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Abstract. — We establish, in the setting of Arakelov geometry adelic curves,
an arithmetic Hilbert-Samuel theorem describing the asymptotic behaviour of the
metrized graded linear series of an adelic line bundle in terms of its arithmetic inter-
section number.

1. Introduction

In algebraic geometry, Hilbert function measures the growth of graded linear series
of a line bundle on a projective variety. Let k be a field, X be an integral projective
scheme of degree d ∈ N over Spec k, and L be an invertible OX -module. The Hilbert
function of L is defined as

HL : N −→ N, HL(n) := dimk(H0(X,L⊗n)).
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If L is ample, then the following asymptotic estimates holds:

HL(n) =
(Ld)

d!
nd + o(nd). (1.1)

This formula, which relates the asymptotic behaviour of the Hilbert function and the
auto-intersection number of L, is for example a consequence of Hirzebruch-Riemann-
Roch theorem and Serre’s vanishing theorem. It turns out that the construction and
the asymptotic estimate of Hilbert function have analogue in various context, such as
graded algebra, local multiplicity, relative volume of two metrics, etc.

In Arakelov geometry, an arithmetic analogue of Hilbert function has been intro-
duced by Gillet and Soulé [18] and an analogue of the asymptotic formula (1.1) has
been deduced from their arithmetic Riemann-Roch theorem. This result is called an
arithmetic Hilbert-Samuel theorem. Let X be a regular integral projective scheme
of dimension d + 1 over SpecZ, and L = (L , ϕ) be a Hermitian line bundle on X ,
namely an invertible OX -module L equipped with a smooth metric ϕ on L (C). For
any integer n ∈ N, we let ‖.‖nϕ be the norm on the real vector space H0(X ,L )⊗ZR
defined as follows

∀ s ∈ H0(X ,L )⊗Z R ⊆ H0(XC,L
⊗n
C ), ‖s‖nϕ = sup

x∈X (C)

|s|nϕ(x).

Then the couple (H0(X ,L ⊗n), ‖.‖nϕ) forms a lattice in a normed vector space.
Recall that its arithmetic Euler-Poincaré characteristic is

χ(H0(X ,L ⊗n), ‖.‖nϕ) = ln
vol({s ∈ H0(X ,L ⊗n)⊗Z R : ‖s‖nϕ 6 1})

covol(H0(X ,L ⊗n), ‖.‖nϕ)

where vol(.) denotes a Haar measure on the real vector space H0(X ,L ) ⊗Z R, and
covol(H0(X ,L ⊗n), ‖.‖nϕ) denotes the covolume of the lattice H0(X ,L ⊗n) with
respect to the Haar measure vol(.), that is, the volume of any fundamental domain of
this lattice. In this setting the arithmetic Hilbert-Samuel theorem shows that, in the
case where L is relatively ample and the metric ϕ is positive, the sequence

χ(H0(X ,L ⊗n), ‖.‖nϕ)

nd+1/(d+ 1)!
, n ∈ N, n > 1

converges to the arithmetic intersection number (L
d+1

). In the case where L is
ample, the arithmetic Hilbert-Samuel theorem also permits to relate the asymptotic
behaviour (when n→ +∞) of

card({s ∈ H0(X ,L ⊗n) : ‖s‖nϕ 6 1})

to the arithmetic intersection number of L . These results have various applications
in arithmetic geometry, such as Vojta’s proof of Mordell conjecture, equidistribution
problem and Bogomolov conjecture, etc. The arithmetic Hilbert-Samuel theorem has
then been reproved in various setting and also been generalized in works such as
[1, 16, 21].
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Recently, a new framework of Arakelov geometry has been proposed in [13], which
allows to consider arithmetic geometry over any countable field. Let K be a field.
A structure of proper adelic curve with underlying field K is given by a family of
absolute values (|.|ω)ω∈Ω on K parametrized by a measure space (Ω,A, ν), which
satisfies a product formula of the form

∀ a ∈ K×,
∫

Ω

ln |a|ω ν(dω) = 0.

We assume that, either K is countable, or the σ-algebra A is discrete. The geometry
of numbers and the arithmetic intersection theory in the setting of adelic curves have
been developed respectively in the works [13] and [15]. Note that in general it is not
possible to consider global integral models of an adelic curve. Several classic notions
and constructions, such as integral lattice and its covolume, do not have adequate
analogue over adelic curves. It turns out that a modified and generalized form of
normed lattice — adelic vector bundle — has a natural avatar in the setting of adelic
curves. An adelic vector bundle consists of a finite-dimensional vector space V over
K equipped with a family of norms (‖.‖ω)ω∈Ω on vector spaces Vω = V ⊗KKω (where
Kω denotes the completion of K with respect to the absolute value |.|ω), which satisfy
dominancy and measurability conditions. The Arakelov degree of the adelic vector
bundle

V = (V, (‖.‖ω)ω∈Ω)

is then defined as

d̂eg(V ) := −
∫

Ω

ln ‖s1 ∧ · · · ∧ sr‖ω ν(dω),

where (si)
r
i=1 is an arbitrary basis of E over K. This notion is a good candidate to

replace the Euler-Poincaré characteristic.
Let π : X → SpecK be a projective scheme over SpecK. For any ω ∈ Ω, let

Xω = X ×SpecK SpecKω and let Xan
ω be the analytic variety associated with Xω

(in the sense of Berkovich if |.|ω is non-Archimedean). If E is a vector bundle on
X, namely a locally free OX -module of finite rank, we denote by Eω the pull-back
of E on Xω. As adelic vector bundle on X, we refer to the data E = (E, (ψω)ω∈Ω)

consisting of a vector bundle E on X and a family (ψω)ω∈Ω of continuous metrics
on Eω, ω ∈ Ω, which satisfy dominancy and measurability conditions. It turns out
that, if X is geometrically reduced, then the vector space of global sections H0(X,E)

equipped with supremum norms (‖.‖ψω )ω∈Ω forms an adelic vector bundle π∗(E) on
the base adelic curve.

Let π : X → SpecK be a geometrically integral projective scheme of dimension
d > 0 over SpecK and L = (L,ϕ) be an adelic line bundle on X, that is, an adelic
vector bundle of rank 1 on X. Assume that the line bundle L is ample. We introduce
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the notion of χ-volume as

v̂olχ(L) = lim sup
n→+∞

d̂eg(π∗(L
⊗n))

nd+1/(d+ 1)!
.

In view of the similarity between Arakelov degree and Euler-Poincaré characteristic
of Euclidean lattices, the notion of χ-volume is analogous to that of sectional capacity
introduced in [22]. Moreover, similarly to the number field case, we show in Theorem-
Definition 5.5 that the above superior limit defining the χ-volume is actually a limite.
However, from the methodological view, we do not follow the classic approaches,
which are difficultly implantable in the adelic curve setting. Our strategy consists
in casting the Arakelov geometry over an adelic curve to that in the particular case
where the adelic curve contains a single copy of the trivial absolute value on K, that
is, the absolute value |.|0 such that |a|0 = 1 for any a ∈ K \ {0}. More precisely,
to each adelic vector bundle V = (V, (‖.‖ω)ω∈Ω), we associate an ultrametric norm
‖.‖0 on V (where we consider the trivial absolute value |.|0) via Harder-Narasimhan
theory in the form of R-filtrations, such that∣∣d̂eg(V, (‖.‖ω)ω∈Ω)− d̂eg(V, ‖.‖0)

∣∣ 6 1

2
ν(Ω∞) dimK(V ) ln(dimK(V )),

where Ω∞ denotes the set of ω ∈ Ω such that |.|ω is Archimedean. Then the conver-
gence of the suite defining v̂olχ(L) follows from a limite theorem of normed graded
linear series as follows (see Theorem 4.4 and Corollary 4.5 for this result in a more
general form and for more details):

Theorem 1.1. — Assume that the graded K-algebra
⊕

n∈NH
0(X,L⊗n) is of finite

type. For any integer n > 1, let ‖.‖n be a norm on H0(X,L⊗n) (where we consider
the trivial absolute value on K). Assume that

(a) infs∈Vn\{0} ln ‖s‖n = O(n) when n→ +∞,
(b) for any (n,m) ∈ N2

>1 and any (sn, sm) ∈ Vn × Vm, one has

‖sn · sm‖n+m 6 ‖sn‖n · ‖sm‖m.

Then the sequence

d̂eg(Vn, ‖.‖n)

nd+1/(d+ 1)!
, n ∈ N, n > 1

converges in R.

In view of the classic Hilbert-Samuel theorems in algebraic geometry and in
Arakelov geometry, it is natural to compare the χ-volume to the arithmetic inter-
section number of adelic line bundles that we have introduced in [15] (see also the
work [19] on heights of varieties over M -fields). Let π : X → SpecK be a projective
scheme of dimension d > 0 over K and L = (L,ϕ) be an adelic line bundle on X
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such that L is ample and the metrics in the family ϕ are semi-positive. Then the
arithmetic self-intersection number of L is written in a recursive way as

(Ld+1) =
1

N

[
(L|ddiv(s))−

∫
Ω

∫
Xan
ω

ln |s|ϕω (x) c1(Lω, ϕω)d(dx) ν(dω)

]
, (1.2)

where N is a positive integer, and s is a global section of L⊗N which intersect properly
with all irreducible components of the projective scheme X. The main result of the
article is then the following theorem (see Theorem 10.1):

Theorem 1.2. — Let X be a geometrically integral projective scheme over SpecK

and L = (L,ϕ) be an adelic line bundle on X. Assume that L is ample and all metrics
in the family ϕ are semi-positive, then the following equality holds:

v̂olχ(L) = (Ld+1).

Note that in the literature there exists a local version of the Hilbert-Samuel theorem
which establishes an equality between the relative volume of two metrics and the
relative Monge-Ampère energy between them. We refer the readers to [3] for the
Archimedean case and to [8, 6] for the non-Archimedean case (see also [7]). These
results show that, for a fixed ample line bundle L onX, the difference between v̂olχ(L)

and (Ld+1) does not depend on the choice of the metric family on L (see Proposition
7.4 and Remark 7.6). Moreover, by an argument of projection to a projective space (on
which the arithmetic Hilbert-Samuel theorem can be proved by explicit computation,
see Proposition 7.11), one can show that the inequality v̂olχ(L) > (Ld+1) holds (see
Step 2 of the proof of Theorem 10.1).

In view of the recursive formula (1.2) defining the self-intersection number, a natu-
ral idea to prove the above theorem could be an argument of induction, following the
approach of [1] by using an adaptation to non-Archimedean setting of some technics in
complex analytic geometry developed in [6, 17]. However, it seems that a refinement
in the form of an asymptotic development of the function defining the local relative
volume is needed to realize this strategy. Unfortunately such refinement is not yet
available. Our approach consists in casting the arithmetic data of L to a series of
metrics over a trivially valued field. This could be considered as a higher-dimensional
generalization of the approach of Harder-Narasimhan R-filtration mentioned above.
What is particular in the trivial valuation case is that the local geometry becomes
automatically global, thanks to the trivial “product formula”. In this case, the arith-
metic Hilbert-Samuel theorem follows from the equality between the relative volume
and the relative Monge-Ampère energy with respect to the trivial metric (see Theo-
rem 8.2). Note that this result also shows that, in the case of a projective curve over a
trivially valued field, the arithmetic intersection number defined in [15] coincides with
that constructed in a combinatoric way in [14] (see Remark 8.3). The comparison of
divers invariants of L with respect to its casting to the trivial valuation case provides
the opposite inequality v̂olχ(L) 6 (Ld+1).
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As a sequel to the above arguments in terms of trivially valued fields, our way to-
wards the arithmetic Hilbert-Samuel theorem over a adelic curve gives a new approach
even for the classical case.

As an application, we prove the following higher dimensional generalization of
Hodge index theorem (see Corollaries 10.3 and 10.4).

Theorem 1.3. — Let X be a geometrically integral projective scheme of dimension
d > 0 over SpecK and L = (L,ϕ) be an adelic line bundle on X. Assume that L is nef
and all metrics in the family ϕ are semi-positive, then the inequality v̂ol(L) > (Ld+1)

holds. In particular, if (Ld+1) > 0, then the line bundle L is big.

Theorem 1.2 naturally leads to the following refinement of the arithmetic Hilbert-
Samuel theorem, in introducing a tensor product by an adelic vector bundle on X

(see Corollary 10.5).

Theorem 1.4. — Let X be a geometrically integral projective scheme over SpecK,
d be the dimension of X, L = (L,ϕ) be an adelic line bundle on X and E = (E,ψ)

be an adelic vector bundle on X. Assume that L is ample and the metrics in ϕ are
semi-positive. Moreover we suppose that either rk(E) = 1 or X is normal. Then one
has

lim
n→+∞

d̂eg(H0(X,L⊗n ⊗ E), (‖.‖nϕω+ψω )ω∈Ω)

nd+1/(d+ 1)!
= rk(E)(Ld+1).

The rest of the article is organized as follows. In the second section we introduce
the notation that we use all through the article. In the third second, we consider
metric families on vector bundles and discuss their dominancy and measurability. In
the fourth section, we study normed graded linear series over a trivially valued field
and prove the limite theorem of their volumes. Then in the fifth section we deduce
the limite theorem for graded algebra of adelic vector bundles over a general adelic
curve, which proves in particular that the sequence defining the arithmetic volume
function actually converges. in the sixth section we show that the arithmetic Hilbert-
Samuel theorem in the original form implies the generalized form with tensor product
by an adelic vector bundle. In the seventh section, we prove that the difference of the
χ-volume and the arithmetic intersection product does not depend on the choice of
the metric family. In the eighth section, we prove the main theorem in the particular
case where the adelic curve contains a single copy of the trivial absolute value. In the
ninth section, we explain the method of casting to the trivial valuation case. Finally,
in the tenth and last section, we prove the main theorem and deduce the generalized
Hodge index theorem.

2. Notation and preliminaries
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2.1. — Throughout the article, we fix a proper adelic curve S = (K, (Ω,A, ν), φ),
where K is a commutative field, (Ω,A, ν) is a measure space and φ = (|.|ω)ω∈Ω is
a family of absolute values on K parametrized by Ω, such that, for any a ∈ K×,
(ω ∈ Ω) 7→ ln |a|ω is integrable on (Ω,A, ν), and the following “product formula”
holds:

∀ a ∈ K,
∫

Ω

ln |a|ω ν(dω) = 0.

For any ω ∈ Ω, we denote by Kω the completion of K with respect to the absolute
value |.|ω.

We assume that, either the σ-algebra A is discrete, or the field K is countable.
Moreover, we denote by Ω∞ the set of ω ∈ Ω such that |.|ω is Archimedean. Note
that ν(Ω∞) < +∞.

Moreover, for ω ∈ Ω∞, we always assume that |a|ω = a for any a ∈ Q>0.

2.2. — Let V be a finite-dimensional vector space over K. As norm family on V ,
we refer to a family (‖.‖ω)ω∈Ω, where ‖.‖ω is a norm on Vω := V ⊗K Kω.

Let ξ = (‖.‖ω)ω∈Ω and ξ′ = (‖.‖′ω)ω∈Ω be norm families on V . For any ω ∈ Ω, we
denote by dω(ξ, ξ′) the following number

sup
s∈V \{0}

∣∣∣ ln ‖s‖ω − ln ‖s‖′ω
∣∣∣.

In the case where V = 0, by convention dω(ξ, ξ′) = 0.

2.3. — As adelic vector bundle on S, we refer to the data V = (V, ξ) which consists
of a finite-dimensional vector space V over K and a family of norms ξ = (‖.‖ω)ω∈Ω

on Vω := V ⊗K Kω, satisfying the following conditions:
(1) the norm family ξ is strongly dominated, that is, there exist an integrable func-

tion C : Ω → R>0 and a basis (ei)
r
i=1 of V over K, such that, for any ω ∈ Ω

and any (λ1, . . . , λr) ∈ Kr
ω \ {(0, . . . , 0)},∣∣∣ ln ‖λ1e1 + · · ·+ λrer‖ω − ln max

i∈{1,...,r}
|λi|ω

∣∣∣ 6 C(ω).

(2) the norm family ξ is measurable, that is, for any s ∈ V , the function (ω ∈ Ω) 7→
‖s‖ω is A-measurable.

In the article, we only consider adelic vector bundles which are ultrametric over non-
Archimedean places, namely we assume that the norm ‖.‖ω is ultrametric once the
absolute value |.|ω is non-Archimedean. If in addition the norm ‖.‖ω is induced by
an inner product whenever |.|ω is Archimedean, we say that V is Hermitian. If
dimK(V ) = 1, we say that V is an adelic line bundle (note that an adelic line bundle
is necessarily Hermitian).

If V is an adelic vector bundle on S, any vector subspace (resp. quotient vector
space) of V together with the family of restricted norms (resp. quotient norms) forms
also an adelic vector bundle on S, which is called an adelic vector subbundle (resp.
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quotient adelic vector bundle) of V . Note that if V is Hermitian, then all its adelic
vector subbundles and quotient adelic vector bundles are Hermitian.

2.4. — Let V = (V, (‖.‖ω)ω∈Ω) be an adelic vector bundle on S, we define the
Arakelov degree of V as

d̂eg(V ) := −
∫

Ω

ln ‖e1 ∧ · · · ∧ er‖ω,det ν(dω),

where (ei)
r
i=1 is a basis of V over K, and ‖.‖ω,det denotes the determinant norm of

‖.‖ω, which is defined as (where r = dimK(V ))

∀ η ∈ det(V ) = Λr(V ), ‖η‖ω,det = inf
η=s1∧···∧sr

‖s1‖ · · · ‖sr‖.

Let d̂eg+(V ) be the positive degree of V , which is defined as

d̂eg+(V ) = sup
W⊆V

d̂eg(W ),

where W runs over the set of vector subspaces of V , and in the adelic vector bundle
structure of W we consider the restricted norms. In the case where V is non-zero, we
denote by µ̂(V ) the quotient d̂eg(V )/ dimK(V ), called the slope of V . We define the
minimal slope of V as

µ̂min(V ) := inf
V�W 6={0}

µ̂(W ),

where W runs over the set of all non-zero quotient adelic vector bundles of V .

2.5. — Let V be a non-zero adelic vector bundle on S. For any t ∈ R, we let

F t(V ) =
∑

{0}6=W⊆V
µ̂min(W )>t

W,

whereW runs over the set of all non-zero vector subspaces of V such that the minimal
slope of W equipped with the family of restricted norms is > t. We call (F t(V ))t∈R
the Harder-Narasimhan R-filtration of V . In the case where V is Hermitian, the
following equality holds (see [13, Theorem 4.3.44]):

d̂eg(V ) = −
∫
R
td(dimK(F t(V ))),

d̂eg+(V ) = −
∫ +∞

0

td(dimK(F t(V ))) =

∫ +∞

0

dimK(F t(V )) dt.

In general one has (see [13, Propositions 4.3.50 and 4.3.51, and Corollary 4.3.52])

0 6 d̂eg(V ) +

∫
R
td(dimK(F t(V ))) 6

1

2
ν(Ω∞) dimK(V ) ln(dimK(V )),

0 6 d̂eg+(V )−
∫ +∞

0

dimK(F t(V )) dt 6
1

2
ν(Ω∞) dimK(V ) ln(dimK(V )).
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2.6. — Let V = (V, (‖.‖V,ω)ω∈Ω) andW = (W, (‖.‖W,ω)ω∈Ω) be adelic vector bundles
on S. For any ω ∈ Ω such that |.|ω is non-Archimedean, let ‖.‖ω be the ε-tensor
product on Vω ⊗Kω Wω, of the norms ‖.‖V,ω and ‖.‖W,ω. Note that, for any T ∈
Vω ⊗Kω Wω, one has

‖T‖ω = min
{

max
i∈{1,...,n}

‖ei‖V,ω · ‖fi‖W,ω :
n ∈ N, (ei)

n
i=1 ∈ V nω , (fi)

n
i=1 ∈Wn

ω

T = e1 ⊗ f1 + · · ·+ en ⊗ fn

}
.

In the case where |.|ω is Archimedean, let ‖.‖ω be π-tensor product of ‖.‖V,ω of ‖.‖W,ω.
Recall that for any T ∈ Vω ⊗Kω Wω, one has

‖T‖ω = min
{ n∑
i=1

‖ei‖V,ω · ‖fi‖W,ω :
n ∈ N, (ei)

n
i=1 ∈ V nω , (fi)

n
i=1 ∈Wn

ω

T = e1 ⊗ f1 + · · ·+ en ⊗ fn

}
.

The pair

V ⊗ε,π W = (V ⊗K W, (‖.‖ω)ω∈Ω)

is called the ε, π-tensor product of V and W .
Assume that V and W are Hermitian. If |.|ω is non-Archimedean, let ‖.‖Hω be the

ε-tensor product of ‖.‖V,ω and ‖.‖W,ω; otherwise let ‖.‖Hω be the orthogonal tensor of
the Euclidean or Hermitian norms ‖.‖V,ω and ‖.‖W,ω. Then the pair

V ⊗W = (V ⊗K W, (‖.‖Hω )ω∈Ω)

is called the Hermitian tensor product of V and W .

2.7. — Let (k, |.|) be a field equipped with a complete absolute value, X be a pro-
jective scheme over Spec k. We denote by Xan the analytic space associated with X.
Recall that a point x of Xan is of the form (j(x), |.|x), where j(x) is a scheme point
of X, |.|x is an absolute value on the residue field of j(x), which extends the absolute
value |.| on the base field k. We denote by κ̂(x) the completion of the residue field of
j(x) with respect to the absolute value |.|x, on which |.|x extends by continuity.

3. Metric families on vector bundles

The purpose of this section is to generalize dominancy and measurability conditions
in [13, Chapter 6] to metrized locally free modules, and to develop related topics. Let
S = (K, (Ω,A, ν), φ) be an adelic curve as introduced in §2.1.

3.1. Metric family. — Let p : X → SpecK be a quasi-projective scheme over
SpecK. Let E be a vector bundle on X, that is, a locally free OX -module of finite
rank. For any ω ∈ Ω, let ψω be a metric on Eω (see §2.7). By definition ψω is a
family (|.|ψω (x))x∈Xan

ω
parametrized by Xan

ω , where each |.|ψω is a norm on Eω(x) :=

Eω ⊗OXω κ̂(x). We assume that the norm |.|ψω (x) is ultrametric if the absolute value
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|.|ω is non-Archimedean. Moreover, we assume that the metric ψω is continuous,
namely, for any section s of E over a Zariski open subset U of Xω, the function

(x ∈ Uan) 7−→ |s|ψω (x)

is continuous. The data ψ = (ψω)ω∈Ω is called a metric family on the vector bundle
E.

Assume that X is projective and geometrically reduced. For any ω ∈ Ω, we denote
by ‖.‖ψω the supremum norm on H0(Xω, Eω), which is defined as

∀ s ∈ H0(Xω, Eω), ‖s‖ψω = sup
x∈Xan

ω

|s(x)|ψω (x).

We denote by p∗(E,ψ) the couple (H0(X,E), (‖.‖ψω )ω∈Ω).
If ϕ and ψ are two metric families of E. For any ω ∈ Ω we denote by dω(ϕ,ψ) the

element

sup
x∈Xan

ω

sup
s∈Eω(x)\{0}

∣∣∣∣ ln |s|ϕω (x)− ln |s|ψω (x)

∣∣∣∣ ∈ [0,+∞],

which is called the local distance at ω between ϕ and ψ.
We denote by OE(1) the universal invertible sheaf on the projective bundle π :

P(E) → SpecK. For any ω ∈ Ω, the metric ψω induces by passing to quotient a
continuous metric on OE(1)ω ∼= OEω (1), which we denote by ψFS

ω . Recall that, if
y is an element of P(Eω)an and x = πan

ω (y), then the norm |.|ψFS
ω

on OE(1)y is the
quotient metric induced by the universal surjective homomorphism

Eω(x)⊗κ̂(x) κ̂(y) −→ OE(1)y,

where we consider the ε-extension of |.|ψω (x) to Eω(x) ⊗κ̂(x) κ̂(y) if |.|ω is non-
Archimedean, and π-extension of |.|ψω (x) if |.|ω is Archimedean (see [13, §1.3 and
§2.2.3]). Note that, if ϕ and ψ are two metric families of E, then one has (see [13,
Proposition 2.2.20])

∀ω ∈ Ω, dω(ϕFS, ψFS) 6 dω(ϕ,ψ). (3.1)

3.2. Dominancy and measurability. — In this subsection, we fix a projective
scheme X over SpecK.

Definition 3.1. — Let E be a vector bundle on X.

(1) We say the metric family ψ = (ψω)ω∈Ω on the locally free OX -module E is
dominated (resp. measurable) if the metric family ψFS = (ψFS

ω )ω∈Ω on OE(1)

is dominated (resp. measurable). We refer the readers to [13, Definitions 6.1.9
and 6.1.27] for the dominancy and measurability conditions of metrized line
bundles.

(2) We say (E,ψ) is an adelic locally free OX-module or an adelic vector bundle if
ψ is dominated and measurable, or equivalently, (OE(1), ψFS) is an adelic line
bundle on P(E).
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Proposition 3.2. — (1) If ψ is dominated, then the norm family ξψ = (‖.‖ψω )ω∈Ω

on H0(X,E) is strongly dominated.
(2) If the metric family ψ on E is measurable, then the norm family ξψ on H0(X,E)

is measurable.

Proof. — If we identify H0(X,E) with H0(P(E),OE(1)), then for any ω ∈ Ω one
has ‖.‖ψω = ‖.‖ψFS

ω
by [13, Remark 2.2.14]. Therefore the assertions follow from [13,

Theorems 6.1.13 and 6.1.32].

Proposition 3.3. — Let E be a vector bundle on X, and ϕ and ψ be two metric
families of E. Suppose that ϕ is dominated and that the local distance function

(ω ∈ Ω) 7−→ dω(ϕ,ψ)

is bounded from above by an integrable function. Then the metric family ψ is also
dominated.

Proof. — This is a consequence of [13, Proposition 6.1.12] and (3.1).

Definition 3.4. — Let f : Y → X be a projectiveK-morphism from a geometrically
reduced projective K-scheme Y to X. Let E be a vector bundle on X and ψ =

(ψω)ω∈Ω be a metric family on E. We denote by f∗(ψ) the metric family on E such
that, for any y ∈ Y an

ω , the norm |.|f∗(ψ)ω (y) on

f∗(E)ω(y) = Eω(x)⊗κ̂(x) κ̂(y)

is induced by |.|ψω (fan(y)) by ε-extension of scalars if |.|ω is non-Archimedean, and
by π-extension of scalars if |.|ω is Archimedean.

Proposition 3.5. — We keep the notation and the assumptions of Definition 3.4.
Suppose that the metric family ψ is dominated (resp. measurable), then its pull-back
f∗(ψ) is also dominated (resp. measurable).

Proof. — The universal property of projective bundle induces a projective morphism
F : P(f∗(E))→ P(E) such that the following diagramme is cartesian.

P(f∗(E))
F //

πf∗(E)

��

P(E)

πE

��
Y

f
// X

Moreover, one has Of∗(E)(1) ∼= F ∗(OE(1)) and F ∗(ψFS) = f∗(ψ)FS. Hence the
assertion follows from [13, Propositions 6.1.12 and 6.1.28].

Definition 3.6. — Let E be a vector bundle on X and ψ = (ψω)ω∈Ω be a metric
family of E. If F is a vector subbundle of E, for any ω ∈ Ω and any x ∈ Xan

ω , we
denote by |.|ψF,ω (x) the restriction of |.|ψω (x) to Fω(x). Note that ψF = (ψF,ω)ω∈Ω

forms a metric family of F , called the restriction of ψ to F . Similarly, if G is a
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quotient vector bundle of E, we denote by |.|ψG,ω(x) the quotient norm of |.|ψω (x)

on Gω(x). Then ψG = (ψG,ω)ω∈Ω is a metric family of G, called the quotient metric
family of ψ on G.

Proposition 3.7. — Let E be a vector bundle on X and G be a quotient vector
bundle of E. Let ψ be a metric family on E. If ψ is dominated (resp. measurable),
then the quotient metric family ψG is also dominated (resp. measurable).

Proof. — Let i : P(G) → P(E) be the closed embedding induced by the quotient
homomorphism E → G. Then one has i∗(ψFS) = ψFS

G . Hence the assertion of the
proposition follows from [13, Propositions 6.1.12 and 6.1.28].

Definition 3.8. — Let E and F be vector bundles on X, equipped with metric
families ψE and ψF , respectively. For any ω ∈ Ω and any x ∈ Xan

ω , if |.|ω is non-
Archimedean, we denote by |.|(ψE⊗ψF )ω (x) the ε-tensor product of the norms |.|ψE,ω (x)

and |.|ψF,ω (x), if |.|ω is Archimedean, we denote by |.|(ψE⊗ψF )ω (x) the π-tensor product
of the norms |.|ψE,ω (x) and |.|ψF,ω (x). Thus we obtain a metric family ψE⊗ψF on the
vector bundle E ⊗ F , called the tensor product of metric families ψE and ψF . In the
case where one of the vector bundles E and F is of rank 1, we also write the tensor
product metric family of ψE and ψF in an additive way as ψE + ψF .

Proposition 3.9. — Let E and F be vector bundles on X, equipped with metric
families ψE and ψF respectively. We assume that E is a line bundle. If both metric
families ψE and ψF are dominated (resp. measurable), then ψE+ψF is also dominated
(resp. measurable).

Proof. — Since E is of rank 1, we can identify P(E ⊗ F ) with P(F ). Moreover, if we
denote by π : P(F )→ X the structural morphism, one hasOE⊗F (1) = π∗(E)⊗OF (1),
and the metric family (ψE + ψF )FS identifies with the tensor product of π∗(ψE) and
ψFS
F . Hence the assertions follow from [13, Propositions 6.1.12 and 6.1.28].

Proposition 3.10. — Let E be a vector bundle on X. Then there exists a dominated
and measurable metric family of E.

Proof. — Let L be an ample line bundle on X and ϕ be a dominated and measurable
metric family of L∨. Then, one can find a positive integer m such that Lm ⊗ E is
ample and generated by global sections. If Lm ⊗E has a dominated and measurable
metric family ψ′, then the tensor product of mϕ with ψ′ is a dominated and measur-
able metric family of E by Proposition 3.9, so we may assume that E is ample and
generated by global sections.
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Let H0(X,E) ⊗ OX → E be the natural surjective homomorphism. Fix a basis
e1, . . . , eN of H0(X,E) and, for each ω ∈ Ω and (a1, . . . , aN ) ∈ KN

ω , we set

‖a1e1 + · · ·+ aNeN‖ω =


√
|a1|2ω + · · ·+ |aN |2ω if ω ∈ Ω∞,

max{|a1|ω, . . . , |aN |ω} if ω ∈ Ω \ Ω∞,

and ξ be the norm family (‖.‖ω)ω∈Ω. Let ψ be a metric family of E induced by
H0(X,E) ⊗ OX → E and ξ. Let π : P(E) → X be the projective bundle of E
and OE(1) be the tautological line bundle of P(E). Note that the metric family ψFS

of OE(1) is induced by H0(X,E) ⊗ OP(E) → OE(1) and ξ, so it is dominated and
measurable. Thus the assertion follows.

3.3. Dual metric family. — In this subsection, let X be a projective scheme over
SpecK.

Definition 3.11. — Let E be a vector bundle on X, equipped with a metric fam-
ily ψ = (ψω)ω∈Ω. For any ω ∈ Ω and any x ∈ Xan

ω , the norm |.|ψω (x) on Eω(x)

induces a dual norm on Eω(x)∨, which we denote by |.|ψ∨ω (x). It turns out that
ψ∨ω = (|.|ψ∨ω (x))x∈Xan

ω
forms a continuous metric on E∨ω . Hence ψ∨ = (ψ∨ω )ω∈Ω is a

metric family on E∨, called the dual metric family of ψ.

Proposition 3.12. — Let E be a vector bundle on X and ψ be a metric family of
E. If ψ is dominated, then the dual metric family ψ∨ is also dominated.

Proof. — Let πE : P(E) → X and πE∨ : P(E∨) → X be the projective bundles
associated with E and E∨ respectively. We consider the fiber product P(E)×X P(E∨)

of projective bundles and denote by

p1 : P(E)×X P(E∨) −→ P(E) and p2 : P(E)⊗X P(E∨) −→ P(E∨)

the morphisms of projection. Let

OE(1)�OE∨(1) := p∗1(OE(1))⊗ p∗2(OE∨(1))

and let

s ∈ H0(P(E)×X P(E∨),OE(1)�OE∨(1))

be the trace section of OE(1)�OE∨(1), which corresponds to the composition of the
following universal homomorphisms

p∗2(OE∨(−1)) −→ p∗2(π∗E∨(E)) ∼= p∗1(π∗E(E)) −→ p∗1(OE(1)).

Claim 3.13. — Let ψ1 = (ψ1,ω)ω∈Ω and ψ2 = (ψ2,ω)ω∈Ω be metric families on E

and E∨ respectively. We equip OE(1)�OE∨(1) with the metric family ϕ = (ϕω)ω∈Ω
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which is the tensor product of the metric families p∗1(ψFS
1 ) and p∗2(ψFS

2 ). Then, for
any ω ∈ Ω and x ∈ Xan

ω , one has

sup
f∈E∨ω (x)\{0}

|f |ψ∨1,ω (x)

|f |ψ2,ω
(x)
6 ‖s‖ϕω .

Proof. — Let f be a non-zero element of E∨ω (x). The one-dimensional κ̂(x)-vector
space of E∨ω (x) spanned by f determines a point Pf of P (Eω)an valued in (κ̂(x), |.|x)

which lies over x ∈ Xan
ω . Suppose Q is a point of P(E∨ω )an valued in (κ̂(x), |.|x) which

lies over x. Then s(Pf , Q) corresponds to the following composition of universal
homomorphisms

OE∨(−1)(Q) −→ Eω(x) −→ OE(1)(Pf ), (3.2)

and |s|ϕω (Pf , Q) is the operator norm of this homomorphism. We pick an arbitrary
non-zero element ` of OE∨(−1)(Q). The dual element in OE(−1)(Pf ) of the image
of ` by (3.2) is f(`)−1f . Therefore one has

|s|ϕω (Pf , Q) =
|f(`)|x

|`|ψ1,ω
(x) · |f |ψ2,ω

(x)
6 ‖s‖ϕω .

Taking the supremum with respect to `, we obtain the required inequality.

In the above claim, if both metric families ψ1 and ψ2 are dominated, then the
metric family ϕ on OE(1)�OE∨(1) is also dominated. In particular, the function

(ω ∈ Ω) 7−→ ln ‖s‖ϕω

is bounded from above by an integrable function. Then the claim shows that the
function

(ω ∈ Ω) 7−→ sup
x∈Xan

ω

sup
f∈E∨ω (x)\{0}

(
ln |f |ψ∨1,ω (x)− ln |f |ψ2,ω (x)

)
is bounded from above by an integrable function. Therefore, the function

(ω ∈ Ω) 7−→ sup
Q∈P(E∨)an

sup
f∈OE∨ (1)(Q)

f 6=0

(
ln |f |ψ∨,FS

1,ω
(Q)− ln |f |ψFS

2,ω
(Q)
)

is bounded from above by an integrable function. For the same reason, by exchanging
the roles of E and E∨ we obtain that the function

(ω ∈ Ω) 7−→ sup
P∈P(E)an

sup
t∈OE(1)(P )

t 6=0

(
ln |t|ψ∨,FS

2,ω
(P )− ln |t|ψFS

1,ω
(P )
)

is also bounded from above by an integrable function. In particular, if we denote by ϕ̃
the tensor product of the metric families p∗1(ψ∨,PS

2 ) and p∗2(ψ∨,PS
1 ), then the function

(ω ∈ Ω) 7−→ ln ‖s‖ϕ̃ω
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is still bounded from above by an integrable function. Hence the above claim implies
that the function

(ω ∈ Ω) 7−→ sup
x∈Xan

ω

sup
f∈E∨ω (x)\{0}

(
ln |f |ψ2,ω (x)− ln |f |ψ∨1,ω (x)

)
is bounded from above by an integrable function. Therefore we obtain that the local
distance function

(ω ∈ Ω) 7−→ dω(ψ∨1 , ψ2)

is bounded from above by an integrable function. By Proposition 3.3, the metric
family ψ∨1 is dominated. By Proposition 3.10, there exists at least a dominated
metric family on E∨, the assertion is thus proved.

Definition 3.14. — Let E be a vector bundle onX, ψ = (ψω)ω∈Ω be a metric family
of E. Let K ′/K be a finite extension and let P : SpecK ′ → X be a K-morphism.
Let

(K ′, (Ω′,A′, ν′), φ′) = S ⊗K K ′.

Recall that Ω′ is a disjoint union

Ω′ =
∐
ω∈Ω

Ω′ω,

where Ω′ω denotes the set of all absolute values on Ω′ extending |.|ω. For any ω ∈ Ω

and any x ∈ Ω′ω, we let Px : SpecK ′x → Xω be the morphism induced by

SpecK ′x −→ SpecK ′
P−→ X

and the canonical morphism SpecK ′x → SpecKω.

K ′x

  

''

Px

$$
Xω

//

��

X

��
SpecKω

// SpecK

We denote by ‖.‖x the norm on

(E ⊗K K ′)⊗K′ K ′x ∼= Eω ⊗Kω K ′x
which is induced by |.|ψω (Px) by ε-extension of scalars if |.|ω is non-Archimedean,
and by π-extension of scalars if |.|ω in Archimedean. Then, (‖.‖x)x∈Ω′ forms a norm
family of P ∗(E), which we denote by P ∗(ψ).

Definition 3.15. — Let Ω0 be the set of ω ∈ Ω such that the absolute value |.|ω
is trivial. Let x = (Kx, |.|x, Px) be a triplet, where (Kx, |.|x) is a valued extension of
the trivially valued field (K, |.|0), and Px : SpecKx → X is a K-morphism. Assume



16 HUAYI CHEN & ATSUSHI MORIWAKI

that E is a vector bundle on X and ψ = (ψω)ω∈Ω be a metric family of E. Denote
by Ex the Kx-vector space P ∗x (E). We consider the following adelic curve

(Kx, (Ω0,A0, ν0), (|.|x)ω∈Ω0),

where A0 is the restriction of the σ-algebra A to Ω0, and ν0 is the restriction of ν
to (Ω0,A0). We denote by x∗(ψ) the norm family (|.|ψω (Pωx ))ω∈Ω0 on Ex, where Pωx
denotes the point of Xan

ω determined by (Px, |.|x).
Assume that the transcendence degree of Kx/K is 6 1. Then |.|x is a discrete

absolute value on Kx. Let ordx(.) : Kx → Z ∪ {+∞} be the corresponding discrete
valuation, which is defined as

ordx(a) = sup{n ∈ Z : a ∈ mnx},

where
mx = {b ∈ Kx : |b|x < 1}.

Then there is a non-negative real number q such that

|.|x = exp(−q ordx(.)).

This non-negative real number is called the exponent of x.

Proposition 3.16. — Let E be a vector bundle on X and ψ = (ψω)ω∈Ω be a metric
family of E. Then the metric family ψ is measurable if and only if both of the following
conditions are satisfied:
(1) for any finite extension K ′/K and any K-morphism P : SpecK ′ → X, the

norm family P ∗(ψ) is measurable,
(2) for any triplet x = (Kx, |.|x, Px), where (Kx, |.|x) is a valued extension of tran-

scendence degree 6 1 and of rational exponent of the trivially valued field (K, |.|0)

and Px : SpecKx → X is a K-morphism, the norm family x∗(ψ) is measurable.

Proof. — It suffices to treat the case where the field K is countable. Recall that the
measurability of the metric family ψ signifies that the following two conditions are
satisfied:
(1’) for any finite extension K ′/K and any K-morphism Q : SpecK ′ → P(E), the

norm family Q∗(ψFS) is measurable,
(2’) for any triplet y = (Ky, |.|y, Qy), where (Ky, |.|y) is a valued extension of tran-

scendence degree 6 1 and of rational exponent of the trivially valued field
(K, |.|0), and Qy : SpecKy → P(E) is a K-morphism, the norm family Q∗y(ψFS)

is measurable.
Let K ′/K be a finite extension. Any K-morphism Q : SpecK ′ → P(E) corres

ponds to a K-morphisme P : SpecK ′ → X together with a one-dimensional quotient
vector space L of P ∗(E), which identifies with Q∗(OE(1)). Moreover, the norm family
Q∗(ψFS) identifies with the quotient norm family of P ∗(ψ). If the norm family P ∗(ψ)

is measurable, by [13, Proposition 4.1.24], we obtain that Q∗(ψFS) is also measurable.
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Conversely, if for any one-dimensional quotient vector space of P ∗(E), the quotient
norm family of P ∗(ψ) on it is measurable, by passing to dual we obtain from [13,
Proposition 4.1.24] that P ∗(ψ)∨ is measurable and therefore P ∗(ψ) is also measurable.

Let x = (Kx, |.|x, Px) be a triplet, where (Kx, |.|x) is a valued extension of tran-
scendence degree 6 1 and rational exponent of the trivially valued field (K, |.|0), and
Px : SpecKx → X be a K-morphism. Note that the field Kx is countable. Similarly
to the above argument, the norm family P ∗x (ψ) is measurable if and only if all its
quotient norm families on one-dimensional quotient subspaces are measurable. The
proposition is thus proved.

Proposition 3.17. — Let E be a vector bundle on X and ψ = (ψω)ω∈Ω be a met-
ric family on E. If ψ is measurable, then the dual metric family ψ∨ of E∨ is also
measurable.

Proof. — Let K ′/K be a finite extension and P : SpecK ′ → X be a K-morphism.
If P ∗(ψ) is measurable, by [13, Proposition 4.1.24] we obtain that P ∗(ψ∨) = P ∗(ψ)∨

is measurable. Similarly, for any triplet x = (Kx, |.|x, Px), where (Kx, |.|x) is a valued
extension of transcendence degree 6 1 and of rational exponent of the trivially valued
field (K, |.|0) and Px : SpecKx → X is a K-morphism, if the norm family P ∗x (ψ)

is measurable, then P ∗x (ψ∨) = P ∗x (ψ)∨ is also measurable. The proposition is thus
proved.

Corollary 3.18. — Let E be a vector bundle on X, F be a vector subbundle of E,
ψE be a metric family of E, and ψF be the restriction of ψE to F . If the metric
family ψE is dominated (resp. measurable), then the restricted metric family ψF is
also dominated (resp. measurable).

Proof. — The homomorphism of inclusion F → E induces by passing to dual a
surjective homomorphism E∨ → F∨. Thus F∨ can be considered as a quotient
vector bundle of E∨. Note that ψ∨F identifies with the quotient metric family of ψ∨E .
Hence the assertion follows from Propositions 3.12, 3.17 and 3.7.

3.4. Metric families on torsion-free sheaves. — In this subsection, we assume
that the K-scheme X is geometrically integral.

Definition 3.19. — Let E be a torsion free OX -module and U be a non-empty
Zariski open set of X such that E is locally free over U . For any ω ∈ Ω, let ψω be a
continuous metric of Eω over Uan

ω such that, for any s ∈ H0(Xω, Eω),

‖s‖ψω := sup{|s|ψω (x) : x ∈ Uan
ω } < +∞.

We set ψ = (ψω)ω∈Ω and ξψ = (‖.‖ψω )ω∈Ω. We say (E,U, ψ) is a sectionally adelic
torsion free OX-module if (H0(X,E), ξψ) is an adelic vector bundle on S. By Propo-
sition 3.9, an adelic locally free OX -module is sectionally adelic.
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Definition 3.20. — Let E be a torsion free sheaf on X and U be a non-empty
Zariski open set of X such that E|U is locally free. Let ψ = (ψω)ω∈Ω be a metric
family of E|U . We say (E,U, ψ) is a birationally adelic torsion free OX-module if it
satisfies the following properties:

(1) There exist a birational morphism µ : X ′ → X of geometrically integral projec-
tive schemes over K such that µ−1(U)→ U is an isomorphism, an adelic vector
bundle (E′, ψ′) on X ′, and an injective morphism of OX′ -modules E → µ∗(E

′)

whose restriction to U gives an isomorphism E|U → µ∗(E
′)|U ∼= E′|µ−1(U).

(2) The isomorphism E|U → E′|µ−1(U) yields an isometry

(E,ψ)|U −→ (E′, ψ′)|µ−1(U) .

By definition, for s ∈ H0(X,E) and each ω ∈ Ω,

‖s‖ψω := sup{|s|ψω (ξ) : ξ ∈ Uan
ω }

exists. Note that ‖.‖ψω is the restriction of ‖.‖ψ′ω to H0(X,E) by using the injective
homomorphism H0(X,E)→ H0(X ′, E′), so that (H0(X,E), (‖.‖ψω )ω∈Ω) is an adelic
vector bundle on S, that is, a birationally adelic torsion free OX -module is sectionally
adelic in the sense of Definition 3.19.

Lemma 3.21. — Let π : X → Y be a continuous map of locally compact Hausdorff
spaces such that π is open and proper. Let f : X → R be a continuous function on X
and f̃ : Y → R be a function on Y given by

f̃(y) = max{f(x) : π(x) = y}.

Then f̃ is continuous on Y .

Proof. — Fix y0 ∈ Y . Since π−1(y0) is compact, for ε > 0, there exist x1, . . . , xn ∈
π−1(y0) and open subsets U1, . . . , Un of X such that

π−1(y0) ⊆ U1 ∪ · · · ∪ Un,

xi ∈ Ui for all i ∈ {1, . . . , n} and |f(x)− f(xi)| 6 ε for all i ∈ {1, . . . , n} and x ∈ Ui.
If we set Z = X \ U1 ∪ · · · ∪ Un, then π(Z) is closed and y0 6∈ π(Z). We choose an
open set W of Y such that y0 ∈W and

W ⊆ π(U1) ∩ · · · ∩ π(Un) ∩ (Y \ π(Z)).

Note that π−1(W ) ⊆ U1 ∪ · · · ∪ Un. Let y ∈W and

λi = sup{f(x) : x ∈ Ui and y = π(x)}.

Then f̃(y) = max{λ1, . . . , λn} and λi − ε 6 f(xi) 6 λi + ε for all i ∈ {1, . . . , n}, so
that

f̃(y)− ε 6 f̃(y0) 6 f̃(y) + ε,

as required.
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Let π : X → Y be a generically finite morphism of geometrically integral projective
schemes over SpecK and (M,U,ψ) be a sectionally adelic torsion free OX -module.
Note that π∗(M) is a torsion free OY -module. The pushforward π∗(ψ) is defined as
follows: We choose a non-empty Zariski open set V of Y such that

π|π−1(V ) : π−1(V ) −→ V

is étale and π−1(V ) ⊆ U . Note that π∗(M) is locally free over V . For y ∈ V an
ω and

s ∈ π∗(M)⊗ κ̂(y), |s|π∗(ψ)ω (y) is defined to be

|s|π∗(ψω)(y) := max{|s|ψω (x) : x ∈ (πan
ω )−1(y)}.

Since π−1(V )an
ω → V an

ω is proper and open (c.f. [2, Lemma 3.2.4]), by Lemma 3.21,
π∗(ψ)ω yields a continuous metric of π∗(M)ω over V an

ω . We denote (π∗(ψ)ω)ω∈Ω by
π∗(ψ). For s ∈ H0(Y, π∗(M)) = H0(X,M), as

sup{|s|π∗(ψ)ω (y) : y ∈ V an
ω } = sup{|s|ψω (x) : x ∈ π−1(V )an

ω },

one has ‖s‖π∗(ψ)ω = ‖s‖ψω < ∞, so that (π∗(M), V, π∗(ψ)) forms a sectionally
adelic torsion free OY -module and (H0(Y, π∗(M)), (‖.‖π∗(ψ)ω )ω∈Ω) is isometric to
(H0(X,M), (‖.‖ψω )ω∈Ω). We call V an open subscheme of definition of π∗(ψ).

4. Volumes of normed graded linear series

In this section, we let k be a commutative field and we denote by |.|0 the trivial
absolute value on k. Recall that |a|0 = 1 for any a ∈ k×. Moreover, S0 = (k, {0}, |.|0)

forms an adelic curve.

4.1. Adelic vector bundle on S0. — Adelic vector bundles on S0 are just finite-
dimensional ultrametrically normed vector space over k. If V = (V, ‖.‖) is an adelic
vector bundle on S0, then the function ‖.‖ only takes finitely many values. Moreover,
if the vector space V is non-zero, then one has (see [13, Remark 4.3.63])

µ̂max(V ) = − min
s∈V \{0}

ln ‖s‖, µ̂min(V ) = −max
s∈V

ln ‖s‖.

The Harder-Narasimhan R-filtration of V is give by

∀ t ∈ R, F t(V ) = {s ∈ V : ‖s‖ 6 e−t}.

Note that

d̂eg+(V ) := sup
W⊂V

d̂eg(W ) =

∫ +∞

0

dimk(F t(V )) dt,

d̂eg(V ) =

∫
R
td dimk(F t(V )) dt.
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4.2. Normed graded algebra. — Let V• =
⊕

n∈N Vn be a graded k-algebra. We
assume that each Vn is a finite-dimensional vector space over k. For any n ∈ N>1, let
‖.‖n be an ultrametric norm on Vn. Then the pair V• = (V•, (‖.‖n)n∈N>1

) is called
a normed graded algebra over (k, |.|0). Let f : N>1 → R>0 be a function. If, for all
` ∈ N>2, (n1, . . . , n`) ∈ N`>1 and (s1, . . . , s`) ∈ Vn1 × · · · × Vn` , one has

‖s1 · · · s`‖n1+···+n` 6 ef(n1)+···+f(n`)‖s1‖n1 · · · ‖s`‖n` , (4.1)

we say that V• is f -sub-multiplicative. In the particular case where f is the constant
function taking value 0, we just say the V• is sub-mutiplicative. If there exists two
constant C1 and C2 such that, for any n ∈ N and any s ∈ Vn \ {0}, one has

eC1n 6 ‖s‖n 6 eC2n, (4.2)

we say that V• is bounded.

Proposition 4.1. — Let V• be a normed graded algebra over (k, |.|0) and f : N>1 →
R>0 be a function such that

lim
n→+∞

f(n)

n
= 0.

Assume that V• is an integral domain and that V• is f -sub-multiplicative and bounded.

(1) For any n ∈ N>1 and any s ∈ Vn, the sequence

‖sN‖1/NnN , N ∈ N, N > 1

converges.
(2) For any n ∈ N>t1, the map

‖.‖sp,n : Vn −→ R>0, s 7−→ lim
N→+∞

‖sN‖1/NnN

is an ultrametric norm on Vn.
(3) The family of norms (‖.‖sp,n)n∈N satisfies the following sub-multiplicativity con-

dition: for any (n,m) ∈ N2 and any (sn, sm) ∈ Vn × Vm,

‖snsm‖sp,n+m 6 ‖sn‖sp,n · ‖sm‖sp,m.

(4) For any n ∈ N>1 and any s ∈ Vn \ {0}, one has

‖s‖sp,n 6 ef(n)‖s‖n. (4.3)

Proof. — (1) It suffices to treat the case where s 6= 0. By (4.1), for ` ∈ N>2, and
(N1, . . . , N`) ∈ N`>1, one has

ln ‖sN1+···+N`‖n(N1+···+N`) 6
∑̀
i=1

ln ‖sNi‖nN1 + f(nNi).

Moreover, by (4.2), the sequence
1

N
ln ‖sN‖nN , N ∈ N, N > 1
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is bounded. Therefore this sequence converges in R (see [9, Proposition 1.3.1]), which
shows that the sequence

‖sN‖1/NnN , N ∈ N, N > 1

converges to a positive real number.
(2) It suffices to show that ‖.‖sp,n satisfies the strong triangle inequality. Let s and

t be two elements of Vn. For any N ∈ N>1, one has

(s+ t)N =

N∑
i=0

(
N

i

)
sitN−i

and hence
‖(s+ t)N‖nN 6 max

i∈{0,...,N}
‖sitN−i‖nN .

Let
M = max

j∈N, j>1

1

j
max{ln ‖sj‖nj , ln ‖tj‖nj , 0}.

Let (εj)j∈N be a sequence of real numbers in [0, 1
2 ] such that

lim
j→+∞

εj = 0, lim
j→+∞

jεj = +∞, lim
j→+∞

(j − jεj) = +∞.

If i/N 6 εN , one has

1

N
ln ‖sitN−i‖nN 6 εNM +

N − i
N

· 1

N − i
ln ‖tN−i‖n(N−i) +

f(ni)

N
+
f(n(N − i))

N
.

Similarly, if (N − i)/N 6 εN , one has

1

N
ln ‖sitN−i‖nN 6

i

N
· 1

i
ln ‖si‖ni + εNM +

f(ni)

N
+
f(n(N − i))

N
.

If NεN < i < N −NεN , one has

1

N
ln ‖sitN−i‖nN 6

i

N
· 1

i
ln ‖si‖ni +

N − i
N

· 1

N − i
ln ‖tN−i‖n(N−i)

+
f(ni)

N
+
f(n(N − i))

N
.

Taking the superior limit when N → +∞, we obtain that

lim sup
N→+∞

max
i∈{0,...,N}

1

N
ln ‖sitN−i‖nN 6 max{‖s‖sp,n, ‖t‖sp,n}.

(3) Let (n,m) ∈ N2 and (sn, sm) ∈ Vn × Vm. For any N ∈ N such that N > 1, one
has

‖(snsm)N‖(n+m)N 6 ef(nN)+f(mN)‖sNn ‖nN · ‖sNm‖mN .
Taking the N -th root and letting N → +∞ we obtain

‖snsm‖sp,n+m 6 ‖sn‖sp,n · ‖sm‖sp,m.

(4) For any N ∈ N>1, the following inequality holds:

‖sN‖nN 6 eNf(n)‖s‖Nn .



22 HUAYI CHEN & ATSUSHI MORIWAKI

Taking the N -th root and then letting N → +∞, we obtain

‖s‖sp,n 6 ef(n)‖s‖n.

4.3. Reminder on graded linear series. — In this subsection, we let k′/k be a
finitely generated extension of fields. As graded linear series of k′/k, we refer to a
graded sub-k-algebra V• of

k′[T ] =
⊕
n∈N

k′Tn

such that V0 = k. We denote by N(V•) the set of n ∈ N such that Vn 6= 0. If V• is a
graded linear series and N(V•) 6= {0}, we denote by k(V•) the sub-extension of k′/k
generated by ⋃

n∈N(V•)\{0}

{f/g | (f, g) ∈ Vn × (Vn \ {0})}

over k. If N(V•) 6= {0}, then we denote by dim(V•) the transcendence degree of
the extension k(V•)/k, and call it the Kodaira-Iitaka dimension of V•. In the case
where Vn = {0} for any n ∈ N>1, by convention dim(V•) is defined to be −∞. If
N(V•) 6= {0} and if the field k(V•) coincides with k′, we say that the graded linear
series V• is birational.

We say that V• is of sub-finite type if there exists a graded linear series W• of
k′/k which is a k-algebra of finite type and contains V• as a sub-k-algebra. By [12,
Theorem 3.7], there exists a graded sub-k-algebra of finite type W• of the polynomial
ring

k(V•)[T ] =
⊕
n∈N

k(V•)T
n

such that k(W•) = k(V•), which contains V• as a sub-k-algebra. In other words, V•
viewed as a graded linear series of k(V•)/k is sub-finite.

Let V• be a graded linear series of sub-finite type, and d be its Kodaria-Iitaka
dimension. If N(V•) 6= {0}, we define the volume of V• as the limit (see [12, Theorem
6.2] for the convergence)

vol(V•) := lim
n∈N(V•), n→+∞

dimk(Vn)

nd/d!
.

Note that V• satisfies the Fujita approximation property, namely, one has

vol(V•) = sup
W•⊂V•

dim(W•)=dim(V•)

vol(W•),

where W• runs over the set of all graded sub-k-algebras of V• such that dim(W•) =

dim(V•).
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4.4. Normed graded series. — In this subsection, we fix a finitely generated
extension k′/k, a graded linear series V• of k′/k which is of sub-finite type, and a
f : N>1 → R>0 such that

lim
n→+∞

f(n)

n
= 0.

Let d be the Kodaira-Iitaka dimension of V•. We assume that d > 0 (namely N(V•) =

{n ∈ N : Vn 6= 0} 6= {0}) and we equip the graded algebra V• with a family of norms
(‖.‖n)n∈N such that V• = (V•, (‖.‖n)n∈N>1

) forms a normed graded algebra which is
f -sub-multiplicative and bounded (see §4.2). For any n ∈ N>1, let ‖.‖sp,n : Vn → R>0

be the map defined as

‖s‖sp,n := lim
N→+∞

‖sN‖1/NnN .

Then (V•, (‖.‖sp,n)n∈N>1
) forms a normed graded algebra which is sub-multiplicative

and bounded. Moreover, we denote by µ̂asy
max(V•) the asymptotic maximal slope of V•,

which is defined as

µ̂asy
max(V•) = − lim

n∈N(V•), n→+∞
min

s∈Vn\{0}

1

n
ln ‖s‖n = lim

n∈N(V•), n→+∞
µ̂max(Vn, ‖.‖n).

Note that the existence of the limite is ensured by the inequality (4.1), which implies
that

µ̂max(Vn1+···+n` , ‖.‖n1+···+n`) >
∑̀
i=1

(
µ̂max(Vni , ‖.‖ni)− f(ni)

)
.

We refer the readers to [9, Corollary 1.3.2] for a proof of the convergence.

Proposition 4.2. — The following equality holds:

µ̂asy
max(V•) = lim

n∈N(V•), n→+∞

1

n
µ̂max(Vn, ‖.‖sp,n).

Proof. — By Proposition 4.1, one has

‖.‖sp,n 6 ef(n)‖.‖n

and hence for n ∈ N(V•) the following inequality holds

µ̂max(Vn, ‖.‖sp,n) > µ̂max(Vn, ‖.‖n)− f(n).

This implies

lim
n∈N(V•), n→+∞

1

n
µ̂max(Vn, ‖.‖sp,n) > lim

n∈N(V•), n→+∞

1

n
µ̂max(Vn, ‖.‖n).

Conversely, for any fixed n ∈ N(V•) and s ∈ Vn \ {0} such that

ln ‖s‖sp,n = −µ̂max(Vn, ‖.‖sp,n),
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one has

µ̂asy
max(V•) = lim

N→+∞

1

nN
µ̂max(VnN , ‖.‖nN )

> lim
N→+∞

−1

nN
ln ‖sN‖nN = − 1

n
ln ‖s‖sp,n =

1

n
µ̂max(Vn, ‖.‖sp,n).

Taking the limit when n→ +∞, we obtain

µ̂asy
max(V•) > µ̂

asy
max(V•, (‖.‖sp,n)n∈N>1

).

Definition 4.3. — We define the arithmetic volume of V• as (see §2.4 for the defi-
nition of d̂eg+)

v̂ol(V•) := lim sup
n∈N(V•), n→+∞

d̂eg+(Vn, ‖.‖n)

nd+1/(d+ 1)!
. (4.4)

Theorem 4.4. — The superior limit in the formula (4.4) defining the arithmetic
volume function is actually a limite. Moreover, the following equalities hold:

v̂ol(V•) = lim
n∈N(V•), n→+∞

d̂eg+(Vn, ‖.‖sp,n)

nd+1/(d+ 1)!
= (d+ 1)

∫ +∞

0

vol(V t• ) dt,

where for t ∈ R,

V t• := k ⊕
⊕

n∈N, n>1

Vectk({s ∈ Vn : ‖s‖sp,n 6 e−nt}).

Proof. — By replacing k′ by k(V•), we may assume that the graded linear series V• is
birational. For simplifying the notation, we let M be the asymptotic maximal slope
of V•. Note that M is also the asymptotic maximal slope of (V•, (‖.‖sp,n)n∈N) (see
Proposition 4.2). Moreover, since V• is bounded, there exists a constant A > 0 such
that ‖s‖n 6 enA for any n ∈ N>1 and any s ∈ Vn.

By the same argument as the proof of [12, Proposition 6.6], we obtain that, for any
t < M , one has k(V t• ) = k(V•). Moreover, for any t > M and any n ∈ N>1, one has
V tn = 0. Therefore, combining the construction of Newton-Okounkov bodies in [11,
Theorem 1.1] and that of the concave transform developed in [5, §1.3], we obtain, in
a similar way as [5, Corollary 1.13] that

v̂ol(V•, (‖.‖sp,n)n∈N>1
) = lim

n∈N(V•), n→+∞

d̂eg+(Vn, ‖.‖sp,n)

nd+1/(d+ 1)!
= (d+ 1)

∫ +∞

0

vol(V t• ) dt.

Moreover, by (4.3) we obtain that

d̂eg+(Vn, ‖.‖sp,n) > d̂eg+(Vn, ‖.‖n)− dimk(Vn)f(n),

which leads to

lim sup
n∈N(V•), n→+∞

d̂eg+(Vn, ‖.‖n)

nd+1/(d+ 1)!
6 v̂ol(V•, (‖.‖sp,n)n∈N>1

)
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since dimk(Vn) = O(nd) when n ∈ N(V•), n→ +∞.
Let ε be an element of ]0,M [, t be an element of [ε,M [. LetW t

• be a graded sub-k-
algebra of finite type of V t• , which is generated by a family of homogeneous elements
s1, . . . , s` of homogeneous degrees n1, . . . , n` respectively. For any i ∈ {1, . . . , `}, there
exists ai ∈ N>1 such that the inequalities

‖sNi ‖niN 6 eniNε/2‖si‖Nsp,ni 6 eniN(ε/2−t) (4.5)

hold for any integer N > ai. Therefore, by the inequality (4.1) we obtain that, for
any (N1, . . . , N`) ∈ N`>1, one has

ln ‖sN1
1 · · · s

N`
` ‖n1N1+···+n`N` 6

∑̀
i=1

(
ln ‖sNii ‖niNi + f(niNi)

)
.

By (4.5), we obtain that

ln ‖sN1
1 · · · s

N`
` ‖n1N1+···+n`N` 6

∑
i∈{1,...,`}
Ni>ai

niNi

(ε
2
− t
)

+
∑

i∈{1,...,`}
Ni<ai

niNiA

6
(ε

2
− t
)∑̀
i=1

ni(Ni − ai) +
∑̀
i=1

niaiA 6
(ε

2
− t
)∑̀
i=1

niNi +
∑̀
i=1

niai(A+M).

Therefore, for (N1, . . . , N`) ∈ N`>1 such that n1N1 + · · · + n`N` is sufficiently large,
one has

‖sN1
1 · · · s

N`
` ‖n1N1+···+n`N` 6 e(ε−t)(n1N1+···+n`N`).

In particular, for n ∈ N(V•) sufficiently large, one has W t
n ⊂ F (t−ε)n(Vn, ‖.‖n), which

leads to

lim inf
n∈N(V•), n→+∞

dimk(F (t−ε)n(Vn, ‖.‖n))

nd/d!
> vol(W t

• ).

Taking the supremum when W t
• varies, by the Fujita approximation property of V t•

we obtain that

lim inf
n∈N(V•), n→+∞

dimk(F (t−ε)n(Vn, ‖.‖n))

nd/d!
> vol(V t• ). (4.6)

Note that

d̂eg+(Vn, ‖.‖n) =

∫ +∞

0

dimk(F t(Vn, ‖.‖n)) dt = n

∫ +∞

0

dimk(Fnt(Vn, ‖.‖n)) dt

> n
∫ M

ε

dimk(Fn(t−ε)(Vn, ‖.‖n)) dt.

Taking the integral with respect to t, by Fatou’s lemma we deduce from (4.6) that

lim inf
n∈N(V•),n→+∞

d̂eg+(Vn, ‖.‖n)

nd+1/(d+ 1)!
> lim inf
n∈N(V•), n→+∞

(d+ 1)!

nd

∫ M

ε

dimk(Fn(t−ε)(Vn, ‖.‖n))

> (d+ 1)

∫ M

ε

vol(V t• ) dt = (d+ 1)

∫ +∞

ε

vol(V t• ).
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Finally, taking the supremum with respect to ε, we obtain the inequality

lim inf
n∈N(V•),n→+∞

d̂eg+(Vn, ‖.‖n)

nd+1/(d+ 1)!
> v̂ol(V•, (‖.‖sp,n)n∈N>1

).

The theorem is thus proved.

Corollary 4.5. — The sequences

d̂eg(Vn, ‖.‖n)

nd+1/(d+ 1)!
, n ∈ N(V•)

and
d̂eg(Vn, ‖.‖sp,n)

nd+1/(d+ 1)!
, n ∈ N(V•)

converge to the same real number, which is equal to

−
∫
R
td vol(V t• ).

Proof. — Let A be a positive constant such that ‖s‖n 6 enA for any n ∈ N>1 and any
s ∈ Vn. For any n ∈ N>1, let ‖.‖′n = e−nA‖.‖n. Then, (V•, (e

−nA‖.‖n)n∈N>1
) forms

a normed graded algebra over (k, |.|0), which is f -sub-multiplicative and bounded.
Moreover, for any n ∈ N>1, one has

d̂eg(Vn, ‖.‖′n) = d̂eg+(Vn, ‖.‖′n) = nA dimk(Vn) + d̂eg(Vn, ‖.‖n),

where the first equality comes from the fact that the image of ‖.‖′n is contained in
[0, 1]. For any n ∈ N one has

‖.‖′sp,n = e−nA‖.‖sp,n.

By (4.3), for any n ∈ N>1 and any s ∈ Vn, one has

∀N ∈ N>1, ‖s‖sp,n = ‖sN‖1/Nsp,nN 6 ef(nN)/N‖sN‖1/NnN 6 ef(nN)/N+nA.

Taking the limite when N → +∞, we obtain ‖s‖sp,n 6 enA and hence ‖.‖′sp,n also
takes value in [0, 1]. Therefore, for any n ∈ N>1, one has

d̂eg(Vn, ‖.‖′sp,n) = d̂eg+(Vn, ‖.‖′sp,n) = nAdimk(Vn) + d̂eg(Vn, ‖.‖sp,n),

Hence Theorem 4.4 leads to the convergence of the sequences

d̂eg(Vn, ‖.‖n) + nAdimk(Vn)

nd+1/(d+ 1)!
, n ∈ N(V•)

and
d̂eg(Vn, ‖.‖sp,n) + nAdimk(Vn)

nd+1/(d+ 1)!
, n ∈ N(V•)
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to the same limite, which is equal to

(d+ 1)

∫ +∞

0

vol(V t−A• ) dt = (d+ 1)

∫ +∞

−A
vol(V t• ) dt

= A(d+ 1) vol(V•)−
∫
R
td vol(V t• ),

where the last equality comes from the fact that V t• = V• when t 6 −A. By the
formula

lim
n∈N(V•), n→+∞

dimk(Vn)

nd/d!
= vol(V•),

we obtain the assertion.

Definition 4.6. — We define the χ-volume of the normed graded linear series V•
as

v̂olχ(V•) = lim
n∈N(V•), n→+∞

d̂eg(V, ‖.‖n)

nd+1/(d+ 1)!
.

By Corollary 4.5, we obtain that v̂olχ(V•) = v̂olχ(V•, (‖.‖sp,n)n∈N>1
).

5. Arithmetic volumes over a general adelic curve

In this section, we use the results of the previous section to study the volume func-
tions of a normed graded algebra over a general adelic curve. Let S = (K, (Ω,A, ν), φ)

be the adelic curve defined in §2.1. We let |.|0 be the trivial absolute value on K, and
denote by S0 = (K, {0}, |.|0) the adelic curve consisting of a single copy of the trivial
absolute value |.|0 on K.

5.1. Graded algebra of adelic vector bundles. — In this subsection, we con-
sider basic facts on graded algebras of adelic vector bundles.

Definition 5.1. — Let E• =
⊕

n∈NEn be a graded K-algebra. We assume that
each vector space En is finite-dimensional overK. For any n ∈ N, let ξn = (‖.‖n,ω)ω∈Ω

be a norm family on En such that En = (En, ξn) forms an adelic vector bundle on S.
We call E• = (En)n∈N a graded algebra of adelic vector bundles on S. For any n ∈ N
such that n > 1, let (F t(En))t∈R be the Harder-Narasimhan R-filtration of Vn (see
§2.5). We denote by ‖.‖HN

n the norm on En (viewed as a vector space over (K, |.|0))
defined as

∀ s ∈ En, ‖s‖HN
n = exp

(
− sup{t ∈ R : s ∈ F t(En)}

)
.

Then, the couple (E•, (‖.‖HN
n )n∈N>1

) forms a normed graded algebra over (K, |.|0)

(see §4.2). Moreover if we view (En, ‖.‖HN
n ) as an adelic vector bundle on S0, then its
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Harder-Narasimhan filtration coincides with that of (En, ‖.‖n). In particular, by the
results recalled in §2.5, the following estimates holds:

0 6 d̂eg(En, ‖.‖n)− d̂eg(En, ‖.‖HN
n ) 6

1

2
ν(Ω∞) dimK(En) ln(dimK(En)), (5.1)

0 6 d̂eg+(En, ‖.‖n)− d̂eg+(En, ‖.‖HN
n ) 6

1

2
ν(Ω∞) dimK(En) ln(dimK(En)). (5.2)

Let b = (bn)n∈N>1
be a sequence of non-negative integrable functions on (Ω,A, ν).

We say that a graded algebra of adelic vector bundles E• is b-sub-multiplicative if for
all ω ∈ Ω, ` ∈ N>2, (n1, . . . , n`) ∈ N`>1 and (s1, . . . , s`) ∈ En1,ω × · · · × En`,ω, the
following inequality holds

‖s1 · · · s`‖n1+···+n`,ω 6 ebn1 (ω)+···+bn` (ω)‖s1‖n1,ω · · · ‖s`‖n`,ω. (5.3)

If for any n, bn is the constant function taking 0 as its value, we simply say that E•
is sub-multiplicative.

Proposition 5.2. — Assume that the field K is perfect. Let b = (bn)n∈N>1
be a

sequence of non-negative integrable functions on (Ω,A, ν), and E• be a graded algebra
of adelic vector bundles on S, which is b-sub-multiplicative. Let f : N>1 → R>0 be
the function defined as

f(n) =
3

2
ν(Ω∞) ln(dimK(En)) +

∫
Ω

bn(ω) ν(dω).

Then the normed graded algebra (E•, (‖.‖HN
n )n∈N>1

) is f -sub-multiplicative.

Proof. — Let ` ∈ N>1 and (n1, . . . , n`) ∈ N`>1. For any i ∈ {1, . . . , `}, let Fni be a
K-vector subspace of Eni . For any ω ∈ Ω, we consider the Kω-linear map

Fn1,ω ⊗ · · · ⊗ Fn`,ω −→ En1+···+n`,ω

induced by the K-algebra structure of E•. If we equip with Fn1,ω ⊗ · · · ⊗ Fn`,ω with
the ε-tensor product of the norms ‖.‖n1,ω, . . . , ‖.‖n`,ω when |.|ω is non-Archimedean,
and with the π-tensor product when |.|ω is Archimedean, then the operator norm of
the above map is bounded from above by exp(bn1(ω) + · · · + bn`(ω)). Moreover, by
[13, Corollary 5.6.2] (although this result has been stated under the assumption that
char(K) = 0, this assumption is only used in the application of Theorem 5.4.3 of [13],
which actually applies to any perfect field), one has

µ̂min(Fn1
⊗ε,π · · · ⊗ε,π Fn`) >

∑̀
i=1

(
µ̂min(Fni)−

3

2
ν(Ω∞) ln(Eni)

)
.

Let Fn1+···+n` be the image of the map By [13, Proposition 4.3.31], we obtain that

µ̂min(Fn1+···+n`) >
∑̀
i=1

(
µ̂min(Fni)−

3

2
ν(Ω∞) ln(Eni)−

∫
Ω

bni(ω) ν(dω)
)
. (5.4)
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Therefore, we obtain that, for any (t1, . . . , t`) ∈ R`, one has

F t1(En1
) · · · F t`(En`) ⊂ F t1+···+t`−f(n1)−···−f(n`)(En1+···+n`),

which shows that the normed graded algebra (E•, (‖.‖HN
n )n∈N>1

) is f -sub-multiplicative.

Corollary-Definition 5.3. — Assume that the field K is perfect. Let b = (bn)n∈N>1

be a sequence of non-negative integrable functions on (Ω,A, ν) such that

lim
n→+∞

1

n

∫
Ω

bn(ω) ν(dω) = 0.

Let E• be a graded algebra of adelic vector bundles on S, which is b-sub-multiplicative.
Denote by N(E•) the set of n ∈ N such that En 6= 0. Assume that

(1) E• is isomorphic to a graded linear series of sub-finite type of a finitely generated
extension of K, which is of Kodaira-Iitaka dimension d > 0,

(2) there exists C > 0 such that, for any n ∈ N(E•),

−Cn 6 µ̂min(En) 6 µ̂max(En) 6 Cn.

Then the sequences
d̂eg(En)

nd+1/(d+ 1)!
, n ∈ N(E•)

and
d̂eg+(En)

nd+1/(d+ 1)!
, n ∈ N(E•)

converge to two real numbers v̂olχ(E•) and v̂ol(E•), which we call χ-volume and
volume of E•, respectively.

Proof. — These results follow from Proposition 5.2, Theorem 4.4, Corollary 4.5 and
the comparisons (5.1), (5.2) and the convergence of the sequence

dimK(En)

nd/d!
, n ∈ N(E•).

Remark 5.4. — Assume that the fieldK is perfect. Let b = (bn)n∈N>1
be a sequence

of non-negative integrable functions on (Ω,A, ν) such that

lim
n→+∞

1

n

∫
Ω

bn(ω) ν(dω) = 0.

Let E• be a graded algebra of adelic vector bundles on S, which is b-sub-multiplicative.
We assume that n1, . . . , n` are elements of N(E•) \ {0} such that

K ⊕
⊕

n∈N, n>1

En
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is generated as K-algebra by En1
∪ · · · ∪ En` . By (5.4) we obtain that, for any

(a1, . . . , a`) ∈ N` \ {(0, . . . , 0)}, the canonical image of

E⊗a1n1
⊗ · · · ⊗ E⊗a`n`

in Ea1n1+···+a`n` has a minimal slope

>
∑̀
i=1

ai

(
µ̂min(Ei)−

3

2
ν(Ω∞) ln(Eni)−

∫
Ω

bni(ω) ν(dω)

)
.

Therefore we deduce that, for any n ∈ N(E•)\{0}, the minimal slope of En is bounded
from below by

min
(a1,...,a`)∈N`

n=a1n1+···+a`n`

∑̀
i=1

ai

(
µ̂min(Ei)−

3

2
ν(Ω∞) ln(Eni)−

∫
Ω

bni(ω) ν(dω)

)
.

Hence there exists C > 0 such that µ̂min(En) > −Cn holds for any n ∈ N(E•).

5.2. Arithmetic χ-volumes of adelic line bundles. — In this subsection, we
introduce the arithmetic χ-volume of an adelic line bundle.

Theorem-Definition 5.5. — Let p : X → SpecK be a geometrically integral pro-
jective scheme over SpecK, d be the dimension of X, and L = (L,ϕ) be an adelic
line bundle on X. Assume that L is big and the graded K-algebra⊕

n∈N
H0(X,L⊗n)

is of finite type. We denote the adelic vector bundle
(
H0(X,L⊗n), (‖.‖nϕω )ω∈Ω

)
over

S by p∗(L⊗n). Then the sequence

d̂eg(p∗(L
⊗n))

nd+1/(d+ 1)!
, n ∈ N, n > 1 (5.5)

converges to a real number, which we denote by v̂olχ(L) and which we call the χ-
volume of L.

Proof. — Let Kpc be the perfect closure of K. Recall that, if Kac denotes the alge-
braic closure of K, then Kpc is the intersection of all subfields of Kac containing K
which are perfect fields. Note that Kpc/K is a purely inseparable algebraic extension
of K. Therefore, for any ω ∈ Ω, the absolute value |.|ω extends in a unique way to
Kpc/K. In other words, the measure space in the adelic curve structure of S⊗K Kpc

coincides with (Ω,A, ν).
For any n ∈ N, let

En = H0(X,L⊗n)⊗K Kpc = H0(XKpc , L⊗nKpc).
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The norm family of p∗(L
⊗n

) induces by extension of scalars a norm family on En,
which we denote by ξn. By [13, Proposition 4.3.14], the equality

d̂eg(En, ξn) = d̂eg(p∗(L
⊗n))

holds. Moreover,
E• =

⊕
n∈N

En

is a graded Kpc-algebra of finite type, which is isomorphic to a graded linear series of
the function field of XKpc over Kpc. As a graded Kpc-algebra of adelic vector bundles
on S ⊗K Kpc, E• = (En)n∈N is sub-multiplicative. By [13, Proposition 6.2.7], we
obtain, following the proof of [13, Proposition 6.4.4], that the sequence

µ̂max(En)

n
, n ∈ N, n > 1

is bounded from above. Therefore the assertion follows from Corollary-Definition 5.3
(see also Remark 5.4).

Remark 5.6. — Under the notation and the assumption of the above theorem-
definition, the following relation holds

lim
n→+∞

d̂eg(p∗(L
⊗n))

ndimK(H0(X,L⊗n))
=

v̂olχ(L)

(d+ 1) vol(L)
.

5.3. Normed graded module. — Let R• = (Rn)n∈N be a graded algebra of adelic
vector bundles on S, where Rn = (Rn, (‖.‖n,ω)ω∈Ω). LetM• =

⊕
n∈NMn be a graded

module over R• =
⊕

n∈NRn. If each Mn is a finite-dimensional vector space over K
and is equipped with a norm family (‖.‖Mn,ω)ω∈Ω such that Mn = (Mn, (‖.‖Mn,ω)ω∈Ω)

is an adelic vector bundle on S, we say that M• = (Mn)n∈N is a graded R•-module of
adelic vector bundles on S.

Assume that R• is sub-multiplicative (see Definition 5.1). If, for all (n,m) ∈ N2,
ω ∈ Ω and (a, s) ∈ Rn,ω ×Mm,ω, one has

‖as‖Mn+m,ω 6 ‖a‖n,ω · ‖s‖Mm,ω,

we say that M• is sub-multiplicative.

Lemma 5.7. — Let M• = ((Mn, ξMn
))n∈N be a graded R•-module of adelic vector

bundle on S. Let Q =
⊕∞

n=0Qn be a graded quotient R-module of M , that is, Qn is a
quotient vector space of Mn over K for all n and a`· : Mn →Mn+` induces by passing
to quotient a`· : Qn → Qn+` for a` ∈ R`. Let ξQn be the quotient norm family of Qn
induced by Mn → Qn and ξMn

. Then Q• = ((Qn, ξQn))n∈N is a graded R•-algebra.

Proof. — Assume that ξMn
and ξQn are of the form (‖.‖Mn,ω)ω∈Ω and (‖.‖Qn,ω)ω∈Ω,

respectively. Let (n, n′) ∈ N2, ω ∈ Ω, a ∈ Rn,ω and q ∈ Qn′,ω. For any s ∈ Mn′,ω
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which represents the class q ∈ Qn′,ω, one has

‖aq‖Qn+n′,ω 6 ‖as‖
M
n+n′,ω 6 ‖a‖n,ω · ‖s‖Mn′,ω.

Taking the infimum with respect to s, we obtain

‖aq‖Qn+n′,ω 6 ‖a‖n,ω · ‖s‖
Q
n′,ω,

as required.

Proposition 5.8. — Suppose that R• is a K-algebra of finite type. Let M• =

((Mn, ξMn
))n∈N be a graded R•-module of adelic vector bundle on S, such that M• is

an R•-module of finite type. Suppose that

lim inf
n→∞

dimK(Mn)

nd
= 0

for some non-negative integer d, then

lim inf
n→∞

d̂eg(Mn, ξMn
)

nd+1
> 0.

Proof. — Let x1, . . . , xr be homogeneous elements of R which generate R as K-
algebra. We choose non-zero homogeneous elements m1, . . . ,m` of M such that M
is generated by m1, . . . ,m` over R. We set ei = deg(xi) and fi = deg(mi) for
i ∈ {1, . . . , r}. For α = (a1, . . . , ar) ∈ Nr, we denote xa11 · · ·xarr by xα. If we set
dn = dimK(Mn), then, for n > max{f1, . . . , fr}, we can find α1, . . . , αdn ∈ Nr and
mi1 , . . . ,midn

∈ {m1, . . . ,m`} such that xα1mi1 , . . . , x
αdnmidn

form a basis of Mn.
Note that

‖(xα1mi1) ∧ · · · ∧ (xαdnmidn
)‖Mn,ω,det 6 ‖xα1mi1‖Mn,ω · · · ‖xαdnmidn

‖Mn,ω
6 ‖xα1‖n−fi1 ,ω · · · ‖x

αdn ‖n−fidn ,ω · ‖mi1‖Mfi1 ,ω · · · ‖midn
‖Mfidn ,ω

6 max{1, ‖x1‖e1,ω, . . . , ‖xr‖er,ω}ndn max{1, ‖m1‖Mf1,ω, . . . , ‖m`‖Mf`,ω}
dn ,

so that

d̂eg(Mn, ξMn
) > ndn

∫
Ω

min{0,− ln ‖x1‖e1,ω, . . . ,− ln ‖xr‖er,ω} ν(dω)

+ dn

∫
Ω

min{0,− ln ‖m1‖Mf1,ω, . . . ,− ln ‖m`‖Mf`,ω} ν(dω).

Thus the assertion follows.

6. Bounds of χ-volume with auxiliary torsion free module

Let us begin with the following lemma.

Lemma 6.1. — Let X be an integral projective scheme over a field k, L be an
invertible OX-module and F be a coherent OX-module. We assume that there exist
a surjective morphism f : X → Y of integral projective schemes over k and an
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ample invertible OY -module A such that f∗(A) = L. Then R =
⊕∞

n=0H
0(X,L⊗n)

is a finitely generated algebra over k and M =
⊕∞

n=0H
0(X,F ⊗ L⊗n) is a finitely

generated R-module.

Proof. — By [20, §1.8], there exist positive integers d and n0 such that

H0(Y,A⊗d)⊗H0(Y,A⊗n ⊗ f∗(F )) −→ H0(Y,A⊗(d+n) ⊗ f∗(F ))

is surjective for all n > n0, and hence

H0(X,L⊗d)⊗H0(X,L⊗n ⊗ F )→ H0(X,L⊗(d+n) ⊗ F )

is surjective for all n > n0 because f∗(L
⊗n) = A⊗n ⊗ f∗(OX), f∗(L⊗n ⊗ F ) =

A⊗n ⊗ f∗(F ), OY ⊆ f∗(OX). Thus, by the arguments in [20, §1.8], one can see the
assertion.

In the rest of the section, let p : X → SpecK be a d-dimensional geometrically
integral projective variety over K. Let L = (L,ϕ) be an adelic invertible OX -module.
Let E be a torsion free OX -module and U be a non-empty Zariski open set of X
such that E is locally free over U . Let ψ = (ψω)ω∈Ω be a metric family of E|U . We
assume that (L⊗n ⊗E,U, nϕ+ψ) is a sectionally adelic torsion free OX -module (see
Definition 3.19) for all n ∈ N. Note that, if the sectional algebra

⊕
n∈NH

0(X,L⊗n)

is of finite type over K (this condition is true notably when L satisfies the hypothesis
of Lemma 6.1), by Theorem-Definition 5.5, the sequence

d̂eg(p∗(L
⊗n))

nd+1/(d+ 1)!
, n ∈ N, n > 1

converges to a real number denoted by v̂olχ(L).

Theorem 6.2. — If there are a birational morphism f : X → Z of geometrically
integral projective schemes over SpecK and an ample invertible OZ-module A such
that L = f∗(A), then the following inequality holds:

rk(E) v̂olχ(L) 6 lim inf
n→∞

d̂eg(p∗(L
⊗n ⊗ E))

nd+1/(d+ 1)!
.

Proof. — Let r be the rank of E. Note that p∗(L⊗n ⊗ E) forms an adelic vector
bundle over S for any n ∈ N. For a sufficiently large positive integer n0, shrinking U
if necessarily, we can find e1, . . . , er ∈ H0(X,L⊗n0 ⊗ E) such that e1, . . . , er yield a
basis of L⊗n0 ⊗ E over U . Indeed, there is a positive integer n0 such that

H0(Z,A⊗n0 ⊗ f∗(E))⊗OZ −→ A⊗n0 ⊗ f∗(E)

is surjective, and hence

H0(X,L⊗n0 ⊗ E)⊗OX −→ L⊗n0 ⊗ E
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is surjective on some non-empty Zariski open subset of X. Thus the assertion follows.
Let O⊕rX → L⊗n0 ⊗ E be the homomorphism given by

(a1, . . . , ar) 7−→ a1e1 + · · ·+ arer.

Let Q be the cokernel of O⊕rX → L⊗n0 ⊗ E. The sequence

0 −→ O⊕rX −→ L⊗n0 ⊗ E −→ Q −→ 0

is exact, and so is

0 −→ (L⊗n)⊕r −→ L⊗n+n0 ⊗ E −→ L⊗n ⊗Q −→ 0.

Thus

0 −→ H0(X,L⊗n)⊕r −→ H0(X,L⊗n+n0 ⊗ E) −→ H0(X,L⊗n ⊗Q)

is also exact for all n > 0. Let Qn be the image of

H0(X,L⊗n+n0 ⊗ E) −→ H0(X,L⊗n ⊗Q).

We equip H0(X,L⊗n+n0 ⊗ E) with the norm family

ξ(n+n0)ϕ+ψ = (‖.‖(n+n0)ϕω+ψω )ω∈Ω.

Let ξLn = (‖.‖Ln,ω)ω∈Ω be its restricted norm family on H0(X,L⊗n)⊕r induced by the
injection

H0(X,L⊗n)⊕r −→ H0(X,L⊗n+n0 ⊗ E).

Let ξQn = (‖.‖Qn,ω)ω∈Ω be its quotient family on Qn induced by the surjection

H0(X,L⊗n+n0 ⊗ E) −→ Qn.

Then, by [13, Proposition 4.3.13, (4.26)],

d̂eg(H0(X,L⊗n)⊕r, ξLn ) + d̂eg(Qn, ξ
Q
n ) 6 d̂eg(H0(X,L⊗n+n0 ⊗ E), ξ(n+n0)ϕ+ψ).

Since dim Supp(Q) < dimX, by Proposition 5.8,

lim inf
n→∞

d̂eg(Qn, (‖.‖Qn,ω)ω∈Ω)

nd+1
> 0.

Therefore, by the super-additivity of inferior limit, we obtain

lim inf
n→∞

d̂eg(H0(X,L⊗n)⊕r, ξLn )

nd+1/(d+ 1)!
6 lim inf

n→∞

d̂eg(p∗(L
⊗n ⊗ E))

nd+1/(d+ 1)!
. (6.1)

Let us consider the homomorphism of identity

(H0(X,L⊗n)⊕r, (‖.‖⊕rnϕω )ω∈Ω) −→ (H0(X,L⊗n)⊕r, (‖.‖Ln,ω)ω∈Ω),

where

‖(s1, . . . , sr)‖⊕rnϕω =


max

i∈{1,...,r}
‖si‖nϕω if ω ∈ Ω \ Ω∞,

(‖s1‖2nϕω + · · ·+ ‖sr‖2nϕω )1/2 if ω ∈ Ω∞.
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If ω ∈ Ω \ Ω∞, then

‖(s1, . . . , sr)‖Ln,ω 6 ‖s1e1 + · · ·+ srer‖(n+n0)ϕω+ψω

6 max
i∈{1,...,r}

‖si‖nϕω‖ei‖n0ϕω+ψω

6 ‖(s1, . . . , sr)‖⊕rnϕω
(

max
i∈{1,...,r}

‖ei‖n0ϕω+ψω

)
.

Moreover, if ω ∈ Ω∞, then by Cauchy-Schwarz inequality

‖(s1, . . . , sr)‖Ln,ω 6 ‖s1e1 + · · ·+ srer‖(n+n0)ϕω+ψω

6
∑r

i=1
‖si‖nϕω‖ei‖n0ϕω+ψω

6
(∑r

i=1
‖si‖nϕω

)(
max

i∈{1,...,r}
‖ei‖n0ϕω+ψω

)
6
√
r‖(s1, . . . , sr)‖⊕rnϕω max

i∈{1,...,r}
‖ei‖n0ϕω+ψω .

Therefore,

h(fn) 6
∫

Ω

max
i∈{1,...,r}

log ‖ei‖n0ϕω+ψων(dω) +
1

2
log(r) vol(Ω∞),

and hence, by [13, Proposition 4.3.18],

r d̂eg(H0(X,L⊗n), ξnϕ) = d̂eg(H0(X,L⊗n)⊕r, ξ⊕rnϕ)

6 d̂eg(H0(X,L⊗n)⊕r, ξLn )+

r dimkH
0(X,L⊗n)

(∫
Ω

max
i∈{1,...,r}

log ‖ei‖n0ϕω+ψω ν(dω) +
1

2
log(r) vol(Ω∞)

)
,

where
ξnϕ = (‖.‖nϕω )ω∈Ω, ξ⊕rnϕ = (‖.‖⊕rnϕω )ω∈Ω.

Thus,

r v̂olχ(L) 6 lim inf
n→∞

d̂eg(H0(X,L⊗n)⊕r, ξLn )

nd+1/(d+ 1)!
.

Combining this inequality with (6.1), we obtain the assertion.

Corollary 6.3. — Let π : Y → X be a generically finite morphism of geometrically
integral projective varieties over K, L = (L,ϕ) be an adelic invertible OX-module and
M = (M,ψ) be an adelic invertible OY -module. If there are a birational morphism
f : X → Z of geometrically integral projective varieties over K and an ample invertible
OZ-module A such that L = f∗(A), then

deg(π) v̂olχ(L) 6 lim inf
n→∞

d̂eg
(
(p◦π)∗(π

∗(L)⊗n ⊗M)
)

nd+1/(d+ 1)!
.

In particular, deg(π) v̂olχ(L) 6 v̂olχ(π∗(L)).
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Proof. — Since π∗(L⊗n)⊗M is an adelic invertible OY -module, one can see that

(L⊗n ⊗ π∗(M), π∗(nπ
∗(ϕ) + ψ))

is sectionally adelic for all n > 0 (see the last paragraph of Section 3). Note that

π∗(nπ
∗(ϕ) + ψ) = nϕ+ π∗(ψ) and rk(π∗M) = deg(π).

Thus, by Theorem 6.2,

deg(π) v̂olχ(L) 6 lim inf
n→+∞

d̂eg(H0(X,L⊗n ⊗ π∗(M)), (‖.‖nϕω+π∗(ψ)ω )ω∈Ω)

nd+1/(d+ 1)!
.

Moreover,
(H0(X,L⊗n ⊗ π∗(M)), (‖.‖nϕω+π∗(ψ)ω )ω∈Ω)

is isometric to
(H0(Y, π∗(L⊗n)⊗M), (‖.‖nπ∗ω(ϕω)+ψω )ω∈Ω).

Thus we obtain the required inequality.

Theorem 6.4. — Let L = (L,ϕ) be an adelic invertible OX-module and E =

(E,U, ψ) be a birationally adelic torsion free OX-module. We assume that there are a
birational morphism f : X → Z of geometrically integral projective varieties over K
and an ample invertible OZ-module A with L = f∗(A). If either (E,ψ) is an adelic
invertible OX-module or X is normal, then the sequence

d̂eg(p∗(L
⊗n ⊗ E))

nd+1/(d+ 1)!
, n ∈ N, n > 1

is convergent to rk(E) v̂olχ(L).

Proof. — In view of Theorem 6.2, it suffices to establish the following inequality

lim sup
n→∞

d̂eg(p∗(L
⊗n ⊗ E))

nd+1/(d+ 1)!
6 rk(E) v̂olχ(L).

First we assume that (E,ψ) is an adelic invertible OX -module. Let us begin with the
following claim:

Claim 6.5. — One has the following inequality:

lim sup
n→∞

d̂eg(p∗(L
⊗n ⊗ E))

nd+1/(d+ 1)!
6 lim sup

n→∞

d̂eg(p∗(L
⊗(n+n0)))

nd+1/(d+ 1)!

for some positive integer n0.

Proof. — Since L is nef and big, we can choose a positive integer n0 and s0 ∈
H0(X,L⊗n0 ⊗ E∨) \ {0}. Note that s0 gives rise to an injective homomorphism

H0(X,L⊗n ⊗ E) −→ H0(X,L⊗(n+n0)).
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Let ξsub,n = (‖.‖sub,n,ω)ω∈Ω be the restricted norm family of H0(X,L⊗n⊗E) induced
by the above injective homomorphism and ξ(n+n0)ϕ = (‖.‖(n+n0)ϕω )ω∈Ω. In order to
show Claim 6.5, it is sufficient to see the following two inequalities:

lim sup
n→∞

d̂eg(H0(X,L⊗n ⊗ E), ξsub,n)

nd+1/(d+ 1)!
6 lim sup

n→∞

d̂eg(H0(X,L⊗(n+n0)), ξ(n+n0)ϕ)

nd+1/(d+ 1)!

and

lim sup
n→∞

d̂eg(p∗(L
⊗n ⊗ E))

nd+1/(d+ 1)!
6 lim sup

n→∞

d̂eg(H0(X,L⊗n ⊗ E), ξsub,n)

nd+1/(d+ 1)!
.

The first inequality is a consequence of Lemma 5.7, Proposition 5.8, [15, Lemma
1.2.16] and [13, Proposition 4.3.13, (4.26)]. Let us consider the homomorphism of
identity

f :
(
H0(X,L⊗n ⊗ E), (‖.‖nϕω+ψω )ω∈Ω

)
−→

(
H0(X,L⊗n ⊗ E), ξsub,n

)
.

For s ∈ H0(X,E ⊗ L⊗n) \ {0},

‖s‖sub,n,ω

‖s‖nϕω+ψω

=
‖ss0‖(n+n0)ϕω

‖s‖nϕω+ψω

6
‖s‖nϕω+ψω‖s0‖n0ϕω−ψω

‖s‖nϕω+ψω

= ‖s0‖n0ϕω−ψω ,

so that ‖f‖ω 6 ‖s0‖n0ϕω−ψω . Therefore, by [13, Proposition 4.3.18],

d̂eg(H0(X,L⊗n ⊗ E), (‖.‖nϕω+ψω )ω∈Ω) 6 d̂eg(H0(X,L⊗n ⊗ E), ξsub,n)

+ dimH0(X,L⊗n ⊗ E)

∫
Ω

log ‖s0‖n0ϕω−ψων(dω).

Thus the second inequality follows.

By Lemma 6.1, Theorem-Definition 5.5 and the relation

lim
n→+∞

(n+ n0)d+1

nd+1
= 1,

we obtain that

lim
n→+∞

d̂eg(p∗(L
⊗(n+n0)))

nd+1/(d+ 1)!
= v̂olχ(L).

Hence Claim 6.5 leads to
v̂olχ(L;E) 6 v̂olχ(L),

as required.

Next we assume that X is normal. We prove the assertion by induction on r :=

rk(E). Let µ : X ′ → X, (E′, ψ′) and U be a birational morphism, an adelic invertible
OX′ -module and a non-empty Zariski open set ofX, respectively, as in Definition 3.20.
First we suppose that r = 1.
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Claim 6.6. — One has the following inequality:

lim sup
n→∞

d̂eg(p∗(L
⊗n ⊗ E))

nd+1/(d+ 1)!
6 lim sup

n→∞

d̂eg((p◦µ)∗(µ
∗(L)⊗n ⊗ E′))

nd+1/(d+ 1)!

Proof. — This is a consequence of Lemma 5.7, Proposition 5.8, Lemma 6.1 and [13,
(4.26) in Proposition 4.3.13].

By Claim 6.6 together with the case where (E,ψ) is an adelic invertibleOX -module,
one has

lim sup
n→∞

d̂eg(p∗(L
⊗n ⊗ E))

nd+1/(d+ 1)!
6 v̂olχ(µ∗(L)).

On the other hand, since X is normal, one can see that v̂olχ(µ∗(L)) = v̂olχ(L), as
desired.

In the case where r > 2, considering a birational morphism X ′′ → X ′ if necessarily,
we may assume that there exists an exact sequence 0 → F ′ → E′ → Q′ → 0 on X ′

such that F ′ and Q′ are locally free, rk(F ′) = 1 and rk(Q′) = r − 1. Let ψF ′ be the
submetric of F ′ over X ′ and ψQ′ be the quotient metric of Q′ over X ′. Let Q be
the image of E → µ∗(E

′) → µ∗(Q
′) and F be the kernel of E → Q. Shrinking U if

necessarily, ψQ′ and ψF ′ descent to metric families ψQ and ψF of Q|U and F |U . Note
that Q = (Q,ψQ) and F = (F,ψF ) are birationally adelic torsion free OX -modules
by Proposition 3.7 and Corollary 3.18. Therefore, by hypothesis of induction,

lim sup
n→∞

d̂eg(p∗(L
⊗n ⊗ F ))

nd+1/(d+ 1)!
6 v̂olχ(L,ϕ),

lim sup
n→∞

d̂eg(p∗(L
⊗n ⊗Q))

nd+1/(d+ 1)!
6 (r − 1) v̂olχ(L,ϕ).

For any n ∈ N, one has an exact sequence

0→ H0(X,Ln⊗)→ H0(X,Ln ⊗ E)→ H0(X,Ln ⊗Q)→ H1(X,L⊗n ⊗ F ). (6.2)

Let Qn be the image of

H0(X,L⊗n ⊗ E) −→ H0(X,L⊗n ⊗Q).

Let ξn,sub = (‖.‖n,sub,ω)ω∈Ω be the restricted norm family of ξnϕ+ψ = (‖.‖nϕω+ψω )ω∈Ω

onH0(X,Ln⊗F ) and ξn,quot = (‖.‖n,quot,ω)ω∈Ω be the quotient norm family of ξnϕ+ψ

on H0(X,Ln ⊗Q). By [13, (4.28)],

d̂eg(H0(X,Ln ⊗ E), ξnϕ+ψ)− δ(H0(X,Ln ⊗ E), ξnϕ+ψ)

6
(

d̂eg(H0(X,Ln ⊗ F ), ξn,sub)− δ(H0(X,Ln ⊗ F ), ξn,sub)
)

+
(

d̂eg(H0(X,Ln ⊗Q), ξn,quot)− δ(H0(X,Ln ⊗Q), ξn,quot)
)
,
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where for any adelic vector bundle V on S, δ(V ) denotes the sum d̂eg(V ) +

d̂eg(V ∨). Let ξnϕ+ψQ,sub = (‖.‖nϕω+ψQ,ω,sub)ω∈Ω be the restriction of ξnϕ+ψQ =

(‖.‖nϕω+ψQ,ω )ω∈Ω to Qn. It is easy to see that, for any ω ∈ Ω,

‖.‖n,sub,ω = ‖.‖nϕω+ψF,ω , ‖.‖n,quot,ω > ‖.‖nϕω+ψQ,ω,sub.

Thus, by [13, Proposition 4.3.18],

d̂eg(Qn, ξn,quot) 6 d̂eg(Qn, ξnϕ+ψQ,sub),

so that

d̂eg(p∗(L
⊗n ⊗ E))− δ(p∗(L⊗n ⊗ E))

6
(

d̂eg(p∗(L
⊗n ⊗ F ))− δ(H0(X,Ln ⊗ F ), ξn,sub)

)
+
(

d̂eg(Qn, ξnϕ+ψQ,sub)− δ(Qn, ξn,quot)
)
.

Moreover, by [13, Proposition 4.3.10],

lim
n→∞

δ(p∗(L
⊗n ⊗ E))

nd+1
= 0,

lim
n→∞

δ(H0(X,Ln ⊗ F ), ξn,sub)

nd+1
= 0,

lim
n→∞

δ(Qn, ξn,quot)

nd+1
= 0,

so that one obtains

lim sup
n→+∞

d̂eg(p∗(L
⊗n ⊗ E))

nd+1/(d+ 1)!
6 v̂olχ(L,ϕ) + lim sup

n→+∞

d̂eg(Qn, ξnϕ+ψQ,sub)

nd+1/(d+ 1)!
,

and hence it is sufficient to show that

lim sup
n→+∞

d̂eg(Qn, ξnϕ+ψQ,sub)

nd+1/(d+ 1)!
6 lim sup

n→+∞

d̂eg(p∗(L
⊗n ⊗Q))

nd+1/(d+ 1)!
. (6.3)

Claim 6.7. — If we set Tn = H0(X,L⊗n ⊗Q)/Qn, then

lim
n→+∞

dimK(Tn)/nd = 0.

Proof. — By the Leray spectral sequence

Ep,q2 = Hp(Z,A⊗n ⊗Rqf∗(F )) =⇒ Hp+q(X,L⊗n ⊗ F ),

if n is sufficiently large, then one has an injective homomorphism

H1(X,L⊗n ⊗ F ) −→ H0(Z,A⊗n ⊗R1f∗(F ))

so that

lim
n→+∞

dimK(H1(X,L⊗n ⊗ F ))

nd
= 0

because Supp(R1f∗(F )) has Krull dimension < d. Thus the assertion follows by
(6.2).
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By Lemma 6.1,
⊕∞

n=0H
0(X,Q⊗ Ln) is finitely generated over

⊕∞
n=0H

0(X,Ln),
so that

⊕∞
n=0 Tn is also finitely generated over it. Let ξTn be the quotient norm family

of ξnϕ+ψQ on Tn. Then by Claim 6.7 together with Proposition 5.8, we obtain that

lim inf
n→+∞

d̂eg(Tn, ξTn)

nd+1
> 0,

that is, for any ε > 0,

d̂eg(Tn, ξTn)

nd+1
> −ε

for sufficiently large n. Moreover, by [13, Proposition 4.3.13, (4.26)],

d̂eg(Qn, ξnϕ+ψQ,sub)

nd+1
+

d̂eg(Tn, ξTn)

nd+1
6

d̂eg(p∗(L
⊗n ⊗Q))

nd+1
,

so that
d̂eg(Qn, ξnϕ+ψQ,sub)

nd+1
− ε 6 d̂eg(p∗(L

⊗n ⊗Q))

nd+1

for sufficiently large n. Thus,

lim sup
n→+∞

d̂eg(Qn, ξnϕ+ψQ,sub)

nd+1
− ε 6 lim sup

n→+∞

d̂eg(p∗(L
⊗n ⊗Q))

nd+1
.

Since ε is arbitrary, we obtain the inequality (6.3).

Corollary 6.8. — Let (E,U, ψ) be a birational adelic torsion free OX-module. If
X is normal and L is ample, then

lim
n→+∞

d̂eg(p∗(L
⊗n ⊗ E))

nd+1/(d+ 1)!
= rk(E) v̂olχ(L,ϕ).

Proof. — This is a consequence of Theorem 6.2 and Theorem 6.4.

7. Hilbert-Samuel property

Let f : X → SpecK be a geometrically integral projective scheme over SpecK, d
be the dimension of X and L be an ample invertible OX -module. We denote by M (L)

the set of metrics families ϕ = (ϕω)ω∈Ω such that all metrics ϕω are semi-positive
and that (L,ϕ) forms an adelic line bundle on X.

Definition 7.1. — We say that ϕ ∈M (L) satisfies the Hilbert-Samuel property if
the equality

v̂olχ(L,ϕ) = ((L,ϕ)d+1)

holds, namely the χ-volume and the self-intersection number of (L,ϕ) coincides.
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Remark 7.2. — Note that Theorem-Definition 5.5 shows that, for any positive
integer n, one has

v̂olχ(L⊗n, nϕ) = nd+1v̂olχ(L,ϕ).

Therefore, if ϕ satisfies the Hilbert-Samuel property, then for any positive integer n,
the metric family nϕ also satisfies the Hilbert-Samuel property. Conversely, if there
exists a positive integer n such that nϕ satisfies the Hilbert-Samuel property, then so
does the metric family ϕ.

7.1. Reduction to a special metric family. — The purpose of this subsection
is to show that, in order to show the Hilbert-Samuel property for all metrics families
in M (L), it suffices to check the property for one arbitrary metric family in M (L).

Lemma 7.3. — Let E be a finite-dimensional vector space over K. If ξ = (‖.‖ω)ω∈Ω

and ξ′ = (‖.‖′ω)ω∈Ω are two norm families on E, then one has

dω(det(ξ),det(ξ′)) 6 rdω(ξ, ξ′). (7.1)

In particular, if ξ is strongly dominated, so is det(ξ).

Proof. — Let r be the dimension of E over K. If η is a non-zero element of det(Eω),
then one has

ln ‖η‖ω,det − ln ‖η‖′ω,det = sup
(s1,...,sr)∈Erω
η=s1∧···∧sr

ln ‖s1 ∧ · · · ∧ sr‖ω,det −
r∑
i=1

ln ‖si‖′ω

6 sup
(s1,...,sr)∈Erω
η=s1∧···∧sr

r∑
i=1

ln ‖si‖ω − ln ‖si‖′ω 6 rdω(ξ, ξ′).

Interchanging ξ and ξ′, the above inequality leads to

ln ‖η‖′ω,det − ln ‖η‖ω,det 6 rdω(ξ, ξ′).

Therefore, the inequality (7.1) holds.

Proposition 7.4. — Assume that there exists a metric family ψ ∈ M (L) which
satisfies the Hilbert-Samuel property. Then any metric family ϕ ∈M (L) satisfies the
Hilbert-Samuel property.

Proof. — For any n ∈ N, let En be the K-vector space H0(X,L⊗n) and rn be the
dimension of En of K. For any ω ∈ Ω, let En,ω = En ⊗K Kω,

dn,ω = sup
s∈En,ω\{0}

∣∣∣ ln ‖s‖nϕω − ln ‖s‖nψω
∣∣∣

be the distance of ‖.‖nϕω and ‖.‖nψω , and

δn,ω = sup
η∈det(En,ω)\{0}

ln ‖η‖nϕω,det − ln ‖η‖nψω,det.
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Note that the function (ω ∈ Ω) 7→ δn,ω is ν-integrable, and one has∫
Ω

δn,ω ν(dω) = d̂eg(p∗(L
⊗n, nψ))− d̂eg(p∗(L

⊗n, nϕ)).

By Lemma 7.3, one has

|δn,ω| 6 rndn,ω 6 nrndω(ϕ,ψ).

Note that the function

(ω ∈ Ω) −→ dω(ϕ,ψ)

is dominated (see [13, Proposition 6.1.12]). Moreover, by [7, Theorem 1.7], one has

lim
n→+∞

δn,ω
nd+1/(d+ 1)!

=

d∑
j=0

∫
Xan
ω

fω(x)µ(Lω,ϕω)j(Lω,ψω)d−j (dx),

where fω is the continuous function on Xan
ω such that

efω(ω)|.|ψω (x) = |.|ϕω

for any x ∈ Xan
ω . Hence Theorem-Definition 5.5 and Lebesgue’s dominated conver-

gence theorem leads to (see Remark 5.6)

v̂olχ(L,ψ)− v̂olχ(L,ϕ) = lim
n→+∞

1

nd+1/(d+ 1)!

∫
Ω

δn,ω ν(dω)

=

d∑
j=0

∫
Ω

∫
Xan
ω

fω(x)µ(Lω,ϕω)j(Lω,ψω)d−j (dx) ν(dω)

= ((L,ψ)d+1)− ((L,ϕ)d+1).

The proposition is thus proved.

Definition 7.5. — Let X be a geometrically integral projective scheme over SpecK

and L be an ample invertible OX -module. If there exists a metric family ϕ ∈M (L)

which satisfies the Hilbert-Samuel property, or equivalently, any metric family ϕ ∈
M (L) satisfies the Hilbert-Samuel property (see Proposition 7.4), we say that the
ample invertible OX -module L satisfies the Hilbert-Samuel property.

Remark 7.6. — The proof of Proposition 7.4 actually shows a more precise result:
the function

(ϕ ∈M (L)) −→ v̂olχ(L,ϕ)− ((L,ϕ)d+1)

is constant.
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7.2. Case of a projective space. — In this subsection, we assume that X = PdK
is the projective case and L = OPdK (1) is the universal line bundle. We show that
any metric family in M (L) satisfies the Hilbert-Samuel property. Without loss of
generality (by Proposition 7.4), we consider a particular case as follows. Let E be a
(d+1)-dimensional vector space overK and (ei)

d
i=0 be a basis of E. Let ξ = (‖.‖ω)ω∈Ω

be the Hermitian norm family on E such that (ei)
d
i=0 forms an orthonormal basis of

E with respect to ‖.‖ω. We then identify PdK with P(E) and let ϕ = (ϕω)ω∈Ω be
the quotient metric family on L induced by ξ. Note that, for any integer n ∈ N, the
vector space H0(X,L⊗n) is isomorphic to the symmetric power Sn(E). We denote
by rn the dimension of Sn(E). One has

rn =

(
n+ d

d

)
.

Definition 7.7. — Let ω ∈ Ω such that |.|ω is non-Archimedean. Let x be the point
in P(Eω)an which consists of the generic scheme point of P(Eω) equipped with the
absolute value

|.|x : k
(
e0
er
, . . . , er−1

er

)
−→ R>0

such that, for any

P =
∑

a=(a0,...,ar−1)∈Nd
λa

(e0

er

)a0
· · ·
(er−1

er

)ar−1

∈ k
[
e0
er
, . . . , er−1

er

]
,

one has
|P |x = max

a∈Nd
|λa|ω.

Note that the point x does not depend on the choice of the orthonormal basis (ej)
r
j=0.

In fact, the norm ‖.‖ induces a symmetric algebra norm on Kω[Eω] (which is often
called a Gauss norm) and hence defines an absolute value on the fraction field of
Kω[Eω]. The restriction of this absolute value to the field of rational functions on
P(Eω) identifies with |.|x. Hence x is called the Gauss point of P(Eω)an.

Lemma 7.8. — Let ω be an element of Ω such that |.|ω is non-Archimedean, and
n ∈ N. Let ‖.‖n,ω be the ε-tensor power of ‖.‖ω on the tensor power space E⊗nω and let
‖.‖′n,ω be the quotient norm of ‖.‖n,ω by the quotient homomorphism E⊗nω → Sn(Eω).
Then the norm ‖.‖′n,ω coincides with the supremum norm ‖.‖nϕω of the metric nϕω
on L⊗nω .

Proof. — For any ω ∈ Ω, we denote by Eω the Kω-vector space E ⊗K Kω. By [13,
Propositions 1.3.16 and 1.2.36], if we consider the Segre embedding P(Eω)→ P(E⊗nω ),
then the metric nϕω identifies with the quotient metric induced by the norm ‖.‖n,ω.
Moreover, if we denote by OE⊗nω (1) the universal invertible sheaf of P(E⊗nω ) and by
ψω the quotient metric on this invertible sheaf induced by the norm ‖.‖n,ω. By [13,
Proposition 2.2.22], the supremum norm ‖.‖ψω on

H0(P(E⊗nω ),OE⊗nω (1)) = E⊗nω
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of the metric ψω coincides with ‖.‖n,ω. Since L⊗n is the restriction of OE⊗nω (1) to X
and the restriction map

H0(P(E⊗nω ),OE⊗nω (1)) −→ H0(P(Eω), L⊗nω )

identifies with the quotient homomorphism E⊗nω → Sn(Eω). In particular, the supre-
mum norm ‖.‖ϕ⊗nω is bounded from above by the quotient norm ‖.‖′n,ω.

Let x be the Gauss point of the Berkovich analytic space P(Eω)an (see Definition
7.7). If

F =
∑

I=(a0,...,ad)∈Nd+1

a0+···+ad=n

λIe
a0
0 · · · e

ad
d

is an element of Sn(E), then the relation

F (x) =

( ∑
I=(a0,...,ad)∈Nd
a0+···+ad=n

λI

(e1

e0

)a1
· · ·
(ed
e0

)ad)
e0(x)⊗n

holds. In particular, one has

‖F‖nϕω > |F |nϕω (x) = max
I=(a0,...,ad)∈Nd
a0+···+an=d

|λI |ω.

Since F is the image of the element

F̃ =
∑

I=(a0,...,ad)∈Nd
a0+···+ad=n

λIe
⊗a0
0 ⊗ · · · ⊗ e⊗add

by the quotient map E⊗nω → Sn(Eω), we obtain that

‖F‖nϕω > ‖F̃‖n,ω > ‖F‖′n,ω.

Therefore the equality ‖.‖nϕω = ‖F‖′n,ω holds.

Remark 7.9. — As a byproduct, the proof of the above lemma shows that, for any

F =
∑

I=(a0,...,ad)∈Nd+1

a0+···+ad=n

λIe
a0
0 · · · e

ad
d ∈ S

n(Eω),

one has
‖F‖nϕω = max

I=(a0,...,ad)∈Nd
a0+···+an=d

|λI |ω.

In other words, the family

(ea00 · · · e
ad
d )(a0,...,ad)∈Nd+1

a0+···+ad=n

forms an orthonormal basis of (Sd(Eω), ‖.‖nϕω ).
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Lemma 7.10. — For any integer d ∈ N and any any x > 0, let

Pd+1,x = {(t0, . . . , td) ∈ Rd+1
>0 | t0 + · · ·+ td 6 x},

∆d,x = {(t0, . . . , td) ∈ Rd+1
>0 | t0 + · · ·+ td = x}.

We denote by vold+1 the Lebesgue measure on Rd. For any affine hyperplane of
Rd, we denote by νd the translate of the Haar measure on the underlying hyperplane
which is normalized with respect to the canonical Euclidean norm on Rd+1 (namely
the parallelotope spanned by an orthonormal basis has volume 1).
(1) The volume of Pd+1,x with respect to vold+1 is xd+1/(d+ 1)!.
(2) The volume of ∆d,x with respect to νd is xd

√
d+ 1/d!.

(3) Let µd be the uniform probability distribution on ∆d,x. One has∫
∆d,1

t0 ln(t0) + · · ·+ td ln(td)µd(dt) = − 1

d+ 1

d∑
m=1

m∑
`=1

1

`
.

Proof. — (1) We reason by induction on d. The case where d = 0 is trivial. In
the following we assume the induction hypothesis that the lemma holds for Rd. By
Fubini’s theorem, we have

vold+1(Pd+1,x) =

∫ x

0

vold(Pd,x−t) dt =

∫ x

0

(x− t)d

d!
=

xd+1

(d+ 1)!
.

(2) The distance from the origin to the affine hyperplane containing ∆d,x is
x/
√
d+ 1. Therefore, by the equality

vold+1(Pd+1,x) =
1

d+ 1
. x√
d+ 1

νd(∆d,x),

we obtain

νd(∆d,x) =
√
d+ 1

xd

d!
.

(3) By Fubini’s theorem, one has∫
Pd+1,x

t0 ln(t0) vold+1(dt0, . . . ,dtd) =

∫ x

0

t ln(t) vold(Pd,x−t) dt

=
1

d!

∫ x

0

t(x− t)d ln(t) dt =
1

d!

d∑
i=0

(−1)i
(
d

i

)
xd−i

∫ x

0

ti+1 ln(t) dt

=
1

d!

d∑
i=0

(−1)i
(
d

i

)
xd−i

1

i+ 2

(
xi+2 ln(x)− 1

i+ 2
xi+2

)

=
xd+2 ln(x)

d!

d∑
i=0

(−1)i
(
d

i

)
1

i+ 2
− xd+2

d!

d∑
i=0

(−1)i
(
d

i

)
1

(i+ 2)2
.

By a change of variables, we obtain∫
Pd+1,x

t0 ln(t0) vold+1(dt0, . . . ,dtd) =
1√
d+ 1

∫ x

0

∫
∆d,u

t0 ln(t0) νd(dt) du.
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Taking the derivative with respect to x, we obtain

(d+ 2)xd+1 ln(x) + xd+1

d!

d∑
i=0

(−1)i
(
d

i

)
1

i+ 2
− (d+ 2)xd+1

d!

d∑
i=0

(−1)i
(
d

i

)
1

(i+ 2)2

=
1√
d+ 1

∫
∆d,x

t0 ln(t0) νd(dt) =
νd(∆d,x)√
d+ 1

∫
∆d,x

t0 ln(t0)µd(dt).

In particular, one has∫
∆d,1

t0 ln(t0)µd(dt) =

d∑
i=0

(−1)i
(
d

i

)
1

i+ 2

(
1− d+ 2

i+ 2

)
=

d∑
i=0

(−1)i
d!

i!(d− i)!
· i− d

(i+ 2)2
= − 1

d+ 1

d−1∑
i=0

(−1)i
(d+ 1)!

(i+ 2)!(d− i− 1)!
· i+ 1

i+ 2
.

Therefore

(d+ 1)

∫
∆d,1

t0 ln(t0)µd(dt)− d
∫

∆d−1,1

t0 ln(t0)µd−1(dt)

= −
d−1∑
i=0

(−1)i
(d+ 1)!

(i+ 2)!(d− i− 1)!
· i+ 1

i+ 2
+

d−2∑
i=0

(−1)i
d!

(i+ 2)!(d− i− 2)!
· i+ 1

i+ 2

= −
d−1∑
i=0

(−1)i
d!

(i+ 2)!(d− i− 1)!
· i+ 1

i+ 2
(d+ 1− (d− i− 1))

= −
d−1∑
i=0

(−1)i
d!

(i+ 2)!(d− i− 1)!
((i+ 2)− 1)

= −
d−1∑
i=0

(−1)i
((

d

i+ 1

)
− 1

d+ 1

(
d+ 1

i+ 2

))

=

d∑
i=1

(−1)i
(
d

i

)
+

1

d+ 1

d+1∑
i=2

(−1)i
(
d+ 1

i

)
= −1 +

1

d+ 1
(−1 + (d+ 1)) = − 1

d+ 1
.

Combining with

2

∫
∆1,1

t0 ln(t0)µ1(dt) = 2

∫ 1

0

t ln(t) dt = −
∫ 1

0

tdt = −1

2
,

by induction we obtain

(d+ 1)

∫
∆d,1

t0 ln(t0)µd(dt) = −
d∑
i=1

1

i+ 1
= −

d+1∑
`=2

1

`
.
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By symmetry of (t0, . . . , td), we get

(d+ 1)

d∑
i=0

∫
∆d,1

ti ln(ti)µd(dt) = −(d+ 1)

d+1∑
`=2

1

`
.

Since
d∑

m=1

m∑
`=1

1

`
=

d∑
`=1

d∑
m=`

1

`
=

d∑
`=1

d+ 1− `
`

= (d+ 1)

d∑
`=1

1

`
− d

= (d+ 1)

d+1∑
`=2

1

`
+ (d+ 1)− d+ 1

d+ 1
− d = (d+ 1)

d+1∑
`=2

1

`
,

we obtain the desired result.

Proposition 7.11. — The universal invertible sheaf OPdK (1) satisfies the Hilbert-
Samuel property.

Proof. — By Proposition 7.4, it suffices to prove that the particular quotient metric
family ϕ = (ϕω)ω∈Ω defined in the beginning of the subsection satisfies the Hilbert-
Samuel property. For any n ∈ N, let

ηn =
∧

(a0,...,ad)∈Nd+1

a0+···+ad=n

ea00 · · · e
ad
d ∈ det(Sn(E)).

By Lemma 7.8 and [13, Proposition 1.2.23], for any ω ∈ Ω such that |.|ω is non-
Archimedean, one has

‖ηn‖nϕω,det = 1.

Let ω be an element of Ω such that |.|ω is Archimedean. Similarly to Lemma 7.8,
for each n ∈ N, we let ‖.‖n,ω be the orthogonal tensor power norm on E⊗nω and ‖.‖′n,ω
be its quotient norm on Sn(Eω). Note that

(ea00 · · · e
ad
d )(a0,...,ad)∈Nd+1

a0+···+ad=n

forms an orthogonal basis of (Sd(Eω), ‖.‖′n,ω) and

‖ea00 · · · e
ad
d ‖
′
n,ω =

(a0! · · · ad!
n!

) 1
2

.

By [13, Proposition 1.2.25], one has

‖ηn‖′n,ω,det =
∏

(a0,...,ad)∈Nd+1

a0+···+ad=n

(a0! · · · ad!
n!

) 1
2

.
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In particular, using Stirling’s formula one obtains

lim
n→+∞

ln ‖ηn‖′n,ω,det

nrn
= −1

2

∫
∆

(t0 ln(t0) + · · ·+ td ln(td)) dµ

=
1

2(d+ 1)

d∑
m=1

m∑
`=1

1

`
,

where µ denotes the uniform probability measure on the simplex

∆ = {(t0, . . . , td) ∈ Rd+1
>0 | t0 + · · ·+ td = 1},

and the second equality comes from Lemma 7.10.
By [4, Lemma 4.3.6] and [18, Lemma 30] (see also [23, VIII.2.5 lemma 2]), one

has
sup

s∈Sn(Eω)\{0}

∣∣∣ ln(r
− 1

2
n ‖s‖′n,ω)− ln ‖s‖ϕ⊗nω

∣∣∣ = O(ln(n)).

Moreover,

ln(r
− 1

2
n ) = −1

2
ln rn = O(ln(n)).

Hence by Lemma 7.3 we obtain

lim
n→+∞

ln ‖ηn‖ϕ⊗nω ,det

nrn
= lim
n→+∞

ln ‖ηn‖′n,ω,det

nrn
.

The proposition is thus proved.

8. Trivial valuation case

In this section, we show the Hilbert-Samuel property in the trivial valuation case.
Let v = (k, |.|) be a trivially valued field. Let us begin with the following Lemma:

Lemma 8.1. — Let X be a projective integral scheme of dimension d over Spec k

and L be a very ample invertible OX-module. Let ‖.‖ be the trivial norm on H0(X,L),
that is, ‖e‖ = 1 for e ∈ H0(X,L)\{0}. Let ϕ be the Fubuni-Study metric of L induced
by the surjective homomorphism H0(X,L)⊗OX → L and ‖.‖. Then we have

v̂olχ(L,ϕ) = ((L,ϕ)d+1)v = 0,

where in the construction of v̂olχ(L,ϕ) we consider the adelic curve consisting of one
copy of the trivial absolute value on k and the counting measure.

Proof. — Let X ↪→ P`k be the embbedding given by L, where ` = dimkH
0(X,L) −

1. We can find a positive integer n0 such that H0(P`k,OP`k
(n)) → H0(X,L⊗n) is

surjective for all n > n0. In order to see v̂olχ(L,ϕ) = 0, it is sufficient to show that
the norm ‖.‖nϕ is trivial for all n > n0. As H0(P`k,OP`k

(n)) = Symn(H0(X,L)), one
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has that Symn(H0(X,L))→ H0(X,L⊗n) is surjective for all n > n0. Let (T0, . . . , T`)

be a homogeneous coordinate of P`k. For n > n0 and s ∈ H0(X,L⊗n), if

s ≡
∑

(i0,...,i`)∈N`+1

i0+···+i`=n

ai0,...,i`T
i0
0 · · ·T

i`
` mod Ker(Symn(H0(X,L))→ H0(X,L⊗n)),

then

‖s‖nϕ = sup
x∈(X∩U0)an

∣∣∣∣∑(i0,...,i`)∈N`+1

i0+···+i`=n
ai0,...,i`z

i1
1 · · · z

i`
`

∣∣∣∣
x(

max{1, |z1|x, . . . , |z`|x}
)n ,

where zi = Ti/T0 and U0 = {(T0, . . . , T`) ∈ P`k : T0 6= 0}. Note that∣∣∣∣∑(i0,...,i`)∈N`+1

i0+···+i`=n
ai0,...,i`z

i1
1 · · · z

i`
`

∣∣∣∣
x

6 max{|z1|i1x · · · |z`|i`x : (i0, . . . , i`) ∈ N`+1, i0 + · · ·+ i` = n}

6
(

max{1, |z1|x, . . . , |z`|x}
)n
,

and hence ‖s‖nϕ 6 1. Let kac be an algebraic closure of k. We assume
s 6= 0. We choose ξ = (1, ξ1, . . . , ξn) ∈ X(kac) such that s(ξ) 6= 0. Then, as∑

(i0,...,i`)∈N`+1

i0+···+i`=n
ai0,...,i`ξ

i1
1 · · · ξ

i`
` ∈ kan \ {0} and ξ1, . . . , ξ` ∈ kac, one has∣∣∣∑(i0,...,i`)∈N`+1

i0+···+i`=n
ai0,...,i`ξ

i1
1 · · · ξ

i`
`

∣∣∣
v′

= 1 and max{1, |ξ1|v′ , . . . , |ξ`|v′} = 1

where v′ is the pair of kac and its trivial absolute value. Therefore, ‖s‖nϕ = 1.

Next let us see that ((L,ϕ)d+1)v = 0. Note that

H0(P`k,OP`k
(1)) = H0(X,L) and Symn(H0(P`k,OP`k

(1))) = H0(P`k,OP`k
(n))

for n > 1. Let ψ be the Fubuni-Study metric of OP`k
(1) induced by the surjective

homomorphism H0(P`k,OP`k
(1))) ⊗ OP`k

→ OP`k
(1) and ‖.‖. Then ψ|Xan = ϕ. In

the same way as before, ‖.‖nψ on H0(P`k,OP`k
(n)) is trivial for n > 1. Therefore,

the induced norm on H0(P̌`k × · · · × P̌`k,OP̌`k
(δ) � · · · � OP̌`k

(δ)) is also trivial, where
δ = (Ld). Thus the assertion follows.

Theorem 8.2. — Assume that, for any ω ∈ Ω, |.|ω is the trivial absolute value on
K. Then any ample line bundle L on X satisfies the Hilbert-Samuel property.

Proof. — By Remark 7.2, we may assume that L is very ample. Let E be the vector
space H0(X,L). For any ω ∈ Ω, we denote by ‖.‖ω the trivial norm on E = Eω. Let
ξ = (‖.‖ω)ω∈Ω and ϕ = (ϕω)ω∈Ω be the quotient metric family on L induced by ξ and
the canonical closed embedding X → P(E). Then, Lemma 8.1 implies

volχ(L,ϕ) = ((L,ϕ)d+1) = 0.
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Therefore, by Proposition 7.4 we obtain that the invertible sheaf L satisfies the
Hilbert-Samuel property.

Remark 8.3. — In [14], an intersection product of metrized divisors has been intro-
duced in the setting of curves over a trivially valued field (k, |.|). Let X be a regular
projective curve over Spec k. Recall that the Berkovich space Xan is an infinite tree

η0

· · ·
x0

· · ·

where the root point η0 corresponds to the generic point of X together with the trivial
absolute value on κ(η), and each leaf x0 corresponds to the closed point x together
with the trivial absolute value on κ(x). Moreover, each branch ]η0, x0[ is parametrized
by ]0,+∞[, where t ∈ ]0,+∞[ corresponds to the generic point η together with the
absolute value

|.|x,t = exp(−t ordx(.)).

We denote by t(.) : Xan → [0,+∞] the parametrization map, where t(η0) = 0 and
t(x0) = +∞. Let D be a Cartier divisor on X. Recall that a Green function g of D
is of the form

g = gD + ϕg,

where gD is the canonical Green function of D, which is defined as

gD(ξ) = ordx(D)t(ξ),

and ϕg is a continuous real-valued function on Xan (which is hence bounded since
Xan is compact). Then, the intersection number of two integrable metrized Cartier
divisor D0 = (D0, g0) and D1 = (D1, g1) has been defined as

g1(η0) deg(D0) + g0(η0) deg(D1)−
∑

x∈X(1)

[κ(x) : k]

∫ +∞

0

ϕ′g0◦ξx(t)ϕ′g1◦ξx(t) dt, (8.1)

where X(1) is the set of closed points of X, ξx : [0,+∞]→ [η0, x0] is the map sending
t ∈ [0,+∞] to the point in [η0, x0] of parameter t, and the function ϕ′g1◦ξx(.) should be
considered as right-continuous version of the Radon-Nikodym density of the function
ϕg1◦ξx(.) with respect to the Lebesgue measure.

Let (L,ϕ0) and (L1, ϕ1) be integrable metrized invertible OX -modules. By [14,
Remark 7.3], the above intersection number with respect to (L,ϕ0) and (L1, ϕ1) is
well-defined. To destinguish this intersection number with the intersection number
defined in [15, Definition 3.10.1] it is denoted by ((L0, ϕ0) · (L1, ϕ2))′. Then one can
see

((L0, ϕ0) · (L1, ϕ1)) = ((L0, ϕ0) · (L1, ϕ1))′. (8.2)
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Indeed, by using the linearity of ( · ) and ( · )′, we may assume that L0 and L1 are
ample, and ϕ0 and ϕ1 are semipositive. Moreover, as

((L0, ϕ0) · (L1, ϕ1)) =
(((L0, ϕ0) + (L1, ϕ1))2)− ((L0, ϕ0)2)− ((L1, ϕ1)2)

2
,

((L0, ϕ0) · (L1, ϕ1))′ =
(((L0, ϕ0) + (L1, ϕ1))2)′ − ((L0, ϕ0)2)′ − ((L1, ϕ1)2)′

2
,

we may further assume that (L0, ϕ0) = (L1, ϕ1), say (L,ϕ). Then, by [14, Theo-
rem 7.4],

lim
n→∞

− ln ‖s1 ∧ · · · ∧ srn‖nϕ,det

n2/2
= ((L,ϕ) · (L,ϕ))′,

where {s1, . . . , srn} is a basis of H0(X,L⊗n). On the other hand,

lim
n→∞

− ln ‖s1 ∧ · · · ∧ srn‖nϕ,det

n2/2
= ((L,ϕ) · (L,ϕ))

by Theorem 8.2 (the Hilbert-Samuel formula over a trivially valued field), as required.

9. Casting to the trivial valuation case

In this section, we assume that K is perfect. Let X be a projective K-scheme, d be
the dimension of X, E be a finite-dimensional vector space over K, f : X → P(E) be
a closed embedding, and L be the restriction of the universal invertible sheaf OE(1)

to X. We assume that, for any positive integer n, the restriction map

Sn(E) = H0(P(E),OE(n)) −→ H0(X,L⊗n)

is surjective. We equip E with a Hermitian norm family ξ = (‖.‖ω)ω∈Ω such that
the couple E = (E, ξ) forms a strongly adelic vector bundle on the adelic curve S.
Denote by ϕ = (ϕω)ω∈Ω the quotient metric family on L induced by ξ and the closed
embedding f .

Let F = (F t(E))t∈R be the Harder-Narasimhan R-filtration of E. Recall that

F t(E) =
∑

06=F⊂E
µ̂min(F )>t

F.

Note that this R-filtration actually defines an ultrametric norm ‖.‖0 on E, where we
consider the trivial absolute value |.|0 on the field K. More precisely, for any s ∈ E,
one has

‖s‖0 = exp(−{t ∈ R : s ∈ F t(E)}).

Denote by ϕ0 the quotient metric on L induced by ‖.‖0. If we consider the adelic
curve S0 consisting of a single copy of the trivial absolute value on K, then (L,ϕ0)

becomes an adelic line bundle on X.
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Lemma 9.1. — Let (k, |.|) be a complete non-Archimedean valued field and (V, ‖.‖)
be a finite-dimensional ultrametrically normed vector space over (k, |.|). Let α ∈ ]0, 1],
and (ei)

n
i=1 be an α-orthogonal basis of (V, ‖.‖), namely a basis of V such that

∀ (λ1, . . . , λn) ∈ kn, ‖λ1e1 + · · ·+ λnen‖ > α max
i∈{1,...,n}

|λi| · ‖ei‖.

For any I = (i1, . . . , in) ∈ Nn, we let

|I| = i1 + · · ·+ in, eI = ei11 · · · einn ∈ S|I|(V ).

Then, for any δ ∈ N, (eI)I∈Nn, |I|=δ is an αδ-orthogonal basis of Sδ(V ) with respect to
the symmetric product norm ‖.‖Sδ (namely the quotient norm of the ε-tensor product
norm induced by the quotient map V ⊗δ → Sδ(V )), and for any I = (i1, . . . , in) ∈ Nn

such that |I| = δ, one has

‖e1‖i1 · · · ‖en‖rn > ‖eI‖Sδ > αδ‖e1‖i1 · · · ‖en‖rn .

Proof. — Denote by f : {1, . . . , n}δ → Nn the map which sends (a1, . . . , aδ) to the
vector (

card
(
{j ∈ {1, . . . , δ} | aj = i}

))n
i=1

.

Let π : V ⊗δ → Sδ(V ) be the projection map. For any a = (a1, . . . , aδ) ∈ {1, . . . , n}δ,
denote by ea the split tensor ea1 ⊗ · · · ⊗ eaδ ∈ V ⊗δ.

For I = (i1, . . . , in) ∈ Nn such that |I| = δ, one has

‖eI‖Sδ = inf

{∥∥∥∥ ∑
a∈f−1({I})

λaea

∥∥∥∥ :
∑

a∈f−1({I})

λa = 1,

}
.

Hence (see [13, Remark 1.1.56])

‖eI‖Sδ 6 ‖e1‖i1 · · · ‖en‖in .

Since (ei)
n
i=1 is an α-orthogonal basis, (ea)a∈{1,...,n}δ is an αδ-orthogonal basis of V ⊗δ

(see [13, Proposition 1.2.19]). For any (λa)a∈f−1({I}) ∈ kf
−1({I}) such that∑

a∈f−1({I})

λa = 1,

one has

‖e1‖i1 · · · ‖en‖in 6 ‖e1‖i1 · · · ‖en‖in max
a∈f−1({I})

|λa| 6 α−δ
∥∥∥∥ ∑
a∈f−1({I})

λaea

∥∥∥∥,
which leads to ‖eI‖ > α−δ‖e1‖i1 · · · ‖en‖in .

For any
s =

∑
a∈{1,...,n}δ

µaea ∈ E⊗δ,

one has

π(s) =
∑

I∈Nn, |I|=δ

( ∑
a∈f−1({I})

µa

)
eI .
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Moreover,

‖s‖ > αδ max
I=(i1,...,in)∈Nn

|I|=δ

‖e1‖i1 · · · ‖en‖in max
a∈f−1({I})

|µa|

> αδ max
I=(i1,...,in)∈Nn

|I|=δ

‖e1‖i1 · · · ‖en‖in
∣∣∣∣ ∑
a∈f−1({I})

µa

∣∣∣∣
> αδ max

I=(i1,...,in)∈Nn
|I|=δ

‖eI‖Sδ ·
∣∣∣∣ ∑
a∈f−1({I})

µa

∣∣∣∣.
Therefore, we obtain that (eI)I∈Nn, |I|=δ forms an αδ-orthogonal basis of (Sδ(V ), ‖.‖Sδ).

Lemma 9.2. — Let (k, |.|) be the field R or C equipped with the usual absolute value.
Let (V, ‖.‖) be a finite-dimensional normed vector space over (k, |.|). We assume
that ‖.‖ is induced by an inner product and let (ei)

n
i=1 be an orthonormal basis of

(V, ‖.‖). For any δ ∈ N, let ‖.‖HSδ be the orthogonal symmetric power norm of ‖.‖
on Sδ(V ) (namely the quotient norm of the orthogonal tensor product norm induced
by the quotient map V ⊗δ → Sδ(V )). Then (eI)I∈Nn, |I|=δ is an orthogonal basis of
(Sδ(V ), ‖.‖HSδ). Moreover, for any I = (i1, . . . , in) ∈ Nn such that |I| = δ, one has

‖eI‖HSδ =
( δ!

i1! · · · in!

)− 1
2

.

Proof. — Let f : {1, . . . , n}δ → Nn be the map sending (a1, . . . , ad) to(
card

(
{j ∈ {1, . . . , δ} | aj = i}

))n
i=1

For I = (i1, . . . , in) ∈ Nn such that |I| = δ, one has

‖eI‖HSδ = inf

{( ∑
a∈f−1(I)

|λa|2
)1/2

:
∑

a∈f−1({I})

λa = 1

}
.

Note that the cardinal of f−1({I}) is
δ!

i1! · · · in!
,

by Cauchy-Schwarz inequality we obtain

‖eI‖HSδ =
( δ!

i1! · · · in!

)−1/2

.

For any
s =

∑
a∈{1,...,n}δ

µaea ∈ E⊗δ,

one has

π(s) =
∑

I∈Nn, |I|=δ

( ∑
a∈f−1({I})

µa

)
eI .
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Moreover, by Cauchy-Schwarz inequality,

‖s‖2 =
∑

a∈{1,...,n}δ
|µa|2 >

∑
I∈Nn, |I|=δ

∣∣∣∣ ∑
a∈f−1({I})

µa

∣∣∣∣2 · ( δ!

i1! · · · in!

)−1

.

Therefore, we obtain that (eI)I∈Nn, |I|=δ forms an orthogonal basis of (Sδ(V ), ‖.‖HSδ).

Proposition 9.3. — The following inequality holds:

((L,ϕ)d+1) > ((L,ϕ0)d+1)− 1

2
ν(Ω∞)(d+ 1)δ ln(r), (9.1)

where r denotes the dimension of E over K and δ is the degree of X with respect to
the line bundle L, that is, δ = (Ld).

Proof. — For any ω ∈ Ω, let ‖.‖ω,∗ be the dual norm on E∨ω and let ‖.‖ω,∗,δ be
the δ-th symmetric power of the norm ‖.‖ω,∗, that is the quotient norm of the ε-
tensor power (resp. orthogonal tensor power) of ‖.‖ω,∗ by the canonical quotient
map if |.|ω is non-Archimedean (resp. Archimedean). Let ‖.‖′ω,∗ be the ε-tensor
product (resp. orthogonal tensor product) of d+1 copies of the norm ‖.‖ω,∗,δ if |.|ω is
non-Archimedean (resp. Archimedean). By [13, Proposition 1.2.36], this norm also
identifies with the quotient of the tensor power of ‖.‖ω,∗ by the quotient map

pω : E∨⊗δ(d+1)
ω

∼= (E∨⊗δω )⊗(d+1) −→ Sδ(E∨ω )⊗(d+1). (9.2)

We denote by ξ′ the norm family (‖.‖′ω,∗)ω∈Ω. It turns out that (Sδ(E∨)⊗(d+1), ξ′)

forms a strongly adelic vector bundle on S. Moreover, if we let R ∈ Sδ(E∨)⊗(d+1) be
a resultant of X with respect to d+ 1 copies of the closed embedding f : X → P(E),
then the following inequality holds:

((L,ϕ)d+1) > − d̂egξ′(R)− 1

2
ν(Ω∞)(d+ 1) ln

(
r + δ − 1

δ

)
, (9.3)

where r is the dimension of E over K. This is a consequence of [15, Theorem 3.9.7]
and [4, Corollary 1.4.3, formula (1.4.10) and Lemma 4.3.6]. Note that in the case
where Ω∞ = ∅, the equality

((L,ϕ)d+1) = − d̂egξ′(R) (9.4)

holds.
We now consider the trivial absolute value |.|0 onK and we let ξ′0 be the ultrametric

norm on Sδ(E∨ω )⊗(d+1) defined as the quotient norm of the ε-tensor power of ‖.‖0,∗
by the quotient map

p : E∨⊗δ(d+1) ∼= (E∨⊗δ)⊗(d+1) −→ Sδ(E∨)⊗(d+1).

Similarly to (9.4), the following equality holds:

((L,ϕ0)d+1) = − d̂egξ′0(R).
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Note that the dual norm ‖.‖0,∗ corresponds to the Harder-Narasimhan R-filtration of
the dual adelic vector bundle E∨ = (E∨, ξ∨), where ξ∨ = (‖.‖ω,∗)ω∈Ω (see the proof
of [13, Proposition 4.3.41]). Therefore, if we denote by Ψ the quotient vector space
of Sδ(E∨)⊗(d+1) by the one-dimensional vector subspace spanned by the resultants
of X with respect to d + 1 copies of f : X → P(E), then [13, Theorem 5.6.1] (this
theorem still holds when K is perfect) leads to

d̂eg(Ψ, ξ′′) > d̂eg(Ψ, ξ′′0 ) (9.5)

by considering Ψ as a quotient vector space of E∨⊗δ(d+1) where ξ′′ denotes the quotient
norm family of ξ′, and ξ′′0 denotes the quotient norm of ξ′0. By Lemmas 9.1 and 9.2,
one has

µ̂(Sδ(E∨)⊗(d+1), ξ′) = (d+ 1) µ̂(Sδ(E∨), (‖.‖ω,∗,δ)ω∈Ω)

= δ(d+ 1) µ̂(E∨, ξ∨) +
1

2
ν(Ω∞)

d+ 1(
r+δ−1
δ

) ∑
(i1,...,ir)∈Nr
i1+···+ir=δ

ln
( δ!

i1! · · · ir!

)
.

Similarly,

µ̂(Sδ(E∨)⊗(d+1), ξ′0) = δ(d+ 1)µ̂(E∨, ‖.‖0,∗) = δ(d+ 1)µ̂(E∨, ξ∨).

Therefore, we obtain

d̂eg(Sδ(E∨)⊗(d+1), ξ′) +
1

2
ν(Ω∞)(d+ 1)

∑
(i1,...,ir)∈Nr
i1+···+ir=δ

ln
( δ!

i1! · · · ir!

)

= d̂eg(Sδ(E∨)⊗(d+1), ξ′0).

By [13, Proposition 4.3.13], the inequality (9.5) leads to

((L,ϕ)d+1) > ((L,ϕ0)d+1)

+
1

2
ν(Ω∞)(d+ 1)

( ∑
(i1,...,ir)∈Nr
i1+···+ir=δ

ln
( δ!

i1! · · · ir!

)
− ln

(
r + δ − 1

δ

))

> ((L,ϕ0)d+1)− 1

2
ν(Ω∞)(d+ 1)δ ln(r),

by using the inequality (
r + δ − 1

δ

)
6 rδ.

10. Arithmetic Hilbert-Samuel theorem

The purpose of this section is to prove the following theorem.
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Theorem 10.1. — Let X be a geometrically integral projective K-scheme, d be the
dimension of X and L be an ample invertible OX-module. Then for any metric family
ϕ ∈M (L), the following equality holds

v̂olχ(L,ϕ) = ((L,ϕ)d+1). (10.1)

Proof. — Step 1: We first prove the inequality v̂olχ(L,ϕ) 6 ((L,ϕ)d+1).
By taking a tensor power of L we may assume that L is very ample and the

canonical K-linear map

Sn(H0(X,L)) −→ H0(X,L⊗n) (10.2)

is surjective for any integer n > 1. Moreover, by Remark 7.6, the difference

v̂olχ(L,ϕ)− ((L,ϕ)d+1)

does not depend on the choice of the metric family ϕ. Therefore, we may as-
sume that ϕ identifies with the quotient metric family induced by the norm family
ξ1 = (‖.‖ϕω )ω∈Ω. By [13, Proposition 2.2.22 (2)], for any positive integer n, the
metric nϕ identifies with the quotient metric family induced by the norm family
ξn = (‖.‖nϕω )ω∈Ω. Moreover, by changing metrics we may also assume that the min-
imal slope of (H0(X,L), ξ1) is non-negative. Since the K-linear map (10.2) is surjec-
tive, by [13, Proposition 6.3.25], we obtain that the minimal slope of (H0(X,L⊗n), ξn)

is non-negative for any positive integer n. By [13, Theorem 4.1.26], there exists a
Hermitian norm family ξ′n = (‖.‖′n,ω) of H0(X,L⊗n) such that ‖.‖n,ω = ‖.‖nϕω when
|.|ω is non-Archimedean and

‖.‖′n,ω 6 ‖.‖nϕω 6 (2rn)1/2‖.‖′n,ω (10.3)

when |.|ω is Archimedean, where rn denotes the dimension of H0(X,L⊗n).
For any positive integer n, let ‖.‖n be the ultrametric norm on H0(X,L⊗n) corre-

sponding to the Harder-Narasimhan R-filtration of (H0(X,L⊗n), ξ′n), where we con-
sider the trivial absolute value |.|0 on K. Let ϕ̃n be the continuous metric on L (where
we still consider the trivial absolute value on K) such that nϕ̃n identifies with the
quotient metric on L⊗n induced by ‖.‖n. By [13, Proposition 2.2.22 (2)], one has
‖.‖nϕ̃n = ‖.‖n on H0(X,L⊗n) and hence

d̂eg(H0(X,L⊗n), ‖.‖nϕ̃n) = d̂eg(H0(X,L⊗n), ‖.‖n) = d̂eg(H0(X,L⊗n), ξ′n). (10.4)

By Proposition 9.3 and the second inequality of (10.3) we obtain that

((nL, nϕ)d+1) +
1

2
ν(Ω∞)(d+ 1)nd(Ld) ln(2rn)

> ((nL, nϕ̃n)d+1)− 1

2
ν(Ω∞)(d+ 1)nd(Ld) ln(rn),

(10.5)

where we consider X as an arithmetic variety over the adelic curve S (resp. as
an arithmetic variety over the adelic curve consisting of a single copy of the trivial
absolute value on K) in the computation of the arithmetic intersection number on the
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left-hand side (resp. right-hand). Moreover, by Theorem 8.2, the following equality
holds:

v̂olχ(L, ϕ̃n) = ((L, ϕ̃n)d+1). (10.6)

By [10, Corollary 5.2] (see also the proof of Theorem 7.3 of loc. cit.), there exists a
positive constant C such that, for any positive integer n, one has

d̂eg(H0(X,L⊗n), ‖.‖nϕ̃n) 6
v̂olχ(nL, nϕ̃n)

(d+ 1)!
+ Cnd.

The constant C can be taken in the form an invariant of the graded linear series⊕
m∈NH

0(X,L⊗m) multiplied by

sup
m∈N,m>1

µ̂max(H0(X,L⊗m), ξ′m)

m
.

By (10.4), (10.5) and (10.6), we deduce that

d̂eg(H0(X,L⊗n), ξn) 6
nd+1

(d+ 1)!
((L,ϕ)d+1) + Cnd +

1

2
ν(Ω∞)(d+ 1)nd(Ld) ln(2r2

n).

Dividing the two sides of the inequality by nd+1/(d + 1)! and then taking the limit
when n→ +∞, we obtain

v̂olχ(L,ϕ) 6 ((L,ϕ)d+1).

Step 2: the inequality v̂olχ(L,ϕ) > ((L,ϕ)d+1).
By replacing L by a tensor power, we may assume that L is very ample. Moreover,

by the normalization of Noether (cf. [15, Proposition 1.7.4]), we may also assume that
there is a finite K-morphism π : X → PdK such that L ∼= π∗(OPdK (1)). By Remark
7.6, we may further assume that there exists an element ψ = (ψω)ω∈Ω of M (OPdK (1))

such that ϕ equals the pull-back of ψ by π. Then, by Corollary 6.3, Proposition 7.11
and [15, Theorem 4.4.9], one has

v̂olχ(L,ϕ) > deg(π)v̂olχ(OPdK (1), ψ) = deg(π)((OPdK (1), ψ)d+1) = ((L,ϕ)d+1),

as required.

Definition 10.2. — Let (L,ϕ) be an adelic invertible OX -module. We say (L,ϕ)

is relatively ample if L is ample and ϕ is semipositve. Moreover, we say (L,ϕ) is
relatively nef if there exist a relatively ample adelic invertibleOX -module (A,ψ) and a
sequence (an)∞n=1 of positive integers such that limn→∞ an =∞ and an(L,ϕ)+(A,ψ)

is relatively ample for n > 1.

Corollary 10.3 (Generalized Hodge index theorem)
Let (L,ϕ) be a relatively nef adelic invertible OX-module. Then one has

v̂ol(L,ϕ) > ((L,ϕ)d+1). (10.7)
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Proof. — Let (A,ψ) be a relatively ample adelic invertible OX -module and (an)∞n=1

be a sequence of positive integers such that limn→∞ an =∞ and an(L,ϕ) + (A,ψ) is
relatively ample for n > 1. Then, by Theorem 10.1,

v̂ol(an(L,ϕ) + (A,ψ)) > v̂olχ(an(L,ϕ) + (A,ψ)) > ((an(L,ϕ) + (A,ψ))d+1)

for n > 1, and hence by [13, Theorem 6.4.14],

v̂ol((L,ϕ) + (1/an)(A,ψ)) > (((L,ϕ) + (1/an)(A,ψ))d+1).

Thus, by using the continuity of v̂ol (cf. [13, Theorem 6.4.24]),

v̂ol(L,ϕ) = lim
n→∞

v̂ol((L,ϕ) + (1/an)(A,ψ))

> lim
n→∞

(((L,ϕ) + (1/an)(A,ψ))d+1) = ((L,ϕ)d+1),

as desired.

Corollary 10.4. — Let (L,ϕ) be a relatively nef adelic invertible OX-module. If
((L,ϕ)d+1) > 0, then L is big.

Proof. — By Corollary 10.3, v̂ol(L,ϕ) > 0. Let (A,ψ) be a relatively ample adelic
invertible OX -module. By the continuity of v̂ol (see [13, Theorem 6.4.24]), there is
a positive integer n such that v̂ol((L,ϕ) − (1/n)(A,ψ)) > 0, that is, v̂ol(n(L,ϕ) −
(A,ψ)) > 0, so that, for some positive integer m, H0(X, (L⊗n ⊗ A−1)⊗m) 6= {0}.
Therefore L is big.

Corollary 10.5. — Let X be a geometrically integral projective scheme over SpecK,
d be the dimension of X, L = (L,ϕ) be an adelic line bundle on X and E = (E,U, ψ)

be a birational adelic torsion free OX-module. Assume that L is ample and the metrics
in ϕ are semi-positive. Moreover we suppose that either (E,ψ) is an adelic invertible
OX-module or X is normal. Then one has

lim
n→+∞

d̂eg(H0(X,L⊗n ⊗ E), (‖.‖nϕω+ψω )ω∈Ω)

nd+1/(d+ 1)!
= rk(E)(Ld+1).

Proof. — This is a consequence of Theorem 10.1 together with Theorem 6.4.
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