@- %" € B)
rk(E) vol, (L) < hnrggf W1 1)

Proof. — Let r be the rank of E. Note that p,(L®" ® E) forms an adelic vector
bundle over S for any n € N. For a sufficiently large positive integer ng, shrinking U
if necessarily, we can find ej,...,e, € H(X, L®" @ E) such that ey,...,e, yield a
basis of L™ ® E over U. Indeed, there is a positive integer ng such that

HY(Z,A®™ @ f.(E)) ® Oy — A®™ ® f,(E)
is surjective, and hence

HYX,L®" @E)®O0x — L*" ® F



34 HUAYI CHEN & ATSUSHI MORIWAKI

is surjective on some non-empty Zariski open subset of X. Thus the assertion follows.
Let OF" — L®™ ® E be the homomorphism given by

(a1,...,a;) —> are1 + - - + are,.
Let @ be the cokernel of C’)E’?T — L® @ E. The sequence
0 —0Y —L®QE—Q—0
is exact, and so is
0 — (L)% — LT g — L¥" @ Q — 0.
Thus
0 — HY(X,L®")®" — H%X, L™ @ E) — H°(X,L®" ® Q)
is also exact for all n > 0. Let @,, be the image of
H(X,L®"t™ @ B) — HY(X,L®" ® Q).
We equip H°(X, L®"*t" @ E) with the norm family

Entno)oty = (Il (ntno)pu+in Jwea-
Let && = (||]|% ,)weq be its restricted norm family on H°(X, L®™")®" induced by the
injection
H(X,L®")®" — HO(X,L¥""" @ E).
Let £9 = (|]|9.,)weq be its quotient family on @, induced by the surjection
HO(X, L9 @ B) — Q.
Then, by [13 Proposition 4.3.13, (4.26)],
deg(HO(X, L"), £7) + deg(Qn, £2) < deg(HO(X, L™ © B), €rpnyors)-
Since dim Supp(Q) < dim X, by Proposition

L deg(@us (120 )uen)
imin i

= 0.
Therefore, by the super-additivity of inferior limit, we obtain

dee(HO ®n\@r ¢L - +on
lim inf deg(H (X, L), 6,) < lim inf deg(p.(L®" © E))
(] it =@ )

Let us consider the homomorphism of identity

(H(X, LEM)® (1155, Jwea) — (HO (X, LE)®", (|17 w)wen),

(6.1)

ney
where
“max ||si|[ne., ifweQ\Qu,
(51, se)llg, = g €t

(Is1ll2g, + -+ lsellZp )2 ifw € Qoo

nYw
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If we N\ Qu, then

(s1,---, ST)Hﬁ,w < lsier + -+ Sreru(nJrno)wwwa
< ie?il?fr} [15illng.. 1€illno g+
<lsnsose 15 (e Nedlnogu o)

Moreover, if w € Q,, then by Cauchy-Schwarz inequality

ﬁ,w < ”3161 +o 4+ Srer||(n+no)<pw+¢w

T
—MIsillng. leillnopo +1.
i=1

I(s1y.-y80)]

N

I
< (X sl ) (e leillnag o)
< \/;H(Slv cey ST)‘ ;?;w zefrll,ax,r} ”ei”nmeJrl/)w'

Therefore,

1
h(fn) < [ max logleillngep,+p.v(dw) + 5 log(r) vol (),
qi€{l,...,r} 2

and hence, by [13], Proposition 4.3.18],
rdeg(H(X, L®"), &np) = deg(H® (X, L¥™)®7, €37)
< deg(H(X, L"), &0)+

1
rdimg H(X, L®™) </ 4 frllax }log ll€ill oo+, ¥(dw) + 5 log(r) vol(Qoo)> ,
€l

T

where
bno = (IHllnp)wens  &np = (Flng, )wea-
Thus,
e deg(HO(X, L9 ¢k
rvoly(b) < minf == T )
Combining this inequality with (6.1]), we obtain the assertion. O

Corollary 6.3. — Let w:Y — X be a generically finite morphism of geometrically
integral projective varieties over K, L = (L, ) be an adelic invertible O x -module and
M = (M,) be an adelic invertible Oy -module. If there are a birational morphism
f: X — Z of geometrically integral projective varieties over K and an ample invertible
Oz-module A such that L = f*(A), then

— o deg((pom). (n*(D)®" ® M)
deg(r) voly (L) < lim inf il pnd+1/<d 1) )

—~

In particular, deg(m) ;(;IX(Z) < voly (7*(L)).
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Proof. — Since 7*(L®™) @ M is an adelic invertible Oy-module, one can see that
(L9 & 7, (M), (7 () + )
is sectionally adelic for all n > 0 (see the last paragraph of Section . Note that
T (nm* (@) + ) = np + mu(¢p)  and  rk(m. M) = deg(m).
Thus, by Theorem [6.2]

~ o deg(HY(X, L8 @ (M), (|-l 7. (0). o)
deg(m) vol, (L) < Bgfg A (d 1 1)!

Moreover,
(H(X,LE" @ mo (M), (I lng . (). Jwen)
is isometric to
(HOY, 7" (LZ") @ M), (|- llms ()4 Jwee)-
Thus we obtain the required inequality. O

Theorem 6.4. — Let L = (L,p) be an adelic invertible Ox-module and E =
(E,U, ) be a birationally adelic torsion free Ox-module. We assume that there are a
birational morphism f : X — Z of geometrically integral projective varieties over K
and an ample invertible Oz-module A with L = f*(A). If either (E,v) is an adelic
inwvertible O x -module or X is normal, then the sequence

deg(p.(L°" © E))
nd 1/ d+ 1)

neN, n>1

is convergent to tk(E) \ax(f).

Proof. — In view of Theorem [6.2] it suffices to establish the following inequality

deg(p-(L°" © E)) _ 4o vol, (T).

/N

)
o T T/ (d + 1)

First we assume that (F, ) is an adelic invertible O x-module. Let us begin with the
following claim:

Claim 6.5. — One has the following inequality:

. deg(p.(L%" @ E)) _ . deg(p.(L®"+m0)))
<
h;{l’lﬁigp nd+1/(d+ 1)' S h:;ng)solip nd+1/(d+ 1)|

for some positive integer ng.

Proof. — Since L is nef and big, we can choose a positive integer ng and sq €
HO(X,L®™ @ EV)\ {0}. Note that sq gives rise to an injective homomorphism

HY(X,L®" ® E) — HO(X, L®("Fm0)),
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Let &sub,n = (|| |sub.n,w)wen be the restricted norm family of H°(X, L®"® E) induced
by the above injective homomorphism and &, 4ng)e = ([||l(ntn0)p. Jwea- In order to
show Claim it is sufficient to see the following two inequalities:

(Te\g(HO (Xu L®n & E)7 gsub,n) d/e\g(HO (Xv L®(n+n0))a g(n—i—ng)g@)

li <li
P (] v W AT 1)
and - -
J(L®"®FE HO(X,L®" ® E), &subn
lim sup deg(p..( ® E)) < lim sup deg(H"(X, ® E), &ub, )

nooo  nIL/(d+1)! n—>00 nd+1/(d+ 1)!
The first inequality is a consequence of Lemma Proposition [15, Lemma
1.2.16] and [13] Proposition 4.3.13, (4.26)]. Let us consider the homomorphism of
identity

1+ (B, L8 @ B), (g s Joee ) — (HO(X, L2 @ E), Gaupn ).
For s € H(X, E ® L®") \ {0},

||5||sub,n,w _ ||SSOH(7’L+7’LO)&Pw
Isllnpw+v., [ [E
l[sllnputen IS0l nopw—we _
< = ||50||no¢w7ww
HS”"LPLA)"Fww

so that || f|lu < |Sollnoep. —w.- Therefore, by [13] Proposition 4.3.18],
deg(H(X, L% @ B), (|[lng.+v. Juee) < deg(H(X, L% © E), ub.n)
+dim H*(X,L®" @ E) /Q log |50 || e —., ¥ (dw).
Thus the second inequality follows. O

By Lemma Theorem-Definition [5.5] and the relation

d+1
lim 7(71 +n0)

=1
n—-+oo ’n,d""1 ’

we obtain that

o deg(pa (L))~
Ty o)

Hence Claim [6.5] leads to

o~ —~

vol, (L; E) < vol, (L),

as required.

Next we assume that X is normal. We prove the assertion by induction on r :=
tk(E). Let p: X' — X, (E',') and U be a birational morphism, an adelic invertible
Ox-module and a non-empty Zariski open set of X, respectively, as in Definition[3.20]
First we suppose that r = 1.
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Claim 6.6. — One has the following inequality:

deg(p.(L®" ® E)) deg((pop): (1 (2)®" @ EY))

I <1
D T A (A 1)! TP nd1/(d + 1)!

Proof. — This is a consequence of Lemma Proposition Lemma and [13]

(4.26) in Proposition 4.3.13). 0

By Claimtogether with the case where (F, 1) is an adelic invertible O x-module,
one has

deg(p.(L" © F)) < vol, (u*(T)).

lmsup = s a1

On the other hand, since X is normal, one can see that \70\1X(,u* (L)) = @X(L), as
desired.

In the case where r > 2, considering a birational morphism X" — X' if necessarily,
we may assume that there exists an exact sequence 0 — F' — E' — Q' — 0 on X’
such that F’ and Q' are locally free, tk(F’) =1 and rk(Q’) = r — 1. Let ¥rs be the
submetric of F’ over X’ and ¢/ be the quotient metric of Q' over X’. Let @ be
the image of F — u.(E’) = p«(Q’) and F be the kernel of E — @. Shrinking U if
necessarily, 1/ and 1 ps descent to metric families 1 and ¥ r of Q| and F|;. Note
that Q@ = (Q,vq) and F = (F,1p) are birationally adelic torsion free Ox-modules
by Proposition [3.7] and Corollary Therefore, by hypothesis of induction,

deg(p.(T®" @ F)) _ —
eg(p ( ® )) < VOlX(L7(p>7

fmsup = T T 1!

i sup e8P (L2 € Q)
n— o0 ’I’Ld+1/(d + 1)'

For any n € N, one has an exact sequence

< (r— 1) voly (L, ).

0— H'(X,L"®) - H'(X,L"®F) - H(X,L"® Q) — H'(X,L®" ® F). (6.2)
Let @, be the image of
HY(X,L®*" ® E) — H°(X,L®" ® Q).

Let & sub = (||| n,sub,w)wen be the restricted norm family of £,u14 = (||*[[npe, +4 Jwen
on H(X,L"®F) and &, quot = (|||, quot.w)wen be the quotient norm family of &,
on HY(X,L" ® Q). By [13] (4.28)],

deg(H(X, L" @ E), éngry) — 6(H(X, L™ ® E), Enpry)
< (deg(HOX, L @ F), &) — 6(HO(X, 1" & F), & c0n))

+ (d/e\g(HO(X7 Ln ® Q)7 gn,quot) - 6(H0(Xa Ln ® Q)a gn,quot))y
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where for any adelic vector bundle V on S, §(V) denotes the sum d/e\g(V) +

deg(VY). Let &npirvposub = ([lnpotvo.wsub)wca be the restriction of &npip, =
(Il npw+vo.. )wen to Qn. It is easy to see that, for any w € €,

|
Thus, by [13l Proposition 4.3.18|,

deg(Qna €n,qu0t) < deg(Q’ru gngoJr'L[)Q,sub)a

n,sub,w — ||'||mpu+wF,m ||'Hn,qu0t,w = ||.HTL<PW+1/JQ,W7SUb'

so that
deg(p.(L®" ® E)) — 6(p.(L°" © E))
< (deg(p. (L% @ F)) = 0(HO(X, L © F), En.oun))
+ (4eB(Qus Enp 1) — 6(Qns Enanor))-

Moreover, by [13], Proposition 4.3.10],
5(p.(T°" & B))

A g 0
. S(HYX,L" @ F),&nsub)
Jim, it -
. 6(Qna €n,qu0t)
A O

so that one obtains

, doa(p. (I ® F) _ —~ . deg(Qns Enpty sub)

1 < voly (L, 1 ’ ,

imsup = o fa S Vol e) Flimsup G )
and hence it is sufficient to show that

. E‘%(mengp—ﬂ/) sub) . d/‘i%(p* (Z®n & @))
1 < <1
e AT (d 1)) oy ndt /(1 1)

Claim 6.7. — If we set T, = H*(X, L®*" ® Q)/Q,, then
lim dimg(7T;,)/n? = 0.

n—-+o0o

Proof. — By the Leray spectral sequence
EY?=HP(Z,A®" @ RIf.(F)) = H""(X,L®" @ F),
if n is sufficiently large, then one has an injective homomorphism
HY(X,L®"® F) — H°(Z,A®" @ R f.(F))

so that
. dimg(HY(X,L®" @ F))
lim 7
n—-+oo n
because Supp(R!f.(F)) has Krull dimension < d. Thus the assertion follows by

62 O

=0
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By Lemma D", H°(X,Q ® L") is finitely generated over @, , H(X, L"),
so that @, , T}, is also finitely generated over it. Let &7, be the quotient norm family
of £nptyo on T, Then by Claim together with Proposition we obtain that

d/e\g(Tna ng)

e 20
that is, for any € > 0,
deg(Tn> ng) > ¢

=
nd+1

for sufficiently large n. Moreover, by [13] Proposition 4.3.13, (4.26)],

deg(Qna Emp+¢stUb) deg(Tm an) < deg(p* (Z®n @ @))
nd+1 + nd+1 = nd+1 ’

so that

deg(Qru gn«p-i-ll)Q,sub) < d/eTg(p* (Z®n ® Q))
nd+1 eSS nd+1

for sufficiently large n. Thus,

Aeg(Qun, Enp-rug.sub) deg(p.(L°" © Q)

lim sup

— ¢ < limsup

n—+o00 ndtl n——+o0 nd+1
Since ¢ is arbitrary, we obtain the inequality (6.3)). O

Corollary 6.8. — Let (E,U,v¢) be a birational adelic torsion free Ox-module. If
X is normal and L is ample, then

- deg(p.(I®" ® E)) -~
I i g E)vol(Ly @)

Proof. — This is a consequence of Theorem [6.2] and Theorem O

7. Hilbert-Samuel property

Let f: X — Spec K be a geometrically integral projective scheme over Spec K, d
be the dimension of X and L be an ample invertible O x-module. We denote by .# (L)
the set of metrics families ¢ = (¢w)weq such that all metrics ¢, are semi-positive
and that (L, ) forms an adelic line bundle on X.

Definition 7.1. — We say that ¢ € # (L) satisfies the Hilbert-Samuel property if
the equality

voly (L, @) = (L, )™

holds, namely the y-volume and the self-intersection number of (L, ¢) coincides.
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Remark 7.2. — Note that Theorem-Definition [5.5] shows that, for any positive
integer n, one has

;(;IX(L(@"? ne) = nd+1\aX(L7 ©).
Therefore, if ¢ satisfies the Hilbert-Samuel property, then for any positive integer n,
the metric family ne also satisfies the Hilbert-Samuel property. Conversely, if there
exists a positive integer n such that ny satisfies the Hilbert-Samuel property, then so
does the metric family .

7.1. Reduction to a special metric family. — The purpose of this subsection
is to show that, in order to show the Hilbert-Samuel property for all metrics families
in (L), it suffices to check the property for one arbitrary metric family in .#(L).

Lemma 7.3. — Let E be a finite-dimensional vector space over K. If € = (||||w)wen
and & = (|||}, weq are two norm families on E, then one has

d.(det(§), det(¢')) < rdw (€, €). (7.1)
In particular, if € is strongly dominated, so is det().
Proof. — Let r be the dimension of E over K. If 5 is a non-zero element of det(E,,),
then one has

W 7flodes =10l aee = sup  Inflsi A Aspllwde = Y sl
S S i=1

< sup > Infsifle — sl < rdu (€€,

(317-"757*)€E:} i=1
N=81N\-N\Sp

Interchanging £ and &', the above inequality leads to

In ||77||(/u,det —1In ||77||w,det < wa(§7 6/)
Therefore, the inequality (7.1]) holds. O
Proposition 7.4. — Assume that there exists a metric family ¢ € 4 (L) which

satisfies the Hilbert-Samuel property. Then any metric family ¢ € # (L) satisfies the
Hilbert-Samuel property.

Proof. — For any n € N, let E,, be the K-vector space H°(X, L®") and 7, be the
dimension of E,, of K. For any w € Q, let £, , = E,, ®x K,

dnw = sup | lsllng, —Inflslny.,
S€E, ,\{0}

be the distance of ||-||ne, and |||y, , and

O = sup I {|7lfngy et = I [[79]lnas, det.-
nedEt(En,w)\{o}
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Note that the function (w € Q) — dy,,, is v-integrable, and one has

/Q Ono v(dw) = deg(p. (L™, n)) — deg(p- (L, np)).
By Lemma one has

|6n,w‘ < rud < nrpdy, (9, v).
Note that the function

(we Q) — du(p,¥)
is dominated (see [13l, Proposition 6.1.12]). Moreover, by [7, Theorem 1.7], one has
w2 nd‘+1/ EY Z ) (L) (L)t (A2),

an

where f,, is the continuous function on X2" such that

el |y, () = g,
for any € X2". Hence Theorem-Definition [5.5 and Lebesgue’s dominated conver-
gence theorem leads to (see Remark

— — 1
vol, (L, ) — vol, (L, ) = lim (d—f—l)/ 0w v(dw)

n—-+o0o ’nd""l/

_y / Fol®) Bty () p(de)
—J/aJxan

= ((L7w)d+1) - ((Law)d+1)'

The proposition is thus proved. O

Definition 7.5. — Let X be a geometrically integral projective scheme over Spec K
and L be an ample invertible O x-module. If there exists a metric family ¢ € .#(L)
which satisfies the Hilbert-Samuel property, or equivalently, any metric family ¢ €
M (L) satisfies the Hilbert-Samuel property (see Proposition , we say that the
ample invertible Ox-module L satisfies the Hilbert-Samuel property.

Remark 7.6. — The proof of Proposition [7.4] actually shows a more precise result:
the function

(¢ € M (L)) — voly (L, ) — (L, )"+

is constant.
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7.2. Case of a projective space. — In this subsection, we assume that X = Pf(
is the projective case and L = OP‘;? (1) is the universal line bundle. We show that
any metric family in .# (L) satisfies the Hilbert-Samuel property. Without loss of
generality (by Proposition , we consider a particular case as follows. Let F be a
(d+1)-dimensional vector space over K and (e;){_, be a basis of E. Let £ = (||-||w)wen
be the Hermitian norm family on E such that (e;)%_, forms an orthonormal basis of
E with respect to [|-||,. We then identify P4 with P(E) and let ¢ = (¢, ),ecq be
the quotient metric family on L induced by £. Note that, for any integer n € N, the
vector space HY(X, L®") is isomorphic to the symmetric power S™(E). We denote
by 7, the dimension of S™(FE). One has

_(n+d
Y = < ' )
Definition 7.7. — Let w € Q such that ||, is non-Archimedean. Let x be the point
in P(E,)* which consists of the generic scheme point of P(E,,) equipped with the
absolute value
||gck(ef0 ...,627:1) —>R>0

such that, for any

e ao [ Ar—1 e er1
pP= > Aa(;i) ( e:) €k[e,..., =2,

a=(ag,...,ar—1)€EN?

one has
|P|, = max |Agw-
acNd

Note that the point x does not depend on the choice of the orthonormal basis (e;)}_,.
In fact, the norm ||-|| induces a symmetric algebra norm on K, [F,] (which is often
called a Gauss norm) and hence defines an absolute value on the fraction field of
K,[E,]. The restriction of this absolute value to the field of rational functions on
P(E,) identifies with |-|,. Hence z is called the Gauss point of P(E,)>".

Lemma 7.8. — Let w be an element of Q such that ||, is non-Archimedean, and
n € N. Let ||-||lnw be the e-tensor power of ||-||., on the tensor power space EZ™ and let
[II7,.., be the quotient norm of ||-||n. by the quotient homomorphism EE™ — S™(E,,).
Then the norm ||-||;, ., coincides with the supremum norm ||-||lne,, of the metric np,,

on L&".

Proof. — For any w € 2, we denote by E,, the K -vector space £ @ K,. By [13]
Propositions 1.3.16 and 1.2.36], if we consider the Segre embedding P(E,,) — P(EZ™),
then the metric ny,, identifies with the quotient metric induced by the norm |||/, -
Moreover, if we denote by Open (1) the universal invertible sheaf of P(ES™) and by
1, the quotient metric on this invertible sheaf induced by the norm |||, .. By [13]
Proposition 2.2.22|, the supremum norm |||y, on

HY(P(ES™), Opgn (1) = EZ"
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of the metric ¢, coincides with ||-||,,.,. Since L#™ is the restriction of Opgen (1) to X
and the restriction map

HY(P(ES™), Opgn (1)) — HO(P(E,), L")

identifies with the quotient homomorphism E®™ — S™(E,,). In particular, the supre-
mum norm |[[-[| g~ is bounded from above by the quotient norm [[-[|;, ,,.
Let x be the Gauss point of the Berkovich analytic space P(E,,)*" (see Definition

. If
F= Z Areg” et

I=(ao,...,aq) N1
ap+-t+aqg=n

is an element of S™(E), then the relation

F(;v):( 5 AI(?)“H._(:)%>W)®”

I:(ao,...,ad)ENd
ap+---+ag=n

holds. In particular, one has

[Ellnge = Flng, (z) = max — [Ar|e.

Since F' is the image of the element

ﬁ: Z )\Iegbao@...@e?ad

I=(ag,...,aq)EN?
aog+---tag=n

by the quotient map E¥"™ — S™(E,,), we obtain that

[Elng., = [1F]

!
n,w > ”FHn,w

Therefore the equality ||-||ne,, = [[F]];,, holds. O

Remark 7.9. — As a byproduct, the proof of the above lemma shows that, for any
F= Z Areg® - -egt € S"(Ey),

I=(ag,...,aq)eN!
apg+---t+aqg=n

one has
[Fllng, =  max [Arle.
I=(ag,...,aq)EN?
ao+tan=d
In other words, the family
ao ., p%d
(€0 €q )(ao,...,ad)eNd“

ap+---tag=n

forms an orthonormal basis of (S¥(E,), |||lne.,)-
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Lemma 7.10. — For any integer d € N and any any x > 0, let
Pisrz={(to,.. ta) € REL [to + - + ta < 2},
Age ={(to,... ,ta) € RLF [to+ -+ +ta = z}.

We denote by voly,i the Lebesgue measure on RY. For any affine hyperplane of
R?, we denote by vy the translate of the Haar measure on the underlying hyperplane
which is normalized with respect to the canonical Euclidean norm on R4 (namely
the parallelotope spanned by an orthonormal basis has volume 1).

(1) The volume of Pyy1,. with respect to volgy1 is x91/(d + 1)L

(2) The volume of Ay, with respect to vq is x4/d +1/d!.

(3) Let pq be the uniform probability distribution on Ag4,. One has

d m
1
/A toln(to) + - - - + tqln(tq) pa(dt) = Tar1 Z Z VA

Proof. — We reason by induction on d. The case where d = 0 is trivial. In
the following we assume the induction hypothesis that the lemma holds for R%. By
Fubini’s theorem, we have

v T (x—t)? pdtl
volgi1(Pat1,z) /O vola(Paz—t) /O T CE]
The distance from the origin to the affine hyperplane containing Ay, is

x/v/d+ 1. Therefore, by the equality

1 T
volgt1(Pat1,2) = A+l vari n 1Vd(Ad,z)»
we obtain p

Vd(Ad7m) =Vd+ 1%.
By Fubini’s theorem, one has

/ to ln(to) V01d+1(dt0, . ,dtd) = / tln(t) VOld(Pd@,t) dt
Pd+1’1 0
1 xt(:c —t)%In(t)dt = L i(l)i<d)xdi /m t" 1 In(t) dt
! J, dl < i 0
d
_ 1 ETCAW R i+2 R
=5 ;( 1) (Z>m Z_+2<x In(x) 2"
292 1n(z) 4 A\ 1 gd+2 & (d 1
== Ny ST =) s
r 2 (T 5 (e

=0 =0

By a change of variables, we obtain

1 T
toln(tg) volgyi(dig,...,ds,) = 7/ / toIn(to) va(dt) du.
/Pd+1,w o In(to +1(dto ta A1 Ja,. o In(to
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Taking the derivative with respect to x, we obtain

(d+ 22 In(z) + 2 o LAy 1 (d4 ettt KL fd) 1
d! ;<_1) (')z‘+2 a d! ;(_1) ( )(i+2)2

va(Ag )
) /A tolnto) )

to ln to Vd(dt)

ik

In particular, one has

/A toIn(to) pa(dt) = Zd:(—l)i <‘j) ; i 5 (1 — ‘fj_;)

=0

Lo d i—d 1 &, i (d+) i+1
=2 Vg Gy :7d+1;(7l) G r2d—i 1) it2

1=0

Therefore

(d+1) /A tonlto) @) —a - tghalo) s ()
- _2(_1)1 (i + 2()?(;?; —n :; +§(_Ui (i + 2)!(3!— i—2) 21;
:_g(_l)i(i—i—%!(jl—i—l)! ' §1§<d+1—<d—f—”>
- dZ( e (R
i1

((m) Tilits)

Zd: AR d“ i
£ d+1 i

1

Combining with

1 1
2/ toln(to)/,Ll(dt):Q/ tln(t)dtz—/ pdt = -+
Al,l 0 0

by induction we obtain

(d+1)/Ad1toln(t0 fa(dt) ZZ ZZ'




HILBERT-SAMUEL FORMULA OVER ADELIC CURVES 47

By symmetry of (to,...,tq), we get

d+1
(d+1) Z/ tiln(t;) pa(dt) = —(d+1) )
Ad 1 (=2
Since
d m d d d d
1 1 d+1— 1
DD =2 = d“Zz
m=1 ¢=1 =1 m=~{ (=1 =
d+1 d+1
1 d+1
=(d+1 - d+1)— ———-d=(d+1
@+1)D G+ d+1)= 5 d+1))_
(=2 =2
we obtain the desired result. O

Proposition 7.11. — The universal invertible sheaf Opi(l) satisfies the Hilbert-
Samuel property.

Proof. — By Proposition [7.4] it suffices to prove that the particular quotient metric
family ¢ = (¢w)wen defined in the beginning of the subsection satisfies the Hilbert-
Samuel property. For any n € N, let

T = A edo ...l e det(S™(E)).

By Lemma and [13], Proposition 1.2.23|, for any w € Q such that ||, is non-
Archimedean, one has

Hnangaw,det =1

Let w be an element of 2 such that |-|,, is Archimedean. Similarly to Lemma
for each n € N, we let [|-||,.., be the orthogonal tensor power norm on E™ and ||-]|7, ,
be its quotient norm on S™(E,). Note that

aO ... ad
(eo €q )(ao,...,ad)ENd+1
ap+-tag=n

forms an orthogonal basis of (S%(E,), |||},..,) and

agl---agl\ 3
lege -+ et lln e = (=)

By [13l, Proposition 1.2.25], one has

, aO! “ e ad!
||77n||n7w7det = H (T)

(ao,...,aq)ENTT!
apg+--tag=n

[N
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In particular, using Stirling’s formula one obtains

lann”lnwdet 1
li _— = —— to In(t, <4 tgn(tyg)) d
n~1>51>100 nry 2/A( 0 n( O)+ + d n( d)> H
d m
1 1
_2(d+1)ZZZ’

m=1/¢=1
where ;o denotes the uniform probability measure on the simplex
A = {(to,...,ta) 6R§31|t0+‘-~+td:1},

and the second equality comes from Lemma [7.10}
By 4, Lemma 4.3.6] and [18, Lemma 30] (see also [23] VIIL.2.5 lemma 2|), one
has

_1
sup WG ¥ sl ) — o ls] g | = On(n).
seS™(E,)\{0}
Moreover,
1 1
In(r,?) = —3 Inr, = O(In(n)).
Hence by Lemma [7.3] we obtain
. In ||77”||<p§n,dct . In ||777l||;7,,w,dct
lim ————— = lim ————,
n—-+o0o nry n—-+o00 nry
The proposition is thus proved. O

8. Trivial valuation case

In this section, we show the Hilbert-Samuel property in the trivial valuation case.
Let v = (k, |-]) be a trivially valued field. Let us begin with the following Lemma:

Lemma 8.1. — Let X be a projective integral scheme of dimension d over Speck
and L be a very ample invertible Ox-module. Let ||-|| be the trivial norm on H*(X, L),
that is, |le]| = 1 fore € HY(X,L)\{0}. Let ¢ be the Fubuni-Study metric of L induced
by the surjective homomorphism H°(X, L) ® Ox — L and ||-||. Then we have

vol, (L, ) = (L, ) 1), = 0,

where in the construction of \7(;1,( (L, ) we consider the adelic curve consisting of one
copy of the trivial absolute value on k and the counting measure.

Proof. — Let X — P! be the embbedding given by L, where ¢ = dimy H°(X, L) —
1. We can find a positive integer ngy such that HO(Pi,OPi (n)) — HO(X,L®") is

surjective for all n > ng. In order to see \7(;1X(L, ) = 0, it is sufficient to show that
the norm |||, is trivial for all n > ng. As HO(}P’ﬁ,OPi (n)) = Sym"(H°(X, L)), one
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has that Sym"(H®(X, L)) — H°(X, L®") is surjective for all n > ng. Let (T, ..., T})
be a homogeneous coordinate of ]P’f;. For n > ng and s € H(X, L®"), if

s= Y. a5, T Ty mod Ker(Sym"™(H(X, L)) — H(X, L®")),
(G0,...,ig) ENCTE
io+-+ie=n
then
Z(io,...,u)eNHl Qig, ..., z‘eZil Zéé
[sllng = sup fottie=n —
z€(XNUo)n (max{l,\z1|$,...,|zdw}>

where z; = T; /Ty and Uy = {(T, ..., Ty) € P, : Ty # 0}. Note that

. . 1/1 ... ,LZ
‘ § :(io,...,u)eN“l Qig,... 10 21 2
it tig=n

< max{|z1|% - |22 : (igy ... ,i0) € N g+ iy = n}

< (max{1,|z1\x,...,|zy|w})

and hence |s||n, < 1. Let k® be an algebraic closure of k. We assume
s # 0. We choose £ = (1,&1,...,&,) € X(k*°) such that s(§) # 0. Then, as

Do, i) Nt Tig,.ie gt € k2 \ {0} and &, ..., & € k*°, one has
to+-t+ie=n

x

n
9

0
1o+ t+ig=n

Z(i ,...,iz)GNZJrl Q... ig il T ée " =1 and HlaX{l, |§1|U'a cey |§€|U’} =1
io+

where v is the pair of k¢ and its trivial absolute value. Therefore, ||s||n, = 1.

Next let us see that ((L, )¢*1), = 0. Note that

HOPY, Oy (1) = HY(X, L) and  Sym™(HO(PL, Oy (1)) = HO(BL, O (n)
for n > 1. Let ¢ be the Fubuni-Study metric of Ope (1) induced by the surjective
homomorphism HO(P£7OP£(1))) ® Ope — Ope (1) and ||[|. Then 9|y = ¢. In
the same way as before, |||, on HO(P%, Opt (n)) is trivial for n > 1. Therefore,
the induced norm on HO(P{ x --- x ¥, Ope R X Ope (0)) is also trivial, where
§ = (L9). Thus the assertion follows. O

Theorem 8.2. — Assume that, for any w € Q, |-|o, is the trivial absolute value on
K. Then any ample line bundle L on X satisfies the Hilbert-Samuel property.

Proof. — By Remark [7.2] we may assume that L is very ample. Let E be the vector
space H°(X, L). For any w € €, we denote by |[|-||,, the trivial norm on E = E,,. Let
¢ = (|I'llw)wen and ¢ = (py,)wea be the quotient metric family on L induced by & and
the canonical closed embedding X — P(E). Then, Lemma implies

vol (L, ) = (L)) = 0.
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Therefore, by Proposition [7.4] we obtain that the invertible sheaf L satisfies the
Hilbert-Samuel property. O

Remark 8.3. — In [14], an intersection product of metrized divisors has been intro-
duced in the setting of curves over a trivially valued field (k,|-]). Let X be a regular
projective curve over Spec k. Recall that the Berkovich space X?" is an infinite tree

Mo

Zo

where the root point 79 corresponds to the generic point of X together with the trivial
absolute value on k(n), and each leaf xy corresponds to the closed point = together
with the trivial absolute value on x(z). Moreover, each branch |1, z¢[ is parametrized
by 10, +o0], where ¢ € ]0,+o00[ corresponds to the generic point 7 together with the
absolute value
|"|2,c = exp(—tord,(-)).

We denote by t(-) : X — [0,400] the parametrization map, where t(1n9) = 0 and
t(zg) = +00. Let D be a Cartier divisor on X. Recall that a Green function g of D
is of the form

g=49gp+ Pg>
where gp is the canonical Green function of D, which is defined as

9p(§) = ord.(D)i(E),

and ¢4 is a continuous real-valued function on X" (which is hence bounded since
X2 is compact). Then, the intersection number of two integrable metrized Cartier
divisor Dy = (Dy, go) and Dy = (D1, g1) has been defined as

+oo
g1(no) deg(Do) + go(no) deg(D1) — > [k(x) : K] / Ohoe, (O)¢h oe, (t)dE, (8.1)
zeX® 0

where X () is the set of closed points of X, &, : [0, +00] — [no, zo] is the map sending
t € [0, +00] to the point in [, zo] of parameter ¢, and the function ¢{ .. () should be
considered as right-continuous version of the Radon-Nikodym density of the function
Pgr0¢, () with respect to the Lebesgue measure.

Let (L,¢o) and (L1, 1) be integrable metrized invertible Ox-modules. By [14]
Remark 7.3], the above intersection number with respect to (L, ¢g) and (L1, 1) is
well-defined. To destinguish this intersection number with the intersection number
defined in [I5] Definition 3.10.1] it is denoted by ((Lo, o) - (L1, ¢2))’. Then one can
see

(Lo, o) - (L1,¢1)) = (Lo, %o) - (L1, ¢1))". (8.2)
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Indeed, by using the linearity of ( - ) and ( - )’, we may assume that Ly and L, are
ample, and ¢ and ¢; are semipositive. Moreover, as

(((Zo, o) + (L1, #1))?) = (Lo, %0)?) — (L1, 91)%)
2 7
(Lo, po) + (L1, #1))?) = (Lo, 0)*)" = (L1,¢1)%)'

((Los o) - (L1,1)) = 5 ;

we may further assume that (Lo, ¢o) = (L1, 1), say (L,¢). Then, by [14, Theo-
rem 7.4],

(Lo, wo) - (L1, 1)) =

lim — Infsg A=A Sry, ||n<p,det

n— 00 TL2/2 = ((L,g&) : (L’(p))/7

where {s1,...,s,, } is a basis of H°(X, L®"). On the other hand,

—In ||81 N NSy, Hngp,dct

= ((L,¢) - (L, )

by Theorem (the Hilbert-Samuel formula over a trivially valued field), as required.

9. Casting to the trivial valuation case

In this section, we assume that K is perfect. Let X be a projective K-scheme, d be
the dimension of X, F be a finite-dimensional vector space over K, f : X — P(FE) be
a closed embedding, and L be the restriction of the universal invertible sheaf Og(1)
to X. We assume that, for any positive integer n, the restriction map

S"(E) = H'(P(E), Og(n)) — H°(X,L%")

is surjective. We equip F with a Hermitian norm family £ = (||||w)weq such that
the couple E = (E,¢) forms a strongly adelic vector bundle on the adelic curve S.
Denote by ¢ = (v )wea the quotient metric family on L induced by £ and the closed
embedding f.

Let F = (F'(E))iecr be the Harder-Narasimhan R-filtration of E. Recall that

F(E)= > F
0#£FCE
Pmin (F) >t
Note that this R-filtration actually defines an ultrametric norm ||-||o on E, where we
consider the trivial absolute value |-|op on the field K. More precisely, for any s € E,
one has

sllo = exp(—{t €R : s € F'(E)}).

Denote by ¢ the quotient metric on L induced by ||-||o. If we consider the adelic
curve Sy consisting of a single copy of the trivial absolute value on K, then (L, )
becomes an adelic line bundle on X.
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Lemma 9.1. — Let (k,|-|) be a complete non-Archimedean valued field and (V, ||-|)

be a finite-dimensional ultrametrically normed vector space over (k,|-|). Let o € 10,1],

and (e;)f_, be an a-orthogonal basis of (V,||-]|), namely a basis of V' such that
V(Ao An) €K7, | Mer+ -+ Apenl 2 ‘e{r{lax ) [Ail - lesll-

For any I = (i1,...,in) € N, we let

I =i+ +in, el =eit-.elne sy

Then, for any 6 € N, (e!)renn, I|=5 5 an o’ -orthogonal basis of S°(V') with respect to
the symmetric product norm |-||gs (namely the quotient norm of the e-tensor product
norm induced by the quotient map V®° — S°(V)), and for any I = (iy,...,i,) € N*
such that |I| =6, one has

lenl™ - llenll™ > lle"llss > a®lleall™ -+ len]™.

Proof. — Denote by f : {1,...,n}° — N" the map which sends (ay,...,as) to the
vector "
(card ({7 e{1,...,0}|a; :Z})) v
Let 7 : V® — S%(V) be the projection map. For any a = (a1,...,a5) € {1,...,n}?,

denote by e, the split tensor e,, ® -+ ® €4, € V®s,
For I = (i1,...,in) € N™ such that |I| = §, one has

||elsa—inf{ > aca > =1, }

1=

acf~1({1}) acf~t({1})
Hence (see [13} Remark 1.1.56])
llellss < llexll™ -~ llenll™.

Since (e;)j; is an a-orthogonal basis, (€4)acq1,....n}s 18 an a®-orthogonal basis of 1V ®?
(see [I3], Proposition 1.2.19]). For any (Xa)ees-1({1}) € kS (I such that

=1,

acf~1({1})
one has
feall™ -+ lleall™ < fleal™ -+ <llenl™ _max Dol <@l 37 aal,
a€f~1({1})
which leads to ||ef| = a™?|le1]|™ - - - [|en]|™"-
For any
s= Y flata € E¥’,
ae{l,...,n}%
one has

= X (X )

IeN™, [I|=6 Naef—1({I})
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Moreover,
> af i, in
Isll > a®_  max  leall™ - flenl™ —max lpal
|1|=5
é i %
a x el leal™ ] Y0 ke
BT aef = ({1})
>a’ omax  elllgs-| DD -
I:(ul,.l.‘.,:zg)EN w141}

Therefore, we obtain that (e’)7enn |7/—s forms an a’-orthogonal basis of (S°(V), [|-||ss).
O

Lemma 9.2. — Let (k,|-|) be the field R or C equipped with the usual absolute value.
Let (V,||I-|l) be a finite-dimensional normed vector space over (k,|-|). We assume
that ||-|| is induced by an inner product and let (e;)?_; be an orthonormal basis of
(V,|Ill). For any 6 € N, let ||-|55 be the orthogonal symmetric power norm of ||-||
on S°(V) (namely the quotient norm of the orthogonal tensor product norm induced
by the quotient map V®° — S°(V)). Then (e')renn, |1j=s is an orthogonal basis of
(S°(V), |II15;). Moreover, for any I = (i, ..., in) € N™ such that |I| =6, one has
4! -3
Ie'13 = ()

Proof. — Let f:{1,...,n}° — N" be the map sending (ay,...,aq) to
(card ({je{1,....0}|q; :z}))
For I = (iy,...,i,) € N™ such that |I| = 4, one has

i =ne{( X mE) e Y =1}

a€f=1(I) aef~t({1})
Note that the cardinal of f=1({I}) is

n
i=1

0!
by Cauchy-Schwarz inequality we obtain
o! -1/2
I = (i)
For any
s= Y fa€a € E¥,

a€{l,...,n}?

= X (X )

IeN, [I|=6 Naef—1({I})

one has
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Moreover, by Cauchy-Schwarz inequality,

Isl>=" > lwlz= Y

a€{l,...n}s IEN™ |I|=5

>

2 S -1
()
acf~1({I1})

Therefore, we obtain that (e);enn,|7j=s forms an orthogonal basis of (S°(V'), ||| 5;).
O

Proposition 9.3. — The following inequality holds:
1
(L, @) ™) = (L o) ™) — 7¥(Qec)(d +1)8 In(r), (9.1)

where r denotes the dimension of E over K and § is the degree of X with respect to
the line bundle L, that is, 6 = (L%).

Proof. — For any w € Q, let |||, be the dual norm on E} and let |||, s be
the 0-th symmetric power of the norm |||, «, that is the quotient norm of the e-
tensor power (resp. orthogonal tensor power) of ||||.,« by the canonical quotient
map if ||, is non-Archimedean (resp. Archimedean). Let |-/, be the e-tensor
product (resp. orthogonal tensor product) of d+1 copies of the norm ||-||w «,6 if |- is
non-Archimedean (resp. Archimedean). By [13] Proposition 1.2.36], this norm also
identifies with the quotient of the tensor power of |||, « by the quotient map

o+ EYEOHD) o0 (EVEHR(HD) _, g8(pV)B(d+D), 9.2)

We denote by ¢ the norm family (|||, ,)weq. It turns out that (S9(EY)®W+D ¢)
forms a strongly adelic vector bundle on S. Moreover, if we let R € S%(EV)®(d+1) he
a resultant of X with respect to d + 1 copies of the closed embedding f : X — P(E),
then the following inequality holds:

0

where r is the dimension of F over K. This is a consequence of [15, Theorem 3.9.7]
and [4, Corollary 1.4.3, formula (1.4.10) and Lemma 4.3.6]. Note that in the case
where Q. = &, the equality

(L)) > = Tege(m) - )@ o (TFITY 03

(L, p)*) = — dege (R) (9-4)

holds.
We now consider the trivial absolute value |-|o on K and we let &, be the ultrametric
norm on S°(EY)®(@+1) defined as the quotient norm of the e-tensor power of [|-||o .«

by the quotient map
p: EVOSdHD) o (EVESYB(HY) _, g8 (pV)B(dt+l),

Similarly to (9.4)), the following equality holds:
(L, 00)™*") = — degg, (R).



HILBERT-SAMUEL FORMULA OVER ADELIC CURVES 55

Note that the dual norm ||-||o,« corresponds to the Harder-Narasimhan R-filtration of
the dual adelic vector bundle EV = (EV,¢Y), where £V = (||-||lu.«)weq (see the proof
of [13, Proposition 4.3.41]). Therefore, if we denote by ¥ the quotient vector space
of SO(EV)®(d+1) by the one-dimensional vector subspace spanned by the resultants
of X with respect to d + 1 copies of f : X — P(E), then [13] Theorem 5.6.1] (this
theorem still holds when K is perfect) leads to

deg(¥,¢") > deg(W, &) (9.5)

by considering ¥ as a quotient vector space of EY®9(d+1) where £ denotes the quotient
norm family of £, and & denotes the quotient norm of £. By Lemmas and
one has

AS (B, &) = (d+ D) AS°(BY), (los)wen)

1 d+1 0!
_ T(EY £V el 3 [ —
= 0(d+ 1) A(E", € Hz”m“)(r”—l) , Z 1“(11!---2;!)'
§ ) (ir,.in)en”
i14eetip =0
Similarly,
A(S°(EY)#UHD &) = 6(d + DA(EY, ||-llo.-) = 8(d+ DA(EY,£).
Therefore, we obtain

- 0!
deg(Sé(EV)®(d+1),§/) + %V(Qm)(d +1) Z In (ﬁ)

(i1yeenyip)ENT
114t =0

= deg(S°(EV)®HY &),
By [13} Proposition 4.3.13], the inequality (9.5) leads to

(L, @)™h) = (L, 00)™)

y(QOO)(cH—l)( Y (%) T (r+g— 1))

(Z‘l,“‘,ir)eNr
i1+ +i.=0

> (Lypo) ™) = Sv(8)(d+ D3 (),

-1
(T‘Fg )g’l‘é.

N | =

+

by using the inequality

10. Arithmetic Hilbert-Samuel theorem

The purpose of this section is to prove the following theorem.
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Theorem 10.1. — Let X be a geometrically integral projective K-scheme, d be the
dimension of X and L be an ample invertible O x -module. Then for any metric family
p € M (L), the following equality holds

voly (L, @) = (L, ¢)™1). (10.1)

Proof. — Step 1: We first prove the inequality @X(L,cp) < (L, p)d+h).
By taking a tensor power of L we may assume that L is very ample and the
canonical K-linear map

S"(HY(X,L)) — H°(X,L®") (10.2)
is surjective for any integer n > 1. Moreover, by Remark [7.6] the difference

voly (L) = (L, 2)"™")

does not depend on the choice of the metric family ¢. Therefore, we may as-
sume that ¢ identifies with the quotient metric family induced by the norm family
& = (Il )wen. By A3, Proposition 2.2.22 (2)], for any positive integer n, the
metric ny identifies with the quotient metric family induced by the norm family
&n = (|lng., Jweq. Moreover, by changing metrics we may also assume that the min-
imal slope of (H°(X, L),&;) is non-negative. Since the K-linear map is surjec-
tive, by [13, Proposition 6.3.25], we obtain that the minimal slope of (H?(X, L®"),&,,)
is non-negative for any positive integer n. By [13] Theorem 4.1.26], there exists a
Hermitian norm family &, = (|||}, ) of H°(X, L®") such that [l = ||[[ne, When
||o is non-Archimedean and

n < Hllng,, < (2r)'?

Il

when |-|, is Archimedean, where r,, denotes the dimension of H?(X, L®").
For any positive integer n, let |-, be the ultrametric norm on H°(X, L®") corre-
sponding to the Harder-Narasimhan R-filtration of (H%(X, L®"),&]), where we con-
sider the trivial absolute value |-|o on K. Let &, be the continuous metric on L (where

(10.3)

R
n,w

we still consider the trivial absolute value on K') such that ng, identifies with the
quotient metric on L®" induced by |-||,. By [13l Proposition 2.2.22 (2)], one has
Ilnz, = |I]ln on HY(X,L®™) and hence

deg(HO(X, LE™), |-Ing,) = deg(HO(X, LE™), ||-|ln) = deg(H°(X, L®"),&,). (10.4)

n

By Proposition and the second inequality of (10.3) we obtain that

(nL,ng)®) + %I/(Qoo)(d + D)n?(L) In(2r,)
X (10.5)
> ((nL,n@n)™) = S¥(Qoo)(d + 1) (L) In(rn),

where we consider X as an arithmetic variety over the adelic curve S (resp. as
an arithmetic variety over the adelic curve consisting of a single copy of the trivial
absolute value on K) in the computation of the arithmetic intersection number on the
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left-hand side (resp. right-hand). Moreover, by Theorem the following equality
holds:

voly (L, &n) = ((L, &n) ™). (10.6)
By [10l Corollary 5.2] (see also the proof of Theorem 7.3 of loc. cit.), there exists a
positive constant C' such that, for any positive integer n, one has

@X(nL,n@n)
(d+ 1)
The constant C' can be taken in the form an invariant of the graded linear series

@D,,cn H°(X, L™) multiplied by

(X LM, 6L)
meN, m>1 m

By (10.4), (10.5) and (10.6)), we deduce that

deg(H(X, L?"™), |[-|lnz,) < +Cnd.

. d+1 1

deg(H"(X, L"), &) < h((u P)T) 4 O 4 Sv(Qe)(d + 1n (L) In(2r7).
Dividing the two sides of the inequality by n?*!/(d + 1)! and then taking the limit
when n — +00, we obtain

—

voly (L, ) < (L, )™).

Step 2: the inequality vol, (L, ¢) > ((L,)"+?).

By replacing L by a tensor power, we may assume that L is very ample. Moreover,
by the normalization of Noether (cf. [I5] Proposition 1.7.4]), we may also assume that
there is a finite K-morphism 7 : X — P% such that L = 7 (Opa (1)). By Remark
we may further assume that there exists an element ¢ = (¢u)weq of A (Opa (1))
such that ¢ equals the pull-back of ¥ by w. Then, by Corollary Proposition [7.11]
and [I5] Theorem 4.4.9], one has

vol (L, ¢) > deg(m)vol, (Opa (1),4) = deg(m)((Opa (1), 4)"*) = (L, 9)*™),
as required. O
Definition 10.2. — Let (L,¢) be an adelic invertible Ox-module. We say (L, ¢)
is relatively ample if L is ample and ¢ is semipositve. Moreover, we say (L, p) is
relatively nef if there exist a relatively ample adelic invertible O x-module (4, ) and a

sequence (a,)%2 ; of positive integers such that lim,, o a, = 00 and a,, (L, ) + (A4, 1)
is relatively ample for n > 1.

Corollary 10.3 (Generalized Hodge index theorem)
Let (L, ) be a relatively nef adelic invertible Ox-module. Then one has

vol(L, @) = ((L,9)™HY). (10.7)
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Proof. — Let (A, 1) be a relatively ample adelic invertible O x-module and (a,)$2
be a sequence of positive integers such that lim, o a, = 0o and a, (L, @) + (A4, ) is
relatively ample for n > 1. Then, by Theorem

vol(an(L, ) + (4, )) = voly(an(L, ) + (4,1)) > ((an(L, @) + (4, 1))
for n > 1, and hence by [13] Theorem 6.4.14],
VOI((L, ) + (1/an)(4,4)) = (L, ) + (1/an) (A, 1)),
Thus, by using the continuity of vol (cf. [13, Theorem 6.4.24]),
vol(L, ) = lim vol((L, p) + (1/a,)(4,¢))
> lim (L) + (/) (A ) ™) = (L)),
as desired. O]

n=1

Corollary 10.4. — Let (L,y) be a relatively nef adelic invertible Ox-module. If
((L,¢)%*1Y) > 0, then L is big.

Proof. — By Corollary [10.3] . \751 ,p) > 0. Let (A, ) be a relatively ample adelic
invertible Ox-module. By the contlnulty of vol (see [13, Theorem 6.4. 24]) there is
a positive integer n such that Vol((L ©) — (1/n)(A,4)) > 0, that is, Vol( (L, o) —
(A,4)) > 0, so that, for some positive integer m, HO(X, (L™ @ A=1)®@m) £ {0}.
Therefore L is big. O

Corollary 10.5. — Let X be a geometrically integral projective scheme over Spec K,
d be the dimension of X, L = (L,¢) be an adelic line bundle on X and E = (E,U, 1))
be a birational adelic torsion free Ox -module. Assume that L is ample and the metrics
in ¢ are semi-positive. Moreover we suppose that either (E, 1) is an adelic invertible
Ox-module or X is normal. Then one has

I deg(H°(X, L™ @ E), (|| lng. 4. )wea)
im
n—-+oo nd+1/(d + 1)!

Proof. — This is a consequence of Theorem together with Theorem O

= 1k(E)(I%).
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