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Introduction

In algebraic geometry, Hilbert function measures the growth of graded linear series of a line bundle on a projective variety. Let k be a field, X be an integral projective scheme of degree d ∈ N over Spec k, and L be an invertible O X -module. The Hilbert function of L is defined as

H L : N -→ N, H L (n) := dim k (H 0 (X, L ⊗n )).
If L is ample, then the following asymptotic estimates holds:

H L (n) = (L d ) d! n d + o(n d ). (1.1) 
This formula, which relates the asymptotic behaviour of the Hilbert function and the auto-intersection number of L, is for example a consequence of Hirzebruch-Riemann-Roch theorem and Serre's vanishing theorem. It turns out that the construction and the asymptotic estimate of Hilbert function have analogue in various context, such as graded algebra, local multiplicity, relative volume of two metrics, etc.

In Arakelov geometry, an arithmetic analogue of Hilbert function has been introduced by Gillet and Soulé [START_REF] Gillet | An arithmetic Riemann-Roch theorem[END_REF] and an analogue of the asymptotic formula (1.1) has been deduced from their arithmetic Riemann-Roch theorem. This result is called an arithmetic Hilbert-Samuel theorem. Let X be a regular integral projective scheme of dimension d + 1 over Spec Z, and L = (L , ϕ) be a Hermitian line bundle on X , namely an invertible O X -module L equipped with a smooth metric ϕ on L (C). For any integer n ∈ N, we let . nϕ be the norm on the real vector space H 0 (X , L ) ⊗ Z R defined as follows

∀ s ∈ H 0 (X , L ) ⊗ Z R ⊆ H 0 (X C , L ⊗n C ), s nϕ = sup x∈X (C)
|s| nϕ (x).

Then the couple (H 0 (X , L ⊗n ), . nϕ ) forms a lattice in a normed vector space.

Recall that its arithmetic Euler-Poincaré characteristic is χ(H 0 (X , L ⊗n ), . nϕ ) = ln vol({s ∈ H 0 (X , L ⊗n ) ⊗ Z R : s nϕ 1}) covol(H 0 (X , L ⊗n ), . nϕ )

where vol( . ) denotes a Haar measure on the real vector space H 0 (X , L ) ⊗ Z R, and covol(H 0 (X , L ⊗n ), . nϕ ) denotes the covolume of the lattice H 0 (X , L ⊗n ) with respect to the Haar measure vol( . ), that is, the volume of any fundamental domain of this lattice. In this setting the arithmetic Hilbert-Samuel theorem shows that, in the case where L is relatively ample and the metric ϕ is positive, the sequence χ(H 0 (X , L ⊗n ), . nϕ ) n d+1 /(d + 1)! , n ∈ N, n 1 converges to the arithmetic intersection number (L d+1 ). In the case where L is ample, the arithmetic Hilbert-Samuel theorem also permits to relate the asymptotic behaviour (when n → +∞) of card({s ∈ H 0 (X , L ⊗n ) :

s nϕ 1})
to the arithmetic intersection number of L . These results have various applications in arithmetic geometry, such as Vojta's proof of Mordell conjecture, equidistribution problem and Bogomolov conjecture, etc. The arithmetic Hilbert-Samuel theorem has then been reproved in various setting and also been generalized in works such as [START_REF] Abbes | Théorème de Hilbert-Samuel "arithmétique[END_REF][START_REF] Chinburg | Capacity theory and arithmetic intersection theory[END_REF][START_REF]Métriques de sous-quotient et théorème de Hilbert-Samuel arithmétique pour les faisceaux cohérents[END_REF].

Recently, a new framework of Arakelov geometry has been proposed in [START_REF] Chen | Moriwaki -Arakelov geometry over adelic curves[END_REF], which allows to consider arithmetic geometry over any countable field. Let K be a field. A structure of proper adelic curve with underlying field K is given by a family of absolute values (| . | ω ) ω∈Ω on K parametrized by a measure space (Ω, A, ν), which satisfies a product formula of the form

∀ a ∈ K × , Ω ln |a| ω ν(dω) = 0.
We assume that, either K is countable, or the σ-algebra A is discrete. The geometry of numbers and the arithmetic intersection theory in the setting of adelic curves have been developed respectively in the works [START_REF] Chen | Moriwaki -Arakelov geometry over adelic curves[END_REF] and [START_REF] Chen | Moriwaki -Arithmetic intersection theory over adelic curves[END_REF]. Note that in general it is not possible to consider global integral models of an adelic curve. Several classic notions and constructions, such as integral lattice and its covolume, do not have adequate analogue over adelic curves. It turns out that a modified and generalized form of normed lattice -adelic vector bundle -has a natural avatar in the setting of adelic curves. An adelic vector bundle consists of a finite-dimensional vector space V over K equipped with a family of norms ( . ω ) ω∈Ω on vector spaces V ω = V ⊗ K K ω (where K ω denotes the completion of K with respect to the absolute value | . | ω ), which satisfy dominancy and measurability conditions. The Arakelov degree of the adelic vector bundle V = (V, ( . ω ) ω∈Ω ) is then defined as

deg(V ) := - Ω ln s 1 ∧ • • • ∧ s r ω ν(dω),
where (s i ) r i=1 is an arbitrary basis of E over K. This notion is a good candidate to replace the Euler-Poincaré characteristic.

Let π : X → Spec K be a projective scheme over Spec K. For any ω ∈ Ω, let X ω = X × Spec K Spec K ω and let X an ω be the analytic variety associated with X ω (in the sense of Berkovich if | . | ω is non-Archimedean). If E is a vector bundle on X, namely a locally free O X -module of finite rank, we denote by E ω the pull-back of E on X ω . As adelic vector bundle on X, we refer to the data E = (E, (ψ ω ) ω∈Ω ) consisting of a vector bundle E on X and a family (ψ ω ) ω∈Ω of continuous metrics on E ω , ω ∈ Ω, which satisfy dominancy and measurability conditions. It turns out that, if X is geometrically reduced, then the vector space of global sections H 0 (X, E) equipped with supremum norms ( . ψω ) ω∈Ω forms an adelic vector bundle π * (E) on the base adelic curve.

Let π : X → Spec K be a geometrically integral projective scheme of dimension d 0 over Spec K and L = (L, ϕ) be an adelic line bundle on X, that is, an adelic vector bundle of rank 1 on X. Assume that the line bundle L is ample. We introduce the notion of χ-volume as vol χ (L) = lim sup n→+∞ deg(π * (L ⊗n )) n d+1 /(d + 1)! .

In view of the similarity between Arakelov degree and Euler-Poincaré characteristic of Euclidean lattices, the notion of χ-volume is analogous to that of sectional capacity introduced in [START_REF] Rumely | Existence of the sectional capacity[END_REF]. Moreover, similarly to the number field case, we show in Theorem-Definition 5.5 that the above superior limit defining the χ-volume is actually a limite. However, from the methodological view, we do not follow the classic approaches, which are difficultly implantable in the adelic curve setting. Our strategy consists in casting the Arakelov geometry over an adelic curve to that in the particular case where the adelic curve contains a single copy of the trivial absolute value on K, that is, the absolute value | . | 0 such that |a| 0 = 1 for any a ∈ K \ {0}. More precisely, to each adelic vector bundle V = (V, ( . ω ) ω∈Ω ), we associate an ultrametric norm . 0 on V (where we consider the trivial absolute value | . | 0 ) via Harder-Narasimhan theory in the form of R-filtrations, such that

deg(V, ( . ω ) ω∈Ω ) -deg(V, . 0 ) 1 2 ν(Ω ∞ ) dim K (V ) ln(dim K (V )),
where Ω ∞ denotes the set of ω ∈ Ω such that | . | ω is Archimedean. Then the convergence of the suite defining vol χ (L) follows from a limite theorem of normed graded linear series as follows (see Theorem 4.4 and Corollary 4.5 for this result in a more general form and for more details):

Theorem 1.1. -Assume that the graded K-algebra n∈N H 0 (X, L ⊗n ) is of finite type. For any integer n 1, let . n be a norm on H 0 (X, L ⊗n ) (where we consider the trivial absolute value on K). Assume that (a) inf s∈Vn\{0} ln s n = O(n) when n → +∞, (b) for any (n, m) ∈ N 2 1 and any (s n , s m ) ∈ V n × V m , one has

s n • s m n+m s n n • s m m .
Then the sequence

deg(V n , . n ) n d+1 /(d + 1)! , n ∈ N, n 1 converges in R.
In view of the classic Hilbert-Samuel theorems in algebraic geometry and in Arakelov geometry, it is natural to compare the χ-volume to the arithmetic intersection number of adelic line bundles that we have introduced in [START_REF] Chen | Moriwaki -Arithmetic intersection theory over adelic curves[END_REF] (see also the work [START_REF] Gubler | Heights of subvarieties over M -fields[END_REF] on heights of varieties over M -fields). Let π : X → Spec K be a projective scheme of dimension d 0 over K and L = (L, ϕ) be an adelic line bundle on X such that L is ample and the metrics in the family ϕ are semi-positive. Then the arithmetic self-intersection number of L is written in a recursive way as

(L d+1 ) = 1 N (L| d div(s) ) - Ω X an ω ln |s| ϕω (x) c 1 (L ω , ϕ ω ) d (dx) ν(dω) , (1.2) 
where N is a positive integer, and s is a global section of L ⊗N which intersect properly with all irreducible components of the projective scheme X. The main result of the article is then the following theorem (see Theorem 10.1):

Theorem 1.2. -Let X be a geometrically integral projective scheme over Spec K and L = (L, ϕ) be an adelic line bundle on X. Assume that L is ample and all metrics in the family ϕ are semi-positive, then the following equality holds:

vol χ (L) = (L d+1 ).
Note that in the literature there exists a local version of the Hilbert-Samuel theorem which establishes an equality between the relative volume of two metrics and the relative Monge-Ampère energy between them. We refer the readers to [START_REF] Berman | Growth of balls of holomorphic sections and energy at equilibrium[END_REF] for the Archimedean case and to [START_REF] Burgos Gil | Differentiability of non-archimedean volumes and non-archimedean Monge-Ampère equations[END_REF]6] for the non-Archimedean case (see also [START_REF] Boucksom | Differentiability of relative volumes over an arbitrary non-archimedean field[END_REF]). These results show that, for a fixed ample line bundle L on X, the difference between vol χ (L) and (L d+1 ) does not depend on the choice of the metric family on L (see Proposition 7.4 and Remark 7.6). Moreover, by an argument of projection to a projective space (on which the arithmetic Hilbert-Samuel theorem can be proved by explicit computation, see Proposition 7.11), one can show that the inequality vol χ (L) (L d+1 ) holds (see Step 2 of the proof of Theorem 10.1).

In view of the recursive formula (1.2) defining the self-intersection number, a natural idea to prove the above theorem could be an argument of induction, following the approach of [START_REF] Abbes | Théorème de Hilbert-Samuel "arithmétique[END_REF] by using an adaptation to non-Archimedean setting of some technics in complex analytic geometry developed in [6,[START_REF] Fang | Non-archimedean metric extension for semipositive line bundles[END_REF]. However, it seems that a refinement in the form of an asymptotic development of the function defining the local relative volume is needed to realize this strategy. Unfortunately such refinement is not yet available. Our approach consists in casting the arithmetic data of L to a series of metrics over a trivially valued field. This could be considered as a higher-dimensional generalization of the approach of Harder-Narasimhan R-filtration mentioned above. What is particular in the trivial valuation case is that the local geometry becomes automatically global, thanks to the trivial "product formula". In this case, the arithmetic Hilbert-Samuel theorem follows from the equality between the relative volume and the relative Monge-Ampère energy with respect to the trivial metric (see Theorem 8.2). Note that this result also shows that, in the case of a projective curve over a trivially valued field, the arithmetic intersection number defined in [START_REF] Chen | Moriwaki -Arithmetic intersection theory over adelic curves[END_REF] coincides with that constructed in a combinatoric way in [START_REF] Chen | Arakelov theory of arithmetic surfaces over a trivially valued field[END_REF] (see Remark 8.3). The comparison of divers invariants of L with respect to its casting to the trivial valuation case provides the opposite inequality vol χ (L) (L d+1 ).

As a sequel to the above arguments in terms of trivially valued fields, our way towards the arithmetic Hilbert-Samuel theorem over a adelic curve gives a new approach even for the classical case.

As an application, we prove the following higher dimensional generalization of Hodge index theorem (see Corollaries 10.3 and 10.4).

Theorem 1.3. -Let X be a geometrically integral projective scheme of dimension d 0 over Spec K and L = (L, ϕ) be an adelic line bundle on X. Assume that L is nef and all metrics in the family ϕ are semi-positive, then the inequality vol(L) (L d+1 ) holds. In particular, if (L d+1 ) > 0, then the line bundle L is big.

Theorem 1.2 naturally leads to the following refinement of the arithmetic Hilbert-Samuel theorem, in introducing a tensor product by an adelic vector bundle on X (see Corollary 10.5).

Theorem 1.4. -Let X be a geometrically integral projective scheme over Spec K, d be the dimension of X, L = (L, ϕ) be an adelic line bundle on X and E = (E, ψ) be an adelic vector bundle on X. Assume that L is ample and the metrics in ϕ are semi-positive. Moreover we suppose that either rk(E) = 1 or X is normal. Then one has

lim n→+∞ deg(H 0 (X, L ⊗n ⊗ E), ( . nϕω+ψω ) ω∈Ω ) n d+1 /(d + 1)! = rk(E)(L d+1 ).
The rest of the article is organized as follows. In the second section we introduce the notation that we use all through the article. In the third second, we consider metric families on vector bundles and discuss their dominancy and measurability. In the fourth section, we study normed graded linear series over a trivially valued field and prove the limite theorem of their volumes. Then in the fifth section we deduce the limite theorem for graded algebra of adelic vector bundles over a general adelic curve, which proves in particular that the sequence defining the arithmetic volume function actually converges. in the sixth section we show that the arithmetic Hilbert-Samuel theorem in the original form implies the generalized form with tensor product by an adelic vector bundle. In the seventh section, we prove that the difference of the χ-volume and the arithmetic intersection product does not depend on the choice of the metric family. In the eighth section, we prove the main theorem in the particular case where the adelic curve contains a single copy of the trivial absolute value. In the ninth section, we explain the method of casting to the trivial valuation case. Finally, in the tenth and last section, we prove the main theorem and deduce the generalized Hodge index theorem.

Notation and preliminaries

2.1. -Throughout the article, we fix a proper adelic curve S = (K, (Ω, A, ν), φ), where K is a commutative field, (Ω, A, ν) is a measure space and φ = (| . | ω ) ω∈Ω is a family of absolute values on K parametrized by Ω, such that, for any a ∈ K × , (ω ∈ Ω) → ln |a| ω is integrable on (Ω, A, ν), and the following "product formula" holds:

∀ a ∈ K, Ω ln |a| ω ν(dω) = 0.
For any ω ∈ Ω, we denote by K ω the completion of K with respect to the absolute value | . | ω .

We assume that, either the σ-algebra A is discrete, or the field K is countable. Moreover, we denote by

Ω ∞ the set of ω ∈ Ω such that | . | ω is Archimedean. Note that ν(Ω ∞ ) < +∞.
Moreover, for ω ∈ Ω ∞ , we always assume that |a| ω = a for any a ∈ Q 0 .

2.2. -Let V be a finite-dimensional vector space over K. As norm family on V , we refer to a family ( . ω ) ω∈Ω , where . ω is a norm on

V ω := V ⊗ K K ω .
Let ξ = ( . ω ) ω∈Ω and ξ = ( . ω ) ω∈Ω be norm families on V . For any ω ∈ Ω, we denote by d ω (ξ, ξ ) the following number

sup s∈V \{0} ln s ω -ln s ω .
In the case where V = 0, by convention d ω (ξ, ξ ) = 0.

2.3.

-As adelic vector bundle on S, we refer to the data V = (V, ξ) which consists of a finite-dimensional vector space V over K and a family of norms ξ = ( . ω ) ω∈Ω on V ω := V ⊗ K K ω , satisfying the following conditions:

(1) the norm family ξ is strongly dominated, that is, there exist an integrable function C : Ω → R 0 and a basis (e i ) r i=1 of V over K, such that, for any ω ∈ Ω and any (λ 1 , . . . , λ r ) ∈ K r ω \ {(0, . . . , 0)},

ln λ 1 e 1 + • • • + λ r e r ω -ln max i∈{1,...,r} |λ i | ω C(ω).
(2) the norm family ξ is measurable, that is, for any s ∈ V , the function

(ω ∈ Ω) → s ω is A-measurable.
In the article, we only consider adelic vector bundles which are ultrametric over non-Archimedean places, namely we assume that the norm . ω is ultrametric once the absolute value | . | ω is non-Archimedean. If in addition the norm . ω is induced by an inner product whenever | . | ω is Archimedean, we say that V is Hermitian. If dim K (V ) = 1, we say that V is an adelic line bundle (note that an adelic line bundle is necessarily Hermitian). If V is an adelic vector bundle on S, any vector subspace (resp. quotient vector space) of V together with the family of restricted norms (resp. quotient norms) forms also an adelic vector bundle on S, which is called an adelic vector subbundle (resp. quotient adelic vector bundle) of V . Note that if V is Hermitian, then all its adelic vector subbundles and quotient adelic vector bundles are Hermitian.

2.4. -Let V = (V, ( . ω ) ω∈Ω ) be an adelic vector bundle on S, we define the Arakelov degree of V as

deg(V ) := - Ω ln e 1 ∧ • • • ∧ e r ω,det ν(dω),
where

(e i ) r
i=1 is a basis of V over K, and . ω,det denotes the determinant norm of . ω , which is defined as (where r = dim K (V ))

∀ η ∈ det(V ) = Λ r (V ), η ω,det = inf η=s1∧•••∧sr s 1 • • • s r .
Let deg + (V ) be the positive degree of V , which is defined as

deg + (V ) = sup W ⊆V deg(W ),
where W runs over the set of vector subspaces of V , and in the adelic vector bundle structure of W we consider the restricted norms. In the case where V is non-zero, we denote by µ(V ) the quotient deg(V )/ dim K (V ), called the slope of V . We define the minimal slope of V as

µ min (V ) := inf V W ={0} µ(W ),
where W runs over the set of all non-zero quotient adelic vector bundles of V .

2.5. -Let V be a non-zero adelic vector bundle on S. For any t ∈ R, we let

F t (V ) = {0} =W ⊆V µmin(W ) t W,
where W runs over the set of all non-zero vector subspaces of V such that the minimal slope of W equipped with the family of restricted norms is t. We call (F t (V )) t∈R the Harder-Narasimhan R-filtration of V . In the case where V is Hermitian, the following equality holds (see [START_REF] Chen | Moriwaki -Arakelov geometry over adelic curves[END_REF]Theorem 4.3.44]):

deg(V ) = - R t d(dim K (F t (V ))), deg + (V ) = - +∞ 0 t d(dim K (F t (V ))) = +∞ 0 dim K (F t (V )) dt.
In general one has (see [START_REF] Chen | Moriwaki -Arakelov geometry over adelic curves[END_REF]Propositions 4.3.50 and 4.3.51, and Corollary 4.3.52])

0 deg(V ) + R t d(dim K (F t (V ))) 1 2 ν(Ω ∞ ) dim K (V ) ln(dim K (V )), 0 deg + (V ) - +∞ 0 dim K (F t (V )) dt 1 2 ν(Ω ∞ ) dim K (V ) ln(dim K (V )).
2.6. -Let V = (V, ( . V,ω ) ω∈Ω ) and W = (W, ( . W,ω ) ω∈Ω ) be adelic vector bundles on S. For any ω ∈ Ω such that | . | ω is non-Archimedean, let . ω be the ε-tensor product on V ω ⊗ Kω W ω , of the norms . V,ω and . W,ω . Note that, for any T ∈ V ω ⊗ Kω W ω , one has

T ω = min max i∈{1,...,n} e i V,ω • f i W,ω : n ∈ N, (e i ) n i=1 ∈ V n ω , (f i ) n i=1 ∈ W n ω T = e 1 ⊗ f 1 + • • • + e n ⊗ f n .
In the case where | . | ω is Archimedean, let . ω be π-tensor product of . V,ω of . W,ω .

Recall that for any T ∈ V ω ⊗ Kω W ω , one has

T ω = min n i=1 e i V,ω • f i W,ω : n ∈ N, (e i ) n i=1 ∈ V n ω , (f i ) n i=1 ∈ W n ω T = e 1 ⊗ f 1 + • • • + e n ⊗ f n .
The pair

V ⊗ ε,π W = (V ⊗ K W, ( . ω ) ω∈Ω ) is called the ε, π-tensor product of V and W . Assume that V and W are Hermitian. If | . | ω is non-Archimedean, let .
H ω be the ε-tensor product of . V,ω and . W,ω ; otherwise let . H ω be the orthogonal tensor of the Euclidean or Hermitian norms . V,ω and . W,ω . Then the pair

V ⊗ W = (V ⊗ K W, ( . H ω ) ω∈Ω )
is called the Hermitian tensor product of V and W .

2.7. -Let (k, | . |) be a field equipped with a complete absolute value, X be a projective scheme over Spec k. We denote by X an the analytic space associated with X.

Recall that a point x of X an is of the form (j(x), | . | x ), where j(x) is a scheme point of X, | . | x is an absolute value on the residue field of j(x), which extends the absolute value | . | on the base field k. We denote by κ(x) the completion of the residue field of j(x) with respect to the absolute value | . | x , on which | . | x extends by continuity.

Metric families on vector bundles

The purpose of this section is to generalize dominancy and measurability conditions in [START_REF] Chen | Moriwaki -Arakelov geometry over adelic curves[END_REF]Chapter 6] to metrized locally free modules, and to develop related topics. Let S = (K, (Ω, A, ν), φ) be an adelic curve as introduced in §2.1.

3.1. Metric family. -Let p : X → Spec K be a quasi-projective scheme over Spec K. Let E be a vector bundle on X, that is, a locally free O X -module of finite rank. For any ω ∈ Ω, let ψ ω be a metric on E ω (see §2. | . | ω is non-Archimedean. Moreover, we assume that the metric ψ ω is continuous, namely, for any section s of E over a Zariski open subset U of X ω , the function

(x ∈ U an ) -→ |s| ψω (x)
is continuous. The data ψ = (ψ ω ) ω∈Ω is called a metric family on the vector bundle E.

Assume that X is projective and geometrically reduced. For any ω ∈ Ω, we denote by . ψω the supremum norm on H 0 (X ω , E ω ), which is defined as

∀ s ∈ H 0 (X ω , E ω ), s ψω = sup x∈X an ω |s(x)| ψω (x).
We denote by p * (E, ψ) the couple (H 0 (X, E), ( . ψω ) ω∈Ω ).

If ϕ and ψ are two metric families of E. For any ω ∈ Ω we denote by d ω (ϕ, ψ) the element

sup x∈X an ω sup s∈Eω(x)\{0} ln |s| ϕω (x) -ln |s| ψω (x) ∈ [0, +∞],
which is called the local distance at ω between ϕ and ψ.

We denote by O E (1) the universal invertible sheaf on the projective bundle π : -Let E be a vector bundle on X.

P(E) → Spec K. For any ω ∈ Ω,
(1) We say the metric family ψ = (ψ ω ) ω∈Ω on the locally free O X -module E is dominated (resp. measurable) if the metric family ψ FS = (ψ FS ω ) ω∈Ω on O E (1) is dominated (resp. measurable). We refer the readers to [13, Definitions 6.1.9 and 6.1.27] for the dominancy and measurability conditions of metrized line bundles.

(2) We say (E, ψ) is an adelic locally free O X -module or an adelic vector bundle if ψ is dominated and measurable, or equivalently, (O E (1), ψ FS ) is an adelic line bundle on P(E). -Let E be a vector bundle on X, and ϕ and ψ be two metric families of E. Suppose that ϕ is dominated and that the local distance function

(ω ∈ Ω) -→ d ω (ϕ, ψ)
is bounded from above by an integrable function. Then the metric family ψ is also dominated.

Proof. -This is a consequence of [13, Proposition 6.1.12] and (3.1). Definition 3.4. -Let f : Y → X be a projective K-morphism from a geometrically reduced projective K-scheme Y to X. Let E be a vector bundle on X and ψ = (ψ ω ) ω∈Ω be a metric family on E. We denote by f * (ψ) the metric family on E such that, for any y ∈ Y an ω , the norm Suppose that the metric family ψ is dominated (resp. measurable), then its pull-back f * (ψ) is also dominated (resp. measurable).

| . | f * (ψ)ω (y) on f * (E) ω (y) = E ω (x) ⊗ κ(x) κ(y)
Proof. -The universal property of projective bundle induces a projective morphism F : P(f * (E)) → P(E) such that the following diagramme is cartesian.

P(f * (E)) F / / π f * (E) P(E) π E Y f / / X Moreover, one has O f * (E) (1) ∼ = F * (O E (1)) and F * (ψ FS ) = f * (ψ) FS .
Hence the assertion follows from [13, Propositions 6.1.12 and 6.1.28]. Definition 3.6. -Let E be a vector bundle on X and ψ = (ψ ω ) ω∈Ω be a metric family of E. If F is a vector subbundle of E, for any ω ∈ Ω and any x ∈ X an ω , we denote by | . | ψ F,ω (x) the restriction of | . | ψω (x) to F ω (x). Note that ψ F = (ψ F,ω ) ω∈Ω forms a metric family of F , called the restriction of ψ to F . Similarly, if G is a quotient vector bundle of E, we denote by

| . | ψ G ,ω (x) the quotient norm of | . | ψω (x) on G ω (x). Then ψ G = (ψ G,ω
) ω∈Ω is a metric family of G, called the quotient metric family of ψ on G. Proposition 3.7. -Let E be a vector bundle on X and G be a quotient vector bundle of E. Let ψ be a metric family on E. If ψ is dominated (resp. measurable), then the quotient metric family ψ G is also dominated (resp. measurable).

Proof. -Let i : P(G) → P(E) be the closed embedding induced by the quotient homomorphism E → G. Then one has i * (ψ FS ) = ψ FS G . Hence the assertion of the proposition follows from [13, Propositions 6.1.12 and 6.1.28]. Definition 3.8. -Let E and F be vector bundles on X, equipped with metric families ψ E and ψ F , respectively. For any ω ∈ Ω and any

x ∈ X an ω , if | . | ω is non- Archimedean, we denote by | . | (ψ E ⊗ψ F )ω (x) the ε-tensor product of the norms | . | ψ E,ω (x) and | . | ψ F,ω (x), if | . | ω is Archimedean, we denote by | . | (ψ E ⊗ψ F )ω (x) the π-tensor product of the norms | . | ψ E,ω (x) and | . | ψ F,ω (x).
Thus we obtain a metric family ψ E ⊗ ψ F on the vector bundle E ⊗ F , called the tensor product of metric families ψ E and ψ F . In the case where one of the vector bundles E and F is of rank 1, we also write the tensor product metric family of ψ E and ψ F in an additive way as ψ E + ψ F . Proposition 3.9. -Let E and F be vector bundles on X, equipped with metric families ψ E and ψ F respectively. We assume that E is a line bundle. If both metric families ψ E and ψ F are dominated (resp. measurable), then ψ E +ψ F is also dominated (resp. measurable).

Proof. -Since E is of rank 1, we can identify P(E ⊗ F ) with P(F ). Moreover, if we denote by π : P(F ) → X the structural morphism, one has O E⊗F (1) = π * (E)⊗O F (1), and the metric family (ψ E + ψ F ) FS identifies with the tensor product of π * (ψ E ) and ψ FS F . Hence the assertions follow from [13, Propositions 6.1.12 and 6.1.28].

Proposition 3.10.

-Let E be a vector bundle on X. Then there exists a dominated and measurable metric family of E.

Proof. -Let L be an ample line bundle on X and ϕ be a dominated and measurable metric family of L ∨ . Then, one can find a positive integer m such that L m ⊗ E is ample and generated by global sections. If L m ⊗ E has a dominated and measurable metric family ψ , then the tensor product of mϕ with ψ is a dominated and measurable metric family of E by Proposition 3.9, so we may assume that E is ample and generated by global sections.

Let H 0 (X, E) ⊗ O X → E be the natural surjective homomorphism. Fix a basis e 1 , . . . , e N of H 0 (X, E) and, for each ω ∈ Ω and (a 1 , . . . , a N ) ∈ K N ω , we set

a 1 e 1 + • • • + a N e N ω =      |a 1 | 2 ω + • • • + |a N | 2 ω if ω ∈ Ω ∞ , max{|a 1 | ω , . . . , |a N | ω } if ω ∈ Ω \ Ω ∞ ,
and ξ be the norm family ( . ω ) ω∈Ω . Let ψ be a metric family of E induced by H 0 (X, E) ⊗ O X → E and ξ. Let π : P(E) → X be the projective bundle of E and O E (1) be the tautological line bundle of P(E). Note that the metric family

ψ FS of O E (1) is induced by H 0 (X, E) ⊗ O P(E) → O E (1)
and ξ, so it is dominated and measurable. Thus the assertion follows.

3.3. Dual metric family. -In this subsection, let X be a projective scheme over Spec K.

Definition 3.11.

-Let E be a vector bundle on X, equipped with a metric family ψ = (ψ ω ) ω∈Ω . For any ω ∈ Ω and any x ∈ X an ω , the norm

| . | ψω (x) on E ω (x) induces a dual norm on E ω (x) ∨ , which we denote by | . | ψ ∨ ω (x). It turns out that ψ ∨ ω = (| . | ψ ∨ ω (x)) x∈X an ω forms a continuous metric on E ∨ ω . Hence ψ ∨ = (ψ ∨ ω )
ω∈Ω is a metric family on E ∨ , called the dual metric family of ψ. Proposition 3.12. -Let E be a vector bundle on X and ψ be a metric family of E. If ψ is dominated, then the dual metric family ψ ∨ is also dominated.

Proof. -Let π E : P(E) → X and π E ∨ : P(E ∨ ) → X be the projective bundles associated with E and E ∨ respectively. We consider the fiber product P(E)× X P(E ∨ ) of projective bundles and denote by

p 1 : P(E) × X P(E ∨ ) -→ P(E) and p 2 : P(E) ⊗ X P(E ∨ ) -→ P(E ∨ ) the morphisms of projection. Let O E (1) O E ∨ (1) := p * 1 (O E (1)) ⊗ p * 2 (O E ∨ (1))
and let

s ∈ H 0 (P(E) × X P(E ∨ ), O E (1) O E ∨ (1)) be the trace section of O E (1) O E ∨ (1)
, which corresponds to the composition of the following universal homomorphisms

p * 2 (O E ∨ (-1)) -→ p * 2 (π * E ∨ (E)) ∼ = p * 1 (π * E (E)) -→ p * 1 (O E (1)). Claim 3.13. -Let ψ 1 = (ψ 1,ω ) ω∈Ω and ψ 2 = (ψ 2,ω
) ω∈Ω be metric families on E and E ∨ respectively. We equip O E (1) O E ∨ (1) with the metric family ϕ = (ϕ ω ) ω∈Ω which is the tensor product of the metric families p * 1 (ψ FS 1 ) and p * 2 (ψ FS 2 ). Then, for any ω ∈ Ω and x ∈ X an ω , one has

sup f ∈E ∨ ω (x)\{0} |f | ψ ∨ 1,ω (x) |f | ψ2,ω (x) s ϕω . Proof. -Let f be a non-zero element of E ∨ ω (x). The one-dimensional κ(x)-vector space of E ∨ ω (x) spanned by f determines a point P f of P (E ω ) an valued in ( κ(x), | . | x ) which lies over x ∈ X an ω . Suppose Q is a point of P(E ∨ ω ) an valued in ( κ(x), | . | x )
which lies over x. Then s(P f , Q) corresponds to the following composition of universal homomorphisms

O E ∨ (-1)(Q) -→ E ω (x) -→ O E (1)(P f ), (3.2) 
and |s| ϕω (P f , Q) is the operator norm of this homomorphism. We pick an arbitrary non-zero element of

O E ∨ (-1)(Q). The dual element in O E (-1)(P f ) of the image of by (3.2) is f ( ) -1 f . Therefore one has |s| ϕω (P f , Q) = |f ( )| x | | ψ1,ω (x) • |f | ψ2,ω (x) s ϕω .
Taking the supremum with respect to , we obtain the required inequality.

In the above claim, if both metric families ψ 1 and ψ 2 are dominated, then the metric family ϕ on O E (1) O E ∨ (1) is also dominated. In particular, the function (ω ∈ Ω) -→ ln s ϕω is bounded from above by an integrable function. Then the claim shows that the function

(ω ∈ Ω) -→ sup x∈X an ω sup f ∈E ∨ ω (x)\{0} ln |f | ψ ∨ 1,ω (x) -ln |f | ψ2,ω (x)
is bounded from above by an integrable function. Therefore, the function

(ω ∈ Ω) -→ sup Q∈P(E ∨ ) an sup f ∈O E ∨ (1)(Q) f =0 ln |f | ψ ∨,FS 1,ω (Q) -ln |f | ψ FS 2,ω (Q)
is bounded from above by an integrable function. For the same reason, by exchanging the roles of E and E ∨ we obtain that the function

(ω ∈ Ω) -→ sup P ∈P(E) an sup t∈O E (1)(P ) t =0 ln |t| ψ ∨,FS 2,ω (P ) -ln |t| ψ FS 1,ω (P )
is also bounded from above by an integrable function. In particular, if we denote by ϕ the tensor product of the metric families p * 1 (ψ ∨,PS

2

) and p * 2 (ψ ∨,PS

1

), then the function

(ω ∈ Ω) -→ ln s ϕω
is still bounded from above by an integrable function. Hence the above claim implies that the function

(ω ∈ Ω) -→ sup x∈X an ω sup f ∈E ∨ ω (x)\{0} ln |f | ψ2,ω (x) -ln |f | ψ ∨ 1,ω (x)
is bounded from above by an integrable function. Therefore we obtain that the local distance function

(ω ∈ Ω) -→ d ω (ψ ∨ 1 , ψ 2
) is bounded from above by an integrable function. By Proposition 3.3, the metric family ψ ∨ 1 is dominated. By Proposition 3.10, there exists at least a dominated metric family on E ∨ , the assertion is thus proved. Definition 3.14. -Let E be a vector bundle on X, ψ = (ψ ω ) ω∈Ω be a metric family of E. Let K /K be a finite extension and let P : Spec K → X be a K-morphism.

Let (K , (Ω , A , ν ), φ ) = S ⊗ K K .
Recall that Ω is a disjoint union

Ω = ω∈Ω Ω ω ,
where Ω ω denotes the set of all absolute values on Ω extending | . | ω . For any ω ∈ Ω and any x ∈ Ω ω , we let P x : Spec K x → X ω be the morphism induced by

Spec K x -→ Spec K P -→ X and the canonical morphism Spec K x → Spec K ω . K x ' ' Px $ $ X ω / / X Spec K ω / / Spec K
We denote by .

x the norm on 

(E ⊗ K K ) ⊗ K K x ∼ = E ω ⊗ Kω K x which is induced by | . | ψω (P x ) by ε-extension of scalars if | . | ω is non-Archimedean,
P x : Spec K x → X is a K-morphism.
Assume that E is a vector bundle on X and ψ = (ψ ω ) ω∈Ω be a metric family of E. Denote by E x the K x -vector space P *

x (E). We consider the following adelic curve

(K x , (Ω 0 , A 0 , ν 0 ), (| . | x ) ω∈Ω0 ),
where A 0 is the restriction of the σ-algebra A to Ω 0 , and ν 0 is the restriction of ν to (Ω 0 , A 0 ). We denote by x * (ψ) the norm family (| . | ψω (P ω x )) ω∈Ω0 on E x , where P ω x denotes the point of X an ω determined by

(P x , | . | x ). Assume that the transcendence degree of K x /K is 1. Then | . | x is a discrete absolute value on K x . Let ord x ( . ) : K x → Z ∪ {+∞} be the corresponding discrete valuation, which is defined as ord x (a) = sup{n ∈ Z : a ∈ m n x }, where m x = {b ∈ K x : |b| x < 1}.
Then there is a non-negative real number q such that

| . | x = exp(-q ord x ( . )).
This non-negative real number is called the exponent of x.

Proposition 3.16.

-Let E be a vector bundle on X and ψ = (ψ ω ) ω∈Ω be a metric family of E. Then the metric family ψ is measurable if and only if both of the following conditions are satisfied:

(1) for any finite extension K /K and any K-morphism P : Spec K → X, the norm family P * (ψ) is measurable, (2) for any triplet x = (K x , | . | x , P x ), where (K x , | . | x ) is a valued extension of transcendence degree 1 and of rational exponent of the trivially valued field (K, | . | 0 ) and P x : Spec K x → X is a K-morphism, the norm family x * (ψ) is measurable.

Proof. -It suffices to treat the case where the field K is countable. Recall that the measurability of the metric family ψ signifies that the following two conditions are satisfied:

(1') for any finite extension K /K and any K-morphism Q : Spec K → P(E), the norm family

Q * (ψ FS ) is measurable, (2') for any triplet y = (K y , | . | y , Q y ), where (K y , | . | y ) is a valued extension of tran-
scendence degree 1 and of rational exponent of the trivially valued field (K, | . | 0 ), and

Q y : Spec K y → P(E) is a K-morphism, the norm family Q * y (ψ FS ) is measurable.
Let K /K be a finite extension. Any K-morphism Q : Spec K → P(E) corres ponds to a K-morphisme P : Spec K → X together with a one-dimensional quotient vector space L of P * (E), which identifies with Q * (O E (1)). Moreover, the norm family Q * (ψ FS ) identifies with the quotient norm family of P * (ψ). If the norm family P * (ψ) is measurable, by [START_REF] Chen | Moriwaki -Arakelov geometry over adelic curves[END_REF]Proposition 4.1.24], we obtain that Q * (ψ FS ) is also measurable.

Conversely, if for any one-dimensional quotient vector space of P * (E), the quotient norm family of P * (ψ) on it is measurable, by passing to dual we obtain from [13, Proposition 4.1.24] that P * (ψ) ∨ is measurable and therefore P * (ψ) is also measurable.

Let x = (K x , | . | x , P x ) be a triplet, where (K x , | . | x ) is a valued extension of transcendence degree 1 and rational exponent of the trivially valued field (K, | . | 0 ), and P x : Spec K x → X be a K-morphism. Note that the field K x is countable. Similarly to the above argument, the norm family P *

x (ψ) is measurable if and only if all its quotient norm families on one-dimensional quotient subspaces are measurable. The proposition is thus proved. Proposition 3.17. -Let E be a vector bundle on X and ψ = (ψ ω ) ω∈Ω be a metric family on E. If ψ is measurable, then the dual metric family ψ ∨ of E ∨ is also measurable.

Proof. -Let K /K be a finite extension and P : Spec K → X be a K-morphism.

If P * (ψ) is measurable, by [13, Proposition 4.1.24] we obtain that P * (ψ ∨ ) = P * (ψ) ∨ is measurable. Similarly, for any triplet x = (K x , | . | x , P x ), where (K x , | . | x )
is a valued extension of transcendence degree 1 and of rational exponent of the trivially valued field (K, | . | 0 ) and P

x : Spec K x → X is a K-morphism, if the norm family P * x (ψ) is measurable, then P * x (ψ ∨ ) = P * x (ψ)
∨ is also measurable. The proposition is thus proved.

Corollary 3.18. -Let E be a vector bundle on X, F be a vector subbundle of E, ψ E be a metric family of E, and ψ F be the restriction of ψ E to F . If the metric family ψ E is dominated (resp. measurable), then the restricted metric family ψ F is also dominated (resp. measurable).

Proof. -The homomorphism of inclusion F → E induces by passing to dual a surjective homomorphism E ∨ → F ∨ . Thus F ∨ can be considered as a quotient vector bundle of E ∨ . Note that ψ ∨ F identifies with the quotient metric family of ψ ∨ E . Hence the assertion follows from Propositions 3.12, 3.17 and 3.7.

3.4. Metric families on torsion-free sheaves. -In this subsection, we assume that the K-scheme X is geometrically integral. Definition 3.19. -Let E be a torsion free O X -module and U be a non-empty Zariski open set of X such that E is locally free over U . For any ω ∈ Ω, let ψ ω be a continuous metric of E ω over U an ω such that, for any s ∈ H 0 (X ω , E ω ), s ψω := sup{|s| ψω (x) : x ∈ U an ω } < +∞. We set ψ = (ψ ω ) ω∈Ω and ξ ψ = ( . ψω ) ω∈Ω . We say (E, U, ψ) is a sectionally adelic torsion free O X -module if (H 0 (X, E), ξ ψ ) is an adelic vector bundle on S. By Proposition 3.9, an adelic locally free O X -module is sectionally adelic. Definition 3.20. -Let E be a torsion free sheaf on X and U be a non-empty Zariski open set of X such that E| U is locally free. Let ψ = (ψ ω ) ω∈Ω be a metric family of E| U . We say (E, U, ψ) is a birationally adelic torsion free O X -module if it satisfies the following properties:

(1) There exist a birational morphism µ : X → X of geometrically integral projective schemes over K such that µ -1 (U ) → U is an isomorphism, an adelic vector bundle (E , ψ ) on X , and an injective morphism of O X -modules E → µ * (E ) whose restriction to U gives an isomorphism

E| U → µ * (E )| U ∼ = E | µ -1 (U ) .
(

) The isomorphism E| U → E | µ -1 (U ) yields an isometry (E, ψ)| U -→ (E , ψ )| µ -1 (U ) . 2 
By definition, for s ∈ H 0 (X, E) and each ω ∈ Ω, s ψω := sup{|s| ψω (ξ) : ξ ∈ U an ω } exists. Note that . ψω is the restriction of . ψ ω to H 0 (X, E) by using the injective homomorphism H 0 (X, E) → H 0 (X , E ), so that (H 0 (X, E), ( . ψω ) ω∈Ω ) is an adelic vector bundle on S, that is, a birationally adelic torsion free O X -module is sectionally adelic in the sense of Definition 3.19. Proof. -Fix y 0 ∈ Y . Since π -1 (y 0 ) is compact, for ε > 0, there exist x 1 , . . . , x n ∈ π -1 (y 0 ) and open subsets U 1 , . . . , U n of X such that

π -1 (y 0 ) ⊆ U 1 ∪ • • • ∪ U n , x i ∈ U i for all i ∈ {1, . . . , n} and |f (x) -f (x i )| ε for all i ∈ {1, . . . , n} and x ∈ U i . If we set Z = X \ U 1 ∪ • • • ∪ U n , then π(Z) is closed and y 0 ∈ π(Z). We choose an open set W of Y such that y 0 ∈ W and W ⊆ π(U 1 ) ∩ • • • ∩ π(U n ) ∩ (Y \ π(Z)). Note that π -1 (W ) ⊆ U 1 ∪ • • • ∪ U n . Let y ∈ W and λ i = sup{f (x) : x ∈ U i and y = π(x)}. Then f (y) = max{λ 1 , . . . , λ n } and λ i -ε f (x i ) λ i + ε for all i ∈ {1, . . . , n}, so that f (y) -ε f (y 0 ) f (y) + ε, as required.
Let π : X → Y be a generically finite morphism of geometrically integral projective schemes over Spec K and (M, U, ψ) be a sectionally adelic torsion free O X -module. Note that π * (M ) is a torsion free O Y -module. The pushforward π * (ψ) is defined as follows: We choose a non-empty Zariski open set V of Y such that

π| π -1 (V ) : π -1 (V ) -→ V is étale and π -1 (V ) ⊆ U . Note that π * (M ) is locally free over V . For y ∈ V an ω and s ∈ π * (M ) ⊗ κ(y), |s| π * (ψ)ω (y) is defined to be |s| π * (ψω) (y) := max{|s| ψω (x) : x ∈ (π an ω ) -1 (y)}. Since π -1 (V ) an ω → V an ω is proper and open (c.f. [2, Lemma 3.2.4]), by Lemma 3.21, π * (ψ) ω yields a continuous metric of π * (M ) ω over V an ω . We denote (π * (ψ) ω ) ω∈Ω by π * (ψ). For s ∈ H 0 (Y, π * (M )) = H 0 (X, M ), as sup{|s| π * (ψ)ω (y) : y ∈ V an ω } = sup{|s| ψω (x) : x ∈ π -1 (V ) an ω }, one has s π * (ψ)ω = s ψω < ∞, so that (π * (M ), V, π * (ψ)) forms a sectionally adelic torsion free O Y -module and (H 0 (Y, π * (M )), ( . π * (ψ)ω ) ω∈Ω ) is isometric to (H 0 (X, M ), ( . ψω ) ω∈Ω ). We call V an open subscheme of definition of π * (ψ).

Volumes of normed graded linear series

In this section, we let k be a commutative field and we denote by | . | 0 the trivial absolute value on k. Recall that |a| 0 = 1 for any a ∈ k × . Moreover, S 0 = (k, {0}, | . | 0 ) forms an adelic curve.

4.1. Adelic vector bundle on S 0 . -Adelic vector bundles on S 0 are just finitedimensional ultrametrically normed vector space over k. If V = (V, . ) is an adelic vector bundle on S 0 , then the function . only takes finitely many values. Moreover, if the vector space V is non-zero, then one has (see [START_REF] Chen | Moriwaki -Arakelov geometry over adelic curves[END_REF]Remark 4.3.63])

µ max (V ) = -min s∈V \{0} ln s , µ min (V ) = -max s∈V ln s .
The Harder-Narasimhan R-filtration of V is give by

∀ t ∈ R, F t (V ) = {s ∈ V : s e -t }.
Note that

deg + (V ) := sup W ⊂V deg(W ) = +∞ 0 dim k (F t (V )) dt, deg(V ) = R t d dim k (F t (V )) dt.
4.2. Normed graded algebra. -Let V • = n∈N V n be a graded k-algebra. We assume that each V n is a finite-dimensional vector space over k. For any n ∈ N 1 , let . n be an ultrametric norm on V n . Then the pair

V • = (V • , ( . n ) n∈N 1 ) is called a normed graded algebra over (k, | . | 0 ). Let f : N 1 → R 0 be a function. If, for all ∈ N 2 , (n 1 , . . . , n ) ∈ N 1 and (s 1 , . . . , s ) ∈ V n1 × • • • × V n , one has s 1 • • • s n1+•••+n e f (n1)+•••+f (n ) s 1 n1 • • • s n , (4.1) 
we say that V • is f -sub-multiplicative. In the particular case where f is the constant function taking value 0, we just say the V • is sub-mutiplicative. If there exists two constant C 1 and C 2 such that, for any n ∈ N and any s ∈ V n \ {0}, one has

e C1n s n e C2n , (4.2) 
we say that V • is bounded.

Proposition 4.1. -Let V • be a normed graded algebra over (k, | . | 0 ) and f : N 1 → R 0 be a function such that lim n→+∞ f (n) n = 0.
Assume that V • is an integral domain and that V • is f -sub-multiplicative and bounded.

(1) For any n ∈ N 1 and any s ∈ V n , the sequence

s N 1/N nN , N ∈ N, N 1 converges. (2) For any n ∈ N t1 , the map . sp,n : V n -→ R 0 , s -→ lim N →+∞ s N 1/N nN is an ultrametric norm on V n .
(3) The family of norms ( . sp,n ) n∈N satisfies the following sub-multiplicativity condition: for any (n, m) ∈ N 2 and any

(s n , s m ) ∈ V n × V m , s n s m sp,n+m s n sp,n • s m sp,m .
(4) For any n ∈ N 1 and any s ∈ V n \ {0}, one has

s sp,n e f (n) s n . (4.3) 
Proof. -(1) It suffices to treat the case where s = 0. By (4.1), for ∈ N 2 , and

(N 1 , . . . , N ) ∈ N 1 , one has ln s N1+•••+N n(N1+•••+N ) i=1 ln s Ni nN1 + f (nN i ).
Moreover, by (4.2), the sequence

1 N ln s N nN , N ∈ N, N 1
is bounded. Therefore this sequence converges in R (see [9, Proposition 1.3.1]), which shows that the sequence s N 1/N nN , N ∈ N, N 1 converges to a positive real number.

(2) It suffices to show that . sp,n satisfies the strong triangle inequality. Let s and t be two elements of V n . For any N ∈ N 1 , one has

(s + t) N = N i=0 N i s i t N -i and hence (s + t) N nN max i∈{0,...,N } s i t N -i nN . Let M = max j∈N, j 1 1 j max{ln s j nj , ln t j nj , 0}.
Let (ε j ) j∈N be a sequence of real numbers in [0, 1 2 ] such that lim j→+∞ ε j = 0, lim

j→+∞ jε j = +∞, lim j→+∞ (j -jε j ) = +∞. If i/N ε N , one has 1 N ln s i t N -i nN ε N M + N -i N • 1 N -i ln t N -i n(N -i) + f (ni) N + f (n(N -i)) N .
Similarly, if (N -i)/N ε N , one has

1 N ln s i t N -i nN i N • 1 i ln s i ni + ε N M + f (ni) N + f (n(N -i)) N . If N ε N < i < N -N ε N , one has 1 N ln s i t N -i nN i N • 1 i ln s i ni + N -i N • 1 N -i ln t N -i n(N -i) + f (ni) N + f (n(N -i)) N .
Taking the superior limit when N → +∞, we obtain that lim sup

N →+∞ max i∈{0,...,N } 1 N ln s i t N -i nN max{ s sp,n , t sp,n }. (3) Let (n, m) ∈ N 2 and (s n , s m ) ∈ V n × V m . For any N ∈ N such that N 1, one has (s n s m ) N (n+m)N e f (nN )+f (mN ) s N n nN • s N m mN .
Taking the N -th root and letting N → +∞ we obtain

s n s m sp,n+m s n sp,n • s m sp,m .
(4) For any N ∈ N 1 , the following inequality holds:

s N nN e N f (n) s N n .
Taking the N -th root and then letting N → +∞, we obtain

s sp,n e f (n) s n .
4.3. Reminder on graded linear series. -In this subsection, we let k /k be a finitely generated extension of fields. As graded linear series of k /k, we refer to a graded sub-k-algebra

V • of k [T ] = n∈N k T n such that V 0 = k. We denote by N(V • ) the set of n ∈ N such that V n = 0. If V • is a graded linear series and N(V • ) = {0}, we denote by k(V • ) the sub-extension of k /k generated by n∈N(V•)\{0} {f /g | (f, g) ∈ V n × (V n \ {0})} over k. If N(V • ) = {0}
, then we denote by dim(V • ) the transcendence degree of the extension k(V • )/k, and call it the Kodaira-Iitaka dimension of V • . In the case where

V n = {0} for any n ∈ N 1 , by convention dim(V • ) is defined to be -∞. If N(V • ) = {0} and if the field k(V • )
coincides with k , we say that the graded linear series V • is birational. We say that V • is of sub-finite type if there exists a graded linear series W • of k /k which is a k-algebra of finite type and contains V • as a sub-k-algebra. By [12,Theorem 3.7], there exists a graded sub-k-algebra of finite type W • of the polynomial ring

k(V • )[T ] = n∈N k(V • )T n such that k(W • ) = k(V • ), which contains V • as a sub-k-algebra. In other words, V • viewed as a graded linear series of k(V • )/k is sub-finite.
Let V • be a graded linear series of sub-finite type, and d be its Kodaria-Iitaka dimension. If N(V • ) = {0}, we define the volume of V • as the limit (see [12,Theorem 6.2] for the convergence)

vol(V • ) := lim n∈N(V•), n→+∞ dim k (V n ) n d /d! .
Note that V • satisfies the Fujita approximation property, namely, one has

vol(V • ) = sup W•⊂V• dim(W•)=dim(V•) vol(W • ),
where W • runs over the set of all graded sub-k-algebras of

V • such that dim(W • ) = dim(V • ).
4.4. Normed graded series. -In this subsection, we fix a finitely generated extension k /k, a graded linear series V • of k /k which is of sub-finite type, and a f :

N 1 → R 0 such that lim n→+∞ f (n) n = 0.
Let d be the Kodaira-Iitaka dimension of V • . We assume that d 0 (namely

N(V • ) = {n ∈ N : V n = 0} = {0}
) and we equip the graded algebra V • with a family of norms

( . n ) n∈N such that V • = (V • , ( . n ) n∈N 1
) forms a normed graded algebra which is f -sub-multiplicative and bounded (see §4.2). For any n ∈ N 1 , let . sp,n : V n → R 0 be the map defined as

s sp,n := lim N →+∞ s N 1/N nN .
Then (V • , ( . sp,n ) n∈N 1 ) forms a normed graded algebra which is sub-multiplicative and bounded. Moreover, we denote by µ asy max (V • ) the asymptotic maximal slope of V • , which is defined as

µ asy max (V • ) = - lim n∈N(V•), n→+∞ min s∈Vn\{0} 1 n ln s n = lim n∈N(V•), n→+∞ µ max (V n , . n ).
Note that the existence of the limite is ensured by the inequality (4.1), which implies that

µ max (V n1+•••+n , . n1+•••+n ) i=1 µ max (V ni , . ni ) -f (n i ) .
We refer the readers to [9, Corollary 1.3.2] for a proof of the convergence.

Proposition 4.2. -The following equality holds:

µ asy max (V • ) = lim n∈N(V•), n→+∞ 1 n µ max (V n , . sp,n ).
Proof.

-By Proposition 4.1, one has . sp,n e f (n) . n and hence for n ∈ N(V • ) the following inequality holds

µ max (V n , . sp,n ) µ max (V n , . n ) -f (n).
This implies

lim n∈N(V•), n→+∞ 1 n µ max (V n , . sp,n ) lim n∈N(V•), n→+∞ 1 n µ max (V n , . n ).
Conversely, for any fixed n ∈ N(V • ) and s ∈ V n \ {0} such that

ln s sp,n = -µ max (V n , . sp,n ),
one has

µ asy max (V • ) = lim N →+∞ 1 nN µ max (V nN , . nN ) lim N →+∞ -1 nN ln s N nN = - 1 n ln s sp,n = 1 n µ max (V n , . sp,n ).
Taking the limit when n → +∞, we obtain

µ asy max (V • ) µ asy max (V • , ( . sp,n ) n∈N 1 ). Definition 4.3.
-We define the arithmetic volume of V • as (see §2.4 for the definition of deg + )

vol(V • ) := lim sup n∈N(V•), n→+∞ deg + (V n , . n ) n d+1 /(d + 1)! . ( 4.4) 
Theorem 4.4.

-The superior limit in the formula (4.4) defining the arithmetic volume function is actually a limite. Moreover, the following equalities hold:

vol(V • ) = lim n∈N(V•), n→+∞ deg + (V n , . sp,n ) n d+1 /(d + 1)! = (d + 1) +∞ 0 vol(V t • ) dt,
where for t ∈ R,

V t • := k ⊕ n∈N, n 1 Vect k ({s ∈ V n : s sp,n e -nt }).
Proof. -By replacing k by k(V • ), we may assume that the graded linear series V • is birational. For simplifying the notation, we let M be the asymptotic maximal slope of V • . Note that M is also the asymptotic maximal slope of (V • , ( . sp,n ) n∈N ) (see Proposition 4.2). Moreover, since V • is bounded, there exists a constant A 0 such that s n e nA for any n ∈ N 1 and any s ∈ V n . By the same argument as the proof of [12, Proposition 6.6], we obtain that, for any t < M , one has k(V t

• ) = k(V • ). Moreover, for any t > M and any n ∈ N 1 , one has V t n = 0. Therefore, combining the construction of Newton-Okounkov bodies in [11, Theorem 1.1] and that of the concave transform developed in [5, §1.3], we obtain, in a similar way as [5, Corollary 1.13] that

vol(V • , ( . sp,n ) n∈N 1 ) = lim n∈N(V•), n→+∞ deg + (V n , . sp,n ) n d+1 /(d + 1)! = (d + 1) +∞ 0 vol(V t • ) dt.
Moreover, by (4.3) we obtain that

deg + (V n , . sp,n ) deg + (V n , . n ) -dim k (V n )f (n),
which leads to

lim sup n∈N(V•), n→+∞ deg + (V n , . n ) n d+1 /(d + 1)! vol(V • , ( . sp,n ) n∈N 1 ) since dim k (V n ) = O(n d ) when n ∈ N(V • ), n → +∞.
Let ε be an element of ]0, M [, t be an element of [ε, M [. Let W t • be a graded sub-kalgebra of finite type of V t

• , which is generated by a family of homogeneous elements s 1 , . . . , s of homogeneous degrees n 1 , . . . , n respectively. For any i ∈ {1, . . . , }, there exists a i ∈ N 1 such that the inequalities

s N i niN e niN ε/2 s i N sp,ni e niN (ε/2-t) (4.5)
hold for any integer N a i . Therefore, by the inequality (4.1) we obtain that, for any (N 1 , . . . , N ) ∈ N 1 , one has

ln s N1 1 • • • s N n1N1+•••+n N i=1 ln s Ni i niNi + f (n i N i ) .
By (4.5), we obtain that

ln s N1 1 • • • s N n1N1+•••+n N i∈{1,..., } Ni ai n i N i ε 2 -t + i∈{1,..., } Ni<ai n i N i A ε 2 -t i=1 n i (N i -a i ) + i=1 n i a i A ε 2 -t i=1 n i N i + i=1 n i a i (A + M ). Therefore, for (N 1 , . . . , N ) ∈ N 1 such that n 1 N 1 + • • • + n N is sufficiently large, one has s N1 1 • • • s N n1N1+•••+n N e (ε-t)(n1N1+•••+n N ) .
In particular, for n ∈ N(V • ) sufficiently large, one has W t n ⊂ F (t-ε)n (V n , . n ), which leads to

lim inf n∈N(V•), n→+∞ dim k (F (t-ε)n (V n , . n )) n d /d! vol(W t • ).
Taking the supremum when W t • varies, by the Fujita approximation property of V t

• we obtain that

lim inf n∈N(V•), n→+∞ dim k (F (t-ε)n (V n , . n )) n d /d! vol(V t • ). (4.6) 
Note that

deg + (V n , . n ) = +∞ 0 dim k (F t (V n , . n )) dt = n +∞ 0 dim k (F nt (V n , . n )) dt n M ε dim k (F n(t-ε) (V n , . n )) dt.
Taking the integral with respect to t, by Fatou's lemma we deduce from (4.6) that

lim inf n∈N(V•),n→+∞ deg + (V n , . n ) n d+1 /(d + 1)! lim inf n∈N(V•), n→+∞ (d + 1)! n d M ε dim k (F n(t-ε) (V n , . n )) (d + 1) M ε vol(V t • ) dt = (d + 1) +∞ ε vol(V t • ).
Finally, taking the supremum with respect to ε, we obtain the inequality

lim inf n∈N(V•),n→+∞ deg + (V n , . n ) n d+1 /(d + 1)! vol(V • , ( . sp,n ) n∈N 1 ).
The theorem is thus proved.

Corollary 4.5. -The sequences

deg(V n , . n ) n d+1 /(d + 1)! , n ∈ N(V • ) and deg(V n , . sp,n ) n d+1 /(d + 1)! , n ∈ N(V • )
converge to the same real number, which is equal to

- R t d vol(V t • ).
Proof. -Let A be a positive constant such that s n e nA for any n ∈ N 1 and any s ∈ V n . For any n ∈ N 1 , let . n = e -nA . n . Then, (V • , (e -nA . n ) n∈N 1 ) forms a normed graded algebra over (k, | . | 0 ), which is f -sub-multiplicative and bounded. Moreover, for any n ∈ N 1 , one has

deg(V n , . n ) = deg + (V n , . n ) = nA dim k (V n ) + deg(V n , . n ),
where the first equality comes from the fact that the image of . n is contained in [0, 1]. For any n ∈ N one has . sp,n = e -nA . sp,n .

By (4.3), for any n ∈ N 1 and any s ∈ V n , one has

∀ N ∈ N 1 , s sp,n = s N 1/N sp,nN e f (nN )/N s N 1/N nN e f (nN )/N +nA .
Taking the limite when N → +∞, we obtain s sp,n e nA and hence . sp,n also takes value in [0, 1]. Therefore, for any n ∈ N 1 , one has

deg(V n , . sp,n ) = deg + (V n , . sp,n ) = nA dim k (V n ) + deg(V n , . sp,n ),
Hence Theorem 4.4 leads to the convergence of the sequences

deg(V n , . n ) + nA dim k (V n ) n d+1 /(d + 1)! , n ∈ N(V • ) and deg(V n , . sp,n ) + nA dim k (V n ) n d+1 /(d + 1)! , n ∈ N(V • )
to the same limite, which is equal to

(d + 1) +∞ 0 vol(V t-A • ) dt = (d + 1) +∞ -A vol(V t • ) dt = A(d + 1) vol(V • ) - R t d vol(V t • ),
where the last equality comes from the fact that

V t • = V • when t -A. By the formula lim n∈N(V•), n→+∞ dim k (V n ) n d /d! = vol(V • ),
we obtain the assertion.

Definition 4.6.

-We define the χ-volume of the normed graded linear series V • as

vol χ (V • ) = lim n∈N(V•), n→+∞ deg(V, . n ) n d+1 /(d + 1)! .
By Corollary 4.5, we obtain that vol χ (V • ) = vol χ (V • , ( . sp,n ) n∈N 1 ).

Arithmetic volumes over a general adelic curve

In this section, we use the results of the previous section to study the volume functions of a normed graded algebra over a general adelic curve. Let S = (K, (Ω, A, ν), φ) be the adelic curve defined in §2.1. We let | . | 0 be the trivial absolute value on K, and denote by S 0 = (K, {0}, | . | 0 ) the adelic curve consisting of a single copy of the trivial absolute value | . | 0 on K.

5.1. Graded algebra of adelic vector bundles. -In this subsection, we consider basic facts on graded algebras of adelic vector bundles.

Definition 5.1. -Let E • =
n∈N E n be a graded K-algebra. We assume that each vector space E n is finite-dimensional over K. For any n ∈ N, let ξ n = ( . n,ω ) ω∈Ω be a norm family on E n such that E n = (E n , ξ n ) forms an adelic vector bundle on S.

We call E • = (E n ) n∈N a graded algebra of adelic vector bundles on S. For any n ∈ N such that n 1, let (F t (E n )) t∈R be the Harder-Narasimhan R-filtration of V n (see §2.5). We denote by . HN n the norm on E n (viewed as a vector space over (K, | . | 0 )) defined as

∀ s ∈ E n , s HN n = exp -sup{t ∈ R : s ∈ F t (E n )} . Then, the couple (E • , ( . HN n ) n∈N 1
) forms a normed graded algebra over (K, | . | 0 ) (see §4.2). Moreover if we view (E n , . HN n ) as an adelic vector bundle on S 0 , then its Harder-Narasimhan filtration coincides with that of (E n , . n ). In particular, by the results recalled in §2.5, the following estimates holds:

0 deg(E n , . n ) -deg(E n , . HN n ) 1 2 ν(Ω ∞ ) dim K (E n ) ln(dim K (E n )), (5.1 
)

0 deg + (E n , . n ) -deg + (E n , . HN n ) 1 2 ν(Ω ∞ ) dim K (E n ) ln(dim K (E n )). (5.2)
Let b = (b n ) n∈N 1 be a sequence of non-negative integrable functions on (Ω, A, ν). We say that a graded algebra of adelic vector bundles

E • is b-sub-multiplicative if for all ω ∈ Ω, ∈ N 2 , (n 1 , . . . , n ) ∈ N 1 and (s 1 , . . . , s ) ∈ E n1,ω × • • • × E n ,ω , the following inequality holds s 1 • • • s n1+•••+n ,ω e bn 1 (ω)+•••+bn (ω) s 1 n1,ω • • • s n ,ω .
(5.3)

If for any n, b n is the constant function taking 0 as its value, we simply say that E • is sub-multiplicative.

Proposition 5.2. -Assume that the field K is perfect. Let b = (b n ) n∈N 1 be a sequence of non-negative integrable functions on (Ω, A, ν), and E • be a graded algebra of adelic vector bundles on S, which is b-sub-multiplicative. Let f : N 1 → R 0 be the function defined as

f (n) = 3 2 ν(Ω ∞ ) ln(dim K (E n )) + Ω b n (ω) ν(dω).
Then the normed graded algebra (E • , ( . HN n ) n∈N 1 ) is f -sub-multiplicative.

Proof. -Let ∈ N 1 and (n 1 , . . . , n ) ∈ N 1 . For any i ∈ {1, . . . , }, let F ni be a K-vector subspace of E ni . For any ω ∈ Ω, we consider the K ω -linear map

F n1,ω ⊗ • • • ⊗ F n ,ω -→ E n1+•••+n ,ω
induced by the K-algebra structure of E • . If we equip with F n1,ω ⊗ • • • ⊗ F n ,ω with the ε-tensor product of the norms . n1,ω , . . . , . n ,ω when | . | ω is non-Archimedean, and with the π-tensor product when | . | ω is Archimedean, then the operator norm of the above map is bounded from above by exp(b n1 (ω) + • • • + b n (ω)). Moreover, by [13, Corollary 5.6.2] (although this result has been stated under the assumption that char(K) = 0, this assumption is only used in the application of Theorem 5.4.3 of [START_REF] Chen | Moriwaki -Arakelov geometry over adelic curves[END_REF], which actually applies to any perfect field), one has

µ min (F n1 ⊗ ε,π • • • ⊗ ε,π F n ) i=1 µ min (F ni ) - 3 2 ν(Ω ∞ ) ln(E ni ) .
Let F n1+•••+n be the image of the map By [13, Proposition 4.3.31], we obtain that

µ min (F n1+•••+n ) i=1 µ min (F ni ) - 3 2 ν(Ω ∞ ) ln(E ni ) - Ω b ni (ω) ν(dω) . (5.4)
Therefore, we obtain that, for any (t 1 , . . . , t ) ∈ R , one has

F t1 (E n1 ) • • • F t (E n ) ⊂ F t1+•••+t -f (n1)-•••-f (n ) (E n1+•••+n ),
which shows that the normed graded algebra (E • , ( . HN n ) n∈N 1 ) is f -sub-multiplicative.

Corollary-Definition 5.3. -Assume that the field K is perfect. Let b = (b n ) n∈N 1 be a sequence of non-negative integrable functions on (Ω, A, ν) such that

lim n→+∞ 1 n Ω b n (ω) ν(dω) = 0.
Let E • be a graded algebra of adelic vector bundles on S, which is b-sub-multiplicative. Denote by N(E • ) the set of n ∈ N such that E n = 0. Assume that (1) E • is isomorphic to a graded linear series of sub-finite type of a finitely generated extension of K, which is of Kodaira-Iitaka dimension d 0, (2) there exists C > 0 such that, for any n ∈ N(E • ),

-Cn µ min (E n ) µ max (E n ) Cn. Then the sequences deg(E n ) n d+1 /(d + 1)! , n ∈ N(E • ) and deg + (E n ) n d+1 /(d + 1)! , n ∈ N(E • )
converge to two real numbers vol χ (E • ) and vol(E • ), which we call χ-volume and volume of E • , respectively.

Proof. -These results follow from Proposition 5.2, Theorem 4.4, Corollary 4.5 and the comparisons (5.1), (5.2) and the convergence of the sequence

dim K (E n ) n d /d! , n ∈ N(E • ). Remark 5.4. -Assume that the field K is perfect. Let b = (b n ) n∈N 1 be a sequence of non-negative integrable functions on (Ω, A, ν) such that lim n→+∞ 1 n Ω b n (ω) ν(dω) = 0.
Let E • be a graded algebra of adelic vector bundles on S, which is b-sub-multiplicative.

We assume that n 1 , . . . , n are elements of

N(E • ) \ {0} such that K ⊕ n∈N, n 1 E n is generated as K-algebra by E n1 ∪ • • • ∪ E n .
By (5.4) we obtain that, for any (a 1 , . . . , a ) ∈ N \ {(0, . . . , 0)}, the canonical image of

E ⊗a1 n1 ⊗ • • • ⊗ E ⊗a n in E a1n1+•••+a n has a minimal slope i=1 a i µ min (E i ) - 3 2 ν(Ω ∞ ) ln(E ni ) - Ω b ni (ω) ν(dω) .
Therefore we deduce that, for any n ∈ N(E • )\{0}, the minimal slope of E n is bounded from below by

min (a1,...,a )∈N n=a1n1+•••+a n i=1 a i µ min (E i ) - 3 2 ν(Ω ∞ ) ln(E ni ) - Ω b ni (ω) ν(dω) .
Hence there exists C > 0 such that µ min (E n ) -Cn holds for any n ∈ N(E • ).

Arithmetic χ-volumes of adelic line bundles.

-In this subsection, we introduce the arithmetic χ-volume of an adelic line bundle.

Theorem-Definition 5.5. -Let p : X → Spec K be a geometrically integral projective scheme over Spec K, d be the dimension of X, and L = (L, ϕ) be an adelic line bundle on X. Assume that L is big and the graded K-algebra n∈N H 0 (X, L ⊗n ) is of finite type. We denote the adelic vector bundle H 0 (X, L ⊗n ), ( . nϕω ) ω∈Ω over S by p * (L ⊗n ). Then the sequence

deg(p * (L ⊗n )) n d+1 /(d + 1)! , n ∈ N, n 1 (5.5)
converges to a real number, which we denote by vol χ (L) and which we call the χvolume of L.

Proof. -Let K pc be the perfect closure of K. Recall that, if K ac denotes the algebraic closure of K, then K pc is the intersection of all subfields of K ac containing K which are perfect fields. Note that K pc /K is a purely inseparable algebraic extension of K. Therefore, for any ω ∈ Ω, the absolute value | . | ω extends in a unique way to K pc /K. In other words, the measure space in the adelic curve structure of S ⊗ K K pc coincides with (Ω, A, ν).

For any n ∈ N, let

E n = H 0 (X, L ⊗n ) ⊗ K K pc = H 0 (X K pc , L ⊗n K pc ).
The norm family of p * (L ⊗n ) induces by extension of scalars a norm family on E n , which we denote by ξ n . By [13, Proposition 4.3.14], the equality

deg(E n , ξ n ) = deg(p * (L ⊗n ))
holds. Moreover,

E • = n∈N E n
is a graded K pc -algebra of finite type, which is isomorphic to a graded linear series of the function field of X K pc over K pc . As a graded K pc -algebra of adelic vector bundles on S ⊗ K K pc , E • = (E n ) n∈N is sub-multiplicative. By [13, Proposition 6.2.7], we obtain, following the proof of [13, Proposition 6.4.4], that the sequence

µ max (E n ) n , n ∈ N, n 1 
is bounded from above. Therefore the assertion follows from Corollary-Definition 5.3 (see also Remark 5.4).

Remark 5.6. -Under the notation and the assumption of the above theoremdefinition, the following relation holds

lim n→+∞ deg(p * (L ⊗n )) n dim K (H 0 (X, L ⊗n )) = vol χ (L) (d + 1) vol(L) .
5.3. Normed graded module. -Let R • = (R n ) n∈N be a graded algebra of adelic vector bundles on S, where R n = (R n , ( . n,ω ) ω∈Ω ). Let M • = n∈N M n be a graded module over R • = n∈N R n . If each M n is a finite-dimensional vector space over K and is equipped with a norm family ( . M n,ω ) ω∈Ω such that M n = (M n , ( . M n,ω ) ω∈Ω ) is an adelic vector bundle on S, we say that M • = (M n ) n∈N is a graded R • -module of adelic vector bundles on S.

Assume that R • is sub-multiplicative (see Definition 5.1). If, for all (n, m) ∈ N 2 , ω ∈ Ω and (a, s) ∈ R n,ω × M m,ω , one has

as M n+m,ω a n,ω • s M m,ω , we say that M • is sub-multiplicative. Lemma 5.7. -Let M • = ((M n , ξ Mn )) n∈N be a graded R • -module of adelic vector bundle on S. Let Q = ∞ n=0 Q n be a graded quotient R-module of M , that is, Q n is a quotient vector space of M n over K for all n and a • : M n → M n+ induces by passing to quotient a • : Q n → Q n+ for a ∈ R . Let ξ Qn be the quotient norm family of Q n induced by M n → Q n and ξ Mn . Then Q • = ((Q n , ξ Qn )) n∈N is a graded R • -algebra.
Proof. -Assume that ξ Mn and ξ Qn are of the form ( . M n,ω ) ω∈Ω and ( . Q n,ω ) ω∈Ω , respectively. Let (n, n ) ∈ N 2 , ω ∈ Ω, a ∈ R n,ω and q ∈ Q n ,ω . For any s ∈ M n ,ω which represents the class q ∈ Q n ,ω , one has

aq Q n+n ,ω as M n+n ,ω a n,ω • s M n ,ω .
Taking the infimum with respect to s, we obtain

aq Q n+n ,ω a n,ω • s Q n ,ω , as required. Proposition 5.8. -Suppose that R • is a K-algebra of finite type. Let M • = ((M n , ξ Mn )) n∈N be a graded R • -module of adelic vector bundle on S, such that M • is an R • -module of finite type. Suppose that lim inf n→∞ dim K (M n ) n d = 0
for some non-negative integer d, then

lim inf n→∞ deg(M n , ξ Mn ) n d+1 0.
Proof. -Let x 1 , . . . , x r be homogeneous elements of R which generate R as Kalgebra. We choose non-zero homogeneous elements m 1 , . . . , m of M such that M is generated by m 1 , . . . , m over R. We set e i = deg(x i ) and

f i = deg(m i ) for i ∈ {1, . . . , r}. For α = (a 1 , . . . , a r ) ∈ N r , we denote x a1 1 • • • x ar r by x α . If we set d n = dim K (M n ), then, for n max{f 1 , .
. . , f r }, we can find α 1 , . . . , α dn ∈ N r and m i1 , . . . , m i dn ∈ {m 1 , . . . , m } such that x α1 m i1 , . . . , x α dn m i dn form a basis of M n . Note that

(x α1 m i1 ) ∧ • • • ∧ (x α dn m i dn ) M n,ω,det x α1 m i1 Mn,ω • • • x α dn m i dn M n,ω x α1 n-fi 1 ,ω • • • x α dn n-fi dn ,ω • m i1 M fi 1 ,ω • • • m i dn M fi dn ,ω max{1, x 1 e1,ω , . . . , x r er,ω } ndn max{1, m 1 M f1,ω , . . . , m M f ,ω } dn , so that deg(M n , ξ Mn ) nd n Ω min{0, -ln x 1 e1,ω , . . . , -ln x r er,ω } ν(dω) + d n Ω min{0, -ln m 1 M f1,ω , . . . , -ln m M f ,ω } ν(dω).
Thus the assertion follows.

Bounds of χ-volume with auxiliary torsion free module

Let us begin with the following lemma.

Lemma 6.1. -Let X be an integral projective scheme over a field k, L be an invertible O X -module and F be a coherent O X -module. We assume that there exist a surjective morphism f : X → Y of integral projective schemes over k and an

ample invertible O Y -module A such that f * (A) = L. Then R = ∞ n=0 H 0 (X, L ⊗n ) is a finitely generated algebra over k and M = ∞ n=0 H 0 (X, F ⊗ L ⊗n ) is a finitely generated R-module.
Proof. -By [20, §1.8], there exist positive integers d and n 0 such that

H 0 (Y, A ⊗d ) ⊗ H 0 (Y, A ⊗n ⊗ f * (F )) -→ H 0 (Y, A ⊗(d+n) ⊗ f * (F ))
is surjective for all n n 0 , and hence

H 0 (X, L ⊗d ) ⊗ H 0 (X, L ⊗n ⊗ F ) → H 0 (X, L ⊗(d+n) ⊗ F ) is surjective for all n n 0 because f * (L ⊗n ) = A ⊗n ⊗ f * (O X ), f * (L ⊗n ⊗ F ) = A ⊗n ⊗ f * (F ), O Y ⊆ f * (O X )
. Thus, by the arguments in [20, §1.8], one can see the assertion.

In the rest of the section, let p : X → Spec K be a d-dimensional geometrically integral projective variety over K. Let L = (L, ϕ) be an adelic invertible O X -module. Let E be a torsion free O X -module and U be a non-empty Zariski open set of X such that E is locally free over U . Let ψ = (ψ ω ) ω∈Ω be a metric family of E| U . We assume that (L ⊗n ⊗ E, U, nϕ + ψ) is a sectionally adelic torsion free O X -module (see Definition 3.19) for all n ∈ N. Note that, if the sectional algebra n∈N H 0 (X, L ⊗n ) is of finite type over K (this condition is true notably when L satisfies the hypothesis of Lemma 6.1), by Theorem-Definition 5.5, the sequence

deg(p * (L ⊗n )) n d+1 /(d + 1)! , n ∈ N, n 1 
converges to a real number denoted by vol χ (L).

Theorem 6.2.

-If there are a birational morphism f : X → Z of geometrically integral projective schemes over Spec K and an ample invertible O Z -module A such that L = f * (A), then the following inequality holds:

rk(E) vol χ (L) lim inf n→∞ deg(p * (L ⊗n ⊗ E)) n d+1 /(d + 1)! .
Proof. -Let r be the rank of E. Note that p * (L ⊗n ⊗ E) forms an adelic vector bundle over S for any n ∈ N. For a sufficiently large positive integer n 0 , shrinking U if necessarily, we can find e 1 , . . . , e r ∈ H 0 (X, L ⊗n0 ⊗ E) such that e 1 , . . . , e r yield a basis of L ⊗n0 ⊗ E over U . Indeed, there is a positive integer n 0 such that

H 0 (Z, A ⊗n0 ⊗ f * (E)) ⊗ O Z -→ A ⊗n0 ⊗ f * (E)
is surjective, and hence

H 0 (X, L ⊗n0 ⊗ E) ⊗ O X -→ L ⊗n0 ⊗ E
is surjective on some non-empty Zariski open subset of X. Thus the assertion follows.

Let O ⊕r X → L ⊗n0 ⊗ E be the homomorphism given by (a 1 , . . . , a r ) -→ a 1 e 1 + • • • + a r e r .

Let Q be the cokernel of

O ⊕r X → L ⊗n0 ⊗ E. The sequence 0 -→ O ⊕r X -→ L ⊗n0 ⊗ E -→ Q -→ 0 is exact, and so is 0 -→ (L ⊗n ) ⊕r -→ L ⊗n+n0 ⊗ E -→ L ⊗n ⊗ Q -→ 0. Thus 0 -→ H 0 (X, L ⊗n ) ⊕r -→ H 0 (X, L ⊗n+n0 ⊗ E) -→ H 0 (X, L ⊗n ⊗ Q)
is also exact for all n 0. Let Q n be the image of

H 0 (X, L ⊗n+n0 ⊗ E) -→ H 0 (X, L ⊗n ⊗ Q).
We equip H 0 (X, L ⊗n+n0 ⊗ E) with the norm family

ξ (n+n0)ϕ+ψ = ( . (n+n0)ϕω+ψω ) ω∈Ω . Let ξ L n = ( . L n,ω
) ω∈Ω be its restricted norm family on H 0 (X, L ⊗n ) ⊕r induced by the injection

H 0 (X, L ⊗n ) ⊕r -→ H 0 (X, L ⊗n+n0 ⊗ E). Let ξ Q n = ( . Q n,ω
) ω∈Ω be its quotient family on Q n induced by the surjection

H 0 (X, L ⊗n+n0 ⊗ E) -→ Q n .
Then, by [13, Proposition 4.3.13, (4.26)],

deg(H 0 (X, L ⊗n ) ⊕r , ξ L n ) + deg(Q n , ξ Q n ) deg(H 0 (X, L ⊗n+n0 ⊗ E), ξ (n+n0)ϕ+ψ ).
Since dim Supp(Q) < dim X, by Proposition 5.8,

lim inf n→∞ deg(Q n , ( . Q n,ω ) ω∈Ω ) n d+1 0.
Therefore, by the super-additivity of inferior limit, we obtain

lim inf n→∞ deg(H 0 (X, L ⊗n ) ⊕r , ξ L n ) n d+1 /(d + 1)! lim inf n→∞ deg(p * (L ⊗n ⊗ E)) n d+1 /(d + 1)! . (6.1)
Let us consider the homomorphism of identity 

(H 0 (X, L ⊗n ) ⊕r , ( . ⊕r nϕω ) ω∈Ω ) -→ (H 0 (X, L ⊗n ) ⊕r , ( . L n,ω ) ω∈Ω ), where (s 1 , . . . , s r ) ⊕r nϕω =      max i∈{1,...,r} s i nϕω if ω ∈ Ω \ Ω ∞ , ( s 1 2 nϕω + • • • + s r 2 nϕω ) 1/2 if ω ∈ Ω ∞ . If ω ∈ Ω \ Ω ∞ , then ( 
e i n0ϕω+ψω .
Therefore,

h(f n ) Ω max i∈{1,...,r} log e i n0ϕω+ψω ν(dω) + 1 2 log(r) vol(Ω ∞ ),
and hence, by [START_REF] Chen | Moriwaki -Arakelov geometry over adelic curves[END_REF]Proposition 4.3.18],

r deg(H 0 (X, L ⊗n ), ξ nϕ ) = deg(H 0 (X, L ⊗n ) ⊕r , ξ ⊕r nϕ ) deg(H 0 (X, L ⊗n ) ⊕r , ξ L n )+ r dim k H 0 (X, L ⊗n ) Ω max i∈{1,...,r} log e i n0ϕω+ψω ν(dω) + 1 2 log(r) vol(Ω ∞ ) ,
where

ξ nϕ = ( . nϕω ) ω∈Ω , ξ ⊕r nϕ = ( . ⊕r nϕω ) ω∈Ω . Thus, r vol χ (L) lim inf n→∞ deg(H 0 (X, L ⊗n ) ⊕r , ξ L n ) n d+1 /(d + 1)! .
Combining this inequality with (6.1), we obtain the assertion. 

O Z -module A such that L = f * (A), then deg(π) vol χ (L) lim inf n→∞ deg (p•π) * (π * (L) ⊗n ⊗ M ) n d+1 /(d + 1)! .
In particular, deg(π) vol χ (L) vol χ (π * (L)).

Proof. -Since π * (L ⊗n ) ⊗ M is an adelic invertible O Y -module, one can see that

(L ⊗n ⊗ π * (M ), π * (nπ * (ϕ) + ψ))
is sectionally adelic for all n 0 (see the last paragraph of Section 3). Note that

π * (nπ * (ϕ) + ψ) = nϕ + π * (ψ) and rk(π * M ) = deg(π).
Thus, by Theorem 6.2,

deg(π) vol χ (L) lim inf n→+∞ deg(H 0 (X, L ⊗n ⊗ π * (M )), ( . nϕω+π * (ψ)ω ) ω∈Ω ) n d+1 /(d + 1)! .
Moreover,

(H 0 (X, L ⊗n ⊗ π * (M )), ( . nϕω+π * (ψ)ω ) ω∈Ω )
is isometric to

(H 0 (Y, π * (L ) ⊗ M ), ( . nπ * ω (ϕω)+ψω ) ω∈Ω ).
Thus we obtain the required inequality. Theorem 6.4. -Let L = (L, ϕ) be an adelic invertible O X -module and E = (E, U, ψ) be a birationally adelic torsion free O X -module. We assume that there are a birational morphism f : X → Z of geometrically integral projective varieties over K and an ample invertible

O Z -module A with L = f * (A). If either (E, ψ) is an adelic invertible O X -module or X is normal, then the sequence deg(p * (L ⊗n ⊗ E)) n d+1 /(d + 1)! , n ∈ N, n 1 is convergent to rk(E) vol χ (L).
Proof. -In view of Theorem 6.2, it suffices to establish the following inequality

lim sup n→∞ deg(p * (L ⊗n ⊗ E)) n d+1 /(d + 1)! rk(E) vol χ (L).
First we assume that (E, ψ) is an adelic invertible O X -module. Let us begin with the following claim: Claim 6.5. -One has the following inequality:

lim sup n→∞ deg(p * (L ⊗n ⊗ E)) n d+1 /(d + 1)! lim sup n→∞ deg(p * (L ⊗(n+n0) )) n d+1 /(d + 1)!
for some positive integer n 0 .

Proof. -Since L is nef and big, we can choose a positive integer n 0 and s 0 ∈ H 0 (X, L ⊗n0 ⊗ E ∨ ) \ {0}. Note that s 0 gives rise to an injective homomorphism

H 0 (X, L ⊗n ⊗ E) -→ H 0 (X, L ⊗(n+n0) ).
Let ξ sub,n = ( . sub,n,ω ) ω∈Ω be the restricted norm family of H 0 (X, L ⊗n ⊗ E) induced by the above injective homomorphism and ξ (n+n0)ϕ = ( . (n+n0)ϕω ) ω∈Ω . In order to show Claim 6.5, it is sufficient to see the following two inequalities: 

lim sup n→∞ deg(H 0 (X, L ⊗n ⊗ E), ξ sub,n ) n d+1 /(d + 1)! lim sup n→∞ deg(H 0 (X, L ⊗(n+n0) ), ξ (n+n0)ϕ ) n d+1 /(d +
f : H 0 (X, L ⊗n ⊗ E), ( . nϕω+ψω ) ω∈Ω -→ H 0 (X, L ⊗n ⊗ E), ξ sub,n . For s ∈ H 0 (X, E ⊗ L ⊗n ) \ {0}, s sub,n,ω s nϕω+ψω = ss 0 (n+n0)ϕω s nϕω+ψω s nϕω+ψω s 0 n0ϕω-ψω s nϕω+ψω = s 0 n0ϕω-ψω , so that f ω s 0 n0ϕω-ψω . Therefore, by [13, Proposition 4.3.18], deg(H 0 (X, L ⊗n ⊗ E), ( . nϕω+ψω ) ω∈Ω ) deg(H 0 (X, L ⊗n ⊗ E), ξ sub,n ) + dim H 0 (X, L ⊗n ⊗ E) Ω log s 0 n0ϕω-ψω ν(dω).
Thus the second inequality follows.

By Lemma 6.1, Theorem-Definition 5.5 and the relation

lim n→+∞ (n + n 0 ) d+1 n d+1 = 1,
we obtain that

lim n→+∞ deg(p * (L ⊗(n+n0) )) n d+1 /(d + 1)! = vol χ (L).
Hence Claim 6.5 leads to vol χ (L; E) vol χ (L), as required.

Next we assume that X is normal. We prove the assertion by induction on r := rk(E). Let µ : X → X, (E , ψ ) and U be a birational morphism, an adelic invertible O X -module and a non-empty Zariski open set of X, respectively, as in Definition 3.20. First we suppose that r = 1. Claim 6.6. -One has the following inequality:

lim sup n→∞ deg(p * (L ⊗n ⊗ E)) n d+1 /(d + 1)! lim sup n→∞ deg((p•µ) * (µ * (L) ⊗n ⊗ E )) n d+1 /(d + 1)! Proof.
-This is a consequence of Lemma 5. 

deg(p * (L ⊗n ⊗ E)) n d+1 /(d + 1)! vol χ (µ * (L)).
On the other hand, since X is normal, one can see that vol χ (µ * (L)) = vol χ (L), as desired.

In the case where r 2, considering a birational morphism X → X if necessarily, we may assume that there exists an exact sequence 0

→ F → E → Q → 0 on X such that F and Q are locally free, rk(F ) = 1 and rk(Q ) = r -1. Let ψ F be the submetric of F over X and ψ Q be the quotient metric of Q over X . Let Q be the image of E → µ * (E ) → µ * (Q ) and F be the kernel of E → Q. Shrinking U if necessarily, ψ Q and ψ F descent to metric families ψ Q and ψ F of Q| U and F | U . Note that Q = (Q, ψ Q ) and F = (F, ψ F )
are birationally adelic torsion free O X -modules by Proposition 3.7 and Corollary 3.18. Therefore, by hypothesis of induction,

         lim sup n→∞ deg(p * (L ⊗n ⊗ F )) n d+1 /(d + 1)! vol χ (L, ϕ), lim sup n→∞ deg(p * (L ⊗n ⊗ Q)) n d+1 /(d + 1)! (r -1) vol χ (L, ϕ).
For any n ∈ N, one has an exact sequence

0 → H 0 (X, L n ⊗) → H 0 (X, L n ⊗ E) → H 0 (X, L n ⊗ Q) → H 1 (X, L ⊗n ⊗ F ). (6.2) 
Let Q n be the image of

H 0 (X, L ⊗n ⊗ E) -→ H 0 (X, L ⊗n ⊗ Q).
Let ξ n,sub = ( . n,sub,ω ) ω∈Ω be the restricted norm family of ξ nϕ+ψ = ( . nϕω+ψω ) ω∈Ω on H 0 (X, L n ⊗F ) and ξ n,quot = ( . n,quot,ω ) ω∈Ω be the quotient norm family of ξ nϕ+ψ on H 0 (X,

L n ⊗ Q). By [13, (4.28)], deg(H 0 (X, L n ⊗ E), ξ nϕ+ψ ) -δ(H 0 (X, L n ⊗ E), ξ nϕ+ψ ) deg(H 0 (X, L n ⊗ F ), ξ n,sub ) -δ(H 0 (X, L n ⊗ F ), ξ n,sub ) + deg(H 0 (X, L n ⊗ Q), ξ n,quot ) -δ(H 0 (X, L n ⊗ Q), ξ n,quot ) ,
where for any adelic vector bundle V on S, δ(V ) denotes the sum deg(

V ) + deg(V ∨ ). Let ξ nϕ+ψ Q ,sub = ( . nϕω+ψ Q,ω ,sub ) ω∈Ω be the restriction of ξ nϕ+ψ Q = ( . nϕω+ψ Q,ω ) ω∈Ω to Q n .
It is easy to see that, for any ω ∈ Ω,

. n,sub,ω = . nϕω+ψ F,ω , . n,quot,ω . nϕω+ψ Q,ω ,sub .

Thus, by [START_REF] Chen | Moriwaki -Arakelov geometry over adelic curves[END_REF]Proposition 4.3.18],

deg(Q n , ξ n,quot ) deg(Q n , ξ nϕ+ψ Q ,sub ), so that deg(p * (L ⊗n ⊗ E)) -δ(p * (L ⊗n ⊗ E)) deg(p * (L ⊗n ⊗ F )) -δ(H 0 (X, L n ⊗ F ), ξ n,sub ) + deg(Q n , ξ nϕ+ψ Q ,sub ) -δ(Q n , ξ n,quot ) .
Moreover, by [13, Proposition 4.

3.10],                  lim n→∞ δ(p * (L ⊗n ⊗ E)) n d+1 = 0, lim n→∞ δ(H 0 (X, L n ⊗ F ), ξ n,sub ) n d+1 = 0, lim n→∞ δ(Q n , ξ n,quot ) n d+1 = 0, so that one obtains lim sup n→+∞ deg(p * (L ⊗n ⊗ E)) n d+1 /(d + 1)! vol χ (L, ϕ) + lim sup n→+∞ deg(Q n , ξ nϕ+ψ Q ,sub ) n d+1 /(d + 1)! ,
and hence it is sufficient to show that

lim sup n→+∞ deg(Q n , ξ nϕ+ψ Q ,sub ) n d+1 /(d + 1)! lim sup n→+∞ deg(p * (L ⊗n ⊗ Q)) n d+1 /(d + 1)! . (6.3) Claim 6.7. -If we set T n = H 0 (X, L ⊗n ⊗ Q)/Q n , then lim n→+∞ dim K (T n )/n d = 0.
Proof. -By the Leray spectral sequence

E p,q 2 = H p (Z, A ⊗n ⊗ R q f * (F )) =⇒ H p+q (X, L ⊗n ⊗ F ), if n is sufficiently large, then one has an injective homomorphism H 1 (X, L ⊗n ⊗ F ) -→ H 0 (Z, A ⊗n ⊗ R 1 f * (F )) so that lim n→+∞ dim K (H 1 (X, L ⊗n ⊗ F )) n d = 0 because Supp(R 1 f * (F )) has Krull dimension < d.
Thus the assertion follows by (6.2).

By Lemma 6.1,

∞ n=0 H 0 (X, Q ⊗ L n ) is finitely generated over ∞ n=0 H 0 (X, L n ), so that ∞ n=0
T n is also finitely generated over it. Let ξ Tn be the quotient norm family of ξ nϕ+ψ Q on T n . Then by Claim 6.7 together with Proposition 5.8, we obtain that

lim inf n→+∞ deg(T n , ξ Tn ) n d+1 0, that is, for any ε > 0, deg(T n , ξ Tn ) n d+1 -ε
for sufficiently large n. Moreover, by [13, Proposition 4.3.13, (4.26)],

deg(Q n , ξ nϕ+ψ Q ,sub ) n d+1 + deg(T n , ξ Tn ) n d+1 deg(p * (L ⊗n ⊗ Q)) n d+1 , so that deg(Q n , ξ nϕ+ψ Q ,sub ) n d+1 -ε deg(p * (L ⊗n ⊗ Q)) n d+1 for sufficiently large n. Thus, lim sup n→+∞ deg(Q n , ξ nϕ+ψ Q ,sub ) n d+1 -ε lim sup n→+∞ deg(p * (L ⊗n ⊗ Q)) n d+1 .
Since ε is arbitrary, we obtain the inequality (6.3).

Corollary 6.8. -Let (E, U, ψ) be a birational adelic torsion free O X -module. If X is normal and L is ample, then

lim n→+∞ deg(p * (L ⊗n ⊗ E)) n d+1 /(d + 1)! = rk(E) vol χ (L, ϕ).
Proof. -This is a consequence of Theorem 6.2 and Theorem 6.4.

Hilbert-Samuel property

Let f : X → Spec K be a geometrically integral projective scheme over Spec K, d be the dimension of X and L be an ample invertible O X -module. We denote by M (L) the set of metrics families ϕ = (ϕ ω ) ω∈Ω such that all metrics ϕ ω are semi-positive and that (L, ϕ) forms an adelic line bundle on X. 

vol χ (L, ϕ) = ((L, ϕ) d+1 )
holds, namely the χ-volume and the self-intersection number of (L, ϕ) coincides.

Remark 7.2. -Note that Theorem-Definition 5.5 shows that, for any positive integer n, one has vol χ (L ⊗n , nϕ) = n d+1 vol χ (L, ϕ).

Therefore, if ϕ satisfies the Hilbert-Samuel property, then for any positive integer n, the metric family nϕ also satisfies the Hilbert-Samuel property. Conversely, if there exists a positive integer n such that nϕ satisfies the Hilbert-Samuel property, then so does the metric family ϕ.

7.1. Reduction to a special metric family. -The purpose of this subsection is to show that, in order to show the Hilbert-Samuel property for all metrics families in M (L), it suffices to check the property for one arbitrary metric family in M (L).

Lemma 7.3.

-Let E be a finite-dimensional vector space over K. If ξ = ( . ω ) ω∈Ω and ξ = ( . ω ) ω∈Ω are two norm families on E, then one has

d ω (det(ξ), det(ξ )) rd ω (ξ, ξ ). (7.1) 
In particular, if ξ is strongly dominated, so is det(ξ).

Proof. -Let r be the dimension of E over K. If η is a non-zero element of det(E ω ), then one has ln η ω,det -ln η ω,det = sup Interchanging ξ and ξ , the above inequality leads to ln η ω,det -ln η ω,det rd ω (ξ, ξ ).

Therefore, the inequality (7.1) holds.

Proposition 7.4. -Assume that there exists a metric family ψ ∈ M (L) which satisfies the Hilbert-Samuel property. Then any metric family ϕ ∈ M (L) satisfies the Hilbert-Samuel property.

Proof. -For any n ∈ N, let E n be the K-vector space H 0 (X, L ⊗n ) and r n be the dimension of

E n of K. For any ω ∈ Ω, let E n,ω = E n ⊗ K K ω , d n,ω = sup s∈En,ω\{0}
ln s nϕω -ln s nψω be the distance of . nϕω and . nψω , and

δ n,ω = sup η∈det(En,ω)\{0}
ln η nϕω,det -ln η nψω,det .

Note that the function (ω ∈ Ω) → δ n,ω is ν-integrable, and one has

Ω δ n,ω ν(dω) = deg(p * (L ⊗n , nψ)) -deg(p * (L ⊗n , nϕ)).
By Lemma 7.3, one has

|δ n,ω | r n d n,ω nr n d ω (ϕ, ψ).
Note that the function

(ω ∈ Ω) -→ d ω (ϕ, ψ)
is dominated (see [START_REF] Chen | Moriwaki -Arakelov geometry over adelic curves[END_REF]Proposition 6.1.12]). Moreover, by [7, Theorem 1.7], one has

lim n→+∞ δ n,ω n d+1 /(d + 1)! = d j=0 X an ω f ω (x) µ (Lω,ϕω) j (Lω,ψω) d-j (dx),
where f ω is the continuous function on X an ω such that

e fω(ω) | . | ψω (x) = | . | ϕω
for any x ∈ X an ω . Hence Theorem-Definition 5.5 and Lebesgue's dominated convergence theorem leads to (see Remark 5.6)

vol χ (L, ψ) -vol χ (L, ϕ) = lim n→+∞ 1 n d+1 /(d + 1)! Ω δ n,ω ν(dω) = d j=0 Ω X an ω f ω (x) µ (Lω,ϕω) j (Lω,ψω) d-j (dx) ν(dω) = ((L, ψ) d+1 ) -((L, ϕ) d+1 ).
The proposition is thus proved.

Definition 7.5. -Let X be a geometrically integral projective scheme over Spec K and L be an ample invertible O X -module. If there exists a metric family ϕ ∈ M (L) which satisfies the Hilbert-Samuel property, or equivalently, any metric family ϕ ∈ M (L) satisfies the Hilbert-Samuel property (see Proposition 7.4), we say that the ample invertible O X -module L satisfies the Hilbert-Samuel property.

Remark 7.6. -The proof of Proposition 7.4 actually shows a more precise result: the function

(ϕ ∈ M (L)) -→ vol χ (L, ϕ) -((L, ϕ) d+1 )
is constant.

7.2. Case of a projective space. -In this subsection, we assume that X = P d K is the projective case and L = O P d K (1) is the universal line bundle. We show that any metric family in M (L) satisfies the Hilbert-Samuel property. Without loss of generality (by Proposition 7.4), we consider a particular case as follows. Let E be a (d+1)-dimensional vector space over K and (e i ) d i=0 be a basis of E. Let ξ = ( . ω ) ω∈Ω be the Hermitian norm family on E such that (e i ) d i=0 forms an orthonormal basis of E with respect to . ω . We then identify P d K with P(E) and let ϕ = (ϕ ω ) ω∈Ω be the quotient metric family on L induced by ξ. Note that, for any integer n ∈ N, the vector space H 0 (X, L ⊗n ) is isomorphic to the symmetric power S n (E). We denote by r n the dimension of S n (E). One has

r n = n + d d .
Definition Note that the point x does not depend on the choice of the orthonormal basis (e j ) r j=0 . In fact, the norm . induces a symmetric algebra norm on K ω [E ω ] (which is often called a Gauss norm) and hence defines an absolute value on the fraction field of K ω [E ω ]. The restriction of this absolute value to the field of rational functions on P(E ω ) identifies with | . | x . Hence x is called the Gauss point of P(E ω ) an . Lemma 7.8. -Let ω be an element of Ω such that | . | ω is non-Archimedean, and n ∈ N. Let . n,ω be the ε-tensor power of . ω on the tensor power space E ⊗n ω and let . n,ω be the quotient norm of . n,ω by the quotient homomorphism E ⊗n ω → S n (E ω ). Then the norm . n,ω coincides with the supremum norm . nϕω of the metric nϕ ω on L ⊗n ω . Proof. -For any ω ∈ Ω, we denote by E ω the K ω -vector space E ⊗ K K ω . By [ identifies with the quotient homomorphism E ⊗n ω → S n (E ω ). In particular, the supremum norm . 

F nϕω F n,ω F n,ω .
Therefore the equality . nϕω = F n,ω holds.

Remark 7.9. -As a byproduct, the proof of the above lemma shows that, for any

F = I=(a0,...,a d )∈N d+1 a0+•••+a d =n λ I e a0 0 • • • e a d d ∈ S n (E ω ),
one has

F nϕω = max I=(a0,...,a d )∈N d a0+•••+an=d |λ I | ω .
In other words, the family

(e a0 0 • • • e a d d ) (a0,...,a d )∈N d+1 a0+•••+a d =n
forms an orthonormal basis of (S d (E ω ), . nϕω ).

Lemma 7.10. -For any integer d ∈ N and any any x > 0, let

P d+1,x = {(t 0 , . . . , t d ) ∈ R d+1 0 | t 0 + • • • + t d x}, ∆ d,x = {(t 0 , . . . , t d ) ∈ R d+1 0 | t 0 + • • • + t d = x}.
We denote by vol d+1 the Lebesgue measure on R d . For any affine hyperplane of R d , we denote by ν d the translate of the Haar measure on the underlying hyperplane which is normalized with respect to the canonical Euclidean norm on R d+1 (namely the parallelotope spanned by an orthonormal basis has volume 1).

(1) The volume of P d+1,x with respect to vol d+1 is x d+1 /(d + 1)!.

(2) The volume of ∆ d,x with respect to ν d is

x d √ d + 1/d!.
(3) Let µ d be the uniform probability distribution on ∆ d,x . One has

∆ d,1 t 0 ln(t 0 ) + • • • + t d ln(t d ) µ d (dt) = - 1 d + 1 d m=1 m =1 1 .
Proof. -(1) We reason by induction on d. The case where d = 0 is trivial. In the following we assume the induction hypothesis that the lemma holds for R d . By Fubini's theorem, we have

vol d+1 (P d+1,x ) = x 0 vol d (P d,x-t ) dt = x 0 (x -t) d d! = x d+1 (d + 1)! .
(2) The distance from the origin to the affine hyperplane containing ∆ d,x is x/ √ d + 1. Therefore, by the equality

vol d+1 (P d+1,x ) = 1 d + 1 . x √ d + 1 ν d (∆ d,x ),
we obtain

ν d (∆ d,x ) = √ d + 1 x d d! .
(3) By Fubini's theorem, one has

P d+1,x t 0 ln(t 0 ) vol d+1 (dt 0 , . . . , dt d ) = x 0 t ln(t) vol d (P d,x-t ) dt = 1 d! x 0 t(x -t) d ln(t) dt = 1 d! d i=0 (-1) i d i x d-i x 0 t i+1 ln(t) dt = 1 d! d i=0 (-1) i d i x d-i 1 i + 2 x i+2 ln(x) - 1 i + 2 x i+2 = x d+2 ln(x) d! d i=0 (-1) i d i 1 i + 2 - x d+2 d! d i=0 (-1) i d i 1 (i + 2) 2 .
By a change of variables, we obtain P d+1 ,x t 0 ln(t 0 ) vol d+1 (dt 0 , . . . ,

d t d ) = 1 √ d + 1 x 0 ∆ d,u t 0 ln(t 0 ) ν d (dt) du.
Taking the derivative with respect to x, we obtain

(d + 2)x d+1 ln(x) + x d+1 d! d i=0 (-1) i d i 1 i + 2 - (d + 2)x d+1 d! d i=0 (-1) i d i 1 (i + 2) 2 = 1 √ d + 1 ∆ d,x t 0 ln(t 0 ) ν d (dt) = ν d (∆ d,x ) √ d + 1 ∆ d,x t 0 ln(t 0 ) µ d (dt).
In particular, one has

∆ d,1 t 0 ln(t 0 ) µ d (dt) = d i=0 (-1) i d i 1 i + 2 1 - d + 2 i + 2 = d i=0 (-1) i d! i!(d -i)! • i -d (i + 2) 2 = - 1 d + 1 d-1 i=0 (-1) i (d + 1)! (i + 2)!(d -i -1)! • i + 1 i + 2 . Therefore (d + 1) ∆ d,1 t 0 ln(t 0 ) µ d (dt) -d ∆ d-1,1 t 0 ln(t 0 ) µ d-1 (dt) = - d-1 i=0 (-1) i (d + 1)! (i + 2)!(d -i -1)! • i + 1 i + 2 + d-2 i=0 (-1) i d! (i + 2)!(d -i -2)! • i + 1 i + 2 = - d-1 i=0 (-1) i d! (i + 2)!(d -i -1)! • i + 1 i + 2 (d + 1 -(d -i -1)) = - d-1 i=0 (-1) i d! (i + 2)!(d -i -1)! ((i + 2) -1) = - d-1 i=0 (-1) i d i + 1 - 1 d + 1 d + 1 i + 2 = d i=1 (-1) i d i + 1 d + 1 d+1 i=2 (-1) i d + 1 i = -1 + 1 d + 1 (-1 + (d + 1)) = - 1 d + 1 .
Combining with

2 ∆1,1 t 0 ln(t 0 ) µ 1 (dt) = 2 1 0 t ln(t) dt = - 1 0 t dt = - 1 2 ,
by induction we obtain

(d + 1) ∆ d,1 t 0 ln(t 0 ) µ d (dt) = - d i=1 1 i + 1 = - d+1 =2 1 .
By symmetry of (t 0 , . . . , t d ), we get

(d + 1) d i=0 ∆ d,1 t i ln(t i ) µ d (dt) = -(d + 1) d+1 =2 1 . Since d m=1 m =1 1 = d =1 d m= 1 = d =1 d + 1 -= (d + 1) d =1 1 -d = (d + 1) d+1 =2 1 + (d + 1) - d + 1 d + 1 -d = (d + 1) d+1 =2 1 ,
we obtain the desired result. Let ω be an element of Ω such that | . | ω is Archimedean. Similarly to Lemma 7.8, for each n ∈ N, we let . n,ω be the orthogonal tensor power norm on E ⊗n ω and . n,ω be its quotient norm on S n (E ω ). Note that

(e a0 0 • • • e a d d ) (a0,...,a d )∈N d+1 a0+•••+a d =n
forms an orthogonal basis of (S d (E ω ), . n,ω ) and

e a0 0 • • • e a d d n,ω = a 0 ! • • • a d ! n! 1 2
.

By [13, Proposition 1.2.25], one has

η n n,ω,det = (a0,...,a d )∈N d+1 a0+•••+a d =n a 0 ! • • • a d ! n! 1 2 .
In particular, using Stirling's formula one obtains

lim n→+∞ ln η n n,ω,det nr n = - 1 2 ∆ (t 0 ln(t 0 ) + • • • + t d ln(t d )) dµ = 1 2(d + 1) d m=1 m =1 1 ,
where µ denotes the uniform probability measure on the simplex ln(r

∆ = {(t 0 , . . . , t d ) ∈ R d+1 0 | t 0 + • • • + t d =
-1 2 n s n,ω ) -ln s ϕ ⊗n ω = O(ln(n)).
Moreover, ln(r

-1 2 n ) = - 1 2 ln r n = O(ln(n)).
Hence by Lemma 7. The proposition is thus proved.

Trivial valuation case

In this section, we show the Hilbert-Samuel property in the trivial valuation case. Let v = (k, | . |) be a trivially valued field. Let us begin with the following Lemma: Lemma 8.1. -Let X be a projective integral scheme of dimension d over Spec k and L be a very ample invertible O X -module. Let . be the trivial norm on H 0 (X, L), that is, e = 1 for e ∈ H 0 (X, L)\{0}. Let ϕ be the Fubuni-Study metric of L induced by the surjective homomorphism H 0 (X, L) ⊗ O X → L and . . Then we have

vol χ (L, ϕ) = ((L, ϕ) d+1 ) v = 0,
where in the construction of vol χ (L, ϕ) we consider the adelic curve consisting of one copy of the trivial absolute value on k and the counting measure.

Proof. -Let X → P k be the embbedding given by L, where = dim k H 0 (X, L) -1. We can find a positive integer n 0 such that H 0 (P k , O P k (n)) → H 0 (X, L ⊗n ) is surjective for all n n 0 . In order to see vol χ (L, ϕ) = 0, it is sufficient to show that the norm . nϕ is trivial for all n n 0 . As H 0 (P k , O P k (n)) = Sym n (H 0 (X, L)), one Therefore, by Proposition 7.4 we obtain that the invertible sheaf L satisfies the Hilbert-Samuel property.

Remark 8.3. -In [START_REF] Chen | Arakelov theory of arithmetic surfaces over a trivially valued field[END_REF], an intersection product of metrized divisors has been introduced in the setting of curves over a trivially valued field (k, | . |). Let X be a regular projective curve over Spec k. Recall that the Berkovich space X an is an infinite tree

η 0 • • • x 0 • • •
where the root point η 0 corresponds to the generic point of X together with the trivial absolute value on κ(η), and each leaf x 0 corresponds to the closed point x together with the trivial absolute value on κ(x). Moreover, each branch ]η 0 , x 0 [ is parametrized by ]0, +∞[, where t ∈ ]0, +∞[ corresponds to the generic point η together with the absolute value | . | x,t = exp(-t ord x ( . )).

We denote by . ) : X an → [0, +∞] the parametrization map, where t(η 0 ) = 0 and t(x 0 ) = +∞. Let D be a Cartier divisor on X. Recall that a Green function g of D is of the form g = g D + ϕ g , where g D is the canonical Green function of D, which is defined as

g D (ξ) = ord x (D)t(ξ),
and ϕ g is a continuous real-valued function on X an (which is hence bounded since X an is compact). Then, the intersection number of two integrable metrized Cartier divisor D 0 = (D 0 , g 0 ) and D 1 = (D 1 , g 1 ) has been defined as

g 1 (η 0 ) deg(D 0 ) + g 0 (η 0 ) deg(D 1 ) - x∈X (1) [κ(x) : k] +∞ 0 ϕ g0•ξx (t)ϕ g1•ξx (t) dt, (8.1) 
where X (1) is the set of closed points of X, ξ x : [0, +∞] → [η 0 , x 0 ] is the map sending t ∈ [0, +∞] to the point in [η 0 , x 0 ] of parameter t, and the function ϕ g1•ξx ( . ) should be considered as right-continuous version of the Radon-Nikodym density of the function ϕ g1•ξx ( . ) with respect to the Lebesgue measure. Let (L, ϕ 0 ) and (L 1 , ϕ 1 ) be integrable metrized invertible O X -modules. By [14, Remark 7.3], the above intersection number with respect to (L, ϕ 0 ) and (L 1 , ϕ 1 ) is well-defined. To destinguish this intersection number with the intersection number defined in [START_REF] Chen | Moriwaki -Arithmetic intersection theory over adelic curves[END_REF]Definition 3.10.1] it is denoted by

((L 0 , ϕ 0 ) • (L 1 , ϕ 2 )) . Then one can see ((L 0 , ϕ 0 ) • (L 1 , ϕ 1 )) = ((L 0 , ϕ 0 ) • (L 1 , ϕ 1 )) . (8.2)
Indeed, by using the linearity of ( • ) and ( • ) , we may assume that L 0 and L 1 are ample, and ϕ 0 and ϕ 1 are semipositive. Moreover, as

       ((L 0 , ϕ 0 ) • (L 1 , ϕ 1 )) = (((L 0 , ϕ 0 ) + (L 1 , ϕ 1 )) 2 ) -((L 0 , ϕ 0 ) 2 ) -((L 1 , ϕ 1 ) 2 ) 2 , ((L 0 , ϕ 0 ) • (L 1 , ϕ 1 )) = (((L 0 , ϕ 0 ) + (L 1 , ϕ 1 )) 2 ) -((L 0 , ϕ 0 ) 2 ) -((L 1 , ϕ 1 ) 2 ) 2 ,
we may further assume that (L 0 , ϕ 0 ) = (L 1 , ϕ 1 ), say (L, ϕ). Then, by [14, Theorem 7.4],

lim n→∞ -ln s 1 ∧ • • • ∧ s rn nϕ,det n 2 /2 = ((L, ϕ) • (L, ϕ)) ,
where {s 1 , . . . , s rn } is a basis of H 0 (X, L ⊗n ). On the other hand,

lim n→∞ -ln s 1 • • • ∧ s rn nϕ,det n 2 /2 = ((L, ϕ) • (L, ϕ))
by Theorem 8.2 (the Hilbert-Samuel formula over a trivially valued field), as required.

Casting to the trivial valuation case

In this section, we assume that K is perfect. Let X be a projective K-scheme, d be the dimension of X, E be a finite-dimensional vector space over K, f : X → P(E) be a closed embedding, and L be the restriction of the universal invertible sheaf O E (1) to X. We assume that, for any positive integer n, the restriction map

S n (E) = H 0 (P(E), O E (n)) -→ H 0 (X, L ⊗n )
is surjective. We equip E with a Hermitian norm family ξ = ( . ω ) ω∈Ω such that the couple E = (E, ξ) forms a strongly adelic vector bundle on the adelic curve S. Denote by ϕ = (ϕ ω ) ω∈Ω the quotient metric family on L induced by ξ and the closed embedding f . Let F = (F t (E)) t∈R be the Harder-Narasimhan R-filtration of E. Recall that

F t (E) = 0 =F ⊂E µmin(F ) t F.
Note that this R-filtration actually defines an ultrametric norm . 0 on E, where we consider the trivial absolute value | . | 0 on the field K. More precisely, for any s ∈ E, one has

s 0 = exp(-{t ∈ R : s ∈ F t (E)}).
Denote by ϕ 0 the quotient metric on L induced by . 0 . If we consider the adelic curve S 0 consisting of a single copy of the trivial absolute value on K, then (L, ϕ 0 ) becomes an adelic line bundle on X. and (e i ) n i=1 be an α-orthogonal basis of (V, . ), namely a basis of V such that

∀ (λ 1 , . . . , λ n ) ∈ k n , λ 1 e 1 + • • • + λ n e n α max i∈{1,...,n} |λ i | • e i .
For any I = (i 1 , . . . , i n ) ∈ N n , we let

|I| = i 1 + • • • + i n , e I = e i1 1 • • • e in n ∈ S |I| (V ).
Then, for any δ ∈ N, (e I ) I∈N n , |I|=δ is an α δ -orthogonal basis of S δ (V ) with respect to the symmetric product norm . S δ (namely the quotient norm of the ε-tensor product norm induced by the quotient map V ⊗δ → S δ (V )), and for any

I = (i 1 , . . . , i n ) ∈ N n such that |I| = δ, one has e 1 i1 • • • e n rn e I S δ α δ e 1 i1 • • • e n rn .
Proof. -Denote by f : {1, . . . , n} δ → N n the map which sends (a 1 , . . . , a δ ) to the vector card {j ∈ {1, . . . , δ} | a j = i} n i=1

.

Let π : V ⊗δ → S δ (V ) be the projection map. For any a = (a 1 , . . . , a δ ) ∈ {1, . . . , n} δ , denote by e a the split tensor

e a1 ⊗ • • • ⊗ e a δ ∈ V ⊗δ . For I = (i 1 , . . . , i n ) ∈ N n such that |I| = δ, one has e I S δ = inf a∈f -1 ({I})
λ a e a :

a∈f -1 ({I}) λ a = 1, .

Hence (see [START_REF] Chen | Moriwaki -Arakelov geometry over adelic curves[END_REF]Remark 1.1.56])

e I S δ e 1 i1 • • • e n in .
Since (e i ) n i=1 is an α-orthogonal basis, (e a ) a∈{1,...,n} δ is an α δ -orthogonal basis of V ⊗δ (see [START_REF] Chen | Moriwaki -Arakelov geometry over adelic curves[END_REF]Proposition 1.2.19]). For any

(λ a ) a∈f -1 ({I}) ∈ k f -1 ({I}) such that a∈f -1 ({I}) λ a = 1, one has e 1 i1 • • • e n in e 1 i1 • • • e n in max a∈f -1 ({I}) |λ a | α -δ a∈f -1 ({I})
λ a e a , which leads to e I α -δ e 1 i1 µ a .

Therefore, we obtain that (e I ) I∈N n , |I|=δ forms an α δ -orthogonal basis of (S δ (V ), . S δ ).

Lemma 9.2. -Let (k, | . |) be the field R or C equipped with the usual absolute value. Let (V, . ) be a finite-dimensional normed vector space over (k, | . |). We assume that . is induced by an inner product and let (e i ) n i=1 be an orthonormal basis of (V, . ). For any δ ∈ N, let . H S δ be the orthogonal symmetric power norm of . on S δ (V ) (namely the quotient norm of the orthogonal tensor product norm induced by the quotient map V ⊗δ → S δ (V )). Then (e I ) I∈N n , |I|=δ is an orthogonal basis of (S δ (V ), . H S δ ). Moreover, for any

I = (i 1 , . . . , i n ) ∈ N n such that |I| = δ, one has e I H S δ = δ! i 1 ! • • • i n ! -1 2 .
Proof. -Let f : {1, . . . , n} δ → N n be the map sending (a 1 , . . . , a d ) to

card {j ∈ {1, . . . , δ} | a j = i} n i=1 For I = (i 1 , . . . , i n ) ∈ N n such that |I| = δ, one has e I H S δ = inf a∈f -1 (I) |λ a | 2 1/2 : a∈f -1 ({I}) λ a = 1 . Note that the cardinal of f -1 ({I}) is δ! i 1 ! • • • i n ! ,
by Cauchy-Schwarz inequality we obtain

e I H S δ = δ! i 1 ! • • • i n ! -1/2 . For any s = a∈{1,...,n} δ µ a e a ∈ E ⊗δ , one has π(s) = I∈N n , |I|=δ a∈f -1 ({I})
µ a e I .

Moreover, by Cauchy-Schwarz inequality,

s 2 = a∈{1,...,n} δ |µ a | 2 I∈N n , |I|=δ a∈f -1 ({I}) µ a 2 • δ! i 1 ! • • • i n ! -1
.

Therefore, we obtain that (e I ) I∈N n , |I|=δ forms an orthogonal basis of (S δ (V ), . H S δ ).

Proposition 9.3. -The following inequality holds:

((L, ϕ) d+1 ) ((L, ϕ 0 ) d+1 ) - 1 2 ν(Ω ∞ )(d + 1)δ ln(r), (9.1) 
where r denotes the dimension of E over K and δ is the degree of X with respect to the line bundle L, that is, δ = (L d ).

Proof. -For any ω ∈ Ω, let . ω, * be the dual norm on E ∨ ω and let . ω, * ,δ be the δ-th symmetric power of the norm . ω, * , that is the quotient norm of the εtensor power (resp. orthogonal tensor power) of . ω, * by the canonical quotient map if | . | ω is non-Archimedean (resp. Archimedean). Let . ω, * be the ε-tensor product (resp. orthogonal tensor product) of d + 1 copies of the norm . ω, * ,δ if | . | ω is non-Archimedean (resp. Archimedean). By [START_REF] Chen | Moriwaki -Arakelov geometry over adelic curves[END_REF]Proposition 1.2.36], this norm also identifies with the quotient of the tensor power of . ω, * by the quotient map

p ω : E ∨⊗δ(d+1) ω ∼ = (E ∨⊗δ ω ) ⊗(d+1) -→ S δ (E ∨ ω ) ⊗(d+1) . (9.2) 
We denote by ξ the norm family ( . ω, * ) ω∈Ω . It turns out that (S δ (E ∨ ) ⊗(d+1) , ξ ) forms a strongly adelic vector bundle on S. Moreover, if we let R ∈ S δ (E ∨ ) ⊗(d+1) be a resultant of X with respect to d + 1 copies of the closed embedding f : X → P(E), then the following inequality holds:

((L, ϕ) d+1 ) -deg ξ (R) - 1 2 ν(Ω ∞ )(d + 1) ln r + δ -1 δ , (9.3) 
where r is the dimension of E over K. This is a consequence of [15, Theorem 3.9 We now consider the trivial absolute value | . | 0 on K and we let ξ 0 be the ultrametric norm on S δ (E ∨ ω ) ⊗(d+1) defined as the quotient norm of the ε-tensor power of . 0, * by the quotient map p : E ∨⊗δ(d+1) ∼ = (E ∨⊗δ ) ⊗(d+1) -→ S δ (E ∨ ) ⊗(d+1) .

Similarly to (9.4), the following equality holds:

((L, ϕ 0 ) d+1 ) = -deg ξ 0 (R).
Note that the dual norm . 0, * corresponds to the Harder-Narasimhan R-filtration of the dual adelic vector bundle E ∨ = (E ∨ , ξ ∨ ), where ξ ∨ = ( . ω, * ) ω∈Ω (see the proof of [START_REF] Chen | Moriwaki -Arakelov geometry over adelic curves[END_REF]Proposition 4.3.41]). Therefore, if we denote by Ψ the quotient vector space of S δ (E ∨ ) ⊗(d+1) by the one-dimensional vector subspace spanned by the resultants of X with respect to d + 1 copies of f : X → P(E), then [13, Theorem 5. 

Arithmetic Hilbert-Samuel theorem

The purpose of this section is to prove the following theorem.

Theorem 10.1. -Let X be a geometrically integral projective K-scheme, d be the dimension of X and L be an ample invertible O X -module. Then for any metric family ϕ ∈ M (L), the following equality holds vol χ (L, ϕ) = ((L, ϕ) d+1 ).

(10.1)

Proof.

-Step 1: We first prove the inequality vol χ (L, ϕ) ((L, ϕ) d+1 ). By taking a tensor power of L we may assume that L is very ample and the canonical K-linear map S n (H 0 (X, L)) -→ H 0 (X, L ⊗n ) (10.2) is surjective for any integer n 1. Moreover, by Remark 7.6, the difference vol χ (L, ϕ) -((L, ϕ) d+1 )

does not depend on the choice of the metric family ϕ. Therefore, we may assume that ϕ identifies with the quotient metric family induced by the norm family ξ 1 = ( . ϕω ) ω∈Ω . By [13, Proposition 2.2.22 (2)], for any positive integer n, the metric nϕ identifies with the quotient metric family induced by the norm family ξ n = ( . nϕω ) ω∈Ω . Moreover, by changing metrics we may also assume that the minimal slope of (H 0 (X, L), ξ 1 ) is non-negative. Since the K-linear map (10.2) is surjective, by [START_REF] Chen | Moriwaki -Arakelov geometry over adelic curves[END_REF]Proposition 6.3.25], we obtain that the minimal slope of (H 0 (X, L ⊗n ), ξ n ) is non-negative for any positive integer n. By [13, Theorem 4.1.26], there exists a Hermitian norm family ξ n = ( . n,ω ) of H 0 (X, L ⊗n ) such that . n,ω = . nϕω when | . | ω is non-Archimedean and

. n,ω . nϕω (2r n ) 1/2 . n,ω (10.3) when | . | ω is Archimedean, where r n denotes the dimension of H 0 (X, L ⊗n ).

For any positive integer n, let . n be the ultrametric norm on H 0 (X, L ⊗n ) corresponding to the Harder-Narasimhan R-filtration of (H 0 (X, L ⊗n ), ξ n ), where we consider the trivial absolute value | . | 0 on K. Let ϕ n be the continuous metric on L (where we still consider the trivial absolute value on K) such that n ϕ n identifies with the quotient metric on L ⊗n induced by . n . By [START_REF] Chen | Moriwaki -Arakelov geometry over adelic curves[END_REF]Proposition 2.2.22 (2)], one has

. n ϕn = . n on H 0 (X, L ⊗n ) and hence Dividing the two sides of the inequality by n d+1 /(d + 1)! and then taking the limit when n → +∞, we obtain vol χ (L, ϕ) ((L, ϕ) d+1 ).

Step 2: the inequality vol χ (L, ϕ) ((L, ϕ) d+1 ).

By replacing L by a tensor power, we may assume that L is very ample. Moreover, by the normalization of Noether (cf. [15, Proposition 1.7.4]), we may also assume that there is a finite K-morphism π : X → P Proof.

-By Corollary 10.3, vol(L, ϕ) > 0. Let (A, ψ) be a relatively ample adelic invertible O X -module. By the continuity of vol (see [START_REF] Chen | Moriwaki -Arakelov geometry over adelic curves[END_REF]Theorem 6.4.24]), there is a positive integer n such that vol((L, ϕ) -(1/n)(A, ψ)) > 0, that is, vol(n(L, ϕ) -(A, ψ)) > 0, so that, for some positive integer m, H 0 (X, (L ⊗n ⊗ A -1 ) ⊗m ) = {0}. Therefore L is big.

Corollary 10.5. -Let X be a geometrically integral projective scheme over Spec K, d be the dimension of X, L = (L, ϕ) be an adelic line bundle on X and E = (E, U, ψ) be a birational adelic torsion free O X -module. Assume that L is ample and the metrics in ϕ are semi-positive. Moreover we suppose that either (E, ψ) is an adelic invertible O X -module or X is normal. Then one has lim n→+∞ deg(H 0 (X, L ⊗n ⊗ E), ( . nϕω+ψω ) ω∈Ω ) n d+1 /(d + 1)! = rk(E)(L d+1 ).

Proof. -This is a consequence of Theorem 10.1 together with Theorem 6.4.

  7). By definition ψ ω is a family (| . | ψω (x)) x∈X an ω parametrized by X an ω , where each | . | ψω is a norm on E ω (x) := E ω ⊗ O Xω κ(x). We assume that the norm | . | ψω (x) is ultrametric if the absolute value

  is induced by | . | ψω (f an (y)) by ε-extension of scalars if | . | ω is non-Archimedean, and by π-extension of scalars if | . | ω is Archimedean. Proposition 3.5. -We keep the notation and the assumptions of Definition 3.4.

  and by π-extension of scalars if | . | ω in Archimedean. Then, ( . x ) x∈Ω forms a norm family of P * (E), which we denote by P * (ψ). Definition 3.15. -Let Ω 0 be the set of ω ∈ Ω such that the absolute value | . | ω is trivial. Let x = (K x , | . | x , P x ) be a triplet, where (K x , | . | x ) is a valued extension of the trivially valued field (K, | . | 0 ), and

Lemma 3 .

 3 21. -Let π : X → Y be a continuous map of locally compact Hausdorff spaces such that π is open and proper. Let f : X → R be a continuous function on X and f : Y → R be a function on Y given by f (y) = max{f (x) : π(x) = y}. Then f is continuous on Y .

Corollary 6 . 3 .

 63 -Let π : Y → X be a generically finite morphism of geometrically integral projective varieties over K, L = (L, ϕ) be an adelic invertible O X -module and M = (M, ψ) be an adelic invertible O Y -module. If there are a birational morphism f : X → Z of geometrically integral projective varieties over K and an ample invertible

Definition 7 . 1 .

 71 -We say that ϕ ∈ M (L) satisfies the Hilbert-Samuel property if the equality

(

  s1,...,sr)∈E r ω η=s1∧•••∧sr ln s 1 ∧ • • • ∧ s r ω,detω -ln s i ω rd ω (ξ, ξ ).

  above by the quotient norm . n,ω . Let x be the Gauss point of the Berkovich analytic space P(E ω ) an (see Definition 7.7). IfF = I=(a0,...,a d )∈N d+1 a0+•••+a d =n λ I e a0 0 • • • e a d dis an element of S n (E), then the relationF (x) = I=(a0,...,a d )∈N d a0+•••+a d =n x) ⊗nholds. In particular, one hasF nϕω |F | nϕω (x) = max I=(a0,...,a d )∈N d a0+•••+an=d |λ I | ω .Since F is the image of the element F = I=(a0,...,a d )∈N d a0+•••+a d =n λ I e ⊗a0 0 ⊗ • • • ⊗ e ⊗a d d by the quotient map E ⊗n ω → S n (E ω ), we obtain that

Proposition 7 .

 7 11. -The universal invertible sheaf O P d K (1) satisfies the Hilbert-Samuel property. Proof. -By Proposition 7.4, it suffices to prove that the particular quotient metric family ϕ = (ϕ ω ) ω∈Ω defined in the beginning of the subsection satisfies the Hilbert-Samuel property. For any n ∈ N, let η n = (a0,...,a d )∈N d+1 a0+•••+a d =n e a0 0 • • • e a d d ∈ det(S n (E)). By Lemma 7.8 and [13, Proposition 1.2.23], for any ω ∈ Ω such that | . | ω is non-Archimedean, one has η n nϕω,det = 1.

Lemma 9 . 1 .

 91 -Let (k, | . |) be a complete non-Archimedean valued field and (V, . ) be a finite-dimensional ultrametrically normed vector space over (k, | . |). Let α ∈ ]0, 1],

7 ] and [ 4 ,

 74 Corollary 1.4.3, formula (1.4.10) andLemma 4.3.6]. Note that in the case where Ω ∞ = ∅, the equality((L, ϕ) d+1 ) = -deg ξ (R)(9.4)holds.

  6.1] (this theorem still holds when K is perfect) leads todeg(Ψ, ξ ) deg(Ψ, ξ 0 ) (9.5)by considering Ψ as a quotient vector space of E ∨⊗δ(d+1) where ξ denotes the quotient norm family of ξ , and ξ 0 denotes the quotient norm of ξ 0 . By Lemmas 9.1 and 9.2, one hasµ(S δ (E ∨ ) ⊗(d+1) , ξ ) = (d + 1) µ(S δ (E ∨ ), ( . ω, * ,δ ) ω∈Ω ) = δ(d + 1) µ(E ∨ , ξ ∨ ) + 1 2 ν(Ω ∞ ) d + 1 r+δ-1 δ (i1,...,ir)∈N r i1+•••+ir=δ ln δ! i 1 ! • • • i r ! .Similarly,µ(S δ (E ∨ ) ⊗(d+1) , ξ 0 ) = δ(d + 1) µ(E ∨ , . 0, * ) = δ(d + 1) µ(E ∨ , ξ ∨ ).Therefore, we obtaindeg(S δ (E ∨ ) ⊗(d+1) , ξ ) + 1 2 ν(Ω ∞ )(d + 1) (i1,...,ir)∈N r i1+•••+ir=δ ln δ! i 1 ! • • • i r ! = deg(S δ (E ∨ ) ⊗(d+1) , ξ 0 ).By[START_REF] Chen | Moriwaki -Arakelov geometry over adelic curves[END_REF] Proposition 4.3.13], the inequality (9.5) leads to((L, ϕ) d+1 ) ((L, ϕ 0 ) d+1 ) + 1 2 ν(Ω ∞ )(d + 1) (i1,...,ir)∈N r i1+•••+ir=δ ln δ! i 1 ! • • • i r ! -ln r + δ -1 δ ((L, ϕ 0 ) d+1 ) -1 2ν(Ω ∞ )(d + 1)δ ln(r), by using the inequality r + δ -1 δ r δ .

  deg(H 0 (X, L ⊗n ), . n ϕn ) = deg(H 0 (X, L ⊗n ), . n ) = deg(H 0 (X, L ⊗n ), ξ n ).(10.4) By Proposition 9.3 and the second inequality of (10.3) we obtain that((nL, nϕ) d+1 ) + 1 2 ν(Ω ∞ )(d + 1)n d (L d ) ln(2r n ) ((nL, n ϕ n ) d+1 ) -1 2 ν(Ω ∞ )(d + 1)n d (L d ) ln(r n ),(10.5)where we consider X as an arithmetic variety over the adelic curve S (resp. as an arithmetic variety over the adelic curve consisting of a single copy of the trivial absolute value on K) in the computation of the arithmetic intersection number on the left-hand side (resp. right-hand). Moreover, by Theorem 8.2, the following equality holds:vol χ (L, ϕ n ) = ((L, ϕ n ) d+1 ). (10.6) By [10, Corollary 5.2] (see also the proof of Theorem 7.3 of loc. cit.), there exists a positive constant C such that, for any positive integer n, one has deg(H 0 (X, L ⊗n ), . n ϕn ) vol χ (nL, n ϕ n ) (d + 1)! + Cn d . The constant C can be taken in the form an invariant of the graded linear series m∈N H 0 (X, L ⊗m ) multiplied by sup m∈N, m 1 µ max (H 0 (X, L ⊗m ), ξ m ) m . By (10.4), (10.5) and (10.6), we deduce that deg(H 0 (X, L ⊗n ), ξ n ) n d+1 (d + 1)! ((L, ϕ) d+1 ) + Cn d + 1 2 ν(Ω ∞ )(d + 1)n d (L d ) ln(2r 2 n ).

  d K such that L ∼ = π * (O P d K (1)). By Remark 7.6, we may further assume that there exists an element ψ = (ψ ω ) ω∈Ω of M (O P d K (1)) such that ϕ equals the pull-back of ψ by π. Then, by Corollary 6.3, Proposition 7.11 and [15, Theorem 4.4.9], one hasvol χ (L, ϕ) deg(π) vol χ (O P d K (1), ψ) = deg(π)((O P d K (1), ψ) d+1 ) = ((L, ϕ) d+1), as required.Definition 10.2. -Let (L, ϕ) be an adelic invertible O X -module. We say (L, ϕ) is relatively ample if L is ample and ϕ is semipositve. Moreover, we say (L, ϕ) is relatively nef if there exist a relatively ample adelic invertible O X -module (A, ψ) and a sequence (a n ) ∞ n=1 of positive integers such that lim n→∞ a n = ∞ and a n (L, ϕ) + (A, ψ) is relatively ample for n 1.

Corollary 10 . 3 (

 103 Generalized Hodge index theorem) Let (L, ϕ) be a relatively nef adelic invertible O X -module. Then one has vol(L, ϕ) ((L, ϕ) d+1 ).(10.7)Proof. -Let (A, ψ) be a relatively ample adelic invertible O X -module and (a n ) ∞ n=1 be a sequence of positive integers such that lim n→∞ a n = ∞ and a n (L, ϕ) + (A, ψ) is relatively ample for n 1. Then, by Theorem 10.1,vol(a n (L, ϕ) + (A, ψ)) vol χ (a n (L, ϕ) + (A, ψ)) ((a n (L, ϕ) + (A, ψ)) d+1 )for n 1, and hence by [13, Theorem 6.4.14],vol((L, ϕ)+ (1/a n )(A, ψ)) (((L, ϕ) + (1/a n )(A, ψ)) d+1 ).Thus, by using the continuity of vol (cf.[START_REF] Chen | Moriwaki -Arakelov geometry over adelic curves[END_REF] Theorem 6.4.24]),vol(L, ϕ) = lim n→∞ vol((L, ϕ) + (1/a n )(A, ψ)) lim n→∞ (((L, ϕ) + (1/a n )(A, ψ)) d+1 ) = ((L, ϕ) d+1 ),as desired.Corollary 10.4. -Let (L, ϕ) be a relatively nef adelic invertible O X -module. If ((L, ϕ) d+1 ) > 0, then L is big.

  the metric ψ ω induces by passing to quotient a continuous metric on O E (1) ω ∼ = O Eω (1), which we denote by ψ FS ω . Recall that, if y is an element of P(E ω ) an and x = π an ω (y), then the norm | . | ψ FS

	ω	on O E (1) y is the
	quotient metric induced by the universal surjective homomorphism	
	E ω (x) ⊗ κ(x) κ(y) -→ O E (1) y ,	
	where we consider the ε-extension of | . | ψω (x) to E ω (x) ⊗ κ(x) κ(y) if | . | ω is non-
	Archimedean, and π-extension of | . | ψω (x) if | . | ω is Archimedean (see [13, §1.3 and
	§2.2.3]). Note that, if ϕ and ψ are two metric families of E, then one has (see [13,
	Proposition 2.2.20])	
	∀ ω ∈ Ω, d ω (ϕ FS , ψ FS ) d ω (ϕ, ψ).	(3.1)
	3.2. Dominancy and measurability. -In this subsection, we fix a projective
	scheme X over Spec K.	
	Definition 3.1.	

  s 1 , . . . , s r ) L

	n,ω	s 1 e 1 + • • • + s r e r (n+n0)ϕω+ψω
		max i∈{1,...,r}	s i nϕω e i n0ϕω+ψω
		(s 1 , . . . , s r ) ⊕r nϕω	max i∈{1,...,r}	e i n0ϕω+ψω .
	Moreover, if ω ∈ Ω ∞ , then by Cauchy-Schwarz inequality
	(s 1 , . . . , s r ) L n,ω	s 1 e 1 + • • • + s r e r (n+n0)ϕω+ψω
			r i=1	s i nϕω e i n0ϕω+ψω
		√	r i=1 r (s 1 , . . . , s r ) ⊕r s i nϕω nϕω i∈{1,...,r} max max i∈{1,...,r}	e i n0ϕω+ψω

  7.7. -Let ω ∈ Ω such that | . | ω is non-Archimedean. Let x be the point in P(E ω ) an which consists of the generic scheme point of P(E ω ) equipped with the absolute value | . | x : k e0 er , . . . , er-1

					er	-→ R 0
	such that, for any			
	P =	a=(a0,...,ar-1)∈N d	λ a	e r e 0	a0

  13, Propositions 1.3.16 and 1.2.36], if we consider the Segre embedding P(E ω ) → P(E ⊗n ω ), then the metric nϕ ω identifies with the quotient metric induced by the norm . n,ω . Moreover, if we denote by O E ⊗n ω (1) the universal invertible sheaf of P(E ⊗n ω ) and by ψ ω the quotient metric on this invertible sheaf induced by the norm . n,ω . By [13, Proposition 2.2.22], the supremum norm . ψω on

	of the metric ψ ω coincides with . n,ω . Since L ⊗n is the restriction of O E ⊗n ω (1) to X
	and the restriction map
	H 0 (P(E ⊗n ω ), O E ⊗n ω (1)) -→ H 0 (P(E ω ), L ⊗n ω )
	H 0 (P(E ⊗n ω ), O E ⊗n ω (1)) = E ⊗n ω

has that Sym n (H 0 (X, L)) → H 0 (X, L ⊗n ) is surjective for all n n 0 . Let (T 0 , . . . , T ) be a homogeneous coordinate of P k . For n n 0 and s ∈ H 0 (X, L ⊗n ), if

then

where z i = T i /T 0 and U 0 = {(T 0 , . . . , T ) ∈ P k : T 0 = 0}. Note that

and hence s nϕ 1. Let k ac be an algebraic closure of k. We assume

where v is the pair of k ac and its trivial absolute value. Therefore, s nϕ = 1.

Next let us see that ((L, ϕ) d+1 ) v = 0. Note that

for n 1. Let ψ be the Fubuni-Study metric of O P k (1) induced by the surjective homomorphism H 0 (P k , O P k (1))) ⊗ O P k → O P k (1) and . . Then ψ| X an = ϕ. In the same way as before, . nψ on H 0 (P k , O P k (n)) is trivial for n 1. Therefore, the induced norm on H 0 ( P

) is also trivial, where δ = (L d ). Thus the assertion follows. Proof. -By Remark 7.2, we may assume that L is very ample. Let E be the vector space H 0 (X, L). For any ω ∈ Ω, we denote by . ω the trivial norm on E = E ω . Let ξ = ( . ω ) ω∈Ω and ϕ = (ϕ ω ) ω∈Ω be the quotient metric family on L induced by ξ and the canonical closed embedding X → P(E). Then, Lemma 8.1 implies vol χ (L, ϕ) = ((L, ϕ) d+1 ) = 0.