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Let θ = [0; a 1 , a 2 , . . .] be the continued fraction expansion of an irrational real number θ ∈ (0, 1). It is well-known that the characteristic Sturmian word of slope θ is the limit of a sequence of finite words (M k ) k≥0 , with M k of length q k (the denominator of the k-th convergent to θ) being a suitable concatenation of a k copies of M k-1 and one copy of M k-2 . Our first result extends this to any Sturmian word. Let b ≥ 2 be an integer. Our second result gives the continued fraction expansion of any real number ξ whose b-ary expansion is a Sturmian word s over the alphabet {0, b -1}. This extends a classical result of Böhmer who considered only the case where s is characteristic. As a consequence, we obtain a formula for the irrationality exponent of ξ in terms of the slope and the intercept of s.

Introduction

Sturmian words are infinite words over a two letters alphabet that have exactly n + 1 factors of length n for every n ≥ 1. They are the non-ultimately periodic words which are closest to ultimately periodic words. They admit several equivalent definitions and appear in many different areas of mathematics, including combinatorics, number theory, and dynamical systems; good references include Chapter 2 of [START_REF] Lothaire | Algebraic combinatorics on words[END_REF], [START_REF] Allouche | Automatic Sequences: Theory, Applications, Generalizations[END_REF], and [START_REF] Arnoux | Sturmian sequences[END_REF]. The arithmetic description of Sturmian words is as follows. Throughout this paper, we let ⌊x⌋ (resp., ⌈x⌉) denote the largest (resp., smallest) integer less than or equal (resp., greater than or equal) to the real number x.

Let θ and ρ be real numbers with 0 ≤ θ, ρ < 1 and θ irrational. For n ≥ 1, set

s n := s n (θ, ρ) = nθ + ρ -(n -1)θ + ρ , s ′ n := s ′ n (θ, ρ) = nθ + ρ -(n -1)θ + ρ .
Then, the infinite words s θ,ρ := s 1 s 2 s 3 . . . , s ′ θ,ρ := s ′ 1 s ′ 2 s ′ 3 . . . are, respectively, the lower and upper Sturmian words of slope θ and intercept ρ, written over the alphabet {0, 1}. Observe that s θ,0 and s ′ θ,0 differ only by their first letter, thus, there exists an infinite word c θ , called the characteristic Sturmian word of slope θ, such that s θ,0 = 0c θ , s ′ θ,0 = 1c θ . Explicitly, we have c θ = s θ,θ = s ′ θ,θ = c 1 c 2 c 3 . . . , with c n = ⌊(n + 1)θ⌋ -⌊nθ⌋ = ⌈(n + 1)θ⌉ -⌈nθ⌉, for n ≥ 1.

Alternatively, the characteristic word c θ = s θ,θ = s ′ θ,θ can be defined as follows. Let [0; a 1 , a 2 , . . .] denote the continued fraction expansion of the slope θ, with partial quotients a 1 , a 2 , . . . and convergents p k /q k = [0; a 1 , . . . , a k ] for k ≥ 1. Let (M k ) k≥0 be the sequence of finite words over the alphabet {a, b} associated with (a j ) j≥1 defined by

M 0 = a, M 1 = a a 1 -1 b, M k = (M k-1 ) a k M k-2 , for k ≥ 2.
Then, the limit lim k→+∞ M k exists: it is the characteristic Sturmian word of slope θ over {a, b}. Replacing a by 0 and b by 1, we get

c θ = lim k→+∞ M k . (1.1) 
Furthermore, the length (that is, the number of letters) of M k is equal to q k for k ≥ 1.

Our first result, stated as Theorem 2.1, extends (1.1) by showing how an arbitrary Sturmian word of slope θ and intercept ρ can be expressed as the limit of a sequence of finite words (V k ) k≥0 , with V k (of length q k ) being a suitable concatenation of a k copies of V k-1 and one copy of V k-2 , defined in terms of the θ-Ostrowski expansion of the intercept ρ.

Then, we will consider some Diophantine properties of the real numbers whose sequence of digits in some given integer base b form a Sturmian word. Such real numbers are called b-Sturmian numbers, or shortly Sturmian numbers, when we do not need to refer to the base. The transcendence of characteristic Sturmian numbers was established by Böhmer [START_REF] Böhmer | Über die Transzendenz gewisser dyadischer Brüche[END_REF] in 1927, assuming that the sequence of partial quotients (a k ) k≥1 is unbounded. He also gave explicitly their continued fraction expansion; see Theorem 2.2 below. This has been rediscovered by Danilov [15], Davison [START_REF] Davison | A series and its associated continued fraction[END_REF], and by Adams and Davison [START_REF] Adams | A remarkable class of continued fractions[END_REF] (see also [START_REF] Adamczewski | Reversals and palindromes in continued fractions[END_REF], Theorem 7.22 in [START_REF] Bugeaud | Distribution modulo one and Diophantine approximation[END_REF], and Section 9.3 of [START_REF] Allouche | Automatic Sequences: Theory, Applications, Generalizations[END_REF] for a special case). Ferenczi and Mauduit [START_REF] Ferenczi | Transcendence of numbers with a low complexity expansion[END_REF] used combinatorial properties of Sturmian words and a deep result from Diophantine approximation (Ridout's theorem, which is a p-adic extension of Roth's theorem) to establish that Sturmian numbers are transcendental. Specifically, they proved that every Sturmian word contains, for some positive ε, infinitely many (2 + ε)-powers of blocks (that is, a block followed by itself and by a prefix of it of relative length at least ε) occurring not too far from its beginning.

Subsequently, Berthé, Holton and Zamboni [START_REF] Berthé | Initial powers of Sturmian sequences[END_REF] established that any Sturmian word, whose slope has a bounded continued fraction expansion, has infinitely many prefixes which are (2 + ε)-powers of blocks, for some positive real number ε depending only on the word. This implies that the associated Sturmian number ξ is rather close to rational numbers whose b-ary expansion is purely periodic and gives that the irrationality exponent of ξ is at least equal to 2 + ε.

Definition 1.1. The irrationality exponent µ(ζ) of an irrational real number ζ is the supremum of the real numbers µ such that the inequality ζ -p q < 1 q µ has infinitely many solutions in rational numbers p q . If µ(ζ) is infinite, then ζ is called a Liouville number.

Recall that the irrationality exponent of an irrational number ζ is always at least equal to 2, with equality for almost all ζ, in the sense of the Lebesgue measure. As observed in [START_REF] Adamczewski | On the expansion of some exponential periods in an integer base[END_REF] (see also Section 8.5 of [START_REF] Bugeaud | Distribution modulo one and Diophantine approximation[END_REF]), it follows from the results of [START_REF] Berthé | Initial powers of Sturmian sequences[END_REF] and [START_REF] Adamczewski | Nombres réels de complexité sous-linéaire : mesures d'irrationalité et de transcendance[END_REF] that the irrationality exponent of any Sturmian number exceeds 2. Further progress has been made recently in [START_REF] Bugeaud | A new complexity function, repetitions in Sturmian words, and irrationality exponents of Sturmian numbers[END_REF], where it is proved that the irrationality exponent of a b-Sturmian number can be read on its b-ary expansion. This is equivalent to say that, among the very good rational approximants to a b-Sturmian number, infinitely many of them can be constructed by cutting its b-ary expansion and completing by periodicity.

Furthermore, Theorem 4.3 of [START_REF] Bugeaud | A new complexity function, repetitions in Sturmian words, and irrationality exponents of Sturmian numbers[END_REF] asserts that the irrationality exponent of a Sturmian number is at least equal to 5 3 + 4 √ 10 15 = 2.5099 . . ., and that equality occurs in some cases. This result is obtained by means of a careful analysis of the repetitions occurring near the beginning of a given Sturmian word.

Our second main result, stated as Theorem 2.3, extends Böhmer's result and gives explicitly the continued fraction expansion of any b-Sturmian number over the alphabet {0, b -1}. From this we deduce in Theorem 2.4 an exact formula giving its irrationality exponent. Our approach also allows us to improve the best known transcendence measures for Sturmian numbers, see Theorem 2.7.

Results

Before stating our first result, we briefly recall the definition of the Ostrowski numeration system; see e.g. Proposition 2 of [START_REF] Berthé | Autour du système de numération d'Ostrowski[END_REF]. We keep the notation from Section 1. Set q 0 = 1 and θ k = q k θ -p k for k ≥ 0. Note that θ k < 0 if and only if k is odd. Let σ be an arbitrary number in the interval [-θ, 1 -θ]. Then σ can be written as

σ = k≥1 b k θ k-1 , where 0 ≤ b 1 ≤ a 1 -1, 0 ≤ b k ≤ a k for k ≥ 2,
and b k = 0 if b k+1 = a k+1 (these are the so-called Ostrowski numeration rules). Assume that σ does not belong to Zθ + Z, or that σ belongs to Z ≥0 θ + Z. Then, we can moreover ensure that there are infinitely many odd (resp., even) integers k such that b k < a k . The latter condition guarantees the unicity of the representation which is called the Ostrowski expansion of σ. When σ belongs to Z ≥0 θ + Z, the digits b k vanish for large k.

Theorem 2.1. Let θ and ρ be real numbers with 0 ≤ θ, ρ < 1 and θ irrational. Assume that ρ does not belong to Zθ + Z, or that ρ belongs to

Z ≥1 θ + Z. Then s θ,ρ = s ′ θ,ρ . Let ρ -θ = h≥1 b h θ h-1
be the Ostrowski expansion of ρ -θ in base θ. Define the words

V -1 , V 0 , V 1 , . . . by V -1 = 1, V 0 = 0, V 1 = 0 a 1 -b 1 -1 10 b 1
, and

V k+1 = V a k+1 -b k+1 k V k-1 V b k+1 k , k ≥ 1.
Then, the sequence (V k ) k≥0 converges and

s θ,ρ = s ′ θ,ρ = lim k→+∞ V k .
Furthermore, setting

t k = b 1 + b 2 q 1 + • • • + b k q k-1 and r k = q k -t k ,
and denoting by T k (resp., R k ) the prefix (resp., suffix) of length t k (resp.,

r k ) of M k for k ≥ 1, we have V k = R k T k and M k = T k R k , k ≥ 1.
A similar result holds in the remaining case where ρ -θ = -mθ + p for integers m ≥ 1 and p. This case corresponds to the sequences which are ultimately equal to the characteristic word c θ . Some technical difficulties occur, due to the fact that the choice of the lower / upper integral part does matter; see Section 3 for a precise statement and its proof.

Theorem 2.1 is a key tool for our extension of the following result of Böhmer [START_REF] Böhmer | Über die Transzendenz gewisser dyadischer Brüche[END_REF].

Theorem 2.2 (Böhmer). For a positive real irrational number θ = [0; a 1 , a 2 , . . .] in (0, 1) and an integer b ≥ 2, set

ξ b (θ) = (b -1) +∞ j=1 1 b ⌊j/θ⌋ .
For k ≥ 1, let p k /q k denote the k-th convergent to θ and set

A k := b q k -b q k-2 b q k-1 -1 ,
where q -1 = 0 and q 0 = 1. Then, we have

ξ b (θ) = [0; A 1 , A 2 , A 3 , . . .]
and the irrationality exponent of ξ b (θ) is given by

µ(ξ b (θ)) = 1 + lim sup k→+∞ q k q k-1 .
Note that A k is an integer multiple of b q k-2 since q k -q k-2 is an integer multiple of q k-1 .

The last assertion of the theorem follows from the well-known fact that the irrationality exponent of an irrational real number ζ = [A 0 ; A 1 , A 2 , . . .] is given by

µ(ζ) = 1 + lim sup j→+∞ log Q j+1 log Q j ,
where [A 0 ; A 1 , A 2 , . . . , A j ] = P j /Q j , for j ≥ 1. Indeed, the sequence (P j /Q j ) j≥1 comprises all the best rational approximations to ζ and we have

1 2Q j+1 Q j < ζ - P j Q j < 1 Q j+1 Q j .
Theorem 2.2 describes the first known class of real numbers having the property that both their b-ary expansion (for some integer b ≥ 2) and their continued fraction expansion are explicitly determined. There are only few such classes; see Section 7.6 of [START_REF] Bugeaud | Distribution modulo one and Diophantine approximation[END_REF] for other examples.

Our second main result extends Böhmer's theorem to an arbitrary b-Sturmian number with digits in {0, b -1}. Define

ξ b (θ, ρ) = (b -1) +∞ n=1 s n (θ, ρ) b n , ξ ′ b (θ, ρ) = (b -1) +∞ n=1 s ′ n (θ, ρ) b n .
Let ξ denote one of these numbers. Let (b k ) k≥1 and (t k ) k≥1 be the sequences of integers defined in Theorem 2.1 (or in Theorem 4.2 if ρ is of the form -mθ+p, with m, p nonnegative integers) applied to the Sturmian sequence defining ξ. Put t 0 = 0 and r 0 = 1. For k ≥ 0, set

c k = b r k +q k-1 b (a k+1 -b k+1 -1)q k -1 b q k -1 , d k = b t k -1, e k = b r k -1, f k = b t k b b k+1 q k -1 b q k -1 .
We point out that some elements of these four sequences may not be positive integers. For example, f k is equal to 0 when b k+1 = 0 and c k+1 is equal to 0 when a k+2 = b k+2 + 1. More intriguing is the case where a k+2 = b k+2 . Then, we have b k+1 = 0, thus r k + q k+1 = r k+1 + q k and

c k+1 = b r k+1 +q k b -q k+1 -1 b q k+1 -1 = b r k -b r k +q k+1 b q k+1 -1 = -b r k = -e k -1
is a negative integer. Keeping this in mind, and with some abuse of language, the next theorem asserts that

[0; c 0 , d 0 , 1, e 0 , f 0 , c 1 , d 1 , 1, e 1 , f 1 , c 2 , . . .]
is an (improper) continued fraction expansion of ξ. The precise statement is as follows.

Theorem 2.3. Let ξ be as above and keep the notation introduced above. If a k -b k ≥ 2 and b k ≥ 1 for every k ≥ 1, then the continued fraction expansion of ξ is given by

ξ b (θ, ρ) = [0; c 0 + 1, e 0 , f 0 , c 1 , d 1 , 1, e 1 , f 1 , c 2 , . . .].
Otherwise, let A 1 , A 2 , A 3 , . . . be the sequence of positive integers obtained from the sequence c 0 , d 0 , 1, e 0 , f 0 , c 1 , d 1 , 1, e 1 , f 1 , c 2 , . . . after the application of the following rules:

(i) For every k such that c k+1 < 0, replace the nine integers c k , d k , 1, e k , f k , c k+1 , d k+1 ,
1, e k+1 by the positive integer c k + 1 + e k+1 ;

(ii) Replace any three consecutive elements of this new sequence of the form x, 0, y by the integer x + y.

Then, the continued fraction expansion of ξ is given by

ξ b (θ, ρ) = [0; A 1 , A 2 , A 3 , . . .].
Observe that the sequence (A j ) j≥1 is well-defined. Indeed, c k and c k+1 cannot be both negative, since we cannot have simultaneously a k+2 = b k+2 and a k+1 = b k+1 .

Let us briefly show that Theorem 2.3 includes Böhmer's result. First, note that ξ b (θ) = ξ b (θ, θ), since, for a positive integer j, we have ⌊j/θ⌋ equals the integer ℓ if and only if ℓ < j/θ < ℓ + 1, that is, if and only if, ⌊(ℓ + 1)θ⌋ -⌊ℓθ⌋ = 1. Then, observe that the Ostrowski expansion of θ -θ = 0 in base θ is given by the constant sequence equal to 0. Consequently, the sequences defined in Theorem 2.3 are equal to

d k = f k = 0, e k = b q k -1, c k = b q k +q k-1 b (a k+1 -1)q k -1 b q k -1 , k ≥ 0.
It then follows from Theorem 2.3 that

ξ b (θ) = 0; b q 0 +0 b (a 1 -1)q 0 -1 b q 0 -1 , 0, 1, b q 0 -1, 0, b q 1 +q 0 b (a 2 -1)q 1 -1 b q 1 -1 , 0, 1, b q 1 -1, 0, c 2 , . . . = 0; b q 0 +0 b (a 1 -1)q 0 -1 b q 0 -1 + 1, b q 0 -1 + b q 1 +q 0 b (a 2 -1)q 1 -1 b q 1 -1 + 1, b q 1 -1, 0, c 2 , . . . = 0; b a 1 q 0 -1 b q 0 -1 , b q 2 -b q 0 b q 1 -1 , b q 1 -1, 0, c 2 , . . . = 0; b q 1 -1 b q 0 -1 , b q 2 -b q 0 b q 1 -1 , b q 3 -b q 1 b q 2 -1 , . . . .
We get the sequence of partial quotients c 0 + 1, e 0 + c 1 + 1, e 1 + c 2 + 1, . . . and we recover Theorem 2.2. Theorem 2.3 is proved in Section 7, where we give additional informations on the shape of the convergents to ξ and its partial quotients; see Proposition 7.2.

As a consequence of Theorem 2.3, we obtain an expression for the irrationality exponent of any Sturmian number in terms of its slope and its intercept.

Keep our notation and define

ν k (1) = 2 + t k r k+1 , ν k (2) = 2 + r k r k+1 + t k , ν k (3) = 1 + q k+1 r k+1 + q k , ν k (4) = 1 + r k+2 q k+1 . Put ν(1) = lim sup k→+∞ {ν k (1) : a k+1 -b k+1 ≥ 1 and a k+2 -b k+2 ≥ 1}, ν(2) = lim sup k→+∞ {ν k (2) : a k+2 -b k+2 ≥ 1},
and, for j = 3, 4, ν(j) = lim sup k→+∞ ν k (j).

Theorem 2.4. Let ξ be as above. Then, its irrationality exponent is equal to

max{ν(1), ν (2), ν(3), ν(4)}. 
We recover, for the initial repetitions, the formulas found in [START_REF] Berthé | Initial powers of Sturmian sequences[END_REF] for the critical initial exponent, namely the contributions of ν(2) and ν(4). Theorem 2.4 is established at the end of Section 6; see Theorem 6.3.

Furthermore, we derive easily a necessary and sufficient condition under which a Sturmian number is a Liouville number, thereby reproving the first part of Théorème 3.1 of [START_REF] Adamczewski | Nombres réels de complexité sous-linéaire : mesures d'irrationalité et de transcendance[END_REF] (see also [START_REF] Komatsu | A certain power series and the inhomogeneous continued fraction expansions[END_REF]).

Corollary 2.5. A Sturmian number is a Liouville number if and only if its slope has unbounded partial quotients in its continued fraction expansion.

Theorem 2.4 allows us to study in depth the irrationality exponents of Sturmian numbers. For instance, we can fix a slope θ and consider the spectrum L(θ) consisting of the set the irrationality exponents of Sturmian numbers of slope θ.

Theorem 2.6. Let θ be an irrational number in (0, 1) with bounded partial quotients. Then,

L(θ) ⊂ 5 3 + 4 √ 10 15 , 1 + µ(ξ b (θ))
and there exists an intercept ρ(θ) such that

µ(ξ b (θ, ρ(θ))) = 1 + µ(ξ b (θ)).
A detailed study of the sets L(θ) will be the purpose of a forthcoming work.

Theorem 2.3 allows us also to improve the best known transcendence measures for Sturmian numbers. Let ζ be a transcendental real number. Following Koksma [START_REF] Koksma | Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen[END_REF], for any integer d ≥ 1, we denote by w * d (ζ) the supremum of the exponents w for which 0 < |ζ -α| < H(α) -w-1 has infinitely many solutions in real algebraic numbers α of degree at most d. Here, H(α) stands for the naïve height of the minimal defining polynomial of α over Z. Clearly, the functions µ -1 and w * 1 are equal and the functions w * d are invariant by rational translation and by multiplication by a nonzero rational number, for d ≥ 1. We direct the reader to [START_REF] Bugeaud | Approximation by algebraic numbers[END_REF] for classical results on the functions w * d and on Mahler's and Koksma's classifications of real numbers. As a particular case of Théorème 1.1 of [START_REF] Adamczewski | Nombres réels de complexité sous-linéaire : mesures d'irrationalité et de transcendance[END_REF], we know that, for any Sturmian number ξ which is not a Liouville number, there exists a positive real number c, depending only on ξ, such that w * d (ξ) ≤ (2d) c(log 3d)(log log 3d) , d ≥ 1. This can be improved as follows.

Theorem 2.7. Let ξ be a Sturmian number. Assume that the partial quotients of its slope are ultimately bounded from above by M . Then, there exists a positive real number κ, depending only on M , such that

w * d (ξ) ≤ (2d) κ(log log 3d) , d ≥ 1.
We point out that the transcendence measure obtained in Theorem 2.7 does not depend on the intercept of the Sturmian number.

We believe that Theorem 2.1 will have many applications. We will use it in a follow-up work devoted to the transcendence of Hecke-Mahler series evaluated at algebraic points. We refer to [START_REF] Bugeaud | On the Diophantine nature of the elements of Cantor sets arising in the dynamics of contracted rotations[END_REF][START_REF] Laurent | Rotation number of contracted rotations[END_REF][START_REF] Laurent | Dynamics of 2-interval piecewise affine maps and Hecke-Mahler series[END_REF] for various applications of Sturmian numbers to the dynamics of piecewise affine maps.

The present paper is organized as follows. We show in Section 3 that any Sturmian word s of slope θ and intercept ρ can be expressed in a similar way as in (1.1) and we define its formal intercept. The link between the formal intercept and the expansion of the intercept ρ in the θ-Ostrowski numeration system is established in Section 4, thereby proving Theorem 2.1. In Section 5, we apply Theorem 2.1 to give a precise description of the repetitions occurring near the beginning of s. From this, in the next section, we deduce four one-parametric families of rational numbers which approximate very well the Sturmian number ξ associated to s, the exact rate of approximation to ξ by these rational numbers being given in Theorem 6.1. We derive the continued fraction expansion of ξ in Section 7, thereby proving Theorems 2.4 and 2.5, since we see that all the very good approximants to ξ belong to one of the four families defined in Section 6. The final Section is devoted to the proofs of the other results stated in Section 2.

The formal intercept of a Sturmian word

We keep the notation of Section 1 with the alphabet {0, 1}. Let s be an arbitrary Sturmian word of slope θ. The goal of this section is to establish that any Sturmian word can be expressed as in (1.1), that is, as the limit of a suitable sequence (V k ) k≥1 of binary words V k of length q k constructed inductively.

Throughout, the length |W | of a finite word W , that is, the number of letters composing W , is denoted by |W |. If W has at least one letter (resp., at least two letters), then W -(resp., W --) denotes the work W deprived of its last letter (resp., its last two letters). Definition 3.1. A word V is a conjugate of M k if there exist words T and R such that

V = RT and M k = T R, with 0 ≤ t := |T | < q k . Then, R is the non-empty suffix of M k of length q k -t.
Observe that the q k conjugates V of the word M k are distinct. We label these translated words V by the length t, 0 ≤ t < q k of the (possibly empty) prefix T in the decomposition M k = T R, V = RT . The whole set of conjugates V of M k is clearly obtained as the set of factors of length q k in the word M k M - k . Each such factor V is determined by its q k -1 first letters which form the q k distinct factors of length q k -1 contained in the word

M k M -- k . As an example, for k = 1, we have M 1 = 0 a 1 -1 1. Any conjugate V of M 1 can be written in the form V = 0 a 1 -1-b 1 10 b 1 = RT, M 1 = T R, with T = 0 b 1 , R = 0 a 1 -1-b 1 1,
for some integer b 1 with 0 ≤ b 1 ≤ a 1 -1. Thus, in this case, we have t = b 1 . Definition 3.2. For each k ≥ 1, let V k be the conjugate of M k whose first q k -1 letters coincide with those of s. Let T k and R k be the words such that

V k = R k T k and M k = T k R k ,
with R k non-empty. Denote by t k the length of T k . Put R -1 = 1, R 0 = 0, and let T -1 and T 0 be the empty word.

Then, the following recursion formulae hold. The notion of formal intercept was first introduced by Wojcik [START_REF] Wojcik | Factorisations des mots de basse complexité[END_REF], but our presentation is different.

Lemma 3.3 (formal intercept). Put t 1 = b * 1 . For any k ≥ 1, there exists an integer b * k+1 such that 0 ≤ b * k+1 ≤ a k+1 and t k+1 = t k + b * k+1 q k .
When b * k+1 = a k+1 , we necessarily have t k < q k-1 , so that b * k = 0 and t k = t k-1 in this case. Moreover, the sequences of words (T k ) k≥0 and (R k ) k≥0 satisfy the recursion formulae

T k+1 = M b * k+1 k T k = T k V b * k+1 k and R k+1 = R k M a k+1 -b * k+1 -1 k M k-1 if b * k+1 < a k+1 , R k-1 if b * k+1 = a k+1 , for k ≥ 0. The sequence (b * k ) k≥1 is called the formal intercept of s. Proof.
The word V k+1 is a factor of the word M k+1 M - k+1 beginning somewhere on the first factor M k+1 . Assume first that V k+1 begins on the prefix M

a k+1 k of M k+1 = M a k+1 k M k-1
and let P be the prefix of length q k of V k+1 . Thus, for some integer 0 ≤ b * k+1 < a k+1 , the prefix P begins on the second factor M k in the product M

a k+1 k = M b * k+1 k M k M a k+1 -b * k+1 -1 k . Then, P is a factor of M k M a k+1 -b * k+1 -1 k M - k+1 = M k M 2a k+1 -b * k+1 -1 k M - k-1 beginning on the first factor M k . Since 2a k+1 -b * k+1 -1 ≥ 1, we see that P is located over the product M k M - k , where M - k is the prefix of M 2a k+1 -b * k+1 -1 k of length q k -1.
As the first q k -1 letters of P coincide with those of s, we deduce that

P = V k = R k T k , and next that T k+1 = M b * k+1 k T k and R k+1 = R k M a k+1 -b * k+1 -1 k M k-1 .

Note finally that

M b * k+1 k T k = (T k R k ) b * k+1 T k = T k (R k T k ) b * k+1 = T k V b * k+1 k .
Suppose now that V k+1 begins on the second factor M k-1 in

M k+1 M - k+1 = M a k+1 k M k-1 M - k+1 = M a k+1 k T k-1 R k-1 M - k+1
and put b * k+1 = a k+1 . Then,

T k+1 = M a k+1 k T k-1 and R k+1 = R k-1 , observing that V k-1 = R k-1 T k-1 equals the prefix of V k+1 of length q k-1 . Notice now that M k is a prefix of M k-1 M - k+1 . Writing M k-1 M - k+1 = M k • • • = T k-1 R k-1 M a k -1 k-1 M k-2 • • • we see that T k = T k-1 and R k = R k-1 M a k -1 k-1 M k-2
. Thus b * k = 0 by the preceding case applied to the level k -1.

We now deal with binary recursions expressing

V k+1 in terms of V k and V k-1 extending the classical formulae M k+1 = M a k+1 k M k-1 . Set V -1 = R -1 T -1 = 1 and V 0 = R 0 T 0 = 0.

Lemma 3.4 (binary recursion). We have the relation

V 1 = V a 1 -1-b * 1 0 V -1 V b * 1 0 , while for any k ≥ 1, we have V k+1 = V a k+1 -b * k+1 k V k-1 V b * k+1 k . Proof. The expression V 1 = 0 a 1 -1-b * 1 10 b * 1 yields obviously the relation for V 1 . For k ≥ 1, we distinguish two cases, either b * k+1 < a k+1 or b * k+1 = a k+1 . Assume first that b * k+1 < a k+1 . According to Lemma 3.3, we write V k+1 = R k+1 T k+1 with R k+1 = R k M a k+1 -b * k+1 -1 k M k-1 = R k (T k R k ) a k+1 -b * k+1 -1 T k-1 R k-1 = (R k T k ) a k+1 -b * k+1 -1 R k T k-1 R k-1 = V a k+1 -b * k+1 -1 k R k T k-1 R k-1 and T k+1 = T k V b * k+1 k . Thus V k+1 = V a k+1 -b * k+1 -1 k R k T k-1 R k-1 T k V b * k+1 k . Since R k T k-1 R k-1 T k = R k T k-1 R k-1 T k-1 (R k-1 T k-1 ) b * k = R k T k R k-1 T k-1 = V k V k-1 , we get V k+1 = V a k+1 -b * k+1 k V k-1 V b * k+1 k .
Assume now that b * k+1 = a k+1 . Then b * k = 0. From Lemma 3.3, we know that T k = T k-1 and that

T k+1 = T k V b * k+1 k = T k-1 V b * k+1 k and R k+1 = R k-1 . Thus V k+1 = R k+1 T k+1 = R k-1 T k-1 V b * k+1 k = V k-1 V b * k+1 k ,
as asserted.

We conclude this section with a corollary, which shows how any prefix of M n+1 can be expressed in terms of M 0 , . . . , M n .

Recall that the Ostrowski numeration system in base θ is defined as follows: every positive integer N can be uniquely written in the form

N = d 1 + d 2 q 1 + . . . + d r+1 q r ,
where 0 ≤ d j ≤ a j for j = 1, . . . , r + 1, d r+1 > 0, d 1 < a 1 and d j = 0 if d j+1 = a j+1 . Corollary 3.5 (product formula for prefixes). Let T be the prefix of M n+1 of length t < q n+1 . Write

t = d 1 + d 2 q 1 + • • • + d n+1 q n
where d 1 , . . . , d n+1 are the digits of the integer t in the Ostrowski numeration system in base θ. Then, we have the product formula

T = M d n+1 n M d n n-1 • • • M d 1 0 = V d 1 0 V d 2 1 • • • V d n+1 n ,
where the words V 0 , . . . , V n are defined recursively by the formulae

V 0 = 1, V 1 = 0 a 1 -d 1 -1 10 d 1 , V k+1 = V a k+1 -d k+1 k V k-1 V d k k , 1 ≤ k < n.
Proof. By Lemma 3.3, we have T = T n+1 and t = t n+1 . The recurrence relations

T k+1 = M d k+1 k T k = T k V d k+1 k
yield inductively the product formula

T = T n+1 = M d n+1 n M d n n-1 • • • M d 1 0 = V d 1 0 V d 2 1 • • • V d n+1 n .
This establishes the corollary.

Linking formal intercept and Ostrowski numeration

We link the formal intercept, that is the sequence (b * k ) k≥1 such that

t k = b * 1 + b * 2 q 1 + • • • + b * k q k-1 , k ≥ 1,
to the intercept ρ thanks to the Proposition 4.1. Let 0 < ρ < 1 be a real number either not belonging to Zθ + Z, or of the form

Z ≥1 θ + Z. Let ρ -θ = h≥1 b h θ h-1
be the Ostrowski expansion of ρ -θ in base θ. For every k ≥ 1, put

t k = b 1 + b 2 q 1 + • • • + b k q k-1 .
Then, t k is the length of the word T k associated to the Sturmian word s θ,ρ = s ′ θ,ρ . In other words, we have b k = b * k for k ≥ 1, meaning that the formal intercept of this Sturmian word coincides with the sequence of digits of the number ρ -θ in its Ostrowski expansion in base θ.

Proof. By definition, we have

s n = ⌊nθ + ρ⌋ -⌊(n -1)θ + ρ⌋, n ≥ 1,
and

s ′ n = ⌈nθ + ρ⌉ -⌈(n -1)θ + ρ⌉, n ≥ 1, while the n-th letter of c θ is c n = ⌊(n + 1)θ⌋ -⌊nθ⌋ = ⌈(n + 1)θ⌉ -⌈nθ⌉, n ≥ 1.
Thus

s n = ⌊(n + 1)θ + ρ -θ⌋ -⌊nθ + ρ -θ⌋ = ⌊(n + 1 + t k )θ + σ k ⌋ -⌊(n + t k )θ + σ k ⌋, and 
s ′ n = ⌈(n + 1)θ + ρ -θ⌉ -⌈nθ + ρ -θ⌉ = ⌈(n + 1 + t k )θ + σ k ⌉ -⌈(n + t k )θ + σ k ⌉,
where we have set

σ k = h≥k b h+1 θ h .
We claim that ⌊qθ + σ k ⌋ = ⌊qθ⌋ and ⌈qθ + σ k ⌉ = ⌈qθ⌉ for every integer q with 1 ≤ q ≤ q k + t k . This yields that

s n = ⌊(n + 1 + t k )θ + σ k ⌋ -⌊(n + t k )θ + σ k ⌋ = ⌊(n + 1 + t k )θ⌋ -⌊(n + t k )θ⌋ = c n+t k and s ′ n = ⌈(n + 1 + t k )θ + σ k ⌉ -⌈(n + t k )θ + σ k ⌉ = ⌈(n + 1 + t k )θ⌉ -⌈(n + t k )θ⌉ = c n+t k
for every 1 ≤ n ≤ q k -1, and will establish the proposition, noting that M k M k is a prefix of c θ .

To that purpose, we bound |σ k |. Observe that θ k is positive when k is even and negative when k is odd. Moreover b h+1 ≤ a h+1 for any h ≥ 1, while b 1 ≤ a 1 -1. Thus,

|σ k | < max(|a k+1 θ k + a k+3 θ k+2 + • • • |, |a k+2 θ k+1 + a k+4 θ k+3 + • • • |) = max(|θ k-1 |, |θ k |) = |θ k-1 |, noting that a k+1 θ k + a k+3 θ k+2 + • • • = lim n→∞ ( n h=0 a k+2h+1 q k+2h )θ -( n h=0 a k+2h+1 p k+2h ) = lim n→∞ n h=0 (q k+2h+1 -q k+2h-1 )θ - n h=0 (p k+2h+1 -p k+2h-1 ) = lim n→∞ (q k+2n+1 -q k-1 )θ -(p k+2n+1 -p k-1 ) = -θ k-1 .
The inequality |σ k | < |θ k-1 | is strict because either ρ -θ does not belong to Zθ + Z, or ρ -θ belong to Z ≥0 θ + Z, so that the sequence of digits (b h ) h≥1 cannot be ultimately of the form a k+1 , 0, a k+3 , 0 . . ..

Observe now that | can also be sharpened when t k ≥ q k-1 . Indeed in this case we have b k ≥ 1 and thus b k+1 cannot be equal to a k+1 by Ostrowski's numeration rules. We now bound b k+1 ≤ a k+1 -1 to obtain

|σ k -b k+1 θ k | < a k+2 |θ k+1 | + a k+4 |θ k+3 | + • • • = |θ k |.
|σ k | < |θ k-1 | -|θ k |. (4.1)
Denote by x the distance from the real number x to the closest integer. We now show that qθ is larger than |σ k | when q differs from q k , so that qθ and qθ + σ k belong to the same integer open interval of length 1 and have thus the same upper and lower integer parts. We distinguish three cases. If q < q k , then

qθ ≥ |θ k-1 | > |σ k |, as required. Assume secondly that t k < q k-1 and q = q k + v for some 1 ≤ v ≤ t k . Then qθ = vθ + θ k ≥ vθ -|θ k | ≥ |θ k-2 | -|θ k | = |θ k-2 -θ k | ≥ |θ k-1 | > |σ k |.
Thirdly, assume t k ≥ q k-1 and q = q k + v with 1 ≤ v ≤ q k -1. Then,

qθ ≥ vθ -|θ k | ≥ |θ k-1 | -|θ k | > |σ k |,

by (4.1).

These three cases cover all the values of q with 1 ≤ q ≤ q k + t k , except q = q k , which we consider now. We have q k θ = |θ k |. When θ k and σ k share the same sign, we have

|θ k | < |θ k + σ k | = |θ k | + |σ k | ≤ |θ k | + |θ k-1 | < 1.
Thus, q k θ and q k θ + σ k both belong either to (p k , p k + 1) or to (p k -1, p k ). When θ k and σ k have opposite signs, we know that |σ k | < |θ k |, so that θ k and θ k + σ k have the same sign and both have absolute value less than 1. The claim is proved, which yields the proposition.

A similar result holds in the remaining case where ρ -θ = -mθ + p for integers m ≥ 1 and p. Assume first that ρ is positive, that is to say m ≥ 2. Let l ≥ 0 be defined by the inequalities q l < m ≤ q l+1 and let

q l+1 -m = b 1 q 0 + • • • + b l+1 q l
be the Ostrowski expansion of the integer q l+1 -m (see the definition at the end of Section 3). Observe that b l+1 ≤ a l+1 -1 and that b l = 0 when b l+1 = a l+1 -1.

Then ρ -θ ∈ (-θ, 1 -θ) has two Ostrowski expansions of the form Theorem 4.2. Assume that ρ -θ = -mθ + p where m ≥ 1 and p are integers. When m ≥ 2, let l ≥ 0 be defined by the inequalities q l < m ≤ q l+1 . When m = 1, set l = 0. Let (V k ) k≥0 and (V ′ k ) k≥0 be the two sequences of words recursively defined as in Theorem 2.1, with respect to the two sequences of digits (b k ) k≥1 and (b ′ k ) k≥1 defined above. When l is odd, we have

ρ -θ = b 1 θ 0 + • • • + b l+1 θ l + k≥1 a l+2k+1 θ l+2k and ρ -θ = b 1 θ 0 + • • • + b l θ l-1 + (b l+1 + 1)θ l + (a l+2 -1)θ l+1 + k≥2 a l+2k θ l+2k-1 , when l ≥ 1, or ρ -θ = (b 1 + 1)θ 0 + (a 2 -1)θ 1 + k≥2 a 2k θ 2k-1 , when l = 0. Set b l+2 = 0, b l+3 = a l+3 , b l+4 = 0, b l+5 = a l+5 , . . . and b ′ 1 = b 1 , . . . , b ′ l = b l , b ′ l+1 = b l+1 + 1, b ′ l+2 = a l+2 -1, b ′ l+3 = 0, b ′ l+4 = a l+4 , . . . when l ≥ 1, or b ′ 1 = b 1 + 1, b ′ 2 = a 2 -1, b ′ 3 = 0, b ′ 4 =
s θ,ρ = lim k→+∞ V k and s ′ θ,ρ = lim k→+∞ V ′ k .
When l is even, we have

s θ,ρ = lim k→+∞ V ′ k and s ′ θ,ρ = lim k→+∞ V k .
Moreover, the analogous decompositions

V k = R k T k and V ′ k = R ′ k T ′ k , as in Theorem 2.1, hold true with t k = b 1 + • • • + b k q k-1 and t ′ k = b ′ 1 + • • • + b ′ k q k-1 .
Proof. We only give a complete proof for the sequence of digits

(b k ) k≥1 = b 1 , . . . , b l+1 , 0, a l+3 , 0, a l+5 , . . . .
Assume that m ≥ 2 and l is odd, and recall the notations

t k = b 1 + • • • + b k q k-1 and σ k = b k+1 θ k + b k+2 θ k+2 + • • •
The argumentation is similar to the proof of Proposition 4.1. It suffices to show that

⌊qθ + σ k ⌋ = ⌊qθ⌋ (4.2) 
for every integer q with 1 ≤ q ≤ q k + t k . If k ≤ l, we compute

σ k = b k+1 θ k + • • • + b l+1 θ l+1 -θ l+1 .
Since the tail b k+1 , b k+2 . . . of the sequence (b k ) k≥1 contains the subsequence . . . b l+1 , 0, a l+3 , . . . and that b l+1 ≤ a l+1 -1, observe that this tail is neither of the form a j , 0, a j+1 , 0, . . . nor 0, a j , 0, a j+1 . . .. Then, (4.2) holds true by taking again the proof of Proposition 4.1. When k ≥ l + 1, we have

t k = -m + q k-1 if k = l + 2j, (j ≥ 1), -m + q k if k = l + 2j + 1, (j ≥ 0), and 
σ k = -θ k-1 if k = l + 2j, (j ≥ 1), -θ k if k = l + 2j + 1, (j ≥ 0).
Assume first that k has the same parity as l, namely k = l + 2j for some j ≥ 1. Then σ k = -θ k-1 and t k = -m + q k-1 . In order to check (4.2), we distinguish three subcases. Assume first q ≤ q k -1. Then qθ ≥ |θ k-1 | with equality only when q = q k-1 . If q = q k-1 , we have qθ > |θ k-1 |, so that qθ and qθ -θ k-1 are located in the same open interval of length one, so that (4.2) holds true. If q = q k-1 , then we have

q k-1 θ -θ k-1 = p k-1 and q k-1 θ = p k-1 + θ k-1 ,
so that (4.2) holds, since θ k-1 is positive, noting that k -1 = l -1 + 2j is even. Assume secondly that q = q k . Then,

q k θ -θ k-1 = p k + θ k -θ k-1 and q k θ = p k + θ k .
This shows that (4.2) holds, since both numbers θ k and θ k -θ k-1 are negative with absolute value less than 1. Assume thirdly that q = q k + v for some integer v with

1 ≤ v ≤ t k = -m + q k-1 . Then, qθ -θ k-1 = p k + θ k -θ k-1 + vθ and qθ = p k + θ k + vθ. Notice now that vθ ≥ |θ k-2 | with equality only when v = q k-2 . If v = q k-2 , we have vθ > |θ k-2 |.
Then, qθ and qθ -θ k-1 are located in the same open interval of length one, since

|θ k-2 | ≥ |θ k | + |θ k-1 |, so that (4.2) holds true. If v = q k-2 , then we have qθ -θ k-1 = p k + p k-2 + θ k -θ k-1 + θ k-2 and qθ = p k + p k-2 + θ k + θ k-2 ,
so that (4.2) holds, since θ k -θ k-1 + θ k-2 and θ k + θ k-2 are both negative with absolute value less than 1.

We assume now that k = l + 2j + 1 for some j ≥ 0. Then σ k = -θ k and t k = -m + q k . We distinguish again three subcases. Assume first that q ≤ q k -1. Then, qθ ≥ |θ k-1 |, so that qθ and qθ -θ k are located in the same open interval of length one. It folllows that (4.2) holds. Assume secondly that q = q k . Then,

q k θ -θ k = p k and q k θ = p k + θ k .
This shows that (4.2) holds, since θ k is positive because k = l + 2j + 1 is even. Assume thirdly that q = q k + v for some integer v with 1

≤ v ≤ t k = -m + q k . Then, qθ -θ k = p k + vθ and qθ = p k + θ k + vθ. Notice now that vθ ≥ |θ k-1 | > |θ k |. Thus (4.
2) holds. All cases have been checked.

When l is even, the numbers θ l+2j (resp. θ l+2j+1 ) turn to be positive (resp. negative), and the above argumentation remains valid provided that we replace the usual integer part ⌊•⌋ by the upper integer part ⌈•⌉.

To illustrate this statement, take ρ = 0, a 1 = 5, a 2 = 3, a 3 = 2; then By induction, we check that V n is the mirror image of V ′ n . We know that M -- n is a palindrome. We also have that

V 0 = 0, V 1 = 10 4 , V 2 = 10
-V - n = -(V ′ n ) -= M -- n ,
where -W means the word W deprived of its first letter. In other words, for n ≥ 1, the words V n and V ′ n deprived of their first and last letters are equal to the palindrome M -- n .

Repetitions in a Sturmian word

We keep our notation. Recall that s denotes an arbitrary Sturmian word of slope θ.

We show that Proposition 1 of [START_REF] Bugeaud | On the Diophantine nature of the elements of Cantor sets arising in the dynamics of contracted rotations[END_REF] can be deduced from the recursion formulae for the words V k and we give further informations on the occurrence of the various cases. Proposition 5.1 will be used in the next section to compare s with four families of (shifted for two of them) periodic words, depending on a parameter k, constructing thus families of strong rational approximations to the associated Sturmian number.

Proposition 5.1. Let k be an integer with k ≥ 0. Then, there exist a uniquely determined non-empty suffix U k of M k M k+1 = (M k ) a k+1 +1 M k-1 and an integer ãk+1 such that ãk+1 ∈ {a k+1 , a k+1 + 1}

and s = U k (M k ) ãk+1 M k-1 M - k . . . More precisely, when a k+2 -b k+2 ≥ 2, we have U k = R k+1 and ãk+1 = a k+1 .
When a k+2 -b k+2 = 1, we have

U k = R k+1 and ãk+1 = a k+1 + 1 if b k+3 < a k+3 , a k+1 if b k+3 = a k+3 .
When a k+2 = b k+2 , we have U k = R k M k+1 . Moreover ãk+1 = a k+1 , unless

a k+2 = 1, a k+3 -b k+3 ≥ 2, or a k+2 = 1, a k+3 = 1, b k+3 = 0, a k+4 = b k+4 ,
in which cases ãk+1 = a k+1 + 1.

Remark. The fact that s = U k (M k ) ãk+1 M k-1 M - k . . . means that after the prefix of length |U k |, we have exactly ãk+1 + 1 copies of M k , followed by the prefix of M k of length q k-1 -2, since M k-1 M - k and M k M - k-1 differ only by their last letter. In addition, we observe that when a k+2 = b k+2 we have b k+1 = 0 and we take U k-1 = R k .

Proof. The idea of the proof is to show that the prefix of s of length 2q k+1 +q k -1 coincides with one of the three words

V 2 k+1 V - k or V k+1 V k V - k+1 or V k V k+1 V - k+1 . Assume first that a k+2 -b k+2 ≥ 2. Then V k+2 = V a k+2 -b k+2 k+1 V k V b k+2 k+1 = V 2 k+1 V - k . . . , observing that V - k is a prefix of V k+1 (this follows from Definition 2.2). But V k+1 V k+1 V k = R k+1 T k+1 R k+1 T k+1 R k T k = R k+1 M k+1 T k+1 R k T k = R k+1 M k+1 M b k+1 k T k R k T k = R k+1 M k+1 M b k+1 +1 k T k = R k+1 M a k+1 k M k-1 M k . . .
Assume secondly that a k+2 -b k+2 = 1 and that a k+3 -b k+3 ≥ 1. Then

V k+3 = V a k+3 -b k+3 k+2 V k+1 V b k+3 k+2 = V k+2 V - k+1 . . . = (V k+1 V k V b k+2 +1 k+1 ) -. . . = V k+1 V k V - k+1 . . .
Actually, we can be more precise and claim that V k+1 V k V k+1 V - k is a prefix of s. This is obvious unless b k+2 = 0 (then a k+2 = 1 and

V k+2 = V k+1 V k ) and a k+3 -b k+3 = 1 and b k+3 = 0 (then V k+3 = V k+2 V k+1 = V k+1 V k V k+1
). Assume that these three equalities hold. If a k+4 > b k+4 , we have

V k+4 = V k+3 V - k+2 . . . = V k+1 V k V k+1 V - k+2 . . . = V k+1 V k V k+1 V k+1 V - k . . . , then V k+1 V k V k+1 V - k is indeed a prefix of s.
Otherwise, we have

V k+4 = V k+2 V k+3 . . . = V k+1 V k V k+1 V k V k+1 . . . = V k+1 V k V k+1 V k . . . ,
and the same conclusion holds. We claim that

V k+1 V k V k+1 V k = R k+1 M a k+1 +1 k M k-1 M b k+1 +1 k T k ,
which yields that U k = R k+1 and ãk+1 = a k+1 + 1. For the proof, we distinguish two cases, either a k+1 > b k+1 , or a k+1 = b k+1 . In the first case, we have

T k+1 = M b k+1 k T k and R k+1 = R k M a k+1 -b k+1 -1 k M k-1 ,
so that we compute

V k+1 V k V k+1 V k = R k+1 T k+1 R k T k R k+1 T k+1 R k T k = R k+1 M b k+1 k T k R k T k R k M a k+1 -b k+1 -1 k M k-1 M b k+1 k T k R k T k = R k+1 M a k+1 +1 k M k-1 M b k+1 +1 k T k .
For the latter case, we have

T k = T k-1 , R k = R k-1 M a k -1 k-1 M k-2 , T k+1 = M a k+1 k T k-1 = M a k+1 k T k , R k+1 = R k-1 .
Thus

V k+1 V k V k+1 V k = R k+1 T k+1 R k T k R k+1 T k+1 R k T k = R k+1 M a k+1 k T k-1 R k-1 M a k -1 k-1 M k-2 T k-1 R k-1 M a k+1 k T k R k T k = R k+1 M a k+1 +1 k M k-1 M a k+1 +1 k T k .
The claim is established. Assume thirdly that a k+2 -b k+2 = 1 and that a k+3 = b k+3 . Then, b k+2 = 0 and a k+2 = 1. We find

V k+3 = V k+1 V a k+3 k+2 = V k+1 (V k+1 V k ) a k+3 = V 2 k+1 V k . . . .
The first case shows that U k = R k+1 and ãk+1 = a k+1 , as asserted. Suppose finally that a k+2 = b k+2 . Then b k+1 = 0 and a k+3 > b k+3 , since a k+3 = b k+3 should yield a k+2 = b k+2 = 0. Thus,

V k+3 = V a k+3 -b k+3 k+2 V k+1 V b k+3 k+2 = V k+2 V - k+1 . . . = V k V a k+2 k+1 V - k+1 . . . = V k V k+1 V - k+1 . . .
Here, again, we can be more precise and show that s is either of the form

s = V k V k+1 V k V k+1 V - k . . . , (5.1) 
or of the form

s = V k V k+1 V k+1 V - k . . . . (5.2) 
If a k+2 ≥ 2, we have

V k+3 = V k+2 V - k+1 . . . = V k V a k+2 k+1 V - k . . . = V k V 2 k+1 V - k . . . Thus (5.2) holds. When a k+2 = 1 and a k+3 -b k+3 ≥ 2, we have V k+2 = V k V k+1 and V k+3 = V 2 k+2 V - k+1 . . . = V k V k+1 V k V k+1 V - k . . .
Thus (5.1) holds. When a k+2 = 1, a k+3 -b k+3 = 1 and b k+3 ≥ 1, we have

V k+3 = V k+2 V k+1 V b k+3 k+2 = V k V 2 k+1 V b k+3
k+2 , so that (5.2) holds true. When a k+2 = 1, a k+3 = 1 and b k+3 = 0, we have

V k+3 = V k V 2 k+1 . If a k+4 -b k+4 ≥ 1, we have V k+4 = V k+3 V - k+2 . . . = V k V 2 k+1 V - k . . .
so that (5.2) holds, while

V k+4 = V k+2 V k+3 . . . = V k V k+1 V k V 2 k+1 . . .
if a k+4 = b k+4 . Then (5.1) holds. Now, we compute

V k V k+1 V k+1 V k = R k T k R k+1 T k+1 R k+1 T k+1 R k T k = R k T k (R k M a k+1 -1 k M k-1 )M k+1 T k R k T k = R k M a k+1 k M k-1 M a k+1 k M k-1 M k T k = R k M k+1 M a k+1 k M k-1 T k , and 
V k V k+1 V k V k+1 V k = R k T k R k+1 T k+1 R k T k R k+1 T k+1 R k T k = R k T k R k M a k+1 -1 k M k-1 T k R k T k R k M a k+1 -1 k M k-1 T k R k T k = R k M a k+1 k M k-1 M a k+1 +1 k M k-1 M k T k = R k M k+1 M a k+1 +1 k M k-1 M k T k .
Thus U k = R k M k+1 in both cases. We have ãk+1 = a k+1 when (5.2) holds, while ãk+1 = a k+1 + 1 whenever (5.1) is satisfied.

We have used at several places the obvious property that V - k is a prefix of V k+1 , which holds since by definition V k , V k+1 and s share the same prefix of length q k -1. A question which arises naturally is to know when V k is a prefix of V k+1 . Proposition 5.2. For any k ≥ 0, the word V k is a prefix of V k+1 if and only if the sequence b 1 , . . . , b k+1 differs from 0, a 2 , 0, a 4 , . . . , a k+1 when k is odd, or differs from a 1 -1, 0, a 3 , 0, . . . , a k+1 when k is even.

For k ≥ 0, let W k denote the longest common prefix of V k+1 V k and V k V k+1 . Lemma 5.3. We have W 0 = 0 a 1 -1-b 1 and W k+1 = V a k+2 -b k+2 k+1 W k for k ≥ 0. Conse- quently, the length w k of W k is given by w k = a 1 -1 -b 1 + k j=1 (a j+1 -b j+1 )q j = q k+1 + q k -t k+1 -2, k ≥ 0. Proof. Recall that V -1 = 1, V 0 = 0, and V 1 = V a 1 -1-b 1 0 V -1 V b 1 0 . This implies that V 0 V 1 = V a 1 -b 1 0 V -1 V b 1 0 , thus W 0 = V a 1 -1-b 1 0 , w 0 = a 1 -1 -b 1 .
We proceed by induction. Let k ≥ 0 be an integer. Assume first that a

k+2 -b k+2 ≥ 1. Since V k+2 = V a k+2 -b k+2 k+1 V k V b k+2
k+1 , we get

V k+2 V k+1 = V a k+2 -b k+2 k+1 V k V b k+2 +1 k+1 and V k+1 V k+2 = V a k+2 -b k+2 +1 k+1 V k V b k+2 k+1 , thus W k+1 = V a k+2 -b k+2 k+1 W k .
Assume now that a k+2 = b k+2 . In that case, we know that b k+1 = 0. Then,

V k+2 V k+1 = V k V a k+2 +1 k+1 = V k V a k+1 k V k-1 V a k+1 k V k-1 V a k+2 -1 k+1 and V k+1 V k+2 = V a k+1 k V k-1 V k V a k+2 k+1 , thus W k+1 = V a k+1 k W k-1 = W k = V a k+2 -b k+2 k+1 W k .
Since q k is the length of V k , this proves the lemma.

Proof of Proposition 5.2. The word V k is a prefix of V k+1 exactly when w k ≥ q k . Lemma 5.3 tells us that w k ≥ q k if and only if t k+1 ≤ q k+1 -2. Observe finally that t k+1 ≤ q k+1 -1 with equality if and only if

b k+1 = a k+1 , b k = 0, b k-1 = a k-1 , b k-2 = 0, . . . .
This completes the proof.

The sequence of convergents contributing to the exponent of irrationality

In this section and the next one, b ≥ 2 is an integer and ξ denotes one of the numbers ξ b (θ, ρ) or ξ ′ b (θ, ρ). We analyze the convergents which contribute to the exponent of irrationality of ξ, which we call 'strong convergents'. According to [START_REF] Bugeaud | A new complexity function, repetitions in Sturmian words, and irrationality exponents of Sturmian numbers[END_REF], all of them are obtained by truncating the b-ary expansion of ξ and completing by periodicity. Thus, their denominators are either of the form b s -1 (purely periodic case) or b r (b s -1) (existence of a preperiod).

We adopt the following conventions of writing. Any finite word Y = y 1 . . . y r with letters in {0, . . . , b -1} is as well viewed as the natural integer Let u and v be two positive quantities depending upon a parameter k. As usual, we write u ≍ v when there exist positive constants c 1 and c 2 , independent of k, such that

Y = y 1 b r-1 + • • • + y r ,
c 1 u ≤ v ≤ c 2 u.
The candidates for the sequence of strong convergents belong to four types. We label them by the index k ≥ 0. The sequences of finite words (R k ) k≥0 , (T k ) k≥0 , (V k ) k≥0 are given by Theorem 2.1 (or Theorem 4.2), but we now replace the alphabet {0, 1} by {0, b -1}. We recall that R 0 = 0 and T 0 is the empty word. Below, the height means the logarithmic height log H/ log b, that is, roughly speaking, the largest exponent of b appearing in the denominator.

The first possible convergent is

(1) k = R k+1 -R k b r k (b r k+1 -r k -1)
, with height ≍ r k+1 and b-ary expansion

(1) k = 0.R k (M a k+1 -b k+1 -1 k M k-1 ) ∞ .
Of course (1) k is meaningful only when r k+1 > r k , that is to say when a k+1 -b k+1 ≥ 1.

The second candidate is (2

) k = R k+1 T k b r k+1 +t k -1 , with height ≍ r k+1 + t k , associated to the periodic word (R k+1 T k ) ∞ . The third is (3) k = R k+1 M k -M k b r k+1 (b q k -1) , with height ≍ r k+1 + q k , associated to the word R k+1 M ∞ k . The fourth is (4) k = V k+1 b q k+1 -1 ,
with height ≍ q k+1 = r k+1 + t k+1 , associated to the periodic word V ∞ k+1 = (R k+1 T k+1 ) ∞ . We say that a rational x precedes another one y, and we write x ≺ y, when the height of x is less than the height of y.

Clearly (1) k ≺ (2) k (4) k .
We have (2) k = (4) k exactly when t k = t k+1 , that is to say when b k+1 = 0. Then,

(1) k ≺ (2) k = (4) k ≺ (3) k . If b k+1 ≥ 1, we have t k+1 ≥ t k + q k , so that (1) k ≺ (2) k ≺ (3) k ≺ (4) k ,
in this case. When a k+1 = b k+1 , obviously b k+1 ≥ 1, so that the above inequality

(2) k ≺ (3) k ≺ (4) k hold with (1) k being omitted.
An important observation is that we have the following coincidences between levels k -2, k -1 and k.

If a k+1 -b k+1 = 1, then we have

(1) k = (3) k-1 , since R k (M a k+1 -b k+1 -1 k M k-1 ) ∞ = R k M ∞ k-1 . If a k+1 = b k+1 , then we have (2) k = (4) k-2 , since we have R k+1 = R k-1 and T k = T k-1 (because b k = 0), so that R k+1 T k = R k-1 T k-1 = V k-1 . If, in addition, b k-1 = 0, then T k-1 = T k-2 and (2) k-2 = (2) k = (4) k-2 .
Observe also that if a k+1 -b k+1 = 1, then we have

(2) k = V k V k-1 b q k +q k-1 -1 , since R k+1 T k = R k M k-1 M b k k-1 T k-1 = R k T k R k-1 T k-1 = V k V k-1 , noting that T k R k-1 = T k-1 V b k k-1 R k-1 = T k-1 (R k-1 T k-1 ) b k R k-1 = (T k-1 R k-1 ) b k +1 = M b k +1 k-1 .
To go further for linking consecutive blocks (with indices k -1 and k), we need to know when the rationals (1) k , (2) k , (3) k , (4) k are indeed convergents. We indicate as well in the next proposition the value of the exponential rate of approximation µ k (j) such

|ξ -(j) k | ≍ 1 H((j) k ) µ k (j) = 1 b h((j) k )µ k (j) ,
for all large k and 1 ≤ j ≤ 4, where h((j) k ) is the base-b logarithm of the height H((j) k ) of (j) k . We determine in which cases the exponent µ k (j) is bigger than 2, thanks to Proposition 5.1. To that purpose, let us introduce the following quantities

ν k (1) = 1 + r k+1 + t k r k+1 , ν k (2) = 1 + r k+1 + q k r k+1 + t k , ν k (3) = 1 + q k+1 r k+1 + q k , ν k (4) = 1 + r k+2 q k+1 .
They are equal to one plus the ratio of the height of two consecutive points in the sequence . . .

(1) k , (2) k , (3) k , (4) k , (1) 
k+1 , . . .. Then, we can state the following criterion.

Proposition 6.1. Let k ≥ 2 be an integer such that t k-1 is positive. The rational

(1) k = R k+1 -R k b r k (b r k+1 -r k -1)
is a convergent to ξ if and only if

a k+1 -b k+1 ≥ 1, a k+2 -b k+2 ≥ 1 and then µ k (1) = ν k (1), or b k ≥ 1, a k+1 = 1, b k+1 = 0, a k+2 = b k+2 and then µ k (1) = ν k-1 (3). 
The rational

(2) k = R k+1 T k b r k+1 +t k -1 is a convergent to ξ if and only if a k+2 -b k+2 ≥ 1 and then µ k (2) =    ν k (2) if b k+1 ≥ 1, ν k (4) if b k+1 = 0, a k+3 -b k+3 ≥ 1, ν k+2 (2) if b k+1 = 0, a k+3 = b k+3 .
The rational

(3) k = R k+1 M k -R k+1 b r k+1 (b q k -1)
is a convergent to ξ if and only if

b k+1 ≥ 1, a k+2 -b k+2 ≥ 2 and then µ k (3) = ν k (3), or a k+2 -b k+2 = 1, a k+3 -b k+3 ≥ 1 and then µ k (3) = ν k+1 (1), or b k+1 ≥ 1, a k+2 = 1, b k+2 = 0, a k+3 = b k+3 and then µ k (3) = ν k (3),
The rational

(4) k = V k+1 b q k+1 -1 is a convergent to ξ if and only if a k+2 -b k+2 ≥ 2, a k+3 -b k+3 ≥ 1 and then µ k (4) = ν k (4), or b k+1 = 0, a k+2 -b k+2 = 1, a k+3 -b k+3 ≥ 1 and then µ k (4) = ν k (2) = ν k (4), or a k+3 = b k+3 and then µ k (4) = ν k+2 (2) = 1 + ν k (4).
Proof. We only prove Proposition 6.1 assuming that t k-1 is large enough. In fact, crude estimates of the constants involved in the symbols ≍ show that the lower bound b t k-1 ≥ 4 is sufficient for our purpose. Relaxing the assumption to t k-1 ≥ 1 follows from an alternative argumentation which will be given in the next Section 7. Our present approach is based on Legendre's theorem asserting that P/Q is a convergent to ξ when |ξ -P/Q| < 1/(2Q 2 ). Let s be the Sturmian word composed of the b-ary digits of ξ.

For (1) k , the relevant assumption is a k+1 -b k+1 ≥ 1. Assume first that a k+2 -b k+2 ≥ 1. Then, Proposition 5.1 gives

s = R k+1 M ãk+1 k M k-1 M - k . . . = R k M a k+1 -b k+1 -1 k M k-1 M ãk+1 k M k-1 . . . = R k M a k+1 -b k+1 -1 k M k-1 M a k+1 -b k+1 -1 k M ãk+1 -a k+1 +b k+1 +1 k M k-1 . . . = R k M a k+1 -b k+1 -1 k M k-1 M a k+1 -b k+1 -1 k M k M k-1 . . . , to be compared with the word R k (M a k+1 -b k+1 -1 k M k-1 ) ∞ . When a k+1 -b k+1 ≥ 2, we can write R k (M a k+1 -b k+1 -1 k M k-1 ) ∞ = R k M a k+1 -b k+1 -1 k M k-1 M a k+1 -b k+1 -1 k M k-1 M k . . . to obtain the estimate |ξ -(1) k | ≍ 1 b r k +2(a k+1 -b k+1 -1)q k +2q k-1 +q k = 1 b 2r k+1 +t k .
When a k+1 -b k+1 = 1 the same estimate holds, since then

s = R k M k-1 M k M k-1 . . . = R k M a k +1 k-1 M k-2 M k-1 . . . , while R k (M a k+1 -b k+1 -1 k M k-1 ) ∞ = R k M ∞ k-1 = R k M a k +1 k-1 M k-1 M k-2 . . . . Thus (1) k is a convergent to ξ and µ k (1) = 2r k+1 + t k r k+1 = 1 + r k+1 + t k r k+1 = ν k (1).
When a k+2 = b k+2 , we have b k+1 = 0, U k = R k M k+1 , and Proposition 5.1 gives

s = U k . . . = R k M a k+1 -1 k M k M k-1 . . .
We distinguish two subcases. If a k+1 ≥ 2, we write

R k (M a k+1 -1 k M k-1 ) ∞ = R k M a k+1 -1 k M k-1 M k M a k+1 -2 k M k-1 . . . . Thus, |ξ -(1) k | ≍ 1 b r k +a k+1 q k +q k-1 = 1 b r k+1 +q k , so that (r k+1 + q k ) -2r k+1 = q k -r k+1 = q k -(r k + (a k+1 -1)q k + q k-1 ) = t k -q k+1 + q k is negative, since q k+1 > 2q k . Therefore (1) k is not a convergent in this subcase. When a k+1 = 1, write s = R k M k M k-1 . . . = R k M a k k-1 M k-2 M k-1 . . . , while R k M ∞ k-1 = R k M a k k-1 M k-1 M k-2 . . . Thus, |ξ -(1) k | ≍ 1 b r k +(a k +1)q k-1 +q k-2 = 1 b r k +q k +q k-1 = 1 b r k+1 +q k , so that (r k+1 + q k ) -2r k+1 = -r k+1 + q k = -(r k + q k-1 ) + q k = t k -q k-1 = t k-1 + (b k -1)q k-1 .
We conclude by noticing that

t k-1 + (b k -1)q k-1 is positive if b k ≥ 1 and negative when b k = 0. Thus, µ k (1) = r k+1 + q k r k+1 = 1 + q k r k+1 = 1 + q k r k + q k-1 = ν k-1 (3).
Observe that, in this case, we have the ordering

(1) k = (3) k-1 ≺ (2) k+1 = (4) k-1 , while (2) k , (3) k , (4) 
k and (1) k+1 are not convergents to ξ. We now deal with (2) k . Assume first that a k+2 -b k+2 ≥ 1.

In the subcase a k+1 -b k+1 ≥ 1 and b k+1 ≥ 1, we have

R k+1 = R k M a k+1 -b k+1 -1 k M k-1 and Proposition 5.1 gives s = R k+1 M ãk+1 k M k-1 M - k . . . = R k M a k+1 -b k+1 -1 k M k-1 M ãk+1 k M k-1 M - k . . . = R k M a k+1 -b k+1 -1 k M k-1 M a k+1 -b k+1 k M ãk+1 -a k+1 +b k+1 k M k-1 M - k . . . = R k M a k+1 -b k+1 -1 k M k-1 M a k+1 -b k+1 k M k M k-1 . . . since ãk+1 -a k+1 + b k+1 ≥ 1. Comparing with the word (R k M a k+1 -b k+1 -1 k M k-1 T k ) ∞ = R k M a k+1 -b k+1 -1 k M k-1 M a k+1 -b k+1 k M k-1 M k . . . , we obtain |ξ -(2) k | ≍ 1 b r k +2(a k+1 -b k+1 )q k +2q k-1 = 1 b 2(r k+1 +t k )+r k .
Thus, (2) k is a convergent of ξ and

µ k (2) = 2(r k+1 + t k ) + r k r k+1 + t k = 2 + r k r k+1 + t k = 1 + r k+1 + q k r k+1 + t k = ν k (2).
In the subcase a k+1 = b k+1 (and thus b k+1 ≥ 1), we have (2) k = (4) k-2 . Assuming temporarily that Proposition 6.1 has been checked for (4) k-2 , it yields that (2) k is again a convergent to ξ with exponent µ k (2) = µ k-2 (4) = ν k (2) as asserted.

Consider finally the subcase b k+1 = 0. Then (2) k = ( 4) k and Proposition 6.1 for (4) k , tells us that (2) k is indeed a convergent to ξ with exponent µ k (2) = µ k (4) which will be computed below.

Assume now that a k+2 = b k+2 . Then, Proposition 5.1 gives

s = R k M k+1 . . . = R k M a k+1 k M k-1 . . . = R k M a k+1 -1 k M k M k-1 . . . , while (R k+1 T k ) ∞ = R k M a k+1 -1 k M k-1 T k R k . . . = R k M a k+1 -1 k M k-1 M k . . . since b k+1 = 0. It follows that |ξ -(2) k | ≍ 1 b r k +a k+1 q k +q k-1 = 1 b r k+1 +q k = 1 b 2(r k+1 +t k )-(q k+1 -r k ) .
Then (2) k is not a convergent to ξ.

We now deal with (3) k . Assume first that a k+2 -b k+2 ≥ 1. Proposition 5.1 gives

s = R k+1 M ãk+1 k M k-1 M - k . . . Since R k+1 M ∞ k = R k+1 M ãk+1 k M k M k-1 . . .
we obtain the estimate

|ξ -(3) k | ≍ 1 b r k+1 +(ã k+1 +1)q k +q k-1
.

Write

(r k+1 + (ã k+1 + 1)q k + q k-1 ) -2(r k+1 + q k ) = -r k+1 + (ã k+1 -1)q k + q k-1 = t k+1 + (ã k+1 -a k+1 -1)q k .

If a k+2 -b k+2 = 1 and a k+3 -b k+3 ≥ 1, we know that ãk+1 = a k+1 + 1, so that

t k+1 + (ã k+1 -a k+1 -1)q k > 0. If a k+2 -b k+2 ≥ 2, or if a k+2 = 1, b k+2 = 0, a k+3 = b k+3
, we know that ãk+1 = a k+1 , so that

t k+1 + (ã k+1 -a k+1 -1)q k = t k + (b k+1 -1)q k .
Now, t k + (b k+1 -1)q k is positive when b k+1 ≥ 1 and negative when b k+1 = 0. We get the three cases announced. Concerning the exponent µ k (3), we find

µ k (3) = r k+1 + (ã k+1 + 1)q k + q k-1 r k+1 + q k .
When ãk+1 = a k+1 , we get

µ k (3) = r k+1 + q k+1 + q k r k+1 + q k = 1 + q k+1 r k+1 + q k = ν k (3),
while, in the case ãk+1 = a k+1 + 1, we have

µ k (3) = r k+1 + q k+1 + 2q k r k+1 + q k = 1 + q k+1 + q k r k+1 + q k = 1 + r k+2 + t k+1 r k+2 = ν k+1 (1) 
, since r k+2 = r k+1 + q k when a k+2 -b k+2 = 1. It remains for us to prove that (3) k is not a convergent when a k+2 = b k+2 . Then, b k+1 = 0 and r k+1 = r k + (a k+1 -1)q k + q k-1 . In this case, Proposition 5.1 gives

s = R k M k+1 . . . = R k M a k+1 -1 k M k M k-1 . . . while R k+1 M ∞ k = R k M a k+1 -1 k M k-1 M k . . . . Thus |ξ -(3) k | ≍ 1 b r k +a k+1 q k +q k-1 ≍ 1 b r k+1 +q k , and (3) 
k is not a convergent to ξ.

For the last rational (4) k = V k+1 b q k+1 -1 Then, the initial exponent of repetition of V k+1 is clearly larger than 2, so that (4) k is a convergent to ξ. When a k+2 -b k+2 = 1 and a k+3 -b k+3 ≥ 1, we have

s = V k+1 V k V - k+1 . . . By Lemma 5.3, the common prefix W k to V k V k+1 and V k+1 V k has length w k = a 1 -1 -b 1 + k j=1 (a j+1 -b j+1 )q j = q k+1 + q k -t k+1 -2.
Noting that

t k+1 = k j=0
b j+1 q j is larger or smaller than q k when b k+1 ≥ 1 or b k+1 = 0, we deduce that (4) k is then a convergent to ξ when b k+1 = 0 and is not when b k+1 ≥ 1. This yields the case b k+1 = 0 and a k+2 -b k+2 = 1 and a k+3 -b k+3 ≥ 1.

When a k+3 -b k+3 ≥ 1 and a k+2 -b k+2 ≥ 1, Proposition 5.1, with k replaced by k + 1, tells us that

s = R k+2 M k+1 . . . = R k+1 M a k+2 -b k+2 -1 k+1 M k M k+1 . . . , while V ∞ k+1 = R k+1 M ∞ k+1 = R k+1 M a k+2 -b k+2 -1 k+1 M k+1 M k . . . . It follows that |ξ -(4) k | ≍ 1 b r k+1 +(a k+2 -b k+2 )q k+1 +q k = 1 b r k+2 +q k+1 .
Thus, 

µ k (4) = r k+2 + q k+1 q k+1 = 1 + r k+2 q k+1 = ν k (4).
s = R k+1 M k+2 M ãk+2 k+1 . . . = R k+1 M a k+2 k+1 M k M k+1 . . . It follows that |ξ -(4) k | ≍ 1 b r k+1 +(a k+2 +1)q k+1 +q k = 1 b r k+2 +2q k+1
, since r k+2 = r k+1 + (a k+2 -1)q k+1 + q k . Thus,

µ k (4) = r k+2 + 2q k+1 q k+1 = 2 + r k+2 q k+1 = 1 + ν k (4) = ν k+2 (2),
noting that r k+2 + q k+1 = r k+1 + q k+2 = r k+3 + q k+2 , and

q k+1 = r k+1 + t k+1 = r k+3 + t k+2 , since b k+2 = 0.
When a k+2 = b k+2 , the word s has a prefix of the form

s = V k+2 . . . = V k V b k+2 k+1 . . .
and the common prefix of V ∞ k+1 and s has length at most

w k ≤ q k+1 + q k -2 < 2q k+1 .
Thus, (4) k cannot be a convergent to ξ.

The next proposition describes a tail of the sequence of strong convergents ordered by increasing height. We start with the cyclic sequence S (1) 0 , (2) 0 , (3) 0 , (4) 0 , (1) 1 , . . . , (4) k-1 , (1) k , (2) k , (3) k , (4) k , (1) k+1 , . . . built with the (j) k . As already observed, some elements of S may coincide and the height function is not necessarily increasing along S. Assume that s differs from c θ , so that t k is positive for any k ≥ h and some h ≥ 1. Then, let S + be the tail of S formed by the elements (j) k with k ≥ h + 1. Assuming moreover that 1 ≤ b k ≤ a k -2 for every k ≥ h + 1, Proposition 6.1 tells us that the sequence of strong convergents (j) k , restricted to the indices k ≥ h + 1, coincides with S + . Otherwise, the following modifications are needed. Proposition 6.2. A tail of the ordered sequence of strong convergents to ξ is obtained by applying to S + the following replacement rules. Remark. Observe that there is no overlap for the above replacement rules, since the case (i) cannot appear for two consecutive indices k by Ostrowski's numeration rules.

Proof. We check in each case (i), (ii) and (iii) that the elements (j) k in S which are erased do not belong to the list provided by Proposition 6.1, while the remaining ones belong indeed to the list.

For instance, in the case (i) with b k = 0, Proposition 6.1 tells us that µ

k-1 (2) = ν k+1 (2). Moreover, ( 2 
) k-1 = (4) k-1 = (2) k+1 ≺ (3) k+1
are convergents to ξ, while the intermediate rationals

(3) k-1 , (1) k , (2) k , (3) k , (4) k , (1 
) k+1 are not, as can be verified by reading the necessary and sufficient conditions displayed in Proposition 6.1 for each element involved.

It will be proved in Proposition 7.2 that the subset of convergents to ξ given by Proposition 6.1 provides all the convergents contributing to the irrationality exponent of ξ. We thus obtain the Proof. For any convergent (j) k to ξ, we have expressed µ k (j) as some value ν k ′ (j ′ ), thanks to Proposition 6.1. Conversely, for any given ν k (j), we analyze under which conditions it contributes to the exponent of irrationality of ξ. For instance, Proposition 6.1 tells us that ν k (1) occurs exactly when a k+1 -b k+1 ≥ 1 and a k+2 -b k+2 ≥ 1, leading to the definition of ν(1). Similarly, ν k (2) appears in Proposition 6.1 if and only if

b k+1 ≥ 1, a k+2 -b k+2 ≥ 1, or b k+1 = 0, a k+2 -b k+2 = 1, a k+3 -b k+3 ≥ 1, or a k+1 = b k+1 .
Remark first that the third case is included in the first case, because a k+1 = b k+1 implies a k+2 -b k+2 ≥ 1 by Ostrowski's rules. Recall that (2) k = (4) k when b k+1 = 0. Observe now that the assumptions b k+1 = 0 and a k+2 -b k+2 ≥ 1 yield the inequality ν k (2) ≤ ν k (4), with equality if and only if a k+2 -b k+2 = 1, since t k+1 = t k and

ν k (2) = 1 + r k+1 + q k r k+1 + t k = 1 + r k+2 -(a k+2 -b k+2 -1)q k+1 q k+1 ≤ 1 + r k+2 q k+1 = ν k (4).
We may thus remove the condition b k+1 ≥ 1 in the first case, since the additional contributions are taken into account by ν(4). Finally, the single constraint a k+2 -b k+2 ≥ 1 remains. We are thus led to introduce the quantity ν(2).

We now deal with the contribution of ν k (4). It occurs in Proposition 6.1 exactly when

a k+2 -b k+2 ≥ 2, a k+3 -b k+3 ≥ 1, or b k+1 = 0, a k+2 -b k+2 = 1, a k+3 -b k+3 ≥ 1.
Observe that ν k (4) = 1 + r k+2 q k+1 is at most equal to 2 when b k+1 ≥ 1 and a k+2 -b k+2 = 1, since then

r k+2 = r k+1 + q k = r k + q k+1 -b k+1 q k ≤ q k+1 -t k if a k+1 -b k+1 ≥ 1, r k-1 + q k ≤ q k+1 if a k+1 = b k+1 .
We may thus forget the condition b k+1 = 0 in the second case above. Observe also that ν k (4) < 2 when a k+2 = b k+2 . It remains the constraint a k+3 -b k+3 ≥ 1. Notice however that we may remove this last constraint as asserted. Indeed, when a k+3 = b k+3 , Proposition 6.1 tells us that (4) k = (2) k+2 is a convergent to ξ with approximation exponent ν k+2 (2) = 1 + ν k (4). Since a k+4 -b k+4 ≥ 1 by Ostrowski's rules, the number ν k+2 (2) > ν k (4) is taken into account by ν(2). We may thus define ν(4) unconditionally as above.

We finally deal with the contribution of ν k (3). It appears when

b k+1 ≥ 1, a k+2 -b k+2 ≥ 2, or b k+1 ≥ 1, a k+2 = 1, b k+2 = 0, a k+3 = b k+3 .
We may relax the constraints as follows. We first forget the assumption b k+1 ≥ 1, since when b k+1 = 0, we have r k+1 = r k + q k+1 -q k , so that

ν k (3) = 1 + q k+1 r k+1 + q k = 1 + q k+1 r k + q k+1 < 2.
Lemma 7.1. For k ≥ 0, we have the following relations:

( 

1) k = c k • (4) k-1 + (3) k-1 , (k = 0), (2) k -(1) k = d k • (1) k + (4) k-1 , (2) 
c k (b q k -1) + b r k (b q k-1 -1) = b r k +q k-1 (b (a k+1 -b k+1 -1)q k -1) + b r k (b q k-1 -1) = b r k +(a k+1 -b k+1 -1)q k +q k-1 -b r k = b r k+1 -b r k ,
which is the denominator of (1) k . Likewise, we have

V k × b r k +q k-1 b (a k+1 -b k+1 -1)q k -1 b q k -1 = R k T k × (b r k +q k-1 + b r k +q k-1 +q k + . . . + b r k +q k-1 +(a k+1 -b k+1 -2)q k ) = (R k T k ) a k+1 -b k+1 -1 b r k +q k-1 = (R k T k ) a k+1 -b k+1 -1 R k M k-1 -R k M k-1 = R k+1 -R k M k-1 = (R k+1 -R k ) -(R k M k-1 -R k ), if a k+1 -b k+1 ≥ 2, while V k × b r k +q k-1 b (a k+1 -b k+1 -1)q k -1 b q k -1 = 0 = (R k+1 -R k ) -(R k M k-1 -R k ), if a k+1 -b k+1 = 1, because we then have R k+1 = R k M k-1 .
In both cases we end up with the numerator of (1) k minus the numerator of (4) k-1 . Now, assume that a k+1 = b k+1 . Then, c k = -b r k-1 and we check that

(-b r k-1 )(b q k -1) + b r k (b q k-1 -1) = b r k-1 -b r k = b r k+1 -b r k ,
since r k-1 + q k = r k + q k-1 and r k-1 = r k+1 . As for the numerators, we have

V k × (-b r k-1 ) = -V k R k-1 + R k-1 = -R k T k R k-1 + R k-1 = -R k M k-1 + R k+1 = (R k+1 -R k ) -(R k M k-1 -R k ),
which confirms our claim.

For the second equality, observe that b t k b r k (b r k+1 -r k -1) + (b q k -1) = b q k +r k+1 -b t k +r k + b q k -1 = b q k +r k+1 -1 is the denominator of (2) k . Note also that

b t k (R k+1 -R k ) = R k+1 T k -R k T k = R k+1 T k -V k
is the numerator of (2) k minus the numerator of (4) k . This completes the proof of the second equality. The third one is a tautology. The remaining two equalities are proved in a similar way than the second one. We omit the details.

Define two sequences (P j ) j≥-1 and (Q j ) j≥-1 of integers by setting

P -1 = b -1, Q -1 = 0, P 0 = 0, Q 0 = b -1,
and, denoting by (α j ) j≥1 the sequence of integers c 0 , d 0 , 1, e 0 , f 0 , c 1 , . . ., P j+2 = α j+2 P j+1 + P j , Q j+2 = α j+2 Q j+1 + Q j , j ≥ -1. We explain below how to derive the sequence of partial quotients of ξ from the sequence (α j ) j≥1 .

To do this, we work with matrices and recall that

P j+1 P j Q j+1 Q j = P j P j-1 Q j Q j-1 • α j+1 1 1 0 = 0 b -1 b -1 0 α 1 1 1 0 • • • α j+1 1 1 0 , j ≥ 0.
integers such that the subsequence (a k ) k∈K is increasing. Assume first that there exists an infinite set K ′ ⊂ K such that (a k -b k ) k∈K ′ is increasing. For k ≥ 3 in K ′ we have

ν k-2 (4) = 1 + r k q k-1 ≥ 1 + (a k -b k -1)q k-1 q k-1 ,
and, since a k -b k can be arbitrarily large with k in K ′ , we deduce that ν(4) is infinite. Assume now that there exist an infinite set K ′ ⊂ K and a nonnegative integer δ such that a k -b k = δ for k in K ′ . For k ≥ 3 in K ′ we have

ν k-1 (3) = 1 + q k r k + q k-1 ≥ a k q k-1 r k-1 + δq k-1 + q k-2 ≥ a k δ + 2 .
We deduce that ν(3) is infinite. Consequently, any Sturmian number whose slope has unbounded partial quotients is a Liouville number.

Proof of Theorem 2.6. Assume that θ has bounded partial quotients. Observe that ν k (3) = 1 + q k+1 r k+1 + q k ≤ 1 + q k+1 q k , ν k (4) = 1 + r k+2 q k+1 ≤ 1 + q k+2 q k+1 .

If a k+1 = b k+1 , then r k+1 = r k-1 and t k = t k-1 , thus

ν k (2) = 2 + r k r k+1 + t k = 2 + r k r k-1 + t k-1 ≤ 2 + q k q k-1 .
If a k+1 > b k+1 , then r k+1 ≥ r k + q k-1 , thus

ν k (2) = 2 + r k r k+1 + t k ≤ 2 + r k r k + t k ≤ 3, and ν k (1) = 2 + t k r k+1 ≤ 2 + t k r k + q k-1 ≤ 2 + q k q k-1
.

This shows that the irrationality exponent of ξ b (θ, ρ) satisfies µ(ξ b (θ, ρ)) ≤ 2 + lim sup k→+∞ q k q k-1 = 1 + µ(ξ b (θ)). (8.1)

Let us now show that there exist intercepts ρ for which equality holds. Let K be an infinite set of positive integers such that lim k→+∞,k∈K This shows that, for every sufficiently large k, there exists a rational number P/Q with b q k ≤ Q ≤ b q k+4 (8.2)

such that |ξ -P/Q| ≤ Q -2-1/(2(M +1)) . We are then in position to apply Théorème 3.1 of [START_REF] Adamczewski | Mesures de transcendance et aspects quantitatifs de la méthode de Thue-Siegel-Roth-Schmidt[END_REF] with ε = 1 2(M +1) and S the empty set. Note that, by (8.2), the number c introduced in (3.2) of its proof can be taken to be (M + 1) 5 . Consequently, the upper bound w * d (ξ) ≤ (2d) κ(log log 3d) , d ≥ 1,

given by Théorème 3.1 of [START_REF] Adamczewski | Mesures de transcendance et aspects quantitatifs de la méthode de Thue-Siegel-Roth-Schmidt[END_REF] holds with a real number κ depending only on M .

  It follows that σ k and θ k share the same sign when b k+1 ≥ 1 and that |σ k | < |θ k | when b k+1 = 0. In particular, the stronger inequality |σ k | < |θ k | holds when θ k and σ k have opposite signs. The upper bound |σ k | < |θ k-1

-θ = k≥1 a 2k θ 2k- 1 ,

 1 a 4 , . . . when l = 0, so that (b k ) k≥1 and (b ′ k ) k≥1 are the sequences of digits appearing in the two above expansions of ρ -θ. Notice that both sequences satisfy the Ostrowski numeration rules for digits in base θ. When ρ = 0, we use the two proper expansions 1 -θ = (a 1 -1)θ 0 + k≥1 a 2k+1 θ 2k , and to define respectively the sequences of digits (b k ) k≥1 and (b ′ k ) k≥1 . Then, we have the following analogue of Theorem 2.1.

4 10 4 3 = 00 4 10 4 10 4 100 4 10 4 10 4 10 4 1 = 0 5 10 4 10 4 10 5 10 4 10 4 10 4 1 .M 3 = 0 4 10 4 10 4 100 4 10 4 10 4 100 4 1 = 0 4 10 4 10 4 10 5 10 4 10 4

 4311314 10 4 0, V 3 = 10 4 10 4 10 4 10 4 010 4 10 4 10 4 0 = 10 4 10 4 10 4 10 5 10 4 10 4 10 5 , V ′ 0 = 0, V ′ 1 = 0 4 1, V ′ 2 = 00 4 10 4 10 4 1, V ′ Note also that M 0 = 0, M 1 = 0 4 1, M 2 = 0 4 10 4 10 4 10, 10 5 1.

  whose sequence of b-ary digits is given by Y . Then, for any words Y = y 1 . . . y r and Z = z 1 . . . z s , we have the b-ary expansionsZ b s -1 = 0.Z ∞ , and Y Z -Y b r (b s -1) = 0.Y Z ∞ , where 0.z 1 z 2 . . . = z 1 b + z 2 b 2 + • •• and Y Z stands for the number whose b-ary sequence of digits is the concatenation of the words Y and Z, that is, Y Z = y 1 . . . y r z 1 . . . z s .

Proposition 5 .

 5 1 tells us that s = V 2 k+1 V - k . . . whenever a k+2 -b k+2 ≥ 2 or a k+2 = 1 and b k+2 = 0 and a k+3 = b k+3 .

Notice that ν k ( 4 )

 4 = ν k (2) in the case a k+2 -b k+2 = 1 and b k+1 = 0, since (1) k+1 = (3) k and (4) k = (2) k . When a k+3 = b k+3 , Proposition 5.1 with k replaced by k + 1, gives

  (i) Assume a k+2 = b k+2 . When b k ≥ 1, we replace the string of seven elements (4) k-1 , . . . , (2) k+1 by the single element (4) k-1 = (2) k+1 . When b k = 0, we replace the string of nine elements (2) k-1 , . . . , (2) k+1 by the single element (2) k-1 = (4) k-1 = (2) k+1 . (ii) Assume a k+2 -b k+2 = 1 and a k+3 -b k+3 ≥ 1. When b k+1 ≥ 1, we replace the three elements (3) k , (4) k , (1) k+1 by the single element (3) k = (1) k+1 , and the four elements (2) k , (3) k , (4) k , (1) k+1 by the pair (2) k = (4) k ≺ (3) k = (1) k+1 , when b k+1 = 0. (iii) Assume that a k+2 -b k+2 ≥ 2 and a k+3 -b k+3 ≥ 1. When b k+1 = 0, we replace the three elements (2) k , (3) k , (4) k by the single element (2) k = (4) k .

Theorem 6 . 3 .

 63 The irrationality exponent of ξ is equal to lim sup k→+∞ max{µ k (1), µ k (2), µ k (3), µ k (4)} = max{ν(1), ν(2), ν(3), ν(4)}, where ν(1) = lim sup k→+∞ {ν k (1) : a k+1 -b k+1 ≥ 1 and a k+2 -b k+2 ≥ 1}, ν(2) = lim sup k→+∞ {ν k (2) : a k+2 -b k+2 ≥ 1}, ν(3) = lim sup k→+∞ {ν k (3)}, ν(4) = lim sup k→+∞ {ν k (4)}.

k = 1 •

 1 ((2) k -(1) k ) + (1) k , (3) k = e k • (2) k + ((2) k -(1) k ), (4) k = f k • (3) k + (2) k .Proof. Let us begin with the first equality. If a k+1 -b k+1 ≥ 1, then

Since c 0

 0 = b a 1 -b 1 -b b -1 , d 0 = 0, e 0 = b -1,we getP 1 = b -1, Q 1 = b a 1 -b 1 -b, P 2 = P 0 , Q 2 = Q 0 , P 3 = b -1, Q 3 = b a 1 -b 1 -1, P 4 = (b -1) 2 , Q 4 = b a 1 -b 1 (b -1), . . . . 0 , . . . .Using Lemma 7.1, we check by induction on j ≥ 1 that the greatest prime divisor of the integers P j and Q j is equal to b-1 and that P j and Q j are the numerator and denominator of a fraction of one of the five types (1) k , (2) k -(1) k , (2) k , (3) k , (4) k , more precisely, they correspond to * the fraction (1) k if α j = c k ; * the fraction (2) k -(1) k if α j = d k ; * the fraction (2) k if α j = 1; * the fraction (3) k if α j = e k ;* the fraction (4) k if α j = f k .

q k q k- 1 =

 1 µ(ξ b (θ)) -1. Take k 1 ≥ 3 in K and set b 1 = . . . = b k 1 = 0. Put a k 1 +1 = b k 1 +1 and b k 1 +2 = b k 1 +3 = . . . = b k 2 = 0, where k 2 > k 1 + 2 is in K and sufficiently large to ensure that r k 2 ≥ q k 2 /2. Then, put b k 2 +1 = a k 2 +1 and b k 2 +2 = . . . = b k 3 = 0,where k 3 > k 2 + 2 is in K and sufficiently large to ensure that r k 3 ≥ 2q k 3 /3. Proceeding like this, we define inductively an icreasing

We may also relax the assumptions a k+2 = 1, b k+2 = 0, a k+3 = b k+3 in the second case above to a k+2 -b k+2 = 1, since when a k+2 -b k+2 = 1 and a k+3 -b k+3 ≥ 1, we have (3) k = (1) k+1 , while ν k (3) = 1 + q k+1 r k+1 + q k = 1 + q k+1 r k+2 < 1 + q k+1 + q k r k+2 = 1 + r k+2 + t k+1 r k+2 = ν k+1 [START_REF] Adamczewski | On the expansion of some exponential periods in an integer base[END_REF].

The additional contributions are then covered by ν [START_REF] Adamczewski | On the expansion of some exponential periods in an integer base[END_REF]. It remains the constraint a k+2b k+2 ≥ 1. But when a k+2 = b k+2 , we have b k+1 = 0, so that ν k (3) ≤ 2, as already observed.

The partial quotients

We keep the notation of the previous section.

For k ≥ 0, recall that we have set

The integers c k , d k , e k , f k are positive, unless t k = 0 (and then d k = 0) or b k+1 = 0 (and then f k = 0) or a k+1 -b k+1 ≤ 1 (and then c k = 0 if a k+1 -b k+1 = 1, while otherwise c k = -b r k-1 = -e k-1 -1, by (2.3)).

Recall that we have defined the possible convergents by [START_REF] Adamczewski | On the expansion of some exponential periods in an integer base[END_REF] 

From a Diophantine point of view, (1) k is meaningful only when r k+1 > r k , that is to say when a k+1 -b k+1 ≥ 1. Nevertheless, it can be formally defined as well when r k+1 < r k , in which case numerator and denominator are negative integers.

In the sequel, the notation (1

means that the numerator (resp., denominator) of (1) k is equal to c k times the numerator (resp., denominator) of (4) k-1 plus the numerator (resp., denominator) of (3) k-1 . With some abuse of notation,

stands below for the ratio of the difference between the numerators and denominators of (2) k and (1) k .

So we have a product of elementary integer 2 by 2 matrices α j 1 1 0 , exactly as in the continued fraction algorithm. Here, however, some coefficients α j may be 0 or negative.

The point is that it is possible to transform this formal infinite product into a product of elementary integer 2 by 2 matrices α ′′ j 1 1 0 where all the α ′′ j 's are positive. This defines a regular continued fraction and we show that this is precisely the continued fraction expansion of ξ.

Simple calculations show that for nonnegative integers x and y we have

and

If for some integer j ≥ 1 the integer α j+5 = c k+1 is negative, then c k+1 = -e k -1 and, as b k+1 = 0, we get d k+1 = d k , f k = 0, and the septuple (α j+1 , . . . , α j+7 ) is equal to

. Consequently, by (7.1) and (7.2), we have

We derive that

This shows that P j-1 is followed by P j+8 = (c k + e k+1 + 1)P j-1 + P j-2 , and similarly for Q j-1 .

Consider now the sequence (α ′ j ) j≥1 constructed inductively from (α j ) j≥1 as follows. We put α ′ j = α j for j < j 0 , where j 0 ≥ 1 is the smallest integer such that α j 0 = c k , with α j 0 +5 = c k+1 < 0. Then, we put α ′ j 0 = c k + e k+1 + 1 and α ′ j 0 +1 = α j 0 +9 = f k+1 . We continue with α ′ j 0 +2 = c k+2 , unless c k+3 < 0, in which case we put α ′ j 0 +2 = c k+2 +e k+3 +1. And so on. The sequence (α ′ j ) j≥1 is well-defined since c k and c k+1 cannot be simultaneously negative.

Said differently, for each index k such that c k+1 < 0, we replace the 10 consecutive partial quotients c k , d k , . . . , e k+1 , f k+1 by the 2 partial quotients c k + e k+1 + 1, f k+1 . Let us add that f k+1 is positive since b k+2 is positive.

We have constructed from (α j ) j≥1 a sequence of nonnegative integers (α ′ j ) j≥1 . Define

and

By construction, the sequence of pairs ((P ′ j , Q ′ j )) j≥0 is a subsequence of ((P j , Q j )) j≥0 . Furthermore, it follows from (7.3) that P ′ j and Q ′ j are the numerator and denominator of * the fraction [START_REF] Adamczewski | On the expansion of some exponential periods in an integer base[END_REF] 

we have to get rid of the 0's in (α ′ j ) j≥1 and construct a sequence (α ′′ j ) j≥1 of positive integers. Since e k is positive for k ≥ 0, there are no sequences of more than 3 consecutive 0's in (α ′ j ) j≥1 . As already observed, we have for nonnegative integers x and y we have

and, if α ′ j+1 = 0, we get

This shows that P ′ j-1 is followed by P ′ j+2 = (α ′ j + α ′ j+2 )P j-1 + P j-2 , and similarly for Q ′ j-1 . By (7.4), if x, 0, y are consecutive elements in (α ′ j ) j≥1 , they have to be replaced by the single element x + y in (α ′′ j ) j≥1 and the pair associated with the partial quotients x + y is the pair associated to α ′ j+2 , that is, the pair (P ′ j+2 , Q ′ j+2 ). Define recursively

and

By construction, the sequence of pairs ((P ′′ j , Q ′′ j )) j≥0 is a subsequence of ((P ′ j , Q ′ j )) j≥0 , hence of ((P j , Q j )) j≥0 . Let us discuss more in details which are the possible elements of the sequence (α ′′ j ) j≥1 . The following cases may occur: (i) 1, e k , f k = 0, c k+1 + e k+2 + 1 = 0, f k+2 are consecutive elements of (α ′ j ) j≥1 , in which case we get the partial quotient e k + c k+1 + e k+2 + 1 in (α ′′ j ) j≥1 and The cases (iv) to (vi) occur only when d k+1 = 0, that is, when b 1 = . . . = b k+1 = 0. They are not reflected in Proposition 6.2, where it is assumed that t k is positive.

Note that if f k = c k+1 = 0 or if c k+1 = d k+1 = 0, then there is nothing to do: we simply remove these two 0's from the sequence (α ′ j ) j≥1 . The link with Proposition 6.2 is as follows: * Case (i) of Proposition 6.2 corresponds to the construction of (α ′ j ) j≥1 from (α j ) j≥1 , with, if in addition b k is nul, Case (i) above.

* Case (ii) of Proposition 6.2 corresponds to Case (iii) above if b k+1 is positive, while if b k+1 = 0 we remove two consecutive 0's in the sequence (α ′ j ) j≥1 , thereby deleting two putative convergents.

* Case (iii) of Proposition 6.2 corresponds to Case (ii) above. Since the sequence (α ′′ j ) j≥1 is composed of positive integers, the real number

is well defined by its continued fraction expansion. We have proved that all of its convergents are of the form P j /Q j for some index j.

It also follows from our discussion that (2) k+1 is a convergent to ζ if c k+1 and c k+2 are nonnegative. If c k+1 < 0 and f k-1 > 0, then f k-1 is an element of (α ′′ j ) j≥1 , associated with (4) k-1 = (2) k+1 . If c k+1 < 0 and f k-1 = 0, then b k = 0 and 1, e k-1 + c k + e k+1 + 1 are consecutive elements of (α ′′ j ) j≥1 , with this partial quotient 1 being associated to (2) k-1 and we have (2) k-1 = (4) k-1 = (2) k+1 . To summarize, we have shown that (2) k+1 is a convergent to ζ unless c k+2 is negative, that is, unless a k+3 = b k+3 . However, Proposition 6.1 asserts that [START_REF] Adamczewski | Reversals and palindromes in continued fractions[END_REF] More precisely, we have

Remaining proofs

Proof of Corollary 2.5.

Assume that θ has unbounded partial quotients (the case of bounded partial quotients is treated in Theorem 2.6). Let K be an infinite set of positive sequence (k j ) j≥2 of integers in K such that b k j +1 = a k j +1 and b k = 0 for every k not in (k j ) j≥2 . In addition, we have r k j ≥ (j -1)q k j /j, for j ≥ 2.

Denote by ρ the intercept defined by this sequence (b k ) k≥1 and let us determine the irrationality exponent of ξ b (θ, ρ).

Recall that for an index h such that b h+1 = a h+1 we have r h+1 = r h-1 and t

.

Consequently, we get

and

The reverse inequality follows from (8.1). Consequently, we get

This proves the theorem.

Proof of Theorem 2.7. Assume that not all b k are 0. Let k be an integer large enough to ensure that t k is positive and that a k , a k+1 , . . . are all at most equal to M . Then, it follows from Proposition 6.2 that there are four (possibly overlapping) cases: (i) If a k+2 = b k+2 , then (2) k+1 is a convergent to ξ;

(ii) If a k+3 = b k+3 , then (2) k+2 is a convergent to ξ;

(iii) If a k+4 = b k+4 , then (2) k+3 is a convergent to ξ; (iv) If (i), (ii), and (iii) do not hold, then (1) k+1 and (2) k+1 are convergents to ξ.

In case (i), the rate of approximation of ξ by (2) k+1 is at least equal to

since r k+2 = r k , t k+1 = t k , and r k+1 ≥ q k-1 . Similarly, in case (ii) (resp., (iii)), the rate of approximation of ξ by (2) k+2 (resp., by (2) k+3 ) is at least equal to 2 + 1/(M + 1).

In case (iv), note that r k+2 + t k+1 ≤ (a k+2 + 1)q k+1 , thus ν k+1 (1) = 2 + t k+1 r k+2 ≥ 2 + t k+1 (M + 1)q k+1 , ν k+1 (2) = 2 + r k+1 r k+2 + t k+1 ≥ 2 + r k+1 (M + 1)q k+1 .

Recalling that r k+1 + t k+1 = q k+1 , we get max{ν k+1 (1), ν k+1 (2)} ≥ 2 + 1 2(M + 1) .