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The interaction between two large spherical particles, called intruders, in a dry granular flow down
an incline is brought to light and studied experimentally and numerically. Several parameters are
varied, namely the size ratio between the intruders and the small flowing particles, the thickness of
the granular flow, the incline slope and roughness, and the densities of the intruders with respect
to the small-particle density. In all cases, intruders get aligned with the flow. A thorough para-
metric study shows that a transition occurs between attractive and repulsive regimes of interaction:
at steady-state, intruders either flow at a defined longitudinal distance, which may be zero with
intruders in contact, or stand as far apart as possible. The mean longitudinal and vertical distances
between the intruders are found to be tightly linked, with all points plotting the pairs on a single,
master curve. The wake and shear effects are shown to control the relative position of the intruders.
They may be modulated due to the weight and buoyancy of the intruders, and to local modifications
of the collisions between intruders and small flowing particles because of the proximity of the incline

bottom or the flow surface.

I. INTRODUCTION

The numerous occurrences in natural and industrial
environments of flows of polydisperse dry granular mate-
rials have attracted much attention and driven many ex-
perimental, numerical and theoretical studies for a long
time [1-3]. Most of these studies deal with mixtures of
two sizes of particles of the same density, small size ra-
tios between the large and small particles (smaller than
4, typically) and more or less the same fractions of both
species. These conditions lead to the usual granular size
segregation pattern, with large particles moving toward
the free surface of the flow [4-6] according to the so-
called Brazil nut effect. Notwithstanding, it was shown
that the opposite takes place for high size ratios and low
fractions of large particles, still of the same density as the
small particles. The large and, consequently, heavy par-
ticles can then push away the small ones and make their
way down the flowing granular layer. For instance, a few
large particles in a shear flow down a rough incline mi-
grate downward and stabilize near the bottom of the flow
for size ratios larger than about 4.5. This phenomenon
was called reverse segregation [7-9]. It can be thought of
in terms of buoyancy: as the flowing small particles have
a volume fraction around 0.6, the density ratio between a
large particle and the equivalent volume of the surround-
ing small particles having the same density tends to 1.7
for very large particles.
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Many investigations of the forces acting on objects
immersed in dense granular flows have been performed.
These objects are usually static in studies of the drag
forces that exert on such obstacles to the flow [10, 11],
whereas the dynamics of a single intruder free to move
has often been addressed in an approach to model gran-
ular size or density segregation, in granular flows either
driven by gravity [7-9, 12-17] or by an externally im-
posed shear [14, 18-21]. The size ratios between the in-
truder and the small flowing particles are lower than 5
[7-9, 13-21] or 6 at the most [17, 19] in all these stud-
ies, except in [7-9] where size ratios as high as 30 were
considered. A few investigations, which focus on the in-
teraction between intruders, consider more than one large
particles, either static [10, 11] or moving in static gran-
ular beds [22, 23], in 2D or quasi-2D systems only, apart
from a short qualitative insight into 3D in [22]. To our
knowledge, the interaction between large particles free
to move in a 3D dense granular flow at size ratios larger
than 6 has never been addressed, even though it is likely
to be of great relevance in debris flows and industrial
processes.

This situation strongly contrasts with that of particles
suspended in fluids. Among other issues, the interaction
between sedimenting particles has been studied for long
[24-37]. The dynamics of solid spheres settling in a New-
tonian fluid has proved to exhibit a rich phenomenology
including the Drafting-Kissing-Tumbling behavior [38-
40] and may result in peculiar patterns [41-43] in the
arrangement of the particles. In sheared suspensions,
different migration behaviors are observed depending on
the flow conditions and the properties of the particles
and of the fluid. Particles may attract or repel each oth-
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ers, which leads to microstructures like trains of particles
in channel flows [44-47]. In the case of non-Newtonian
fluids, even more complex phenomena may arise, like re-
pulsion between particles for a shear-thickening fluid, or
alignment in viscoelastic fluids [48].

In a somewhat similar approach, this work focuses on
the dynamics of two large particles (intruders) in a dry
granular shear flow made of small particles flowing down
a rough incline. Intruders are large and most often in
situation of reverse segregation. Except in a few cases,
large and small particles have the same density. Two in-
vestigation methods, experimental and numerical, have
been implemented. Regarding simulations, the Distinct
Element Method (DEM) [49] was used. Its performance
makes possible a thorough study of various parameters
and gives access to quantities that would be difficult, if
not impossible, to measure experimentally. Conversely,
experiments provide the necessary validation of the sim-
ulation results.

The article is organized as follows. The experimental
protocol and the numerical scheme are described in Sec-
tion II. Section III introduces the physical phenomenon,
from both experiments and simulations. Section IV re-
ports a parametric numerical study of the influence of
the intruder size, the thickness of the granular flow, the
incline slope and roughness, and the intruder densities.
A mechanism for the interaction process is proposed and
discussed in part V. Section VI ends the article with con-
clusions.

II. METHODS

A. Experimental protocol

Flow Thickness
Cameras

) §

Line Beam Generator Slope of the incline

FIG. 1. Sketch of the experimental set up.

Experiments have been conducted on a 80 cm long and
10 cm wide incline (Fig. 1). The incline is made rough
by covering the board with a grade P120 sandpaper. Its
slope is set to 23°. Flowing particles are glass beads
(density p = 2500 kg m~?) that have been sieved between
300 pm and 400 pm, with a size distribution centered
close to d = 350 pm. Intruders are colored glass beads
(density p = 2580 kg m~3) of same diameter d;, equal

to either 2.0 mm or 3.5 mm, which leads to two size
ratios d;/d of about 6 and 10. A feeding container of
an approximate volume of two liters is placed at the top
of the incline. The flow rate from the hopper and thus
the thickness of the granular flow are controlled by the
height of the container gate. Its width is kept constant,
equal to the channel width. Ambient humidity is kept
around 50%RH. After the opening of the container gate,
a steady, uniform flow of small glass beads establishes
over the entire channel. Soon after, 2 intruders are gently
dropped on the flow, about 10 cm below the gate as the
flow thickness might not be constant close to the exit.
A homemade injector is used to approximately set the
initial relative location of the intruders. The intruders
are driven downwards; they rapidly reach their stationary
height inside the granular flow, after a few centimeters
of travel. A high-resolution video camera with a wide-
angle lens, placed above the channel, images its entire
length while a digital still camera zooms in on its lower
part. The positions of the intruders are obtained from
videos recorded at 25 fps typically as well as from photos
captured in burst mode. The thickness of the granular
flow is measured from the shift of the shadow of a thin
tense string or from the deflection of a laser sheet. Flow
thicknesses from 2.2 mm to 3.0 mm have been studied
experimentally.

B. Numerical model

The numerical method used is the distinct element
method (DEM). A linear-spring and viscous damper
force model [49, 50] is implemented to calculate the nor-
mal force between contacting particles. The details on
the numerical model and its parameters (normal stiff-
ness, normal damping, collision time and restitution co-
efficient) have been published previously and can be
found in [9, 50, 51]. The gravitational acceleration is
g = 9.81ms~2. The particle properties correspond to
those of cellulose acetate: density p = 1308kgm ™3, resti-
tution coefficient e = 0.87 and friction coefficient y = 0.7
[50, 52]. In two series of simulations (Sec. IVF), the den-
sities of the intruders are (i) both equally increased or de-
creased compared to that of the small particles, p; = ap
with « in the range [0.35;2], or (ii) modified symmet-
rically so that the front intruder density is p + Ap and
the back intruder density p — Ap, with Ap in the range
[—0.005p; 0.15p]. The front intruder is denser, except in
a few cases where Ap < 0. Introducing a difference in
density between the intruders aims at modifying their
relative vertical position in the flow.

To prevent the formation of a close-packed structure,
the small particles have a uniform size distribution rang-
ing from 0.95d to 1.05d, with d hereafter referred to as
the small-particle diameter. d is equal to 6 mm in the
simulations. The large particle diameter is d;. The col-
lision time is At = 10~* s, consistent with previous sim-
ulations [52-54] and sufficient for modeling hard spheres




[05-5T]. These parameters correspond to a stiffness co-
efficient k,, = 7.32 x 102 N m~! [50] and a damping co-
efficient +,, = 0.206 kg s~*. The integration time step is
At/50 = 2 x 1076 s to meet the requirement of numerical
stability [55].

The initial configuration is obtained as follows. Small
beads are placed randomly in the simulation domain,
along with two large particles that are placed at 0.75d;
above the bottom, aligned at 45° of the flow direction
and spaced at twice their diameter from center to center,
as illustrated in the left column of Fig. 2. During 0.3 s,
gravity is set perpendicular to the bottom plane and par-
ticles fall. All beads touching the bottom of the domain
stop moving and form a monolayer of bonded particles
which generates the roughness of the incline. The other
beads will constitute the flowing granular material. The
particles of the rough bottom have the same size as the
small flowing particles, except for one particular study on
the effect of the roughness of the incline, where various
diameters of particles, from d, = 0.9d to 1.6d, were used
to generate the glued monolayer (see Sec. IVE). After
0.3 s, gravity is tilted to the chosen slope (24°; except
in Sec. IVD) and the flow starts (¢ = 0 s). Rough-
bottom particles are assumed to have an infinite mass
for calculation of the collision force between flowing and
fixed particles. The velocity-Verlet algorithm is used to
update the position, orientation, and linear and angular
momenta of each particle. Periodic boundary conditions
are applied in the flow direction x and in the transverse
direction y of the simulation domain. The size of the do-
main is L, = 80d and L, = 40d in the x and y directions,
except in some cases for which the size is increased up
to 160d x 80d. The positions and velocities of all par-
ticles, including the intruders, are stored every 0.1 s for
post-processing purpose. The thickness of the moving
granular layer is computed from the surface (z = 0) of
the roughness of the incline, one small-particle diame-
ter higher than the domain bottom. In part V, virtual
springs are added between intruders in order to maintain
them at defined distances in the z and y directions and
facilitate the measurement of the velocity field.

IIT. RESULTS: EVIDENCE OF AN
INTERACTION BETWEEN INTRUDERS

A. First observations

In the first part of the numerical study, all parti-
cles have the same density and the size ratio of the in-
truder diameter to the small-particle diameter is set to
d;/d = 10. This size ratio ensures reverse segregation
[Z,9]. Three flow thicknesses were implemented (H = 7d,
15d and 18d). The equilibrium position of the intrud-
ers in the z-direction, near the bottom of the granular
flow, results from the reverse segregation mechanism and
the difficulty to penetrate the lowest small-particle layers
where chain forces are efficient enough to support a large

15d

H=18d

FIG. 2. From the numerical simulations, three successive
positions of 2 intruders (in red) in dry granular flows of small
particles (in grey). Particles of the rough incline are green.
The size ratio between the large and small particles is d; /d =
10. Three thicknesses of the flow are displayed: H = 7d, 15d
and 18d. The simulation domain is 80d x 40d and the slope
of the incline is 24°. Also see videos 1 to 3 in Supplemental
Material [58].

particle. For the thinnest flow, intruders are large enough
to emerge from the flow and are visible at its surface. For
the two thick flows, intruders are completely embedded
in the granular flow and small particles are drawn partly
transparent in Fig. 2 to make the intruders visible. Note
that the vertical velocity profile of the flow of small par-
ticles down the incline makes the flow very non-uniform
over the intruder diameter (shear flow).

The simulations bring to light a striking behavior of
the intruders in the granular flow. For the thin flow case
(H = 7d), they are observed to align in the flowing di-
rection, moving in the wake of the other intruder, and
eventually get in contact. Intruders attract each other.
For the two thick flow cases, the intruders, initially close,
also align but move away from each other, to a distance
depending on the flow thickness. For H = 15d, intrud-
ers locate at a distance (measured from center to center)
Ax ~ 20d. For H = 18d, this distance is Az ~ 37d,
which is close to the maximal distance (Az = 40d) which
can be obtained for periodic boundary conditions and a
simulation domain length of L = 80d. An increase in the
simulation domain length shows that intruders actually
repel each other for the thickest flow (see Fig. 8).

A similar qualitative behavior is observed experimen-
tally. Figures 3 and 4 show two experiments performed
for the same size ratio (d;/d ~ 6) and two flow thick-
nesses. The small beads have a diameter d ~ 350 pm
and the intruder diameter is 2.0 mm. The flow thick-
nesses are H = 2.2mm =~ 6.5d and H = 2.9mm ~ 8.5d
for Figs. 3 and 4, respectively. Note that the particles
flow toward the right in these figures. The sub-images
display the time evolution of the intruder positions. To
facilitate the visualization, their locations are highlighted
by two red and blue circles which have the same diam-
eter as the intruders and stand for the front and back
intruders, respectively.

Like in simulations, for both flow thicknesses, the two



FIG. 3. Pictures from an experiment performed with a gran-
ular flow made of small particles of diameter d ~ 350 pum and
two large intruders of diameter d; = 2.0 mm, for a size ratio
di/d ~ 6. The slope of the incline is 23°. The flow thick-
ness is H = 2.2 mm =~ 6.5d. The lower picture shows the
whole plane, with one location of the intruders highlighted
by a green dashed circle as an example. The five upper sub-
images illustrate the time evolution of the relative position of
intruders; the arrows indicate their corresponding locations
on the plane. The thick green arrows indicate the direction
of the flow. Also see video 4 in Supplemental Material [58].

FIG. 4. Same as Fig. 3 for a larger granular flow thickness
H = 2.9 mm ~ 8.5d. The four lower sub-images show the
time evolution of the relative position of the intruders. Also
see video 5 in Supplemental Material [58]

intruders get aligned with the flowing direction. Intrud-
ers, which are initially in contact, move away while flow-
ing. For the thinnest flow (Fig. 3), the intruders eventu-
ally locate at a distance Ax ~ 2.5d; ~ 15d from center
to center. For the thickest flow (Fig. 4), the distance
between the intruder centers continuously increases until
intruders reach the end of the incline, where the distance
comes to Az ~ 30d.

Experiments performed with intruders 3.5 mm in di-
ameter, i.e. a size ratio d;/d ~ 10, and two flow thick-
nesses H ~ 2.6 mm =~ 7.5d and H ~ 3.0 mm =~ 9d, all
else being equal, show that intruders also align but they
stay, or rapidly come in contact.

Thus, numerical simulations and experiments demon-
strate that two large particles in a dry granular flow down
an incline do interact. Both approaches suggest that two
regimes exist, attractive or repulsive depending on the
thickness of the flow.
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FIG. 5.  Longitudinal (Az, upper curves) and transverse

(Ay, lower curves) distances between the two intruder cen-
ters (d;/d = 10) measured in small bead diameter (d), as
a function of time, for the three flow thicknesses (H = 7d,
15d and 18d) of the numerical study corresponding to Fig. 2.
The transverse distances Ay converge to zero. The longitudi-
nal distances tend to different values increasing with the flow
thickness. The dotted line indicates one intruder diameter
d; = 10d, i.e. the minimal longitudinal distance between two
intruder centers perfectly aligned with the flow direction. The
dashed line (y = 40d) corresponds to half of the longitudinal
size of the simulation domain, i.e. the maximum distance that
two aligned repelling intruders can reach.

B. Time evolution of the relative position of the
intruders

The time evolution of the relative position of the two
intruders give further details on the process. Figures 5,
6 and 7 report the longitudinal (Az, upper curves) and
transverse (Ay, lower curves) distances between the in-
truder centers as a function of time, for the numerical
and experimental studies reported above.

As exemplified in Fig. 5, the numerical simulations
performed for a size ratio d;/d = 10 show that a sta-
tionary regime is reached after a transition period whose
duration increases with the flow thickness. The trans-
verse distance (Ay) converges toward zero for all values
of the flow thickness, rapidly for a thin flow and more
slowly for a thicker flow. Intruders are drawn more or
less efficiently into each other’s wake (See Sec. V for dis-
cussion). Whereas the longitudinal distance (Az) also
converges to a steady state, it exhibits various behaviors
of which Fig. 5 gives a representative example. For the
thinner flow (H = 7d), the longitudinal distance tends to
d;, showing that intruders are almost in contact. For
H = 15d, the longitudinal distance fluctuates around
Az = 20d. For the thickest flow (H = 18d), the lon-
gitudinal distance almost reaches Az = 40d, which cor-
responds to half of the simulation domain length. Due
to the periodic boundary conditions used in the simula-
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FIG. 6. Longitudinal (Az, upper curves) and transverse

(Ay, lower curves) distances between the two intruder centers
measured in small bead diameter (d) for four experiments
performed for a size ratio d;/d ~ 10 and two flow thicknesses
H =26 mm ~ 7.5d and H = 3.0 mm ~ 9d. The dotted line
indicates one intruder diameter d; = 10d, i.e. the minimal
longitudinal distance between two intruder centers perfectly
aligned with the flow direction.

FIG. 7. Longitudinal (Az, upper curves) and transverse
(Ay, lower curves) distances between the two intruder centers
measured in small bead diameter (d) for the two experiments
corresponding to Figs. 3 and 4, respectively. The size ratio is
d;/d ~ 6 and the flow thicknesses are H = 2.2 mm =~ 6.5d and
2.9 mm ~ 8.5d. The dotted line indicates one intruder diam-
eter d; = 6d, i.e. the minimal longitudinal distance between
two intruder centers perfectly aligned with the flow direction.

tions, this is the maximum distance that can be reached
between two repelling intruders since they interact by
both sides of the simulation domain.

Figures 6 and 7 show the time evolution of the lon-
gitudinal (Ax, upper curves) and transverse (Ay, lower
curves) distances between the two intruder centers in the
experiments performed for two size ratios. In Fig. 6, for
the size ratio d;/d ~ 10 and the two small flow thick-
nesses investigated, the behaviors observed are the same
as in the simulations for the thinnest flow. Intruders align
and come in contact.

In Fig. 7, for the size ratio d;/d ~ 6 and a thin flow
(H =~ 6.5d, blue curves), the transverse distance Ay also
decreases and tends to zero, i.e. intruders get aligned,
whereas the longitudinal distance Az rapidly grows to
10d, and then reaches some kind of plateau around 15d,
followed by a slight increase which could be due to a non-
constant flow thickness. For the same size ratio d;/d ~ 6
and a thick flow (H ~ 8.5d, red curves in Fig. 7), the
transverse distance Ay also decreases, more slowly than
for the thin flow, and does not reach zero before the end of
the incline. The longitudinal distance Az rapidly reaches
a value around Az ~ 30d and fluctuates around it. Note
that the curves for the thick case end more rapidly than
for the thin case since the flowing velocity increases with
the flow thickness. Repeated measurements at a given
size ratio and flow thickness (see Fig. 6) show that in-
truders eventually locate at similar relative positions.

Fluctuations in Fig. 5 draw attention. Regarding the
longitudinal distance Az between intruders, fluctuations
grow at increasing flow thickness, from almost null when
intruders have come in contact at small flow thickness,
to large when intruders are far away from one another
at large flow thickness. Likewise, in the experiments re-
ported in Figs. 6 and 7, fluctuations on Az are larger
when intruders are far apart than for intruders in con-
tact. Logically, the further the intruders, the weaker the
interaction between them and the less their relative po-
sition is constrained. Regarding the transverse distance
Ay, the amplitude of its fluctuations is rather small in
the steady state. Fluctuations on Ay do not show a clear
correlation with the thickness of the flow nor with the
longitudinal distance.

Finally, it is interesting to note that when intruders are
close and not perfectly aligned, they migrate in the trans-
verse direction and towards the front intruder. This is not
visible in Fig. 2 due to the periodic boundary conditions
but visible in video 1 [58], corresponding to H = 7d.
When the flow is thick, and intruders are far away, no
migration is visible (see videos 2 and 3 [38]). Such a
behavior is also observed for particles sedimenting in a
fluid: at low Reynolds number, a force which results from
hydrodynamic interactions acts along the direction join-
ing the centers of two sedimenting particles, whose hor-
izontal component induces a lateral drift of the pair of
particles [28, 35-37]. The study of this phenomenon is
ongoing and will be presented in a future work.

C. Numerical study of the steady state

Figures 5 to 7 confirm the existence of a transition be-
tween two regimes of interaction between the intruders,
attractive at small flow thickness and repulsive at large
flow thickness. This transition can be highlighted by con-
sidering the average values computed on the steady state
in the numerical simulations.

Figure 8 plots the mean longitudinal (Az) and trans-
verse distances (Ay) obtained numerically between the
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FIG. 8. Mean longitudinal (Az) and transverse (Ay) dis-
tances (measured from center to center and stated in small-
particle diameter d) between two intruders of size ratio d; /d =
10 at increasing flow thicknesses H. In simulations (filled sym-
bols), the domain size is Ly X L, = 80d x 40d (red squares and
green circles) or 160d x 40d (blue triangles and magenta re-
versed triangles). The empty symbols (cyan circles and black
triangles) stand for the experiments performed at a size ratio
d;/d ~ 10. The dotted line indicates one intruder diameter
d; = 10d, i.e. the minimal longitudinal distance between two
aligned intruders.

intruder centers, as a function of the flow thickness in the
range H = 6d to 25d, for the size ratio d;/d = 10. The er-
ror bars indicate the standard deviation of the distances.
To compute the mean, the first 50 s of each simulation are
discarded to ensure that the stationary regime has been
reached. In a few cases, intruders were not aligned after
50 s and the averaging was started only when intruders
got aligned. Averaging is typically performed for a pe-
riod of 200 s. To probe the effect of periodic boundary
conditions, two domain sizes were considered: the size
previously used, 80d x 40d, was increased to 160d x 40d,
for a few cases only since simulations become numerically
costly for such a large domain.

For all flow thicknesses and both domain sizes, the
mean transverse distance (Ay) is close to zero, which con-
firms that intruders initially close (Az(t = 0) = Ay(t =
0) = v/2d;) always tend to align with the flow direction
by wake effects, as detailed in Sec. V. The mean longitu-
dinal distance (Az) shows a transition around H = 17d.
Below this thickness, for both domain sizes, intruders lo-
cate at a defined distance that decreases at decreasing
flow thickness. This decrease is limited by the size of the
intruders since, once aligned, the longitudinal distance
between intruders cannot be smaller than one intruder
diameter, which corresponds to intruders in contact. In
this range of flow thickness smaller than 17d, the stan-
dard deviations are very small, indicating that the attrac-
tion between intruders is strong enough not to be sensi-
tive to the fluctuations inherent to a granular flow. Note

that the experimental behavior reported in Fig. 6 for a
size ratio d;/d ~ 10 and small flow thickness (empty sym-
bols in Fig. 8) is consistent with the numerical results. In
contrast, for large flow thicknesses, the mean longitudinal
distance reaches the maximum possible distance consid-
ering periodic boundary conditions, i.e. (Axz) ~ 40d or
80d according to the domain size. Standard deviations
are large since longitudinal distances strongly fluctuate
in this repulsive regime, as emphasized above.

The almost zero value of the transverse distance at
large flow thickness calls for some comments since, in
the steady-state, intruders are far apart and unlikely to
feel each other’s wake. Actually, in the simulations, they
start to align because they are initially close together,
and continue to do so as the longitudinal distance in-
creases, eventually remaining aligned when far apart even
though they no longer interact. However, the limited do-
main size in simulations may also promote the alignement
of the intruders. As shown in Fig. 8, two intruders in the
repelling regime are better aligned (small error bars for
green circles) when artificially held close due to a smaller
domain size, while a larger domain leads to larger fluctu-
ations of the transverse distance (Ay) and mean values
as large as 7d. This may be related to the size of the in-
truder wakes but also results from the periodic boundary
conditions that cause the intruders to meet, and thus re-
align, from time to time, and more frequently in a smaller
domain, which would not happen in an infinite domain.

Figure 8 makes the transition between an attractive
and a repulsive regime clear for the size ratio d;/d = 10.
To gain a better knowledge on this transition, the size
ratio between the intruders and the small particles, the
slope of the incline and its roughness, as well as the den-
sities of the intruders, were varied in the numerical simu-
lations. As before, the mean longitudinal and transverse
distances are measured for various flow thicknesses. In
addition, the vertical locations of the intruders within the
granular flow, i.e. their heights above the rough incline,
are investigated.

IV. PARAMETRIC STUDY

A. Shift of the transition toward increasing flow
thicknesses at increasing size ratio

Three additional size ratios are studied numerically,
namely d;/d = 6, 8 and 12. Below a size ratio of 6, in-
truders undergo a classical surface segregation and are no
longer near the bottom of the flow. For size ratios larger
than 12, the transition occurs for very large flow thick-
nesses and the computational cost strongly increases.

Figure 9 reports the mean transverse and longitudinal
distances as a function of the flow thickness. All intruder
sizes lead to the same overall shapes for these curves,
however, the repulsive regime is reached at larger flow
thickness for larger intruders, around 11d, 13d, 18d and
22d for intruders of diameters d; = 6d, 8d, 10d and 12d,
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FIG. 9. Mean longitudinal (Az) and transverse (Ay) dis-

tances between two intruders at increasing flow thicknesses.
The size ratios between intruders and small particles are (a)
di/d = 6, (b) di/d = 8 and (c) di/d = 12. The range in
flow thickness, starting at H = 6d, is adjusted to reach the
repulsive regime. The axis scales are kept identical for all
graphs to facilitate comparison. All lengths are given in units
of small-particle diameter. The dotted lines indicate the in-
truder diameters. In Fig. 9 (a), the empty symbols stand for
the experiments performed at d;/d ~ 6.

respectively. The transition between the attractive and
repulsive regimes proves to depend on the intruder size.

Some less important differences between the three
graphs in Fig. 9 can be noted. In particular, for the lower
size ratio d;/d = 6 (Fig. 9(a)), the mean longitudinal dis-
tance always presents a large standard deviation, even for
the lowest flow thicknesses, and the mean transverse dis-
tance more or less deviates from zero. The smaller the
size difference between the intruders and the small parti-
cles, the more the fluctuations inherent to a granular flow
outweigh the dynamics of the intruders. In addition, the

lower limit of the attractive regime, where intruders are
in contact, is not reached at the smallest flow thickness
H = 6d reported. This would require to lower the thick-
ness even further. However, this is not possible in the
simulations with the chosen parameters since a granular
layer thinner than 6d does not flow.

The mean longitudinal and transverse distances ob-
tained experimentally for the size ratio d;/d ~ 6 and
for H ~ 6.5d and H ~ 8.5d (see Fig. 7) are reported
in Fig. 9(a). The agreement with the mean longitudinal
distances obtained in simulations, Az ~ 16d for H = 6d
and Ax ~ 30d for H = 9d, is noticeable.

Intruders with size ratios d;/d = 8 and 12 (Fig. 9(b-c))
present similar behavior compared to the case d;/d = 10
(Fig. 8). For thin flows, the intruders attract each other
and locate at a defined distance that depends on the flow
thickness. For the lower flow thicknesses, the mean lon-
gitudinal distance (Az) is close to one intruder diameter
and intruders are in contact. Standard deviations are
small in the attractive regime. For thick flows, intruders
repel each other, the mean longitudinal distance (Az) is
close to (Az) ~ 40d = L, /2 and fluctuations are large.

Similar attractive and repulsive regimes are found for
all the size ratios that were explored numerically. Fig-
ure 10, where intermediate size ratios d;/d = 7, 9, 11
and 13 are also reported, depicts the attractive-repulsive
transition for all the size ratios investigated. Note that
the points above the transition have been omitted since
the longitudinal distance in the repulsive regime is set
by the numerical domain size, around Az = 40, and has
no physical meaning. The curves of the mean longitu-
dinal distance versus flow thickness all present a simi-
lar shape, however the transition is seen to shift toward
higher values of flow thickness and become smoother and
smoother as the intruder size increases. For example, for
the size ratio d;/d = 8, an increase in flow thickness from
H = 9d to H = 13d is enough to switch from intruders
in contact to the repulsive regime, while for the size ratio
d;/d = 12, an increase in flow thickness from H = 15d
to H = 23d is necessary. A practical consequence is
that using large intruders makes it easier to differentiate
the various regimes. However, this requires thick granu-
lar flows that are numerically expensive and complex to
generate experimentally.

B. Vertical locations of the intruders

Numerical simulations also give access to the vertical
location of the intruders within the granular flow, here-
after called height of the intruders for simplicity. Fig-
ure 11 plots the mean heigths of the two intruders above
the rough incline (z = 0), for the size ratio d;/d = 10 and
various flow thicknesses. Note that compared to previous
graphs, the vertical axis is strongly stretched.

The main feature of Fig. 11 is that, whereas both in-
truders adopt an identical vertical position in the flow at
flow thickness larger than 18d, the front intruder stabi-
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FIG. 10. Mean longitudinal distance (Az) versus flow thick-
ness for intruder sizes ranging from d; = 6d to 13d. All lengths
are given in units of small-particle diameter d.
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FIG. 11.  Mean vertical positions of the front (green cir-

cles) and back (red squares) intruders (d; = 10d) versus flow
thickness H. The center of mass of the two intruders (blue tri-
angle) as well as the vertical position of one single intruder in
a similar flow (magenta reversed triangle) are also plotted for
comparison. All lengths are given in units of small-particle di-
ameter. z = 0 corresponds to the surface of the rough incline,
defined by the summit of the small glued particles (See IIB)).
The insert zooms out to visualize the vertical positions of the
front-intruder top and bottom (dotted lines) compared to the
free surface (solid line) of the granular flow.

lizes higher than the back intruder when the flow thick-
ness becomes smaller than 18d. Figure 8 shows that the
value H = 18d corresponds to the transition between the
two regimes of interaction for the size ratio d;/d = 10.
More specifically, the interaction between the intruders
become purely repulsive above this value. Since intrud-
ers are far away from each other, they no longer alter

the flow in the vicinity of the other intruder and their
heights are identical. Below the value H = 18d, Fig. 11
shows that the mean height difference between the in-
truders (Az) increases when the flow thickness decreases
down to H = 13d, then decreases again as the thickness
further decreases from H = 13d down to H = 6d (also
see Fig. 13). Figure 12 shows that the same phenom-
ena occur for intruders of size d;/d = 12 but for larger
flow thicknesses. The intruders flow at the same height
at large flow thickness, down to H ~ 23d, which corre-
sponds to the attractive-repulsive transition for this size
ratio (from Fig. 9(c), also see Fig. 13). The mean height
difference between intruders increases for flow thicknesses
decreasing further, down to H = 16d, then starts to de-
crease.

The insets of Figs. 11 and 12 present the positions of
the summit, center and bottom of the front intruder, as
well as the location of the free surface of the flow. The
mean vertical position of the back intruder is also re-
ported to highlight that the height difference between
the two intruders (Az) is extremely small, less than half
of a small particle diameter. The top dotted line inter-
sects the free surface line for a flow thickness H ~ 13d for
the intruder size d;/d = 10 and H ~ 14.5d for d;/d = 12.
These values are close to those for which the height differ-
ence between the intruders starts to decrease. This shows
that the decrease in the height difference occurs when the
intruders get close to the free surface and eventually start
to emerge from the granular flow, with a larger and larger
emerged part when the flow thickness decreases further.
Conversely, intruders are fully immersed for flows with
larger thickness.

Since the intruders are closer and closer as the flow
thickness decreases (see Figs. 8 and 9), their interaction
strengthens and a larger effect on their height difference
(Az) is expected. For flow thicknesses smaller than 13d
(d;/d = 10) or 14.5d (d;/d = 12), an extra buoyancy due
to the emerging part of the intruders counterbalances the
interaction between intruders and reduces the resulting
height difference between them, more and more as the
emerged part grows. This can explain the decrease in
height difference observed at decreasing thickness from
about H = 13d in Fig. 11 and H = 16d in Fig. 12.

Figures 11 and 12 call for two more comments. The
center of mass of the two intruders as well as the vertical
position of one single intruder in a similar flow are also
plotted. This shows that, for all flow thicknesses, the
center of mass of the two intruders approximately coin-
cides with the vertical location of one single intruder in
simulations performed at the same flow thickness. This
is expected at large flow thickness when intruders are far
apart and flow at the same height, but this remains valid
at small flow thickness when a height difference between
the intruders is observed. Thus, the attractive interac-
tion between the intruders causes a lift of the front in-
truder and a sink of the back intruder while their center
of mass settles at a vertical position very close to that of
a single intruder.
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FIG. 12. Same as Fig. 11 for an intruder size d; = 12d.

The second remark relates to the intruder height above
the rough bottom. The bottom dotted line in the inset
of Fig. 11 gives the position of the front-intruder bottom
and shows that, even though intruders are in a reversed-
segregated location, they do not touch the rough incline
(z = 0). A layer of small particles, two to three small-
particle diameter thick, flows under the intruder bottom.
Its thickness slightly increases with the flow thickness.
The same phenomenon is observed for the intruder size

d;/d =12 (Fig. 12).

C. A criterion to define the transition thickness

Figure 13 reports the mean height difference (Az) be-
tween the front and back intruders as a function of the
flow thickness, for intruder sizes ranging from d; = 6d
to 13d. At decreasing flow thickness, all curves display
an increase of (Az) followed by a decrease when intrud-
ers are emerging. Accordingly, the maximum of the curve
shifts towards low flow thicknesses for decreasing intruder
sizes. For the case d; = 6d, this decrease does not appear
in Fig. 13 as it would start at a flow thickness that is too
small for the flow to occur in the simulation.

The intruder height difference conveniently provides an
unambiguous mean to define the transition between the
attractive and the repulsive regimes. As illustrated in
Fig. 13 for the size ratio d;/d = 11, the intersection with
the horizontal axis ({(Az) = 0) of a second-order polyno-
mial fit of the decreasing part of the curve gives a value of
the flow thickness beyond which the interaction between
intruders is purely repulsive and both intruders have the
same height. This value is called the transition thick-
ness, noted H*. For d;/d = 11, the transition thickness
is H* = 21.3d. The change in regime, that is to say the
transition between attraction and repulsion, is assigned
to the flow thickness H*.

Figure 14 summarizes the results for all size ratios. In
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FIG. 13. Mean intruder height difference (Az) versus flow
thickness H for intruder size ranging from d; = 6d to 13d. For
the size ratio d;/d = 11, a second-order polynomial fitted on
the descending part of the graph is shown. The intersection of
this fit with the horizontal axis is used to define the transition
thickness H*. All lengths are given in units of small-particle
diameter.
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FIG. 14. Transition flow thickness H* based on the intruder
height difference, versus intruder size ratio d;/d (red dots).
The mean vertical locations of the intruder summit (green
squares), center (blue triangles), and bottom (magenta re-
versed triangle) for a flow of thickness H* are also displayed.

addition to the transition flow thickness H*, the mean
vertical locations of the intruder summit, center and bot-
tom for a flow of thickness H* are also reported. These
vertical locations have been obtained by interpolation of
previous results since flows with the exact flow thickness
H* have not been simulated. As the intruder vertical
location varies very weakly with the flow thickness (see
inset of Fig. 11), the interpolation gives accurate results.
Figure 14 reports the center of mass of both intruders,



but the intruder height difference is so small that us-
ing the front or the back intruder gives nearly the same
graph.

The comparison of the transition thickness H™* with
the position of the intruder summit proves that the at-
tractive/repulsive transition is not concomitant with the
emergence of the intruders from the flow. Both intrud-
ers are fully embedded for a flow thickness H*. Fur-
thermore, Fig. 14 shows that the transition thickness in-
creases faster than the height of the intruders. The num-
ber of small flowing particles above the intruders at the
transition is not constant with the size ratio d;/d, nor
proportional to d;/d, but strongly increases, while the
layer thickness of small particles between the intruder
bottom and the rough incline slightly decreases.

Other criteria to define the transition thickness have
been tested, for example the intersection with the hor-
izontal line Az = 0.05d, in Fig. 13. Figure 14 remains
almost identical for all criteria and the conclusions are
unchanged.

The mechanisms involved in the alignment and the de-
fined longitudinal distance between intruders could be
discussed at that point. We choose to postpone them and
first explore the influence of other parameters (Sec. IVD
to IVF), but the reader may skip these parts and proceed
directly to Sec. IV G if preferred.

D. Slope of the incline

26

FIG. 15.

Mean longitudinal distance (Az) between two
intruders versus slope: (red squares) d;/d = 8 and H = 11d,
(green circles) d;/d = 8 and H = 15d, (blue triangles) d;/d =
10 and H = 11d, and (magenta reversed triangles) d;/d = 10
and H = 15d.

The influence of the slope of the incline is now studied.
Whereas previous results were all obtained for an angle of
24°, the incline angle 6 is varied from 22° to 25.5° for four
typical cases: an attractive case (d;/d = 10, H = 11d)

10

where intruders are almost in contact (Az) ~ d;, a re-
pulsive case (d;/d = 8, H = 15d) where intruders locate
at their maximal distance (Az) ~ 40d, and two inter-
mediate situations (d;/d = 10, H = 15d and d;/d = 8,
H = 11d) where intruders are in an attractive regime, not
far from the attractive-repulsive transition, and locate at
an intermediate distance.

Figure 15 reports the mean longitudinal distance be-
tween intruders, (Ax), versus slope angle for the four
cases. For the two utmost cases, either attractive or re-
pulsive, the variation in slope does not alter significantly
the distance between intruders. For the two intermedi-
ate cases, increasing the slope angle favors the attractive
regime and, conversely, decreasing the slope angle favors
the repulsive regime. For the intruder diameter d; = 8d,
the transition is sharp and occurs between 23.5° and 24.5°
while for the larger intruder diameter d; = 10d, the tran-
sition is more progressive and occurs between 22° and 24°.
This is reminiscent of the smoothing that is observed at
increasing size ratio d;/d for the transition in (Az) with
the flow thickness (see Fig. 10).

0.4
0.35 | 1
0.3 |
0.25 1
=
5 02 |
a

26

FIG. 16. Mean height difference (Az) between two intruders
versus slope: (red squares) d;/d = 8 and H = 11d, (green
circles) d;/d = 8 and H = 15d, (blue triangles) d;/d = 10 and
H = 11d, and (magenta reversed triangles) d;/d = 10 and
H = 15d.

Figure 16 reports the mean height difference between
intruders, (Az), versus slope angle, for the same four
cases. Apart from the difference in vertical scale, Fig. 16
is close to what one would obtain by mirroring Fig. 15 in
the horizontal axis. When the system evolves toward the
attractive regime at increasing slope angle, the longitudi-
nal distance between intruders decreases and, simultane-
ously, the difference in height of the intruders increases.

On the whole, a variation in the angle of the incline has
a rather weak impact on the attractive-repulsive transi-
tion and causes the intruders to switch from one regime
to the other only when the system is already close to the
transition. Nevertheless, increasing the slope favors the



attracting regime, and as a consequence, increases the
transition thickness H*.

E. Incline roughness

The roughness of the incline is now varied, for an in-
cline angle of 24°, a size ratio d;/d = 10 and a flow
thickness H = 15d, one of the two previous intermedi-
ate case where intruders locate at a defined distance, in
an attractive regime not far from the attractive-repulsive
transition. Up to now, the incline was made rough with
glued particles of the same size as the small flowing par-
ticles d. Here, inclines whose roughness is created with
glued particles of size ranging from d,, = 0.9d to 1.6 d are
investigated. An incline made rough with smaller parti-
cles, namely d, = 0.8d, leads to a mean velocity of the
flow which is extremely high, indicating that a slip occurs
at the base of the flowing material. On the other hand,
the roughness obtained with particles of size d, = 1.5d is
known to generate the highest friction for a granular flow
made of particle of size d [59] and the actual roughness of
the incline is expected to decrease when larger particles
are used because flowing particles fill the voids between
them.
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FIG. 17. Mean longitudinal distance (Az) (red squares, scale
on left axis) and mean height difference (Az) (blue triangles,
scale on right axis) between intruders versus incline roughness
expressed by means of the size of the glued particles, from
dr = 0.9d to 1.6d. The intruder size is d;/d = 10, the flow
thickness H = 15d and the incline angle § = 24°. Error bars
show a 95% interval of confidence of the mean value.

Figure 17 reports the mean longitudinal distance, (Ax)
(red squares, left axis), and the mean height difference,
(Az) (blue triangles, right axis), between the intruders
with respect to the incline roughness, expressed by means
of the size of the glued particles. A decrease in the
size of the glued particles, i.e. a decrease in roughness,
causes the system to evolve toward the attractive regime:
the distance between intruders decreases and, simultane-
ously, the difference in height of the intruders increases.
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The variations in longitudinal distance (Az) and height
difference (Az) between intruders with incline roughness
being moderate, averaging over 500 s were necessary to
obtain statistically significant mean values.

It can be noted that both increasing the incline an-
gle and decreasing the incline roughness result in a shift
toward the attractive regime while implying an increase
in the mean flow velocity. This can be used to get an
estimate of the relative impact of these two parameters.
The above variation in the incline roughness yields an in-
crease in (Az) around 4d while the mean flow velocity is
observed to decrease by a factor 1.2. The variation in the
slope angle from 22° to 25.5° yields a decrease in (Ax)
around 18d, more than 4 times larger, while the mean
flow velocity is observed to increase by a factor 4.3 only.
Therefore, in terms of variations of longitudinal distance
versus flow velocity, the incline roughness has a slightly
weaker effect than the incline angle.

F. Changing intruder densities

To further explore the reciprocal link that is high-
lighted by the above between the longitudinal and the
vertical distances between intruders, the densities of the
intruders are modified in two different ways. First, since
a difference in density between the intruders should alter
distinctively their heights in the flow and thus impact
their relative height, the densities are oppositely modi-
fied by Ap such that the front and back intruders have a
density p+ Ap, respectively, where p is the density of the
small particles. The aim is to quantify the impact on the
longitudinal distance Az. Second, the density of both
intruders is reduced or increased identically, in the range
pi € [0.4p; 1.8p]. Intruders will then locate either at the
bottom, in the bulk or at the surface of the granular flow,
and this location should act on both Az and Ax.

The configuration of two intruders with an intruder
diameter d; = 10d, a flow thickness H = 15d, a slope of
24° and a rough incline made of small particles d, = d is
considered again. Intruders are initially aligned (Ay = 0)
and located at a longitudinal distance Az = 20d close to
their equilibrium distance at this flow thickness.

Figure 18 shows the time evolution of the longitudinal
distance Az for the several density perturbations Ap/p.
Positive values of Ap/p correspond to a front intruder
that is heavier and a back intruder that is lighter. The
denser the front intruder is, compared to the back in-
truder, the closer are the intruders, showing an increase
of the attracting effect. For the largest density modi-
fication Ap/p = 0.15, intruders are almost in contact
with only one to two small particles in between them.
The reverse situation is also considered with negative val-
ues of Ap/p and a front intruder lighter than the back
one. When the difference in density is not too large
(Ap/p = —0.002, light-green curve), intruders remain
in attractive interaction, however the mean longitudinal
length is larger (Az ~ 30d) showing a reduction of the
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FIG. 18. Time evolution of the longitudinal distance Ax be-
tween two intruders of slightly different densities. Only the
first 100 s are presented. The intruder size is d; = 10d, the
flow thickness is H = 15d and the slope is § = 24°. The den-
sity perturbation varies from Ap/p = —0.005 (front intruder
lighter) to Ap/p = 0.15 (front intruder heavier). More inter-
mediate cases have been simulated but are not presented for
clarity reason.

attracting effect. When the density difference is further
increased (Ap/p = —0.005, red curve), the longitudinal
distance Az continuously increases with time and intrud-
ers escape from the mutual attraction.
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FIG. 19. Mean longitudinal distance (Ax) between intrud-

ers (red squares), mean height of the intruder center of mass
(zcm) (green dots) and the mean height difference between
intruders (Az) (blue triangles, scale on right axis) measured in
small bead diameter (d) as a function of the density perturba-
tion Ap/p. Empty symbols indicate values where Ap/p < 0.

Figure 19 confirms the continuous decrease of the
mean longitudinal distance between intruders (Az) (red
squares) when the density perturbation Ap increases.
In contrast, the associated mean height difference (Az)
(blue triangle, scale on right axis) evolves in a non-
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monotonic way. It first increases and then decreases for
Ap/p > 0.06. No significant variations in the height of
the intruder center of mass ({(zcar), green dots) are ob-
served in this range of Ap. The increase in the mean
height difference (left part of the graph) can be deduced
from the mean longitudinal distance by a horizontal mir-
ror effect, as previously observed when varying the incline
slope and roughness. On the other hand, the decrease in
the mean height difference for Ap/p > 0.06 is reminiscent
of the behavior observed when varying the flow thickness
and assigned to the emergence of the intruders from the
flow. Again, the interaction between the intruders proves
not to be strong enough to maintain the vertical distance
even though the intruders are close.
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FIG. 20. Mean longitudinal distance (Az) between intrud-
ers (red squares), mean height of the intruder center of mass
(zem) (green dots) and absolute value of the height differ-
ence between intruders |(Az)| (blue triangles, scale on right
axis) measured in small bead diameter (d) as a function of the
density ratio p;/p. The dotted line indicates the free surface,
and the dashed line indicates the height of intruders whose
summit just emerges from the granular flow.

In the second series of these numerical experiments,
both intruders have the same density p; = ap with the
multiplying factor « in the range [0.4;1.8]. As shown
in Fig. 20, this change in the intruder density alters the
mean vertical position of the center of mass of the intrud-
ers (zon) (green dots), as well as the mean longitudinal
distance (Az) (red squares) and height difference [(Az)]
(blue triangles, right axis) between intruders. Note that
only the absolute value of the height difference is reported
since negative values are encountered when intruders are
so far apart (repulsive regime) that a front and a back
intruders cannot be defined. Remarkably, changing the
intruder density with respect to the small-particle den-
sity induces several regime transitions. Starting from the
isodensity case p;/p = 1, which corresponds to an at-
tractive regime with a longitudinal distance (Az) ~ 20d,
and increasing the intruder density, the mean intruder
height (zoas) continuously decreases, although more and
more slowly, and saturates around z ~ 6.8d: the intrud-



ers locate deeper in the flow, yet never touch the rough
incline, even for the largest density ratio of 1.8. The lon-
gitudinal distance first reduces to (Az) ~ 15d where it
reaches a plateau, up to p;/p = 1.4, while the height dif-
ference increases up to around (Az) ~ 0.35d. When the
intruder density is further increased, (Ax) still decreases
slightly and the height difference (Az) strongly and con-
tinuously decreases. As in the case of a large difference in
density between the intruders or a small flow thickness,
the interaction between intruders whose density is much
larger than that of the flowing small particles is no longer
strong enough compared to their buoyancy to maintain
the height difference.

Starting again at the value p;/p = 1 and decreasing the
intruder density, the mean intruder height (zcps) con-
tinuously increases, i.e. the intruders locate higher and
higher in the flow. Concomitantly, the longitudinal dis-
tance increases and shortly reaches its maximum possible
value (for a numerical domain of length L, = 80d), while
the height difference (Az) tends to zero; this corresponds
to a repulsive regime. At a density p;/p ~ 0.7, only
slightly smaller than the density for which the summits
of the intruders emerge from the granular flow (dashed
horizontal line at z = 10d in Fig. 20), the intruders switch
again to an attractive regime. The mean intruder height
(zcar) still increases, up to around z ~ 15.4d for the low-
est density p;/p = 0.4, for which the intruder centers are
slightly above the free surface of the flow (dotted hori-
zontal line at z = 15d). The longitudinal distance (Az)
continuously decreases until intruders are in contact. The
height difference quickly increases, then decreases again
at densities for which the intruder centers are very close
to the free surface of the flow.

Two extra density ratios, p;/p = 0.35 and 2, have been
tested. For both of them, the back intruder is in contact
with the front intruder and tries to overpass it. At some
stage, the intruders are side by side, move away laterally
from each other, and start flowing independently without
interacting. No relative equilibrium position is reached
and mean relative positions cannot be computed.

G. Link between vertical and longitudinal distances

Figure 21 reports all the numerical results on the lon-
gitudinal “and vertical distances between intruders nor-
malized by the intruder diameter d;, for the size ratios
d;/d =9 to 13. The rescaling by d; is used to compare
the data for different intruder sizes since the longitudinal
and transverse distances between intruders are expected
to depend mainly on the intruder diameter. Unless oth-
erwise specified below, the parameter values are the fol-
lowing: domain size L, = 80d, size ratio d;/d = 10, flow
thickness H = 15d, slope angle § = 24°, incline rough-
ness d, = d and isodensity for all particles p; = p. For
the size ratio d;/d = 10d, data are reported for various
density perturbations Ap on the intruder densities and
various densities p; of both intruders, various flow thick-
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FIG. 21. Mean height difference (Az)/d; versus longitudi-
nal distance (Az)/d; between intruders at equilibrium, with
both quantities rescaled by the intruder diameter d;. Except
otherwise stated (label “varying”), the default parameters are
di/d = 10, H = 15d, slope angle 0 = 24°, incline roughness
dr = d and isodensity p; = p. For the size ratio d;/d = 10,
results are obtained by varying the density perturbation Ap
(green inverted triangles), the intruder density (pi/p < 1:
empty magenta diamonds, and p;/p > 1: full magenta dia-
monds), the flow thickness H (blue filled squares for L, = 80d
and blue empty squares for L, = 160d), the incline slope (red
filled circles) and roughness (brown filled squares); the case
of intruders linked by two horizontal springs for H = 15d
and 9d (black filled triangles) are also reported. For the size
ratios d;/d = 9,11,12 and 13, the flow thickness H has been
varied (colored plus symbols).

nesses H for two domain sizes, and various incline slopes
and roughnesses. Each couple ((Az), (Az)) was obtained
by averaging over a period at least equal to 150 s, the first
50 s of the simulation being discarded to ensure conver-
gence. The two black triangles in Fig. 21 stand for simu-
lations where two horizontal springs are used to maintain
nearly fixed the distances between the intruders and fa-
cilitate the computing of the velocity maps of the next
section (see Sec. V). The data reported for the size ratios
d;/d = 9,11,12 and 13 have been obtained by varying
the flow thickness H. The data for d;/d = 7, 8 and 9 are
not reported since they randomly fall around the master
curve, due to the large fluctuations mentioned earlier.
The salient feature in Fig. 21 is that all of the data
follow the same overall curve, no matter how they were
obtained, i.e. data corresponding to the density per-
turbation Ap, obtained by changing the intruder den-
sity, resulting from the variations in H independently of
the intruder diameter, and by changing # and the in-
cline roughness. In particular, in the case where both
intruder densities are equal (filled and empty diamonds
in Fig. 21), the curves superimpose independently of the
fact that both intruders locate at the bottom of the flow
when they are dense or near the free surface when they



are light.

The right and left parts of the master curve of Fig. 21
show distinct behaviors. The right part reports systems
where (Az) decreases for increasing (Axz). The greater
the distance between the intruders, the weaker their in-
teraction and, as expected, the height difference tends to
zero. In contrast, the left part of the curve in Fig. 21
shows a positive correlation between (Az) and (Az). A
decrease in (Az) can result from several causes, i.e. a
thin flow from which intruders emerge, a large intruder-
density difference with a heavier front intruder, dense
intruders that have a strong interaction with the rough
incline, or light intruders that emerge from the granular
flow. All these also cause a decrease of (Ax). It is worth
noting that the emergence of intruders from the granular
flow causes their height difference Az, which was usually
increasing as intruders get closer, to decrease in a simi-
lar way whether the intruders emerge because the flow is
thin or because their density is low.

For trial purposes, several simulations were performed
on a longer simulation domain L, = 160d and various
flow thicknesses (blue empty squares in Fig. 21). Al-
though all the points fit with the master curve, a small
deviation is observed at large values of the longitudinal
distance (Ax), which correspond to the repelling regime
and intruders far apart. Therefore, points corresponding
to (Az) typically larger than 30d should be considered
only qualitatively, especially when obtained for the sim-
ulation domain of length L, = 80d.

All the above highlights a tight link between the hori-
zontal and vertical positions of two large intruders inter-
acting in a granular flow.

V. A PROPOSED MECHANISM

When two particles are flowing in a fluid, for instance
spheres sedimenting in a liquid or cyclists, the back par-
ticle accelerates when in the wake of the front one. The
situation is slightly more complex for intruders in a gran-
ular flow down an incline since they are in a shear flow.
Intruders move faster than small particles flowing below
them and slower than small particles flowing above them.
To figure out the mechanisms at play in the interaction
between intruders, an additional numerical experiment is
performed, which aims at analyzing the velocity field of
the granular flow in the neighborhood of the two intrud-
ers.

Parameters are set to their default values listed above.
Intruders have a diameter d; = 10d and are fully embed-
ded in a granular flow of thickness H = 15d, smaller than
the transition thickness H* but larger than the flow thick-
ness for which the intruders start to emerge. Because
the relative intruder positions Az and Ay fluctuate with
time, a specific procedure is necessary to reduce the am-
plitude of these fluctuations which would otherwise blur
the measured velocity vector field around the intruders.
This was achieved by adding two independent horizon-

FIG. 22.
ence frame (Oxz) of the front intruder (right intruder). The
intruder size is d; = 10d, the flow thickness is H = 15d and

Velocity map in the vertical plane in the refer-

the slope is § = 24°. Intruders are at their relative equi-
librium position: Ax = 20d and Ay = 0. The thick green
line stands for the free surface of the flow. The thick red
line passes through the summit of the glued particles which
form the rough incline. Three continuous inclined black lines
indicate the velocity profile measured in front of the intrud-
ers (right black line), between them (middle black line) and
behind them (left black line). The two inclined dashed lines
duplicate the front velocity profile, shifted horizontally to fa-
cilitate comparison.

tal virtual springs between the intruders to force them
to maintain their spacing at equilibrium [18]. The fluc-
tuations on the vertical distance being rather small, no
spring was added in the z direction. From Fig. 8, the no-
load length is Axg = 20d for the spring aligned with the
flow and Ayg = 0 for the transverse spring. The forces
exerted by the virtual springs apply on the centers of the
intruders and do not perturb their rotation. Their mag-
nitudes are k;(Az —Axg) and k,(Ay— Ayp) in the z and
y directions, respectively, where the spring stiffnesses, &,
and k,, are chosen to keep the fluctuations around the
equilibrium relative position smaller than 0.5d. After test
and trial, a value of k, = k;, = k,/20000 is retained,
where k, is the stiffness of the normal repulsion spring
between any particles when in contact. Figure 22 reports
the velocity field in the plane (Oxz) and the intruder po-
sitions in the reference frame of the front (right) intruder.
The velocity field corresponds to the flow around two in-
truders being at their equilibrium relative position and
is likely to differ from the real velocity field around in-
truders that move out of equilibrium due to fluctuations.
This nevertheless helps to understand the involved mech-
anisms, as exposed below. Furthermore, it can be noted
that the height difference Az computed for the intruders
joined by two horizontal springs perfectly matches with
that of free intruders (see Fig. 21). This confirms that
the springs are weak enough not to perturb the relative
intruder positions when evaluating the velocity maps.

In Fig. 22, the thin black line around z = —10d de-
lineates the velocity profile in between the two intruders
while the thin black lines around = = 10d and x = —30d
delineate the velocity profile ahead and behind the in-
truders, respectively. To facilitate comparison, the veloc-
ity profile at x = 10d was reported between and behind



the intruders (dashed lines at x = —10d and = = —30d).
This shows that, in the vertical direction and all over the
diameter of the intruders, the velocity gradient is reduced
between the intruders compared to that in front of the
intruders. In the lower part of the flow —5d < z < —d,
the velocities of small particles are larger than ahead of
the front intruder; the lower half of the back intruder is
in the wake of the lower half of the front intruder. The
effect of this wake is to accelerate the back intruder until
a new equilibrium position is reached. In the upper part
of the flow d < z < 5d, the velocities of small particles
in between the two intruders are smaller than ahead of
the front intruder and therefore than behind the back in-
truder since the two velocity profiles (front and back) are
very close in the upper part of the flow (see Fig. 22); the
upper half of the front intruder is in the wake of the up-
per half of the back intruder. The effect of this wake is to
decelerate the front intruder. In brief, each intruder is in
the wake of the other (in its upper or lower half) and both
wakes push the intruders to get closer. Since the closer
the intruders are, the higher the wake effect is, the veloc-
ity gradient in the region between them should further
decrease and intruders should end up being in contact.
However, an opposite mechanism causes the intruders to
repel and derives from the height difference between the
intruders. As they are embedded in a shear flow, the
front intruder, which has been measured higher in the
flow, tends to go faster and the back intruder, which has
been measured lower, tends to go slower. As a conse-
quence, the intruders tend to move away from each other,
increasing (Az). These two mechanisms counterbalance
to place intruders at a defined equilibrium distance.

1intruder 2 intruders

FIG. 23. Sketch of the intruder interactions with the small
particles of the granular flow. The length of the arrows is
indicative of the intensity of shocks with small particles. Red
circles are reported positions of one single intruder to illus-
trate the assymetry of shocks that would undergo two intrud-
ers having the same height. This asymmetry pushes the back
intruder downwards and the front intruder upwards.

The origin of the height difference can be apprehended
from Fig. 22. As discussed above, the wake effects ex-
perienced by the intruders are not symmetrical as they
operate only on its lower part for the back intruder and
only on its upper part for the front intruder. Figure 23
sketches the cases of one intruder (left) and of a couple
of intruders (right) embedded in a granular shear flow.
Intruders moving from left to right collide with small par-
ticles that are below them and move slower (bottom right
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arrows) and undergo collisions from small particles that
are above them and move faster (top left arrow). The
vertical location of an isolated intruder results from the
equilibrium between the intruder weight, the buoyancy
and the pressure induced by the collisions on the bottom-
right and up-left parts of the intruder. For two intruders
at the same height (red dotted circles), the front intruder
shields the lower flow for the back intruder and the re-
verse happens for the upper flow on the front intruder.
This dissymmetry disrupts the mechanism of vertical po-
sitioning, causing the front intruder to move upwards and
the back intruder to move downwards, and new equilib-
rium positions are reached (black solid circles).

The emergence of the intruders above the free surface
makes the picture more complex. Figure 24 is the coun-
terpart of Fig. 22 for a flow thickness H = 9d. The
length of the longitudinal spring equals the new equi-
librium longitudinal distance between the intruders and
is thus reduced to Azy = 12.5d. Other parameters are
unchanged. Figure 24 shows that the shear rate is re-
duced compared to the case H = 15d. This reduction is
likely to reduce all wake effects and their attractive ac-
tion. Concomitantly and as shown previously, the thin-
ner the flow, the more the intruders emerge and the more
the height difference between them is reduced by the ad-
ditional buoyancy term. The repulsive effect in the flow
direction due to the height difference reduces in turn. On
the other hand, because there are fewer small particles,
or none at all, flowing near the top of the intruders, the
wake created by the upper part of the back intruder on
the front intruder reduces, and so does its attractive ef-
fect. However, the absence of small particles flowing near
the top of the intruders also means that small particles
are no longer colliding with the summit of the back in-
truder, allowing it to locate higher in the flow. These
two effects are opposed to each other, but as the latter
reduction in Az combines with the Az reduction due to
buoyancy, they may become dominant and counterbal-
ance the reduction in the upper-wake, inducing a smaller
value of the longitudinal distance Az. Finally, intruders
reach equilibrium positions with a low Ax.

FIG. 24.

Same as Fig. 22 except that the flow thickness is
H = 9d. Intruders are at their relative equilibrium position:
Az = 12.5d and Ay = 0. Intruders emerge from the free
surface of the flow (thick green line).

Another question that remains to be answered is why
intruders align with the flow. Figure 25 shows two veloc-
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FIG. 25. Velocity map in the horizontal plane Oxy at a dis-
tance of 2.5d above (a) and below (b) the center of the front in-
truder in the reference frame of this intruder (right intruder).
The intruder size is d; = 10d, the flow thickness is H = 15d
and the slope is 24°. All vectors have the same length and
the color map indicates the velocity amplitude in m/s.

ity maps in planes parallel to the incline and located half
way between the center and the top of the front intruder
(Fig. 25(a)) and half way between the center and the bot-
tom of the front intruder (Fig. 25(b)), which corresponds
to z = 2.5d and z = —2.5d in Fig. 22, respectively.
The reference frame is that of the front intruder. The
darker zones between the intruders show the wake made
by the back intruder in Fig. 25(a) and the wake made
by the tront intruder in Fig. 25(b). Note that Fig. 25
remarkably illustrates the difference in the amplitude of
the wake effects felt by the intruders, likely due to the
velocity gradient that characterizes the flow and to the
vicinity of the rough incline. As soon as the front intruder
is out of alignment, it is pushed back to the in-line po-
sition by the small particles that flow at the side of the
intruders and that move faster than the small particles in
the wake region of the back intruder (see the color code
of Fig. 25(a)). The counterpart situation is observed in
the lower plane z = —2.5d where the back intruder is in
the wake of the front intruder (Fig. 25(b)). In the at-
tracting regime, intruders are close, the wakes are strong
and intruders perfectly align. When intruders are mov-
ing apart, they feel each other’s wake less and less. In
the steady-state of the repulsive regime, intruders are un-
likely to feel any wake. However, since they were initially
close, they aligned during their separation and a residual
streamwise alignment remains visible. The pronounced
transverse fluctuations observed may arise from the fluc-
tuations in individual intruder trajectories.
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VI. CONCLUSION

This paper reports experiments and DEM simulations
on the interaction of two large particles in a flow of small
particles down a rough incline. In the range of parame-
ters explored, the two large particles, called intruders, do
interact: they systematically align in the direction of the
flow while their longitudinal arrangement varies from in-
truders in contact to intruders far away from each other.
A difference in height of the intruders within the flow,
with a tendency for the front intruder to rise and for the
back intruder to sink, is also observed. The thorough
parametric study performed reveals the existence of a
master curve that links the equilibrium longitudinal dis-
tance between the intruders and their height difference
in the flow. By means of simulations of the velocity field
around the intruders, we demonstrate that the positions
of two large particles in a dry granular flow on an incline
result from a wake effect of each large particle on the
other, combined with a vertical shear in the flow.

In many respects, the behaviors reported in this article
and a few others (not presented here) observed for exam-
ple during the transient stage are reminiscent of those
exhibited by pairs of particles settling in fluids. Fully
exploring the similarities and differences with the sedi-
mentation of particles in a fluid medium is beyond the
scope of this paper but a few points are worth highlight-
ing. The first obvious remark is that a phenomenon anal-
ogous to the sedimentation in a fluid cannot take place
in a granular material at rest, which behaves like a solid.
The displacement of intruders requires movement of the
small particles, a granular flow for instance. Second, for
shear flows, which are the most frequently encountered
and the easiest to produce, two contrasting scenarios take
place in connection with the speed of the intruders com-
pared to that of the small particles. For thin flows where
the intruders emerge, their velocity is higher than the
mean flow velocity of the small particles, which present
similarities to particles sedimenting in fluids. In contrast,
when the flow is thick and intruders are fully immersed,
they move at the velocity of the small particles flowing
at the same height as they do. This makes the system
closer to neutrally buoyant particles advected by a flow.
Third, although two intruders not yet aligned with the
granular flow (transient stage) have a lateral drift like
in fluids, unlike particles sedimenting at low Reynolds
number, they change their relative position by aligning
with the flow and change their relative distance to reach
a defined distance that depends on the flow thickness.
Moreover, in the attracting regime at low flow thickness,
intruders that are initially some distance apart end up in
contact in a very similar way to the drafting and kissing
observed at higher Reynolds number in the DKT phe-
nomenon. In the case of very thin granular flows, the rear
intruder tries to overtake the front intruder by passing it
on one side and, from time to time, the intruders lose
contact, resembling the tumbling mechanism. Intruders
end up in contact only after a more or less extended pe-



riod of time. Finally, the alignment of the intruders in a
granular flow is analogous to the one observed for parti-
cles or cyclists when flowing at higher Reynolds number.
This highly interesting aspect on the similarities and dif-
ferences in fluid and granular media certainly deserves
further investigation.

This work also suggests that the interaction and align-
ment of large particles in polydisperse flows should break
the homogeneity of the flow and induce the spontaneous
formation of patterns, like trains of intruders or bands
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of large and small particles aligned with the flow. Such
internal flow organizations can be of major interest in
natural granular flows or industrial problems.
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