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This paper deals with non-parametric density estimation on R 2 from i.i.d observations. It is assumed that after unknown rotation of the coordinate system the coordinates of the observations are independent random variables whose densities belong to a Hölder class with unknown parameters. The minimax and adaptive minimax theories for this structural statistical model are developed.

Introduction

Let ξ ∈ R 2 be a random vector having the density g w.r.t the Lebesgue measure. We will assume that the coordinates of ξ are independent and let X ∈ R 2 be the random vector obtained from the relation

X = M ξ, M ∈ Q,
where Q is the set of all rotational 2 × 2-matrices. Assume that we observe n ∈ N * independent copies of X that is X (n) = (X 1 , . . . , X n ). We want to estimate the density of X denoted by f at a given point x ∈ R 2 using the observations X (n) . By estimator, we mean any X (n) -measurable map f : R 2n → R. The accuracy of an estimator f is measured by the pointwise risk

R (p) n [ f , f ] := E f f -f (x) p 1/p , p ∈ [1, ∞).
Here E f denotes the expectation with respect to the probability measure P f of the observations X (n) . Let Q ⊆ Q be fixed and let G(β, L), β > 0, L > 0, denote the following set of functions.

Definition 1. We say that g : R 2 → R belongs to G(β, L) if (i) g(•, •) = g 1 (•)g 2 (•) and g 1 , g 2 : R → R + are symmetric probability densities;

(ii) g 1 , g 2 belong to the Hölder class H(β, L), β > 0, L > 0, on R.

For the reader's convenience the formal definition of H(β, L) is postponed to the end of this section.

Here we only mention that β is referred to the smoothness of the underlying function while L is the Lipschitz constant.

For any β > 0, L > 0 introduce the following set of probability densities.

F(β, L, Q) = f : R 2 → R + : f (•) = g M T • , g ∈ G(β, L), M ∈ Q .
In the present paper we will study the minimax and minimax adaptive estimation of the density f over the collection of functional classes F(β, L, Q). To illustrate the interesting feature of the problem at hand let us consider the simplest situation. Assume that the set Q consists of a single element Q. In this case we can first obtain new observation sequence ξ 1 = Q T X 1 , . . . , ξ n = Q T X n .

Noting that the density of ξ 1 is g 1 g 2 we estimate next separately g 1 and g 2 from the sequence of the first and second coordinates of ξ 1 , . . . , ξ n respectively. In particular one can use the kernel estimation method with properly chosen bandwidth. It will lead to the estimators g 1 and g 2 . Since g 1 , g 2 ∈ H(β, L) the pointwise minimax accuracy (minimax rate of convergence) of each marginal density will be proportional to n -β 2β+1 . Therefore, the minimax pointwise accuracy in estimating of g provided by the estimator g(x) = g 1 (x 1 ) g 2 (x 2 ) is proportional to n -β 2β+1 as well. The estimator for f (x) = g Q T x is then given by f Q (x) = g(Q T x).

All mentioned above can be summarized as follows.

Theorem 1. Let β > 0, L > 0 and Q ∈ Q be fixed. Then, for any x ∈ R 2 there exists an estimator

f Q (x) such that ∀p ≥ 1 sup F (β,L,{Q}) R (p) n [ f Q (x), f ] ≲ n -β 2β+1 .
Moreover (here and later inf is taken over all possible estimators) ∀p ≥ 1 inf

f sup F (β,L,{Q}) R (p) n [ f , f ] ≳ n -β 2β+1 .
The proof of this theorem is straightforward. Moreover its first assertion follows from the results obtained in Proposition 3 presented in Section 3. The assertions of Theorem 1 show that the structural assumption f (•) = g M T • leads to an essential improvement of the accuracy of estimation. Indeed, it is easily seen that F(β, L, Q) ⊂ H( ⃗ β, ⃗ L), where H( ⃗ β, ⃗ L) is the isotropic Hölder class on R 2 with ⃗ β = (β, β) and ⃗ L = (L 2 , L 2 ). Recall that the minimax pointwise accuracy on this class is given by n -β 2β+2 which is much larger than the univariate rate n -β 2β+1 available under the structural assumption discussed above. One of the challenging questions appearing in this context is the following: Do the statements of Theorem 1 remain valid if the cardinality of Q is larger than 1? We remark that the matrix M describing the law of observation is unknown in this case and the discussed estimation problem can be viewed as the problem of adaptation to unknown rotation of coordinate system (structural adaptation).

What is this article about?

As written above we will study the minimax and minimax adaptive estimation of the density f over the collection of functional classes F(β, L, Q), β > 0, L > 0 and Q ⊆ Q. We assume in what follows that whatever the setting is considered the set of rotations Q (possibly dependent on n) is supposed to be fixed (and, therefore, known).

For any β > 0, L > 0 and

Q ⊆ Q introduce φ n (β, L, Q) = inf f sup F (β,L,Q) R (p) n [ f , f ], β > 0, L > 0.
Minimax estimation. In this setting, parameters β > 0 and L > 0 are supposed to be known and the goal is to construct an estimator, say f , such that for some constant C > 0 (usually independent of L) lim sup

n→∞ sup F (β,L,Q) φ -1 n (β, L, Q)R (p) n [ f , f ] ≤ C.
(1.1)

The following problems will be solved in the framework of minimax estimation.

(i) We present assumptions imposed on Q, under which φ n (β, L, Q) can be effectively bounded from below. It allows us, among other things, to show that the assertion of Theorem 1 is not valid if Q = Q. Moreover, it allows us to understand "how far" φ n (β, L, Q) can be from the best possible decay of the minimax risk, n -β 2β+1 found in Theorem 1. In particular, we will see that it depends on the "massiveness" of the set Q, see Theorem 2.

(ii) We find assumptions imposed on Q, under which the minimax estimator, i.e. an estimator satisfying (1.1), can be built and, in Section 2.2.2 we present its construction1 . This together with Theorem 2 allows us in particular to establish the following fact. If Q is a finite set whose elements satisfy some separation condition and their number is independent of n then rate n -β 2β+1 is attainable.

(iii) As it was mentioned above the set Q is a priori fixed and the following question will be addressed in Section 2.2.3. What happens if the true rotation does not belong to Q or even the structural assumption f ∈ F(β, L, Q) is not satisfied?

Minimax adaptive estimation. The minimax estimation procedure proposed in Section 2.2.2 requires prior knowledge of the class parameters β and L. A natural question of adaptive estimation arises:

Is it possible to construct a single estimator for f (x) whose maximal risk is asymptotically proportional to φn β, L, Q simultaneously for all values of β and L? For which Q it can be done?

Recall that such optimally-adaptive estimators do not always exist; see [START_REF] Lepskii | Asymptotically minimax adaptive estimation. II. Statistical model without optimal adaptation[END_REF]. We will show that the existence or nonexistence of optimally adaptive estimators over the scale of classes {F(β, L, Q)} β,L depends once again on the "massiveness" of the set Q. In the case in which such estimators do not exist we need to determine the introduced in [START_REF] Lepskii | Asymptotically minimax adaptive estimation. I. Upper bounds. Optimally adaptive estimates[END_REF] adaptive rate of convergence related to the latter scale. Nowadays there exist several definitions of adaptive rate of convergence and corresponding to this notion criteria of optimality, see [START_REF] Lepskii | Asymptotically minimax adaptive estimation. I. Upper bounds. Optimally adaptive estimates[END_REF], [START_REF] Tsybakov | Pointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes[END_REF], [START_REF] Klutchnikoff | Pointwise adaptive estimation of a multivariate function Math[END_REF], Rebelles (2015a). Since the proofs of our results are rather involved we decided to use the simplest definition of the adaptive rate which consists in the following.

A normalization family {ψn(β, L, Q)} β,L is called adaptive rate of convergence for f (x) over the collection of functional classes {F(β, L, Q)} β,L if lim inf n→∞ inf f sup β∈{β 1 ,β 2 } sup F (β,L,Q) ψ -1 n (β, L, Q)R (p) n [ f , f ] > 0, ∀β1, β2 > 0, L > 0,
and there exists an estimator f * such that

lim sup n→∞ sup β∈{β 1 ,β 2 } sup F (β,L,Q) ψ -1 n (β, L, Q)R (p) n [f * , f ] < ∞, ∀β1, β2 > 0, L > 0. (1.2)
The estimator f * is called an adaptive estimator. We will see that

ψ n (β, L, Q) = φ n/an (β, L, Q). If a n → ∞, n → ∞
its order of magnitude is called the price to pay for adaptation.

Note that (1.2) is equivalent to

lim sup n→∞ sup F (β,L,Q) ψ -1 n (β, L, Q)R (p) n [f * , f ] < ∞, ∀β > 0, L > 0,
and, therefore, if (1.2) is fulfilled with ψ n (β, L, Q) = φ n (β, L, Q) then one can assert that f * is an optimally-adaptive estimator.

The following results will be obtained in the minimax adaptive setting (under additional assumption that β ∈ (0, b], where b > 0 is an arbitrary but a priori chosen number).

(iv) We find the adaptive rate of convergence under the same assumptions imposed on Q as in minimax setting. This together with Theorem 2 allows us to find explicitly the price to pay for adaptation in terms of the "massiveness" of Q. Also in Section 2.2.1 we present the construction of the adaptive estimator.

(v) In particular, obtained results allow us to establish the following fact. If Q is a finite set whose elements satisfy some separation condition and their number is proportional to n a , a > 0, then the proposed estimation procedure is optimally-adaptive.

It is worth saying that in Section 2.3 we discuss the open problems. In particular, we try to explain the principal problems arising in the extension of the obtained result to the dimension d ≥ 3.

Historical notes

There is a vast literature dealing with minimax and minimax adaptive density estimation. The interested reader can find very detailed overview on this topic in [START_REF] Lepski | Adaptive estimation over anisotropic functional classes via oracle approach[END_REF]. As mentioned above, we will follow the modeling strategy which consists in imposing additional structural assumptions on the function to be estimated. This approach was pioneered by [START_REF] Stone | Additive regression and other nonparametric models[END_REF] who discussed the trade-off between flexibility and dimensionality of nonparametric models and formulated the heuristic dimensionality reduction principle. Standard examples of structural nonparametric models are single-index, additive, projection pursuit or multi-index model, composite functions structure etc. The minimax and minimax adaptive results in these models (mostly in the nonparametric regression context) were obtained in [START_REF] Huber | Projection pursuit. With discussion[END_REF], [START_REF] Chen | Estimation of a projection-pursuit type regression model[END_REF] Golubev (1992), [START_REF] Hristache | Structure adaptive approach for dimension reduction[END_REF], [START_REF] Horowitz | Rate-optimal estimation for a general class of nonparametric regression models with unknown link function[END_REF], [START_REF] Juditsky | Nonparametric estimation of composite functions[END_REF], [START_REF] Goldenshluger | Structural adaptation via L p -norm oracle inequalities[END_REF], [START_REF] Lepski | Adaptive estimation under single-index constraint in a regression model[END_REF] among many others. However, for the problem of multivariate density estimation there are not so many articles where minimax and minimax adaptive results were obtained. The problems and models similar to those considered in the present paper were studied in [START_REF] Samarov | Aggregation of density estimators and dimension reduction[END_REF], Amato et al (2010), [START_REF] Lepski | Multivariate density estimation under sup-norm loss: oracle approach, adaptation and independence structure[END_REF], Rebelles (2015a), [START_REF] Rebelles | L p adaptive estimation of an anisotropic density under independence hypothesis[END_REF]. We would like especially to mention the paper [START_REF] Samarov | Nonparametric independent component analysis[END_REF] where d-dimensional variant of our model was considered. Some problems in [START_REF] Samarov | Nonparametric independent component analysis[END_REF] have been studied under pointwise risk and below we will provide a detailed comparison to our results.

In [START_REF] Samarov | Nonparametric independent component analysis[END_REF] the authors studied the same observation model and the same estimation problem but in arbitrary dimension d ≥ 2. Their estimation procedure (only the minimax estimation is studied in the latter paper) is based on completely different principles. First, they propose √ n-consistent estimator of the unknown rotation matrix Q, say Q, and then plug it in the estimator g(Q T x) considered in Theorem 1 above. Thus, their final estimator of the density f is given by g( Q T x).

It is worth noting that the estimation of the rotation (being important problem itself) requires very restrictive assumptions. In particular [START_REF] Samarov | Nonparametric independent component analysis[END_REF] assume that β > 5 if d = 2 and that the observations possess finite absolute moment of order 4 (here and later we make the comparison for d = 2 only). We do not impose these assumptions. Another important remark (explaining in particular the necessity of conditions appeared in [START_REF] Samarov | Nonparametric independent component analysis[END_REF]) is that the estimation of Q requires the identifiability of the model. In this context one can mention Condition 5 in [START_REF] Samarov | Nonparametric independent component analysis[END_REF] which is imposed simultaneously (and implicitly) on g 1 , g 2 and Q. This condition, among other restriction, prohibits the gaussian observations, for example the situation in which g 1 and g 2 are both densities of N (0, 1). We have neither such kind of assumptions nor the identifiability problem because we are interested in estimating of the density f while g 1 , g 2 and Q are treated as nuisance parameters. Our results are not affected if

f (•) ≡ g Q T • ≡ ḡ M T •
for some densities g, ḡ : R 2 → R + and Q, M ∈ Q.

We think that the use of plug-in approach in structural models is too restrictive and technique of structural adaptation proposed in the present paper is much more adequate for such kind of problems.

As to other conditions they are similar. For example, in [START_REF] Samarov | Nonparametric independent component analysis[END_REF] it is assumed that g ′ j (y)g 2 j (y)dy = 0, j = 1, 2. (Condition 4)

If β > 1 this condition includes our assumption that g 1 and g 2 are symmetric functions. Note, however, that g 1 and g 2 are unknown and, therefore, the verification of Condition 4 does not seem possible except the case where it is fulfilled automatically. Finally, in [START_REF] Samarov | Nonparametric independent component analysis[END_REF] it is assumed that g 1 and g 2 belong to the Hölder classes with different regularities, say β * and β * but it does not add much to our investigations by the following reason. As it follows immediately from Theorem 1 the accuracy of estimation (even in the case of known rotation matrix) corresponds to β * ∧ β * . In view of embedding of Hölder spaces the functional class F(β, L, Q) with β = β * ∧ β * is the largest one on which the prescribed accuracy can be obtained.

We finish this comparison by the following remark: There are no adaptive results in [START_REF] Samarov | Nonparametric independent component analysis[END_REF]. In their Remark 2 the authors conjectured that Using the estimators of the present paper as a building block, one can construct a density estimator that adapts to anisotropic smoothness using the ideas of aggregation of estimators.

But as it follows from our results, even for isotropic smoothness it is not always possible and in some cases the price to pay for adaptation appears when one speaks about pointwise estimation. As to the estimation under global loss (L 2 -loss for instance, which is also studied in [START_REF] Samarov | Nonparametric independent component analysis[END_REF]) it might be possible.

Definitions, assumptions and notation

For any Q ∈ Q and any function f ∈ F(β, L, Q) we denote by Q f ∈ Q and g f ∈ G(β, L) any quantities satisfying the relation

f (•) = g f Q T f • .
Obviously this representation may be not unique and later on we consider an arbitrary couple (Q f , g f ) for which the latter relation holds.

Furthermore ∥ • ∥ ∞ stands for the supremum norm, the integer part of a > 0 will be denoted by ⌊a⌋ and any Q ∈ Q will be presented as Q = (q, q ⊥ ) = q 1 -q 2 q 2 q 1 . Definition 2. Let β = r + α, r ∈ N, 0 < α ≤ 1 and L > 0 be given. We say that w : R → R belongs to the Hölder class H(β, L) if it is r-times continuously differentiable, ∥w (j) ∥ ∞ ≤ L for any j = 0, . . . , r and ∥w (r) 

(• + z) -w (r) (•)∥ ∞ ≤ L|z| α , ∀z ∈ R.
For given b ≥ 1 we denote by K b the set of functions K : R → R satisfying the following assumption.

Assumption 1. K ∈ L 1 (R) ∩ L ∞ (R), R K(u)du = 1 and R K(u)u j du = 0, j = 1, . . . , 2⌊b⌋, R |K(t)||t| 2b dt < ∞.
Hence K is a kernel of order ⌊2b⌋. With any K ∈ K b we associate the following quantity:

C(K, b, s) = sup b≤b R 2 K(t 1 )K(t 2 ) s t 2 1 + t 2 2 b + 1 2 dt 1 dt 2 , s > 0.
For any D, Q ∈ Q we will write

p 1 := p 1 (D, Q) = q T d ⊥ , p 2 := p 2 (D, Q) = q T d.
The following remark related to the latter quantities will be important in the sequel, namely

D T Q = p 2 (D, Q) -p 1 (D, Q) p 1 (D, Q) p 2 (D, Q) . Set ϱ(D, Q) := min |p 1 (Q, D)|, |p 2 (D, Q)| . Remark 1. We note that p 1 (D, Q) = -p 1 (Q, D), p 2 (D, Q) = p 2 (Q, D) and p 1 (Q, Q) = 0. Addi- tionally it can be easily checked 2 that ϱ(Q 1 , Q 3 ) ≤ √ 2 ϱ(Q 1 , Q 2 ) + ϱ(Q 2 , Q 3 ) , ∀Q 1 , Q 2 , Q 3 ∈ Q. (1.3)
Hence, we assert that ϱ is a √ 2-pseudo-inframetrics on Q.

For given δ > 0 we denote by Q δ the set of all subsets of Q consisting of δ-distinguishable points3 with respect to ϱ. For any

Q δ ∈ Q δ let n(Q δ ) = ln card(Q δ ) . If Q δ ∈ Q δ is the maximal δ-distinguishable set of Q in ϱ then n δ := n(Q δ ) is called δ-capacity of Q.
Recall that the δ-capacity (as well as the δ-entropy) is used for classifying compact metric sets according to their massiveness. From now on δ ∈ (0, 1) (possibly dependent on n) is assumed to be fixed and we assume that the number of observations n ≥ 3.

Main results

In this section we develop the minimax and adaptive minimax theories of pointwise density estimation over collection of functional classes

F(β, L, Q δ ), Q δ ∈ Q δ .

Lower bounds

We start with presenting two lower bound results.

Theorem 2. For any β 1 > 0, β 2 > 0 and p ≥ 1 there exists c 1 > 0 such that for any

Q ∈ Q and L > 0 lim inf n→∞ inf f sup β∈{β 1 ,β 2 } L 2 2β+1 ln(n)/n -β 2β+1 sup F (β,L,{Q}) R (p) n [ f , f ] ≥ c 1 . (2.1)
For any β > 0, L > 0 and p ≥ 1 there exists c 2 > 0 such that for an arbitrary sequence δ n > 0

satisfying δ n ≥ ln(n) 2β+2 2β+1 L -2 /n 1 2β+1 and any Q δn ∈ Q δn one has lim inf n→∞ n(Q δn )/n -β 2β+1 inf f sup F (β,L,Q δn ) R (p) n [ f , f ] ≥ c 2 .
Some remarks are in order. 1 0 . The first assertion of the theorem is quite standard and its proof will be omitted. The fact that Q is known reduces the considered problem to adaptive pointwise estimation over collection of Hölder classes from observations with independent coordinates (it suffices to consider new observation sequence Q T X 1 , . . . , Q T X n ). Then (2.1) follows, in particular, from the lower bound result obtained in Rebelles (2015a). As usual, see for instance Rebelles (2015a), there is ln(n)-price to pay for adaptation.

2 0 . The proof of the second assertion is much more involved. If δ is a constant independent of n then the factor n(Q δ ) can be viewed as the price to pay for structural adaptation (with respect to unknown rotation Q f ∈ Q δ ). However, as this is a constant factor, the asymptotics of minimax risk with respect to n remains the same and coincides with that in Theorem 1. The situation changes completely if δ = δ n → 0, n → ∞. Indeed, if n(Q δn ) → ∞ the minimax rate found in Theorem 1 is no more achievable and n(Q δn ) characterizes the minimal price to pay for structural adaptation over Q δn . It is not difficult to see that for any

Q δn ∈ Q δn n(Q δn ) ≤ n(Q δn ) ≍ | ln(δ n )|, n → ∞.
(2.2)

It yields in particular that if δ n ∼ n -a for some a > 0, then the minimal price to pay for structural adaptation on Q δn is proportional to ln(n). 3 0 . Thus, if δ is not too small the cardinality of the corresponding δ-separable set appears in the asymptotics of the minimax risk. However it can happen that δ = δ n is extremely small, the cardinality of δ n -separable set is extremely large but the "one dimensional" accuracy is still possible. Indeed, consider the following simple example.

Example 1. Let q T k = cos(2πk2 -2n , sin(2πk2 -2n , k = 0, . . . , 2 n , and let Q δn , δ n = 2 -2n , be the corresponding family of 2 × 2 orthogonal matrices. Note that Q δn up to numerical constant is δ n -separated set with very big cardinality 2 n . However, the estimator f Q (x), x = (x 1 , x 2 ) discussed in Theorem 1 with Q = I, where I is the identity matrix, that is

f h,I (x) = n -1 n k=1 K h X k,1 -x 1 n -1 n k=1 K h X k,2 -x 2 ,
will attain the univariate rate n -β 2β+1 . It is not surprising since all matrices from Q δn are "exponentially close" to the identity matrix.

Pointwise selection rules

Our estimation procedures are based on new selection rules from the family of kernel-type estimators. One of them called adaptive selection rule is inspired by general approach discussed in [START_REF] Goldenshluger | General selection rule from the family of linear estimators[END_REF] but the procedure is completely new.

Family of estimators. For any K satisfying Assumption 1 and h > 0 denote

K h (•) = h -1 K(•/h). For any D ∈ Q and x ∈ R 2 introduce the estimator f h,D (x) = n -1 n k=1 K h d T (X k -x) n -1 n k=1 K h d T ⊥ (X k -x) .
Set H = e -k , k = 0, 1, . . . , ⌊ln(n)⌋ and let Q δ ∈ Q δ be given. Introduce the following family of estimators:

F(Q δ , H) = f h,D (x), D ∈ Q δ , h ∈ H . It is worth noting that if Q δ = {D} the estimator f h,D (x) is exactly the estimator g(D T x), g(x) = g 1 (x 1 ) g 2 (x 2 ) introduced in the discussion preceding Theorem 1.
Below we propose two different data-driven selection rules from this collection. The first one, called below the adaptive selection rule, will be used when the parameters β, L are unknown, Q δn is an arbitrary element of Q δn with any δ n > 0 satisfying

δ n ≥ (ln(n)/n) 1 4b+2 .
(2.3)

Here b ≥ 1 is an arbitrary but a priori chosen number and β ∈ (0, b].

The second one, called the minimax selection rule, will be applied when β, L are known. The interesting case here is δ independent of n, for example, such that card

(Q δ ) = 2. Another interesting case is δ = δ n such that n(Q δn ) = o(ln(n)), n → ∞. Auxiliary estimator Set K h (t) = K h (t 1 )K h (t 2 ), t ∈ R 2 , h > 0, Γ = 1 0 0 -1 , Ω = 0 1 1 0
, and define for any D, Q ∈ Q what we will call the auxiliary estimator

f h,(D,Q) (x) = 1 n(n -1) n k,l=1,k̸ =l K h p 1 ΩΓX k + p 2 X l -ΩΓQDΩx . Remark that f h,(D,Q) is a U -statistics of order 2 if ϱ(D, Q) ̸ = 0.
We would like to stress that this auxiliary estimator is quite unusual and in Section 2.3 we discuss in detail the ideas that led to its construction. Set also

f h,(D,Q) (x) = f h,(D,Q) (x), D ̸ = Q; f h,Q (x), D = Q.

Adaptive selection rule

Let A > 0 be a constant given in section 3.2.1.

Set H = h ∈ H : (ln(n)/n) 1 2b+1 ≥ h ≥ ln(n) 2 /n and let U n = sup η∈H sup D∈Q δn sup b∈{d,d ⊥ } 1 ∨ n -1 n k=1 K η b T (X k -x) 2 ∨ 1 + ∥f n ∥ ∞ ,
where f n is the adaptive estimator constructed in [START_REF] Lepski | Multivariate density estimation under sup-norm loss: oracle approach, adaptation and independence structure[END_REF] under sup-norm loss4 .

For any Q ∈ Q δ and any h ∈ H we introduce

R n (Q, h) = sup η,η ′ ∈H: η ′ ≤η≤h sup D∈Q δn f η,(D,Q) (x) -f η ′ ,D (x) -A U n ln(n) nη ′ 1/2 + (2.4) and define h, Q = arg min Q∈Q δn ,h∈H R n (Q, h) + A U n ln(n)/nh
The suggested estimator is then

f = f h, Q (x). Theorem 3. Let p ≥ 1, b ≥ 1 and K ∈ K b be fixed. Then for any β 1 , β 2 ∈ (0, b], L > 0, any δ n satisfying (2.3) and any Q δn ∈ Q δn one has lim sup n→∞ sup β∈{β 1 ,β 2 } L 2/β ln(n)/n -β 2β+1 sup F (β,L,Q δn ) R (p) n f , f < ∞.
We conclude that the estimator f provides the optimal (in view of the first assertion of Theorem 2) accuracy of estimation simultaneously over the collection of functional classes F(β, L, Q δn ).

Minimax selection rule

As it has been already mentioned the construction of the minimax estimator is much more complicated. In particular it requires non-trivial splitting of the observation sequence in order to get desirable theoretical results. However the implementation of our minimax procedure for reasonable sample size does not require such splitting, see remark after Theorem 4.

Let β > 0, L > 0, δ n > 0, Q δn ∈ Q δn be given. Introduce the following notations. Set ℓ 0 = ln(n) and let for any i ∈ N * ℓ i = ln (ℓ i-1 ), ω i = ℓ i ∨ 4 + n(Q δn ); i * = min i ∈ N * : ω i = 4 + n(Q δn ) .
Set also for any i = 1, . . . i * -1

n i = ⌊nℓ -1 i ⌋, N i = ⌊n/4⌋ + i j=1 n j .
Remark 2. By definition ℓ i * -1 ≥ 4 that obviously implies that ℓ i * -j ≥ 4 j for any j = 1, . . . , i * -1. Hence

N i * -1 ≤ ⌊n/4⌋ + n i * -1 i=1 ℓ -1 i < 3n/4.
In view of the latter remark introduce the following splitting of the observation sequence. For any i = 1, . . . i * -1 set

X (i) = X N i-1 +1 , . . . , X N i , X (i * ) = X N i * -1 +1 , . . . , X n , X (0) = X 1 , . . . , X ⌊n/4⌋ .
We remark that X (i) , i = 0, . . . , i * , are mutually independent and later on all objects measurable with respect to X (i) , i = 1, . . . , i * have the upper index (i).

Put

n i * = n -N i * -1 and for any i = 1, . . . , i * introduce h i = (L -4 ω i /n i ) 1 2β+1 , R (i) n (Q) = sup D∈Q δn f (i) h i ,(D,Q) (x) -f (i) h i ,D (x) -BL 2 h β i +
;

Q (i) = arg min Q∈Q δ R (i) n (Q), f (i) (x) = f (i) h i , Q (i) (x),
where B > 0 is a constant given in section 3.2.2. Let f (x) be the estimator from Theorem 3 corresponding to the choice b = β and constructed from X (0) . Define for any

i = 1, . . . , i * f (0) (x) = f (x), f (i) (x) =    f (i-1) (x), R (i) n Q (i) ̸ = 0; f (i) (x), R (i) n Q (i) = 0.
The suggested estimator is then f = f (i * ) (x).

Theorem 4. Let p ≥ 1, β > 0, L > 0, δ n satisfying (2.3) with b = β, Q δn ∈ Q δn and K ∈ K β be fixed. Then lim sup n→∞ L 2 β n(Q δn )/n -β 2β+1 sup F (β,L,Q δn ) R (p) n f , f < ∞.
Some remarks are in order. 1 0 . To the best of our knowledge the construction leading to the estimator f has no analogue in the existing literature on the minimax and minimax adaptive estimation. Although formally i * → ∞, n → ∞, but i * = 1 for n = 10 100 and for any Q δ ∈ Q δ such that n(Q δ ) ≥ 6. It worth noting that if i * is independent of n (which is the case for many sequences δ n → 0) the splitting of data is not needed anymore. The estimator construction remains the same but the estimators f (i) , i = 1, . . . , i * are built from the whole data set. The proof of the minimax optimality of this procedure is a simple modification of the proof of Theorem 4 and is left to an interested reader.

2 0 . Comparing the results presented in the second assertion of Theorem 2 and in Theorem 4 we conclude that f is minimax optimal on F(β, L, Q δn ). In particular if δ > 0 is independent of n there is only a constant factor to be paid for adaptation with respect to the unknown rotation. On the other hand if

δ n ≍ n -a , a ≤ [4β + 2] -1 and n(Q δn ) ≍ ln(n) for instance Q δn = Q δn , cf. (2.
3), the adaptive estimator from Theorem 3 with b = β is minimax optimal as well. We remark that this estimator does not require any splitting of the observations.

Possible extension

In this section we continue to study the minimax estimation on F(β, L, Q δn ); it means that β and L are both known. As we have seen our selection rules run over a given set Q δn of rotational matrices. The problem that we address now is the following. What happens if the true rotation does not belong to the underlying family or even the imposed structural assumption f (•) = g f Q f • is not satisfied? More precisely, is it possible to construct an estimator possessing the properties indicated below?

(i) If f (•) = g f Q T f • and Q f ∈ Q δn then the assertion of Theorem 4 is valid for this estimator. (ii) If Q f / ∈ Q δn or f (•) ̸ = g Q T • for any Q ∈ Q and g ∈ G(β, L), then this estimator attains "bivariate" rate, that is n -β 2β+2 uniformly over isotropic Hölder class H( ⃗ β, ⃗ L) on R 2 with ⃗ β = (β, β) and ⃗ L = (L 2 , L 2 ). 5
First of all we remark that the verification of (i) and (ii) is not possible and some price has to be paid.

Proposition 1. Let f be any estimator for which Theorem 4 is fulfilled. Then, there exists c > 0 such that lim inf n→∞ n/ ln(n)

β 2β+2 sup f ∈H( ⃗ β, ⃗ L) R (p) n [ f , f ] > c.
Hence, if (i) holds then (ii) can be satisfied only with a logarithmic deterioration. The proof of Proposition 1 is nowadays standard and can be obtained along the same lines as in [START_REF] Lepskii | Asymptotically minimax adaptive estimation. II. Statistical model without optimal adaptation[END_REF], and it is therefore omitted.

It turns out that if one replaces n 

∈ R 2 f * (x) = n -1 n k=1 K h X k -x), h = c ln(n) n 1 2β+2
, be the standard "bivariate" kernel estimator and let f be the estimator from Theorem 4. Here c > 0 is a constant to be chosen. Introduce

f (x) =      f (x), if f * (x) -f (x) ≤ A * ln(n) n β 2β+2 ; f * (x), if f * (x) -f (x) > A * ln(n) n β 2β+2 .
Here A * is known numerical constant.

Proposition 2. The statement of Theorem 4 is valid for f . Moreover, there exists C > 0 such that

lim sup n→∞ n/ ln(n) β 2β+2 sup f ∈H( ⃗ β, ⃗ L) R (p) n [ f , f ] ≤ C < ∞. (2.5)
The proof of Proposition 2 is left to an interested reader. Here we only mention that the proof of (2.5) is trivial since by construction

f (x) -f * (x) ≤ A * (ln(n)/n) β 2β+2
and the risk of the estimator f * is proportional to (ln(n)/n) β 2β+2 .

Open problems

In this section we would like to discuss briefly the problems that are not solved in the present paper, namely the difficulty of extension of the obtained result to arbitrary dimension and the necessity of the condition (2.3). It turns out that both have the same reason.

It is worth to say that the selection rules used in the paper have three fundamental ingredients: an auxiliary estimator corresponding to the couple of nuisance parameters, a selection principle and an upper function for the family of corresponding stochastic objects. The first and maybe the most important element of such approach is an auxiliary estimator. In the considered problems such an estimator, namely f h,(D,Q) (•), must satisfy the following properties.

(a) Commutativity property (guaranteed by Lemma 3)

E f f h,(D,Q) (x) = E f f h,(Q,D) (x) , ∀Q, D, h, f ; (b) Approximation property 6 (guaranteed by Lemma 2) E f f h,D (x) ≈ E f f h,(D,Q f ) (x) , ∀D, h, f ; (c) Stochastic domination 7 V ar f f h,(D,Q) (x) ≤ V ar f f h,D (x) , ∀Q, D, h, f .
Often the idea of the construction of an auxiliary estimator comes from the verification of (b) and our case is not an exception. Indeed, one can show

E f f h,D (x) ≈ R 2 g f p 1 Γu g f p -1 1 DΩx -p 2 ΩΓu du
where

p 1 = p 1 (D, Q f ) and p 2 = p 2 (D, Q f ). Recalling that f (•) = g f Q T f •
, we can rewrite the latter integral in terms of f . It yields

E f f h,D (x) ≈ R 2 p -2 1 f p -1 1 ΓΩ ΩΓQ f DΩx -p 2 u f (u)du. Remark that f Z (•) = p -2 1 f p -1 1 ΓΩ •
, where f Z is the density of the random variable Z = p 1 ΩΓX. Using this notation we get

E f f h,D (x) ≈ R 2 f Z ΩΓQ f DΩx -p 2 u f (u)du.
6 Here and later ≈ means "by order of magnitude". 7 For the simplicity below we consider the variance of the auxiliary estimator instead of considering upper function of the corresponding stochastic part. It is justified since for the considered U -statistics the variance is the principal term in the corresponding concentration inequalities.

The natural estimator for the latter integral is

n -1 n l=1 f Z ΩΓQ f DΩx -p 2 X l , while for estimating f Z ΩΓQ f DΩx -p 2 X l one can use standard kernel estimator (n -1) -1 n k=1,k̸ =l K h Z k -ΩΓQ f DΩx + p 2 X l , where Z k = p 1 ΩΓX k . Hence, the natural estimator for E f f h,D (x) is 1 n(n -1) n k,l=1,k̸ =l K h p 1 ΩΓX k + p 2 X l -ΩΓQ f DΩx =: f h,(D,Q f ) (x).
Replacing unknown Q f by Q we arrive to the family of auxiliary estimators f h,(D,Q) , D, Q ∈ Q δ , used in both of our selection rules.

Recall that for given couple (Q, D) this estimator must satisfy fundamental property (a). In the considered case it is true because

X law = -X (f is symmetric since g f ∈ G(β, L)) and DQ = QD, p 2 (D, Q) = p 2 (Q, D), p 1 (D, Q) = -p 1 (Q, D).
(2.6)

Unfortunately, all of the latter properties fail in the dimension d ≥ 3. In particular if d = 3 and, therefore, Q = (q 1 , q 2 , q 3 ) and D = (d 1 , d 2 , d 3 ) then the analogues of p 1 and p 2 are q T i d j , i, j = 1, 2, 3 for which there is no relationships similar to (2.6). Even the first equality in (2.6) is not true in the dimension larger or equal to 3. All that explains why the construction of an auxiliary estimator verifying (a) remains an open problem. As a result the considered problem remained unsolved for d ≥ 3. Now let us discuss condition (2.3) that is related to the property (c). Simple calculations yield (up to an absolute constant)

V ar f f h,(D,Q) (x) ≈ 1 n(p 2 1 ∧ p 2 2 ) + 1 n(n -1)h 2 ; V ar f f h,D (x) ≈ (nh) -1 (independently of D).
Hence, in order to guarantee (c) one needs p 1 ∧p 2 ≥ √ h. Since the latter inequality must be verified for any h ∈ H we get

ϱ(D, Q) := p 1 ∧ p 2 ≥ max h∈H √ h = (ln(n)/n) 1 4b+2 .
This explains our assumption (2.3). As we see it is related once again to the construction of our auxiliary estimator f h,(D,Q) and, as a result, is necessary in our considerations. Whether such a requirement is really necessary remains unknown.

Proofs of Theorems 2-4

Recall that we will prove only the second assertion of Theorem 2.

Proof of the second assertion of Theorem 2

To simplify the notation, we will prove the theorem for the case for x = 0. The transition to the general case does not bring any additional difficulty.

1 0 . Let n(y) = 1 √ 2πσ 2 e -y 2 2σ
, where σ 2 > 0 is chosen in order to guarantee that n(•) ∈ H(β, L/2). Let λ : R → R be a symmetric function satisfying

λ ∈ H(β, 1/2), R λ(y)dy = 0, λ(0) > 0, λ(y) = 0, ∀y / ∈ [-1, 1].
Let ϖ > 0 be a constant the choice of which will be done later. Set

ε = ϖL -2 n(Q δn )/n 1 2β+1 and p(y) = n(y) + Lε β λ(y/ε), y ∈ R.
Obviously, p ∈ H(β, L), R p(y)dy = 1 and for all n large enough p > 0. Hence p is a probability density. Define

g(x) = p(x 1 )p(x 2 ), N(x) = n(x 1 )n(x 2 ), x = (x 1 , x 2 ) ∈ R 2 . We can assert that g, N ∈ G(β, L). Let Q δn = {Q 0 , . . . Q mn }, where we have denoted m n = exp{n(Q δn )} -1 = card(Q δn ) -1. Set finally f 0 (•) = N(•), f j (•) = g(Q T j •), j = 1, . . . , m n .
We assert that {f j , j = 0, . . . , m n } ⊂ F β, L, Q δn . Here we have used that N(•) ≡ N(Q T 0 •). Additionally, for any j = 1, . . . , m n

f j (0) -f 0 (0) = n(0) + Lλ(0)ε β 2 -n 2 (0) ≥ c ϖL 1 β n(Q δn )/n β 2β+1 , (3.1)
for all n large enough. Here c > 0 is a numerical constant independent on n and L. Introduce

Z n = 1 m n mn j=1 n i=1 f j (X i ) f 0 (X i ) .
In view of (3.1) and in accordance with Corollary 2 of Proposition 5 in [START_REF] Kerkyacharian | Non linear estimation in anisotropic multiindex denoising[END_REF] the assertion of the theorem will follow with c 2 = 2 -p 1 -Υ+1 Υ+5 if we prove that

Υ := lim sup n→∞ E f 0 Z 2 n < ∞. (3.2) 2 0 .
We have

E f 0 Z 2 n = 1 m 2 n mn j=1 R 2 f 2 j (x) f 0 (x) dx n + 1 m 2 n mn k,j=1 k̸ =j R 2 f j (x)f k (x) f 0 (x) dx n ≤ m -1 n sup j=1,...,mn R 2 f 2 j (x) f 0 (x) dx n + sup k,j=1,...,mn k̸ =j R 2 f j (x)f k (x) f 0 (x) dx n . (3.3) 2 0 a. Set M ε (•) = M 1 (•) + M 2 (•) + Lε β Λ(•), where M 1 (x) = n(x 1 )λ(x 2 /ε), M 2 (x) = λ(x 1 /ε)n(x 2 ), Λ(x) = λ(x 1 /ε)λ(x 2 /ε).
Since λ = 0 we have

R 2 M ε Q T j x dx = 0, ∀j = 1, . . . , m n . (3.4)
Note also that for any k, j = 1, . . . , m n

f j (x)f k (x) = [N(x) + Lε β M ε Q T j x ][N(x) + Lε β M ε Q T k x ] = N 2 (x) + Lε β N(x) M ε Q T j x + M ε Q T k x + L 2 ε 2β M ε Q T j x M ε Q T k x .
Here we have used that N(•) ≡ N(Q T j •). Thus, in view of (3.4) we have for any

j, k = 1, . . . , m n a j,k := R 2 f j (x)f k (x) f 0 (x) dx = 1 + L 2 ε 2β R 2 M ε Q T j x M ε Q T k x N(x)
dx.

(3.5)

2 0 b. It yields first, a j,j = 1 + L 2 ε 2β R 2 M 2 ε (x) N(x) dx ≤ 1 + 3L 2 ε 2β R 2 M 2 1 (x) N(x) dx + R 2 M 2 2 (x) N(x) dx + L 2 ε 2β R 2 Λ 2 (x) N(x) dx = 1 + 3L 2 ε 2β 2 R λ 2 (y/ε) n(y) dy + L 2 ε 2β R λ 2 (y/ε) n(y) dy 2 .
From now on we will assume that n is sufficiently large to guarantee that n(y) ≥ 2 -1 n(0) for all y ∈ [-ε, ε]. Then, taking into account that λ(y/ε) = 0 for any y / ∈ [-ε, ε] we obtain for all n large enough a j,j ≤ 1

+ C 1 L 2 ε 2β+1 ,
where C 1 is independent on n and L. Hence, choosing ϖ = C -1 1 we get

a n j,j ≤ e nC 1 L 2 ε 2β+1 = e C 1 ϖn(Q δn ) = m n , ∀j = 1, . . . , m n . (3.6) 2 0 c. For any j, k = 1, . . . , m n , j ̸ = k introduce P j,k = Q T j Q k . We have b j,k := R 2 M ε Q T j x M ε Q T k x N(x) dx = R 2 M ε (x)M ε P j,k x N(x) dx = R 2 λ(x 2 /ε)M ε P j,k x n(x 2 ) dx + R 2 λ(x 1 /ε)M ε P j,k x n(x 1 ) dx +Lε β R 2 Λ(x)M ε P j,k x N(x) dx.
Taking into account that Λ(x) = 0 for any x / ∈ [-ε, ε] 2 , N(x) ≥ 4 -1 n 2 (0) on [-ε, ε] 2 and M ε is uniformly bounded, we obtain that for all n large enough and some C 2 independent on n and L

R 2 |Λ(x)| M ε P j,k x N(x) dx ≤ C 2 Lε 2 .
(3.7) Also, we have for sufficiently large n

R 2 λ(x 2 /ε)M ε P j,k x n(x 2 ) dx ≤ 2n -1 (0) R 2 λ(x 2 /ε)M 1 P j,k x dx + R 2 λ(x 2 /ε)M 2 P j,k x dx + Lε β R 2 λ(x 2 /ε)Λ P j,k x dx .
Putting for brevity p 1 = p 1 (Q j , Q k ) and p 2 = p 2 (Q j , Q k ) and making the change of variables: εz 1 = p 1 x 1 + p 2 x 2 , εz 2 = x 2 (first and third integrals), εz 1 = p 2 x 1 -p 1 z 2 , εz 2 = x 2 (second integral) we obtain since n and λ are uniformly bounded for all n large enough

R 2 λ(x 2 /ε)M ε P j,k x n(x 2 ) dx ≤ |p 1 | ∧ |p 2 | -1 C 3 ε 2 + C 4 Lε 2+β ,
where C 3 and C 4 are the constants independent of n and L.

Since

|p 1 | ∧ |p 2 | ≥ δ n in view of the definition of Q δn we obtain R 2 λ(x 2 /ε)M ε P j,k x n(x 2 ) dx ≤ C 5 ε 2 δ -1 n . (3.8)
By the same computation we get

R 2 λ(x 1 /ε)M ε P j,k x n(x 1 ) dx ≤ C 5 ε 2 δ -1 n .
(3.9)

Collecting the bounds obtained in (3.7), (3.8) and (3.9) we obtain

b j,k ≤ C 6 ε 2 δ -1 n ≤ C 7 εn -1 (Q δn ), ∀j, k = 1, . . . , m n , j ̸ = k. because δ n ≥ ln(n) 2β+2 2β+1 L -2 /n 1 2β+1
in view of the assumption of the theorem and n(Q δn ) ≤ C 8 ln(n) in view of (2.2). It yields together with (3.5)

a j,k n ≤ e C 9
for any j, k = 1, . . . , m n , j ̸ = k and all n large enough. This in its turn, together with (3.6) and (3.3) allows us to assert that (3.2) holds with Υ ≤ 1 + e C 9 . The proof of the theorem is completed.

Proofs of Theorems 3 and 4

The proofs of Theorems 3 and 4 are essentially based on several auxiliary results. We start with presenting those of them that will be used in the proofs of both theorems. Their proofs as well as the proofs of all auxiliary results are postponed to the Appendix. Set for any

f ∈ F(β, L, Q), D ∈ Q and x ∈ R 2 τ f (D) = R 2 g f p 1 Γu g f p -1 1 DΩx + p 2 ΩΓu du, D ̸ = Q f ; f (x), D = Q f ,
where

p 1 = p 1 (D, Q f ), p 2 = p 2 (D, Q f ). Set also f h,d (x) = n -1 n k=1 K h d T (X k -x) , f h,d ⊥ (x) = n -1 n k=1 K h d T ⊥ (X k -x) . Lemma 1. For any D ∈ Q, β > 0, L > 0, x ∈ R 2 , K ∈ K β and h > 0 sup f ∈F (β,L,Q) E f f h,d (x) E f f h,d ⊥ (x) -τ f D ≤ 2C(K, β, 1)L 2 h β . Lemma 2. For any β > 0, L > 0, x ∈ R 2 and K ∈ K β sup D∈Q sup f ∈F (β,L,Q) E f f h,(D,Q f ) (x) -E f f η,d (x) E f f η,d ⊥ (x) ≤ 2C K, β, √ 2 L 2 h β + η β , ∀h, η > 0.
Lemma 3. For any D, Q ∈ Q, and any f ∈ F(β, L, Q)

E f f h,(D,Q) (x) = E f f h,(Q,D) (x) .
This feature of the auxiliary estimator was called in [START_REF] Goldenshluger | General selection rule from the family of linear estimators[END_REF] the commutativity property.

Let I n be the set of all pairwise disjoint subsets of {1, . . . , n}. For any I ∈ I n its cardinality is denoted by |I| and f (I) h,Q will be used to denote the estimator built from (X i , i ∈ I).

Proposition 3. Let p ≥ 1, β > 0, L > 0, and K ∈ K β be fixed and set h = µ/|I| 1 2β+1 , µ > 0, I ∈ I n . There exists c 3 independent of L such that

sup n≥1 sup I∈In sup µ∈[1,|I|] (µ/|I|) -β 2β+1 sup F (β,L,Q) R (p) n f (I) h,Q f , f ≤ c 3 L L + L 1 p∨2
).

Proof of Theorem 3

Let us formulate some auxiliary results the proofs of which are postponed to the Appendix. Define

A = 12 10pα 1 + 5p ∥K∥ 2 1 ∨ ∥K∥ ∞ + 4C(K, b, √ 2), where α = 1 ∨ sup n≥3 {[1 ∨ n(Q δn )]/ ln(n)} is finite in view of (2.
2) and (2.3).

Set for any n ≥ 3,

δ n > 0, Q δn ∈ Q δn and f ∈ F(β, L, Q δn ) ζ n (f, x) = sup h∈H, D,Q∈Q δn f h,(D,Q) (x) -κ h (D, Q, x) -a U n ln(n)/nh + . κ h (D, Q, x) =    E f f h,(D,Q) (x) , D ̸ = Q; E f f h,q (x) E f f h,q ⊥ (x) , D = Q, (3.10) where a = 2 -1 A -2C K, b, √ 2 .
Proposition 4. For any uniformly bounded kernel K, an arbitrary sequence δ n satisfying (2.3) and any

Q δn ∈ Q δn one has lim sup n→∞ n 3p sup β∈{β 1 ,β 2 } sup f ∈F (β,L,Q δn ) P f ζ n (f, x) ̸ = 0 = 0; lim sup n→∞ n p sup β∈{β 1 ,β 2 } sup f ∈F (β,L,Q δn ) E f ζ p n (f, x) = 0; lim sup n→∞ sup β∈{β 1 ,β 2 } sup f ∈F (β,L,Q δn ) E f U p n ≤ C p (K)L 2p ,
where C p (K) > 0 is given in the proof of the proposition.

The proof of the proposition is postponed to Section 5.

Proof of the theorem

We divide the proof into several steps.

1 0 . For any β ∈ (0, b] and L > 0 set h = L -4 ln(n)/n 1 2β+1 and let A = R n (Q f , h) ̸ = 0 . Recall that R n (Q, h), Q ∈ Q δ , h ∈ H, is defined in (2.4).
Our first goal is to prove the following result.

lim n→∞ sup β∈{β 1 ,β 2 } L 2 β ln(n)/n -pβ 2β+1 sup F (β,L,Q δn ) E f f (x) -f (x) p 1 A = 0. (3.11) Note that for any n ≥ 1 since h ∈ H f h, Q (x) ≤ ∥K∥ 2 ∞ h -2 ≤ ∥K∥ 2 ∞ n 2 .
Hence (3.11) will be proved if we show that lim sup

n→∞ sup β∈{β 1 ,β 2 } n 3p sup F (β,L,Q δn ) P f (A) = 0. (3.12) For any η, η ′ ∈ H, η ′ ≤ η ≤ h we have in view of the definition of κ • (•, •, x) sup D∈Q δn f η,(D,Q f ) (x) -f η ′ ,D (x) ≤ sup D∈Q δn f η,(D,Q f ) (x) -κ η (D, Q f , x) + sup D∈Q δn f η ′ ,D (x) -κ η ′ (D, D, x) + sup D∈Q δn κ η (D, Q f , x) -κ η ′ (D, D, x) ≤ 2a U n ln(n)/nη ′ 1/2 + 2ζ n (f, x) + sup D∈Q δn E f f η,(D,Q f ) (x) -E f f η ′ ,d (x) E f f η ′ ,d ⊥ (x) .
Taking into account that (ln(n)/nh) 1/2 = L 2 h β , U n ≥ 1 and applying Lemma 2 we get in view of the definition of A for any

η ′ ≤ η ≤ h sup D∈Q δn f η,(D,Q f ) (x) -f η ′ ,D (x) ≤ 2a U n ln(n)/nη ′ 1/2 + 2ζ n (f, x) +2L 2 C K, b, √ 2 η β + (η ′ ) β ≤ U n 2a + 4C K, b, √ 2 ln(n)/nη ′ 1/2 +2ζ n (f, x) = A U n ln(n)/nη ′ 1/2 + 2ζ n (f, x).
Thus we have sup η,η ′ ∈H:

η ′ ≤η≤h sup D∈Q δ f η,(D,Q f ) (x) -f η ′ ,D (x) -A U n ln(n)/nη ′ 1/2 + ≤ 2ζ n .
The latter means that P f (A) ≤ P f ζ n (f, x) ̸ = 0 and (3.12) follows from the first assertion of Proposition 4.

2 0 . Denote by Ā the event complementary to A. Note that if Ā is realized

R n Q, h ≤ R n Q, h + A U n ln(n)/n h ≤ R n Q f , h + A U n ln(n)/nh = A U n ln(n)/nh. (3.13)
To get the second inequality we have used the definition of ( h, Q). Now let us prove the following inclusion.

Ā ⊆ { h ≥ h}, (3.14) Indeed, if Ā is realized then A U n ln(n)/n h ≤ R n Q, h + A U n ln(n)/n h ≤ R n Q f , h + A U n ln(n)/nh = A U n ln(n)/nh
and (3.14) follows. We have

f h, Q (x) -f h, Q (x) ≤ R n Q, h + A U n ln(n)/nh.
This yields together with (3.13)

f h, Q (x) -f h, Q (x) 1 Ā ≤ 2A U n ln(n)/nh. (3.15) Setting B = { Q = Q f } we deduce from (3.15) f h, Q (x) -f (x) 1 Ā∩B ≤ 2A U n ln(n)/nh + f h,Q f (x) -f (x) . (3.16)
Also we obtain using (3.13)

f h,(Q f , Q) (x) -f h,Q f (x) 1 Ā∩ B ≤ R n Q, h + A U n ln(n)/nh (3.17) ≤ 2A U n ln(n)/nh; f h,( Q,Q f ) (x) -f h, Q (x) 1 Ā∩ B ≤ R n Q f , h + A U n ln(n)/nh (3.18) = A U n ln(n)/nh.
We have in view of Lemma 3

f h,(Q f , Q) (x) -f h,( Q,Q f ) (x) ≤ sup D,Q∈Q δn f h,(Q,D) (x) -f h,(D,Q) (x) (3.19) ≤ sup D,Q∈Q δn E f f h,(Q,D) (x) -E f f h,(D,Q) (x) +2A U n ln(n)/nh + 2ζ n (f, x) = 2A U n ln(n)/nh + 2ζ n (f, x).
4 0 . We obtain from (3.15), (3.17), (3.18) and (3.19)

f h, Q (x) -f (x) 1 Ā∩ B ≤ 7A U n ln(n)/nh + 2ζ n (f, x) + f h,Q f (x) -f (x) .
It yields together with (3.16)

f h, Q (x) -f (x) 1 Ā ≤ 7A U n ln(n)/nh + 2ζ n (f, x) + f h,Q f (x) -f (x) . (3.20) Since ln(n)/nh = (L 2 β ln(n)/n) 2β 2β+1
, we deduce from the second and third assertions of Proposition 4, (3.11) and (3.20) that lim sup

n→∞ sup β∈{β 1 ,β 2 } L 1 β ln(n)/n -β 2β+1 sup F (β,L,Q δn ) R (p) n f , f ≤ C p L 2 + lim sup n→∞ sup β∈{β 1 ,β 2 } L 1 β ln(n)/n -β 2β+1 sup F (β,L,Q δn ) R (p) n f h,Q f (x), f , (3.21)
where C p depends on p and K only.

The assertion of the theorem follows now from (3.21) and Proposition 3 where one should choose µ = min β∈{β 1 ,β 2 } L 2/β ln(n) and I = {1, . . . , n}.

Proof of Theorem 4

The proof of the theorem is similar to that of Theorem 3 and is essentially based on the result formulated in Proposition 5 below. Set

B = 527730p 2 √ 6 ∥K∥ 2 1 ∨ ∥K∥ 2 2 ∨ ∥K∥ 2 ∞ [9 + 4α] 3β+3 2β+1 [C(β)] 3 2 L 4β+8 2β+1 + 8C(K, b, √ 2)L 2 , where C(β) := 1 ∨ sup n≥3 ln 2 (n)/n 2β 2β+1 ln(n) 2 2β+1 .
Set for any n ≥ 3,

δ n > 0, Q δn ∈ Q δn and f ∈ F(β, L, Q δn ) χ i (f, x) = sup D,Q∈Q δn f (i) h i ,(D,Q) (x) -κ h i (D, Q, x) -CL 2 h β i +
, where κ h (•, •, x), h > 0, is defined in (3.10) and

C = 2 -1 B -4C K, β, √ 2 L 2 .
Proposition 5. For any β > 0, L > 0, K ∈ K β , an arbitrary sequence δ n satisfying (2.3) with b = β, Q δn ∈ Q δn and any i = 1, . . . , i * one has

sup n≥3 sup i=1,...,i * ω i-1 n i n i-1 ω i pβ 2β+1 sup f ∈F (β,L,Q δn ) P f χ i (f, x) ̸ = 0 =: P < 1; sup n≥3 sup i=1,...,i * (L 2 β ω i /n i ) -pβ 2β+1 sup f ∈F (β,L,Q δn ) E f χ p i (f, x) =: E < ∞.
The proof of the proposition is postponed to Section 5.

Proof of the theorem Throughout the proof we will understand κ h i (•, •, x) introduced in (3.10) as the mapping defined on Q δn × Q δn (its explicit expression via some integral operators can be easily obtained). It allows us to introduce below random variables i) is realized, we assert, using the definitions of Q (i) and f (i) that

κ h i ( Q (i) , •, x), i = 1, . . . , i * . 1 0 . Introduce the random event Z (i) = R (i) n ( Q (i) ) = 0 . If Z (
R (i) n ( Q (i) ) = 0 ⇒    f (i) (x) = f (i) h i , Q (i) (x); f (i) h i ,(Q f , Q (i) ) (x) -f (i) h i ,Q f (x) ≤ BL 2 h β i . (3.22) 20 Note that f (i) h i , Q (i) (x) -f (x) ≤ f (i) h i , Q (i) (x) -κ h i ( Q (i) , Q (i) , x) + κ h i ( Q (i) , Q (i) , x) -f (x) ≤ CL 2 h β i + χ i (f, x) + sup Q∈Q δn κ h i (Q, Q, x) -κ h i (Q, Q f , x) + κ h i ( Q (i) , Q f , x) -f (x) ≤ CL 2 h β i + χ i (f, x) + 4C K, β, √ 2 L 2 h β i + κ h i ( Q (i) , Q f , x) -f (x) ≤ 2 -1 BL 2 h β i + χ i (f, x) + κ h i ( Q (i) , Q f , x) -f (x) . (3.23)
To get the penultimate inequality we have used Lemma 2 while the last one follows from the definition of C. Also in view of Lemma 3 for all D ∈ Q δn

κ h i ( Q (i) , D, x) = Q∈Q δn κ h i (Q, D, x)1 Q (i) =Q (3.24) = Q∈Q δn Q̸ =D E f f (i) h i ,(Q,D) (x) 1 Q (i) =Q + κ h i (D, D, x)1 Q (i) =D = Q∈Q δn Q̸ =D E f f (i) h i ,(D,Q) (x) 1 Q (i) =Q + κ h i (D, D, x)1 Q (i) =D = κ h i (D, Q (i) , x).
Thus, if Z (i) is realized we have in view of (3.24)

κ h i ( Q (i) , Q f , x) -f (x) = κ h i (Q f , Q (i) , x) -f (x) ≤ κ h i (Q f , Q (i) , x) -f (i) h i ,(Q f , Q (i) ) (x) + f (i) h i ,(Q f , Q (i) ) (x) -f (i) h i ,Q f (x) + f (i) h i ,Q f (x) -f (x) ≤ CL 2 h β i + χ i (f, x) + BL 2 h β i + f (i) h i ,Q f (x) -f (x) .
It yields together with (3.23) that

f (i) h i , Q (i) (x) -f (x) 1 Z (i) ≤ 2BL 2 h β i + 2χ i (f, x) + f (i) h i ,Q f (x) -f (x) . (3.25)
First, we deduce from Proposition 3 that

sup n≥3 sup i=1,...,i * L 2 β ω i /n i -pβ 2β+1 sup F (β,L,Q δn ) R (p) n f (i) h i ,Q f , f p =: C 1 < ∞. Next, taking into account that L 2 h β i = (L 2 β ω i /n i ) β 2β+1 and denoting R = sup n≥3 sup i=1,...,i * L 2 β ω i /n i -pβ 2β+1 sup F (β,L,Q δn ) E f f (i) (x) -f (x) p 1 Z (i)
we deduce from (3.22), (3.25) and the second assertion of Proposition 5 that

R ≤ 3 p (2B) p + 2 p E + C 1 . (3.26) 2 0 .
In view of the definition of f (i) we have

E f f (i) (x) -f (x) p 1 Z(i) = E f f (i-1) (x) -f (x) p 1 Z(i) = E f f (i-1) (x) -f (x) p P f Z(i) , (3.27) 
since X (i) and X (i-1) are the independent collections of random variables. Note that in view of the definition of

κ h i (•, •, x) sup D∈Q δn f (i) h i ,(D,Q f ) (x) -f (i) h i ,D (x) ≤ sup D∈Q δn f (i) h i ,(D,Q f ) (x) -κ h i (D, Q f , x) + sup D∈Q δn f (i) h i ,D (x) -κ h i (D, D, x) + sup D∈Q δn κ h i (D, Q f , x) -κ h i (D, D, x) ≤ 2χ i (f, x) + 2CL 2 h β i + sup D∈Q δn κ h i (D, Q f , x) -κ h i (D, D, x) ≤ 2χ i (f, x) + 2CL 2 h β i + 4C K, β, √ 2 L 2 h β i = 2χ i (f, x) + BL 2 h β i .
To get the second inequality we have used Lemma 2 while the last equality follows from the definition of C. Noting that the definition of

Q (i) implies the inclusion Z(i) ⊆ {R (i) n (Q f ) ̸ = 0} we obtain Z(i) ⊆ {R (i) n (Q f ) ̸ = 0} = sup D∈Q δn f (i) h i ,(D,Q f ) (x) -f (i) h i ,D (x) > BL 2 h β i ⊆ χ i (f, x) ̸ = 0 . (3.28) 
Denoting by ω 0 = ln(n), n 0 = ⌊n/4⌋ and

e i = L 2 β ω i /n i -pβ 2β+1 sup F (β,L,Q δn ) E f f (i) (x) -f (x) p .
we deduce from (3.27), (3.28) and the first assertion of Proposition 5 that

e i ≤ R + Pe i-1 , ∀i = 1, . . . , i * , ∀n ≥ 3.
It yields together with (3.26) since P < 1 for all n ≥ 3

e i * ≤ P i * e 0 + R(1 -P) -1 ≤ e 0 + 3 p (2B) p + 2 p E + C 1 (1 -P) -1 . Since f (0) (x) = f (x) we deduce from Theorem 3 that lim sup n→∞ e 0 < ∞,
that completes the proof of the theorem.

Proofs of Lemmas 1-3 and Proposition 3

The proofs of Lemmas 1-3 are based on the following result proved in the end of this section.

Lemma 4. For any g ∈ G(β, L) and any 2

× 2 matrix Ψ = (ψ T 1 , ψ T 2 ) sup y∈R 2 R 2 K(t)g y + Ψth dt -g(y) ≤ C(K, β, ψ * )L 2 h β , ∀h > 0,
where

ψ * = ∥ψ 1 ∥ ∨ ∥ψ 2 ∥.
Proof of Lemma 1. 1 0 . We obviously have

E h (f, D, x) := E f f h,d (x) E f f h,d ⊥ (x) = R 2 K h d T (u -x) f u du R 2 K h d T ⊥ (u -x) f u du =: E ′ h (f, D, x)E ′′ h (f, D, x). Since f u = g f Q T f u , u ∈ R 2
, denoting for brevity Q f = (q, q ⊥ ) and by g i , i = 1, 2, the marginals of g f , we get

E ′ h (f, D, x) = R 2 K h u 1 g 1 q T x + q T du 1 + q T d ⊥ u 2 × g 2 q T ⊥ x + q T ⊥ du 1 + q T ⊥ d ⊥ u 2 du 1 du 2 = R 2 K(s 1 )g 1 q T x + p 2 s 1 h + p 1 s 3 g 2 q T ⊥ x -p 1 s 1 h + p 2 s 3 ds 1 ds 3 , E ′′ h (f, D, x) = R 2 K h u 2 g 1 q T x + q T du 1 + q T d ⊥ u 2 × g 2 q T ⊥ x + q T ⊥ du 1 + q T ⊥ d ⊥ u 2 du 1 du 2 = R 2 K(s 2 )g 1 q T x + p 2 s 4 + p 1 s 2 h g 2 q T ⊥ x -p 1 s 4 + p 2 s 2 h ds 2 ds 4 .
Thus we obtain that

E h (f, D, x) = R 4 K(s)g f Q T f x + p 2 sh + p 1 Γs g f Q T f x + p 1 ΓΩsh + p 2 Ωs ds. If D = Q f that implies p 1 = 0 and p 2 = 1 we get E h (f, D, x) = R 4 K(s)g f Q T f x + sh g f Q T f x + Ωs ds = R 2 K(s)g f Q T f x + sh ds,
since g f is a probability density. The assertion of the lemma in this case follows from Lemma 4.

If D ̸ = Q f (p 1 ̸ = 0), making the change of variables Q T f x+p 1 Γs = p 1 Γt and noting that Γ -1 = Γ we come to E h (f, D, x) = R 4 K(t)g f p 2 th + p 1 Γt g f [I -p 2 p -1 1 ΩΓ]Q T f x + p 1 ΓΩth + p 2 Ωt dt. Noting that I -p 2 p -1 1 ΩΓ = p -1 1 D T Q f ΓΩ, we get [I -p 2 p -1 1 ΩΓ]Q T f x = p -1 1 d T ⊥ x -d T x .
Thus we have

g f [I -p 2 p -1 1 ΩΓ]Q T f x + p 1 ΓΩth + p 2 Ωt = g 1 p -1 1 d T ⊥ x + p 1 t 2 h + p 2 t 4 g 2 -p -1 1 d T x -p 1 t 1 h + p 2 t 3
and, since g 2 is symmetric

g f [I -p 2 p -1 1 ΩΓ]Q T f x + p 1 ΓΩth + p 2 Ωt = g 1 p -1 1 d T ⊥ x + p 1 t 2 h + p 2 t 4 g 2 p -1 1 d T x + p 1 t 1 h -p 2 t 3 .
Noting that d ⊥ d T = DΩ, we obtain finally

E h (f, D, x) = R 4 K(t)g f p 2 th + p 1 Γt g f p -1 1 DΩx + p 1 Ωth + p 2 ΩΓt dt. (4.1)
Consider now two cases.

2 0 a. If |p 2 | ≥ |p 1 | using ΩDΩ = D T , Ω 2 = I, Γ 2 = I and making the change of variables t = v, p -1 1 DΩx + p 1 Ωth + p 2 ΩΓt = v ⇒ t = p -1 2 ΓΩv -p -1 2 p -1 1 ΓD T x + p 1 Γvh
we obtain (recall that g f is a symmetric function)

E h (f, D, x) = p -2 2 R 4 g f v K(v)g f p -1 2 Dx -p 2 -p 2 1 p -1 2 vh -p 1 p -1 2 Ωv dv.
Hence, taking into account that g f is a probability density we deduce from Lemma 4 that

E h (f, D, x) -p -2 2 R 2 g f v g f p -1 2 D T x -p 1 p -1 2 Ωv dv (4.2) = p -2 2 R 2 g f v R 2 K(v)g f p -1 2 D T x -p 2 -p 2 1 p -1 2 vh -p 1 p -1 2 Ωv dv - R 2 g f p -1 2 D T x -p 1 p -1 2 Ωv dv ≤ 2 R 2 g f (v) sup y∈R 2 R 2 K(v)g f y -p 2 -p 2 1 p -1 2 vh dv -g f (y) dv ≤ 2C(K, β, 1)L 2 h β .
Here we have also used that p 2 1 + p 2 2 = 1 and therefore (p

1 ∨ p 2 ) 2 ≥ 1/2. 2 0 b If |p 2 | < |p 1 | making the change of variables t = v and p 2 th + p 1 Γt = v, we obtain E h (f, D, x) = p -2 1 R 4 g f v K(v)g f p -1 1 DΩx + [p 1 -p 2 2 p -1 1 ]Ωvh + p 2 p -1 1 Ωv dv.
We deduce from Lemma 4 similarly to (4.2) that

E h (f, D, x) -p -2 1 R 2 g f v g f p -1 1 DΩx + p 2 p -1 1 Ωv dv ≤ 2C(K, β, 1)L 2 h β . (4.3)
It is worth noting that (4.2) and (4.3) can be written in a unified way

E h (f, D, x) -E 0 (f, D, x) ≤ 2C(K, β, 1)L 2 h β .
Thus, remarking that τ f D, Q f = E 0 (f, D, x) we come to the assertion of the lemma.

Proof of Lemma 2. Since by definition

f h,(Q f ,Q f ) (x) = f h,Q f (x)
it suffices to prove the lemma for any D ̸ = Q f . We obviously have

E h (f, D, x) := E f f h,(D,Q f ) (x) = R 4 K h (z)g f Q T f y + p 1 Q T f ΓΩz + p 2 Q T f Ωz g f p 2 Q T f z + p 1 Q T f Γz dz,
where we put

y = p -1 1 Q f DΩx. Noting that Q T f ΩQ T f = Ω, Q T f ΓQ T f = Γ and putting z = Q T f u, z = uh we get E h (f, D, x) = R 4 K u g f Q T f y + p 1 Q T f ΓΩuh + p 2 Ωu g f p 2 Q T f uh + p 1 Γu du.
Consider now two cases.

1 0 a. If |p 2 | ≥ |p 1 | using Ω 2 = I, ΓΩQ T f ΓΩ = -Q T f , p 2 1 + p 2 2 = 1 and making the change of variables u = v, Q T f y + p 1 Q T f ΓΩuh + p 2 Ωu = v ⇒ u = p -1 2 Ωv -p -1 2 ΩQ T f y -p 1 p -1 2 ΩQ T f ΓΩvh
we obtain

E h (f, D, x) = p -2 2 R 4 g f v K v g f -p 1 p -1 2 Q T f yΓΩ + p 1 p -1 2 ΓΩv + p -1 2 Q T f vh dv.
Applying Lemma 4 we obtain similarly to (4.2) that

E h (f, D, x) -p -2 2 R 2 g f v g f -p 1 p -1 2 Q T f yΓΩ + p 1 p -1 2 ΓΩv dv ≤ 2C K, β, √ 2 L 2 h β . (4.4) 1 0 b. If |p 1 | > |p 2 | using Γ 2 = I, Q T f ΓΩ = -ΩΓQ T f , p 2 1 + p 2 2 = 1 and making the change of variables u = v, p 2 Q T f uh + p 1 Γu = v ⇒ u = p -1 1 Γv -p 2 p -1 1 ΓQ T f vh we obtain E h (f, D, x) = p -2 1 R 4 g f v K v g f Q T f y + p 2 p -1 1 ΩΓv + p -1 1 Q T f ΓΩvh dv.
The application of Lemma 4 yields

E h (f, D, x) -p -2 1 R 2 g f v g f Q T f y + p 2 p -1 1 ΩΓv dv ≤ 2C K, β, 1 L 2 h β ≤ 2C K, β, √ 2 L 2 h β . (4.5)
Note that (4.4) and (4.5) can be written as

E h (f, D, x) -E 0 (f, D, x) ≤ 2C K, β, √ 2 L 2 h β , Note also that Q T f y = p -1 1 DΩx and E 0 (f, D, x) = R 2 g f p -1 1 DΩx + p 2 Ωu g f p 1 Γu du = R 2 g f p -1 1 DΩx + p 2 ΩΓu g f p 1 Γu du = τ f (D, Q f ).
To get the penultimate equality we used the change of variables u 1 = v 1 , u 2 = -v 2 and the symmetry of g 2 which implies g f p 1 v = g f p 1 Γv . Hence,

E f f h,(D,Q f ) (x) -τ f (D, Q f ) ≤ 2C K, β, √ 2 L 2 h β
which together with Lemma 1 implies the assertion of the lemma.

Proof of Lemma 3. As it was mentioned in Remark 1

p 1 (D, Q) = -p 1 (Q, D) and p 2 (D, Q) = p 2 (Q, D). Moreover DQ = QD for any D, Q ∈ Q. Hence f h,(Q,D) (x) = 1 n(n -1) n k,l=1,k̸ =l K h -p 1 ΩΓX k + p 2 X l -ΓΩQDΩx = 1 n(n -1) n k,l=1,k̸ =l K h p 1 ΩΓ(-X k ) + p 2 X l -ΓΩQDΩx .
Recall that the density of X k is g f Q T f v and therefore the laws of -X k and X k are the same because g f is symmetric. Finally since X k and X l are independent for all k ̸ = l for any D, Q ∈ Q we conclude that

K h -p 1 ΩΓX k + p 2 X l -ΓΩQDΩx law = K h p 1 ΩΓX k + p 2 X l -ΓΩQDΩx .
It implies in particular the assertion of the lemma.

Proof of Proposition 3. Introducing the notation (ξ

1,i , ξ 2,i ) T = Q T f (X i -x), i = 1, . . . , n, we remark that f (I) h,Q f (x) = |I| -1 k∈I K h ξ 1,k |I| -1 k∈I K h ξ 2,k =: Υ 1 (h)Υ 2 (h).
Note that ξ 1,i , ξ 2,i , i = 1, . . . , n are independent with the densities given by g 1 • +q T x and g 2 • +q T ⊥ x respectively. We obviously have

f (I) h,Q f (x) -f (x) = Υ 1 (h) -E g f Υ 1 (h) Υ 2 (h) -E g f Υ 2 (h) +E g f Υ 1 (h) Υ 2 (h) -E g f Υ 2 (h) +E g f Υ 2 (h) Υ 1 (h) -E g f Υ 1 (h) +E g f Υ 1 (h) E g f Υ 2 (h) -f (x).
Here E g f is the expectation w.r.t the law of ξ 1 , . . . , ξ n . In view of Lemma 1

E g f Υ 1 (h) E g f Υ 1 (h) -f (x) = E g f K h ξ 1,1 E g f K h ξ 2,1 -f (x) ≤ 2C(K, β, 1)L 2 h β = 2C(K, β, 1)L 2 µ/|I| β 2β+1 . (4.6)
Since g f ∈ G(β, L) it implies g 1 , g 2 are uniformly bounded by L. Hence

E g f Υ j (h) ≤ L∥K∥ 1 , V g f |I|Υ j (h) ≤ L∥K∥ 2 2 |I|h -1 , j = 1, 2; E g f K h ξ 1,k p ≤ L∥K∥ p p h 1-p , E g f K h ξ 2,k p ≤ L∥K∥ p p h 1-p .
Applying the Rosenthal inequality

(if p > 2) to |I|[Υ j (h) -E g f Υ j (h) ], j = 1, 2
, which is a sum of i.i.d bounded and centered random variables or computing its variance (if 1 ≤ p ≤ 2) we assert that there exists C > 0 completely determined by p and K such that for any n ≥ 1, I ∈ I n and µ ≥ 1

E g f Υ j (h) p ≤ C(L p/2 + L) µ/|I| pβ 2β+1 , j = 1, 2. (4.7)
The assertion of the proposition follows now from (4.6) and (4.7).

Proof of Lemma 4 Recall that for any function w ∈ H(β, L)

sup z,z∈R |z -z| -β r j=0 w (j) (z)(z -z) j j! -w(z) ≤ L. (4.8)
We deduce from (4.8) that for any t ∈ R 2

g 1 (y 1 + hψ T 1 t) - r j=0 g (j) 1 (y 1 )h j (ψ T 1 t) j j! ≤ Lh β |ψ T 1 t| β ≤ ψ * Lh β ∥t∥ β ; g 2 (y 2 + hψ T 2 t) - r j=0 g (j) 2 (y 2 )h j (ψ T 2 t) j j! ≤ Lh β |ψ T 2 t| β ≤ ψ * Lh β ∥t∥ β ,
where ∥ • ∥ denotes the Euclidean norm. Setting

P g,Ψ,y (t) = r j,s=0 g (j) 1 (y 1 )g (s) 2 (y 2 )h j+s (ψ T 1 t) j (ψ T 2 t) s j!s!
and recalling that ∥g i ∥ ∞ ≤ L, i = 1, 2, we obviously have

g y + Ψth -P g,Ψ,y (t) ≤ 2ψ * L 2 h β ∥t∥ β + (ψ * L) 2 h 2β ∥t∥ 2β .
(4.9)

It remains to note that P g,Ψ,y (t) can be rewritten as

P g,Ψ,y (t) = 2r i,l=0
a i,l t i 1 t l 2 , a 0,0 = g 1 (y 1 )g 2 (y 2 ) = g(y), and, therefore, in view of Assumption 1 R 2 K(t)P g,Ψ,y (t)dt = g(y).

This together with (4.9) allows us to assert that

R 2 K(t)g y + Ψth dt -g(y) ≤ C(K, β, ψ * )L 2 h β , ∀h > 0.
The lemma is proved.

Proofs of Propositions 4-5

We start the proofs with Lemma 5 below related to the estimator f n used in the adaptive selection rule. It is the variant of the estimator built in [START_REF] Lepski | Multivariate density estimation under sup-norm loss: oracle approach, adaptation and independence structure[END_REF] which corresponds to d = 2 and to the case of no independence structure. Recall that in the notation of [START_REF] Lepski | Multivariate density estimation under sup-norm loss: oracle approach, adaptation and independence structure[END_REF] it means P = {∅}.

As explained in the introduction,

F(β, L, Q δn ) ⊂ H( ⃗ β, ⃗ L)
, where H( ⃗ β, ⃗ L) is the isotropic Hölder class on R 2 with ⃗ β = (β, β) and ⃗ L = (L 2 , L 2 ). Thus, Lemma 5 is a direct consequence of Theorem 3 in [START_REF] Lepski | Multivariate density estimation under sup-norm loss: oracle approach, adaptation and independence structure[END_REF].

Lemma 5. For any β ∈ (0, b], any L > 0 and any q ∈ [1, ∞), there exists an absolute constant C := C(β, L, q) > 0 such that for n large enough,

sup f ∈F (β,L,Q δn ) E f ∥f n -f ∥ ∞ q 1 q ≤ C ln(n) n β 2β+2 .
We divide the proof of the propositions into three steps. Set β 1 , β 2 ∈ (0, b], L ≥ 1 and let f ∈ F(β, L, Q δn ), β ∈ {β 1 , β 2 }, be fixed.

First step: Upper bounds for sums of independent variables.

For any (h, D)

∈ R * + × Q δn and any b ∈ {d, d ⊥ } set ξ h,D (x) := f h,D (x) -E f { f (h,d) (x)}E f { f (h,d ⊥ ) (x)}, ξ (h,b) (x) := f (h,b) (x) -E f { f (h,b) (x)}, G h,b (x) := 1 ∨ E f K h b T X 1 -b T x , G h,b (x) := 1 ∨ 1 n n k=1 K h b T X k -b T x . Note first that, since |q T b| 2 + |q T b ⊥ | 2 = 1 and L ∧ ∥K∥ 1 ≥ 1, G h,b (x) = 1 ∨ R 2 |K(v 1 )| g 1 q T x + hq T bv 1 + q T b ⊥ v 2 × g 2 q T ⊥ x + hq T ⊥ bv 1 + q T ⊥ b ⊥ v 2 dv ≤ √ 2∥K∥ 1 L.
For any q ≥ 1 and any ϵ > 0 put λ (1) q (ϵ) = √ 2 + 5qϵ -1 (∥K∥ ∞ ∨ 1). Consider finally a real number α n ≥ 1 ∨ n(Q δn ). In the sequel α n and ϵ will be fixed and properly chosen.

Applying Bernstein inequality we obtain for any q ≥ 2, any integer n ≥ 3, any z ∈ [0, 2qα n ] and all real numbers h satisfying nh

≥ ϵα n sup b∈{d,d ⊥ } P f sup D∈Q δn ξ (h,b) (x) -λ (1) q (ϵ)G h,b (x) 0.5qα n + z nh > 0 ≤ 2e -z .
By integration of the Bernstein inequality we get for any q ≥ 1, n ≥ 3, any t ∈ [0, 1.5qα n ] and any real number

h satisfying nh ≥ ϵα n sup b∈{d,d ⊥ } E f sup D∈Q δn ξ (h,b) (x) -λ (1) q (ϵ)G h,b (x) qα n + t nh + q ≤ C (q) 1 (K)L q [nh] -q 2 e -t , (5.1)
where

C (q) 1 (K, ϵ) = 2 q+1 1 + √ ϵ -1 q Γ(q + 1)∥K∥ q 1 (∥K∥ ∞ ∨ 1) q and Γ is the Gamma function. Choose now α n = α ln(n), ϵ = 1, t = 1, 5qα n and put γ q = λ (1) q (1) √ 2.5qα, H q := h ∈ H : nh ≥ 10q λ (1) q (1) 2 α n .
Since card(H q ) ≤ ln(n), we deduce from (5.1) that for any q ≥ 1 and n ≥ 3

sup b∈{d,d ⊥ } E f sup h∈Hq sup D∈Q δn ξ (h,b) (x) -γ q G h,b (x) ln(n)/nh + q ≤ C (q) 1 (K, 1)L q [ln(n)/n] q 2 n -q .
Additionally, using kernel |K| instead of K in the last inequality we get

sup b∈{d,d ⊥ } E f sup h∈Hq sup D∈Q δn G h,b (x) -2 G h,b (x) + q ≤ 2 q C (q) 1 (K, 1)L q ln(n) n q 2 n -q .
Noting that H ⊂ H 2p for n large enough, we deduce that for n large enough

E f sup h∈H sup D∈Q δn sup b∈{d,d ⊥ } G h,b (x) 2 p ≤ 2 2p-1 2C (2p) 1 (K, 1) + (3/ √ 2) 2p ∥K∥ 2p 1 L 2p .
Moreover, by the triangle inequality and Lemma 5 we get for n large enough

E f 1 + ∥f n ∥ ∞ p ≤ 1 + L 2 + E f ∥f n -f ∥ ∞ p 1 p p ≤ 3 p L 2p .
Thus, we obtain the third assertion of Proposition 5 with

C p (K) = 2 2p-1 2C (2p) 1 (K, 1) + (3/ √ 2) 2p ∥K∥ 2p 1 + 3 p . Since |ξ h,D (x)| ≤ |ξ (h,d) (x)| × G h,d ⊥ (x) + |ξ (h,d ⊥ ) (x)| × G h,d ( 
x), using Cauchy-Schwartz inequality we get for all p ≥ 1 and n large enough

E f sup h∈H sup D∈Q δn |ξ h,D (x)| -a U n ln(n)/nh + p ≤ CL 2p [ln(n)/n] p 2 n -p , (5.2) 
where C := C(p, K) > 0. Similarly, in view of (5.1) with q = 2p and z = 4pα n , one has for all p ≥ 1 and n large enough

sup b∈{d,d ⊥ } P f sup h∈H sup D∈Q δn ξ (h,b) (x) -γ 2p G h,b (x) ln(n)/nh > 0 ≤ 2 ln(n)n -4p , P f sup h∈H sup D∈Q δn |ξ h,D (x)| -a U n ln(n)/nh > 0 ≤ 10 ln(n)n -4p .
(5.3)

Second step: Upper bounds for order two U -Statistics.

For any (D, Q) ∈ Q 2 δn , Q ̸ = D, and any h > 0 set

ξ h,(D,Q) (x) := f h,(D,Q) (x) -E f f h,(D,Q) (x) ; φ(X k , X l ) := 1 n(n -1) K h p 1 ΩΓX k + p 2 X l -ΩΓQDΩx Let ξ h,(D,Q) (x) = ξ (1) h,(D,Q) (x) + ξ (2) h,(D,Q) (x) + ξ (3) h,(D,Q) (x), where ξ (1) h,(D,Q) (x) := n k,l=1, k̸ =l φ(X k , X l ) -E f [φ(X k , X l )|X l ] -E f [φ(X k , X l )|X k ] + E f [φ(X k , X l )] , ξ (2) h,(D,Q) (x) := n k,l=1, k̸ =l (E f [φ(X k , X l )|X l ] -E f [φ(X k , X l )]) , ξ (3) 
h,(D,Q) (x) := n k,l=1, k̸ =l (E f [φ(X k , X l )|X k ] -E f [φ(X k , X l )]) . Note that ξ (j) h,(D,Q) (x) = n l=1 L (j) f (X l ) -E f L (j) f (X l ) , j = 2, 3, where L (2) f (X l ) := R 2 n -1 K h p 1 ΩΓy + p 2 X l -ΩΓQDΩx f (y)dy, L (3) f (X l ) := R 2 n -1 K h p 1 ΩΓX l + p 2 y -ΩΓQDΩx f (y)dy,
We easily get

|L (j) f (X l )| ≤ ∥f ∥ ∞ ∥K∥ 2 1 (nδ 2 n ) -1 ; n l=1 Var f L (j) f (X l ) ≤ 2∥f ∥ 2 ∞ ∥K∥ 4 1 (nδ 2 n ) -1 .
To get the last inequality we have used the fact that p

2 1 + p 2 2 = 1. Put λ (2) p (ϵ) := √ ϵ -1 2 + 11pϵ -1 ∥K∥ 2 1 . Since for j = 2, 3 the L (j)
f (X l ), l = 1, . . . , n, are independent variables, applying the Bernstein inequality we get the following bounds.

For any p ≥ 1, integer n ≥ 3, any z ∈ [0, 4pα n ] and any real h satisfying nδ 2 n ≥ ϵ(nh ∨ α n )

P f sup D,Q∈Q δn , Q̸ =D ξ (j) h,(D,Q) (x) -λ (2) p (ϵ)∥f ∥ ∞ 2pα n + z nh > 0 ≤ 2e -z , (5.4) E f sup D,Q∈Q δn , Q̸ =D ξ (j) h,(D,Q) (x) -λ (2) p (ϵ)∥f ∥ ∞ 2pα n + z nh + p ≤ C (p) 2 (K, ϵ)L 2p [nh] -p 2 e -z , (5.5) 
where

C (p) 2 (K, ϵ) = 2 2p+1 ϵ -p 2 Γ(p + 1)∥K∥ 2p 1 .
On the other hand, note that condition (2.3) implies that (nδ 2 n ) -1 ≤ (nh) -1 for any h ∈ H. Thus, choosing ϵ = 1 and α n = α ln(n), one has for all p ≥ 1 and all integer n ≥ 3

P f sup h∈H sup D,Q∈Q δn , Q̸ =D ξ (j) h,(D,Q) (x) -6pαλ (2) p (1)∥f ∥ ∞ ln(n) nh > 0 ≤ 2 ln(n)n -4p .
Since U n ≥ 1 + ∥f n ∥ ∞ , we get by the triangle inequality

P f sup h∈H sup D,Q∈Q δn , Q̸ =D ξ (j) h,(D,Q) (x) - a 3 U n ln(n) nh > 0 (5.6) ≤ 2 ln(n)n -4p + P f ∥f n -f ∥ 4p(2β+2) β ∞ ≥ 1 .
Additionally , in view of the Markov inequality and Lemma 5, for n large enough

P f ∥f n -f ∥ 4p(2β+2) β ∞ ≥ 1 ≤ E f ∥f n -f ∥ 4p(2β+2) β ∞ ≤ C 4p(2β+2) β (n/ ln(n)) -4p .
Similarly to previous computations we deduce from (5.5) for all p ≥ 1 and n large enough

E f sup h∈H sup D,Q∈Q δn , Q̸ =D ξ (j) h,(D,Q) (x) - a 3 U n ln(n) nh + p (5.7) ≤ C (p) 2 (K, 1)L 2p [ln(n)] p n -4p + (n/ ln(n)) -7p 2 .
Now we derive an upper bound on ξ By integration of the latter inequality we obtain for all p ≥ 1, all integers n ≥ 3 and any z ≥ 1

) := φ(X k , X l ) + φ(X l , X k ) -E f [φ(X k , X l ) + φ(X l , X k )|X l ] -E f [φ(X k , X l ) + φ(X l , X k )|X k ] + E f [φ(X k , X l ) + φ(X l , X k )] . Note that E f [g(X k , X l )|X l ] = E f [g(X k , X l )|X k ] =
E f ξ (1)
h,(D,Q) (x) -U(z)

+ p ≤ 3 × 2 2p+1 Γ(2p + 1) [zU(1)] p e -z ; Introduce λ (3) p (ϵ) := 87955p √ p ∥K∥ 2 1 ∨ ∥K∥ 2 2 ∨ ∥K∥ 2 ∞ √ ϵ -1 ∨ ϵ -1 ∨ ϵ -3 2 .
We assert that for all p ≥ 1, all integers n ≥ 3, all real numbers z ∈ [0, 4pα n ] and all real numbers h satisfying nh ≥ ϵα n , ϵα n h ≤ nδ where

C (p) 3 (K, ϵ) = 6 × 2 2p Γ(2p + 1) ∥K∥ 2 1 ∨ ∥K∥ 2 2 ∨ ∥K∥ 2 ∞ p 45038p √ ϵ -1 ∨ ϵ -1 ∨ ϵ -3 2 p .
Similarly to (5.6) and (5.7), we get for all p ≥ 1 and n large enough (5.11)

Third step: End of the proofs of Propositions 4-5. Remind that third assertion of Proposition 4 is already proved in step one. First and second ones follow from inequalities (5), (5.6), (5.10) and (5.2), (5.7), (5.11) respectively, since a ≥ 1.

To finish the proof of Proposition 5, note first that B ≥ B 1 ∨ B 2 ∨ B 3 , where

B 1 = 20p 1 + ϵ -1/2 1 λ (1) 
2p (ϵ 1 )∥K∥ 1 2 L 2 + 8C(K, b, √ 2)L 2 ;

B 2 = 6 6pλ (2) p (ϵ 2 )L 2 + 8C(K, b, √ 2)L 2 ; B 3 = 6 6pλ (3) p (ϵ 3 )L 2 + 8C(K, b,

√ 2)L 2 .
Note also that for any i = 1, . . . , i *

L 2 h β i = ω i n i h i , n i h i ≥ L -4 2β+1 (8 + 4α) -2β 2β+1 ω i , ln ω i-1 n i n i-1 ω i ≤ 3ω i
Thus, in view of (5.1) and (5.1) with ϵ = ϵ 1 = L -4 2β+1 (8 + 4α)

-2β
2β+1 and α n = ω i one has for all p ≥ 1 and all integers n ≥ 3 sup b∈{d,d ⊥ } P f sup

D∈Q δn ξ (i) (h i ,b) (x) -λ (1) 2p (ϵ 1 ) 10p∥K∥ 1 L 3 h β i > 0 ≤ 2 e 8 ω i-1 n i n i-1 ω i pβ 2β+1 ; sup b∈{d,d ⊥ } E f sup D∈Q δn ξ (i) (h i ,b) (x) -λ (1) p (ϵ 1 ) 2p∥K∥ 1 L 3 h β i + p ≤ C (p) 1 (K, ϵ 1 )L 3p h pβ i ; sup b∈{d,d ⊥ } E f sup D∈Q δn ξ (i) (h i ,b) (x) p ≤ 2 p-1 C (p)
1 (K, ϵ 1 ) + λ (1) p (ϵ 1 ) 2p∥K∥ 1 p L 3p h pβ i .

By Cauchy-Schwarz inequality, noting that

|ξ (i) h i ,D (x)| ≤ √ 2∥K∥ 1 L |ξ (i) (h i ,d) (x)| + |ξ (i) (h i ,d ⊥ ) (x)| + |ξ (i) (h i ,d) (x)| × |ξ (i) (h i ,d ⊥ ) (x)|
we easily get for all p ≥ 1, all i = 1, . . . i * and all integers n ≥ 3

P f sup D∈Q δn |ξ (i) h i ,D (x)| -CL 2 h β i > 0 ≤ 8 e 8 ω i-1 n i n i-1 ω i pβ 2β+1 ; E f sup D∈Q δn |ξ (i) h i ,D (x)| -CL 2 h β i + p ≤ C ′ h pβ i ,
where C ′ := C ′ (p, K, β, L, α) > 0 and C = 2 -1 B -4C K, b, √ 2 L 2 . Let us remark that for any i = 1, . . . , i * one has

n i h i ≤ L -4 2β+1 (32 + 8α) 1 2β+1 n i δ 2 n , ω i ≤ (4 + α)e -2b 2b+1 n i δ 2 n .
In view of (5.4) and (5.5) with ϵ = ϵ 2 = (L 4 /40α) 

h i ,D (x)| - 1 3 CL 2 h β i + p ≤ C ′′ h pβ i ,
where C ′′ := C ′′ (p, K, β, L, α) > 0. Note finally that for any i = 1, . . . , i * ,

ω i h i ≤ L -4 2β+1 (9 + 3α) 2β+2 2β+1 C(β)n i δ 4 n , ω i ≤ L 2 2β+1 (9 + 3α) 2β+1/2 2β+1 C(β)n i δ n h i .
Thus, in view of (5.8) and (5.9) with ϵ = ϵ 3 = L 

h i ,D (x)| - 1 3 CL 2 h β i + p ≤ C ′′′ h pβ i ,
where C ′′′ := C ′′′ (p, K, β, L, α) > 0. Proposition 5 is proved.

6. Proof of formula (1.3).

Since any matrix Q ∈ Q can be represented as

Q := Q ϕ = cos(ϕ) -sin(ϕ) sin(ϕ) cos(ϕ) , ϕ ∈ [0, 2π],
we obviously have for any

Q ϕ , Q ψ ∈ Q ϱ(Q ϕ , Q ψ ) = | cos(ϕ -ψ)| ∧ | sin(ϕ -ψ)|, ϕ, ψ ∈ [0, 2π].

  β 2β+2 in the requirement (ii) by ln(n) n β 2β+2 the estimator satisfying (i) and (ii) simultaneously can be constructed. Add the following simple step to our minimax selection rule. Let for x

  k , X l ), where g(X k , X l

E

  0 and, additionally|g(X k , X l )| ≤ 12(1 ∨ ∥K∥ ∞ ) 2 (nh) -2 =: A, f g(X k , X l ) 2 ≤ 90 ∥K∥ 4 1 ∨ ∥K∥ 4 2 L 4 (nh) -2 =: C 2 .Moreover for anya k (•), b k (•), k ∈ N * , verifying X l ) 2 ≤ 1, we have, using the inequality 2ab ≤ a 2 + b 2 , k , X l )a k (X k )b l (X l ) ≤ 4(n -1) sup u∈R 2 E f |φ(u, X 1 ) + φ(X 1 , u)| ≤ 8L 2 ∥K∥ 2 1 (nδ 2 n ) -1 =: D. By independence of the X k , k = 1, . . . , n, one has for any u ∈ R 2 k-1 l=1 E f g(u, X l ) 2 |X k = k-1 l=1 Var f (φ(u, X l ) + φ(X l , u)) -(n -1) -1 LIt gives for any integer n ≥ 3 and any real number z > 0 3/2 + 414Az 2 .

  δn , Q̸ =D ξ (1) h,(D,Q) (x) -λ (3) p (ϵ)L 2 2pα n + z nh

  , 1)L 2p [ln(n)] p n -4p + (n/ ln(n)) -7p 2 .

  β)] -1 and α n = ω i one has for all p ≥ 1, all i = 1, . . . , i * and all integers n ≥ 3P f sup D,Q∈Q δn , D̸ =Q |ξ

  and α n = ω i one has for all p ≥ 1, all i = 1, . . . , i * and all integers n ≥ 3

	1 2β+1 ∧ (e 2b+1 /5α) sup 2b j=2,3 P f sup D,Q∈Q δn , D̸ =Q |ξ (j),(i) h i ,D (x)| -1 3 CL 2 h β i > 0 ≤	2 e 8	ω i-1 n i n i-1 ω i	pβ 2β+1	;
	sup	E f	sup		
	j=2,3				

D,Q∈Q δn , D̸ =Q |ξ (j),(i)

To the best of our knowledge proposed construction has no analogues in the existing literature.

Inequality (1.3) below is proved in Section 6.

Recall that Q1, Q2 are called δ-distinguishable with respect to ϱ if ϱ(Q1, Q2) ≥ δ.

We use the variant of the estimator in[START_REF] Lepski | Multivariate density estimation under sup-norm loss: oracle approach, adaptation and independence structure[END_REF] which corresponds to d = 2 and to the case of no independence structure. In the notation of[START_REF] Lepski | Multivariate density estimation under sup-norm loss: oracle approach, adaptation and independence structure[END_REF] the latter means P = {∅}. The required properties of the estimator f n are stated and used in the proof of Proposition 4.

Recall that F(β, L, Q) ⊂ H( ⃗ β, ⃗L), see discussion after Theorem 1.

(K, ϵ)L 2p [nh/α n ] -p 2 e -z ,(5.9)
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Taking into account that for any y ∈ R

and the required inequality follows.