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We develop a general approach to study the equilibrium and form-finding of any general tensegrity systems with rigid bodies. The equilibrium equations are derived in an explicit form in terms of a nodal coordinate and orientation parameter as the minimal coordinate. The nodal vector consists of nodes (either free or pinned) in the pure bar-string tensegrity network and nodes on the rigid bodies (those connected to the pure bar-string tensegrity network). Based on the Lagrangian method, the nonlinear statics of the general tensegrity system in terms of the minimal coordinate is first given. Then, we linearize the statics equation and obtain its equivalent form, in terms of the force vector of the compressive and tensile members, for the analysis of structure equilibrium configurations and prestress modes. To study the system's stability and have a comprehensive insight into the materials and structure members, we present the tangent stiffness matrix as a combination of prestress, material, and geometric information of the structure. It is also shown that without rigid bodies, the governing equations of the general tensegrity system yields to the classical tensegrity structure (pure string-bar network).

Form-finding of general tensegrity is implemented based on solving the nonlinear equilibrium equation, where the modification of tangent stiffness matrix and line search algorithm is used. Numerical examples are given to demonstrate the capability of our developed method in finding the feasible prestress modes, conducting formfinding and prestress designs, and checking the structural robustness of any tensegrity systems with rigid bodies.

Introduction

Tensegrity is a conjunction of two words (tension and integrity) which was first proposed by Buckminster Fuller [START_REF] Fuller | Synergetics: explorations in the geometry of thinking[END_REF] for the art form by Ioganson (1921) and Snelon (1948) [START_REF] Lalvani | Origins of tensegrity: views of emmerich, fuller and snelson[END_REF]. In their work, they never assumed there were no rigid bodies in the tensegrity structures. And in fact, the tensegrity sculpture built by Snelson in 1948 is two Xshape rigid bodies stabilized by several cables. However, it is probably because bars and strings are more efficient in taking compression, provide more accurate models (uncertainty is only along with the axially loaded members), and it is complicated to model the irregular shape of the rigid bodies, most of the literature focus on pure stable bar-strings networks.

Indeed, after decades of study, the pure bar-string tensegrity structures have shown their many advantages in lightweight structure topology design [START_REF] Wang | Topology-finding of tensegrity structures considering global stability condition[END_REF][START_REF] Wang | A unifying framework for form-finding and topology-finding of tensegrity structures[END_REF][START_REF] Roth | Optimizing compressive load capacity for differing tensegrity geometries[END_REF][START_REF] Wang | Minimal mass design of active tensegrity structures[END_REF], engineering structures [START_REF] Feng | Analysis of new wave-curved tensegrity dome[END_REF][START_REF] Ma | Design of a new tensegrity cantilever structure[END_REF][START_REF] Roth | Optimizing compressive load capacity for differing tensegrity geometries[END_REF], soft robotics [START_REF] Liu | A review on tensegrity structures-based robots[END_REF][START_REF] Paul | Design and control of tensegrity robots for locomotion[END_REF], deployable structures [START_REF] Veuve | Adaptive control of a deployable tensegrity structure[END_REF][START_REF] Kan | Nonlinear dynamic and deployment analysis of clustered tensegrity structures using a positional formulation fem[END_REF][START_REF] Hrazmi | Deployable double layer tensegrity grid platforms for sea accessibility[END_REF], energy absorption [START_REF] Zhang | Optimization for energy absorption of 3-dimensional tensegrity lattice with truncated octahedral units[END_REF][START_REF] Rimoli | A reduced-order model for the dynamic and post-buckling behavior of tensegrity structures[END_REF][START_REF] Pajunen | Design and impact response of 3d-printable tensegrityinspired structures[END_REF], etc. But for many engineering structures, we must include the rigid bodies, i.e., the deck of the bridges, the roof of the shelters, the shell of cable domes, the D-section of the airfoils, and the shield of space structures. To deal with these rigid bodies in their tensegrity structure design, many researchers have proposed their compromised solutions to the rigid body tensegrities. For example, Carpentieri et al. [START_REF] Carpentieri | Minimum mass and optimal complexity of planar tensegrity bridges[END_REF] separated the minimal mass design of the tensegrity bridge structure and its deck. Laccone et al. [START_REF] Laccone | Automatic design of cable-tensioned glass shells[END_REF] analyzed the cable-tensioned dome and its glass shell by the nonlinear finite element analysis software Straus7. Levin et al. [START_REF] Levin | The tensegrity-truss as a model for spine mechanics: biotensegrity[END_REF] studied the rigid body spine mechanics based on the tensegrity-truss model. Chen and Jiang [START_REF] Chen | Swimming performance of a tensegrity robotic fish[END_REF] used parallel mechanism theory to compute the stiffness of a fish, made of a set of rigid ribs stabilized by strings. Chen et al. [START_REF] Chen | Design and analysis of a growable artificial gravity space habitat[END_REF] decoupled the force analysis of a tensegrity space habitat and its shield. However, none of these approaches started from the fundamental governing equations of the whole system and developed a general approach to the analysis of tensegrity systems with rigid bodies. It is also worth mentioning that few software packages have the compatibility of simulating tensegrity systems with rigid bodies. For example, Wang et al. [START_REF] Wang | Decoupled data-based approach for learning to control nonlinear dynamical systems[END_REF] modeled tensegrity swimmer and rigid bodies in the MuJoCo simulator and studied the data-based control methods. Sun et al. [START_REF] Sun | An adaptive bioinspired foot mechanism based on tensegrity structures[END_REF] studied a tensegrity foot with a rigid board and universal joint in ADAMS.

Pajunen et al. [START_REF] Pajunen | Design and impact response of 3d-printable tensegrityinspired structures[END_REF] implemented ABAQUS to analyze the 3D-printable tensegrity lander with rigid joints. However, these commercial packages are costly, require much experience, and the insight of the algorithm is not clear.

In the past years, a few attempts have been made to study tensegrity with rigid body models analytically. For example, for the static analysis, Hangai and Wu [START_REF] Hangai | Analytical method of structural behaviours of a hybrid structure consisting of cables and rigid structures[END_REF] proposed kinematics and equilibrium equations to study the behaviors of a hybrid structure that consists of cables and rigid structures. Wang et al. [START_REF] Wang | Topology design of general tensegrity with rigid bodies[END_REF] derived the statics equilibrium equation of general tensegrity and used the mixed-integer linear programming method for the topology design. Chen and Jiang [START_REF] Chen | Instability results from purely rotational stiffness for general tensegrity structure with rigid bodies[END_REF] derived the total stiffness of a general tensegrity structure in an explicit form and developed a set of sufficient and necessary conditions to guarantee the stability of the tensegrity structures. For the dynamics analysis, Nagase and Skelton [START_REF] Nagase | Network and vector forms of tensegrity system dynamics[END_REF] used non-minimal coordinates to write the dynamics equations of tensegrity by assuming the compression members are rigid bodies. Kan et al. [START_REF] Kan | A comprehensive framework for multibody system analysis with clustered cables: examples of tensegrity structures[END_REF][START_REF] Kan | A sliding cable element of multibody dynamics with application to nonlinear dynamic deployment analysis of clustered tensegrity[END_REF] studied the nonlinear dynamics of clustered tensegrity with rigid bodies by using the configuration of the attached rigid bodies as the generalized coordinate. Li et al. [START_REF] Li | A symplectic kinodynamic planning method for cable-driven tensegrity manipulators in a dynamic environment[END_REF] studied the kinodynamic planning of cable-driven tensegrity manipulators composed of clustered cables and rigid bodies. However, the equilibrium theory in most of the work is in a complicated form and limited to structures with small deformations. Moreover, there is an increasing interest in using tensegrity structures to build robotics due to the many advantages of tensegrity structure, i.e., mass saving, control energy efficiency, abundant equilibrium states, etc. In many of the tensegrity robot applications, rigid bodies cannot be avoided. The current equilibrium theories and form-finding methods of the tensegrity system with rigid bodies are still limited. It is critical to have an efficient form-finding approach to find the configurations of the whole system to enlarge the applications of tensegrity systems. To this end, we derived a general approach to the nonlinear equilibrium equations and proposed a corresponding form-finding method to the tensegrity system with rigid bodies. In this study, the tensegrity with pure axial form elements is referred to as the traditional tensegrity, while the tensegrity with rigid bodies is called the general tensegrity.

The paper is structured as follows. Section 2 presents the tensegrity and rigid body notations. Section 3 derives the kinematics of the system. Section 4 gives the nonlinear and linearized statics equations. Section 5 shows the form-finding approach to the tensegrity systems with rigid bodies. Section 6 summarizes the conclusions. 2.1 Nodal coordinates of the system and its components

Notations of tensegrity systems with rigid bodies

The tensegrity system with rigid bodies is composed of bars, strings, and rigid bodies, as shown in Figure 1. The rigid bodies in the tensegrity structures are connected by the strings and bars nodes on the rigid bodies. We name the nodes on the rigid body as rigid body nodes. The nodes only on the bars and strings are free tensegrity nodes, and the other nodes in the fixed point are the pinned tensegrity nodes. The position of all the nodes can be expressed in any frame, and we choose to label them in the Cartesian coordinates in an inertially fixed frame by a nodal vector. Assume there are 𝑛 𝑛 number of nodes, the 𝑋, 𝑌, and 𝑍-coordinates of the 𝑖th node 𝒏 𝑖 ∈ ℝ 3 in the vector form is 𝒏 𝑖 = [ 𝑥 𝑖 𝑦 𝑖 𝑧 𝑖] 𝑇 . By stacking 𝒏 𝑖 for 𝑖 = 1, 2, ⋯ , 𝑛 𝑛 together, we can get the nodal vector 𝒏 ∈ ℝ 3𝑛 𝑛 for the whole structure:

𝒏 = [𝒏 1 𝑇 𝒏 2 𝑇 ⋯ 𝒏 𝑛 𝑛 𝑇 ] 𝑇 , (1) 
and its equivalent matrix form [START_REF] Skelton | Tensegrity systems[END_REF] 𝑵 ∈ ℝ 3×𝑛 𝑛 is:

𝑵 = [ 𝒏 1 𝒏 2 ⋯ 𝒏 𝑛 𝑛 ]. (2) 
Note that one can simply obtain the nodal coordinate vector 𝒏 by vectorizing the nodal coordinate matrix 𝑵:

𝒏 = 𝑣𝑒𝑐(𝑵) = 𝑵(: ), (3) 
where 𝑣𝑒𝑐(𝑵) is an operator that stacks all the columns of matrix 𝑵 into one vector. Normally, the positions of some of the nodes in the structure are fixed/pinned in certain directions. Let there be 𝑛 𝑎 degree of freedom of free tensegrity nodes, 𝑛 𝑏 degree of freedom of pinned tensegrity nodes, and 𝑚 rigid bodies with a total number of 𝑛 𝑞 degree of freedom of the rigid nodes. Suppose there are 𝑧 𝑖 number of nodes in the 𝑖th rigid body. To deal with the constraints, we distinguish the free tensegrity nodes, pinned tensegrity nodes, and the jth node in the ith rigid body by introducing three kinds of vectors 𝒂 ∈ ℝ 𝑛 𝑎 , 𝒃 ∈ ℝ 𝑛 𝑏 , and 𝒒 𝑖𝑗 ∈ ℝ 𝑛 𝑞 :

𝒂 = [ 𝑎 1 𝑎 2 ⋯ 𝑎 𝑛 𝑎 ] T , (4) 
𝒃 = [𝑏 1 𝑏 2 ⋯ 𝑏 𝑛 𝑏 ] T , (5) 
𝒒 𝑖𝑗 = [ 𝑞 𝑖𝑗𝑥 𝑞 𝑖𝑗𝑦 𝑞 𝑖𝑗𝑧] T , (𝑖 = 1, 2, ⋯ , 𝑚; 𝑗 = 1,2, ⋯ , 𝑧 𝑖 ), (6) 
where the values of 𝑎 𝛼 (𝛼 = 

where 𝑰 3𝑛 𝑛 is the identity matrix in 3𝑛 𝑛 order. Thus, we have the following:

𝒏 𝒂 = 𝑬 𝑛𝑎 𝑻 𝒏, 𝒏 𝒃 = 𝑬 𝑛𝑏 𝑇 𝒏, 𝒏 𝑞 𝑖𝑗 = 𝑬 𝑛 𝑞𝑖𝑗 𝑇 𝒏. (8) 
The nodal coordinate of the whole structure is obtained by summing all the free tensegrity nodes, pinned tensegrity nodes, and rigid body nodes:

𝒏 = 𝑬 𝑛𝑎 𝒏 𝑎 + 𝑬 𝑛𝑏 𝒏 𝑏 + ∑ ∑ 𝑬 𝑛 𝑞𝑖𝑗 𝒏 𝑞 𝑖𝑗 𝑧 𝑖 𝑘=1 𝑚 𝑗=1 . (9) 
The 𝑖th (𝑖 = 1, 2, ⋯ , 𝑚) rigid body nodal coordinate vector is obtained by stacking the nodal coordinate of the 𝑧 𝑖 rigid-body nodes:

𝒏 𝑞 𝑖 = [ 𝒏 𝑞 𝑖1 𝒏 𝑞 𝑖2 ⋮ 𝒏 𝑞 𝑖𝑧 𝑖 ] . ( 10 
)
The location matrix corresponding to the 𝑖th (𝑖 = 1, 2, ⋯ , 𝑚) rigid body nodes is:

𝑬 𝑛 𝑞𝑖 = [ 𝑬 𝑛 𝑞𝑖1 𝑬 𝑛 𝑞𝑖2 ⋯ 𝑬 𝑛 𝑞𝑖𝑧 𝑖 ]. (11) 
Then, the nodal coordinate vector of the 𝑖th (𝑖 = 1, 2, ⋯ , 𝑚) rigid body can be calculated by:

𝒏 𝑞 𝑖 = 𝑬 𝑛 𝑞𝑖 𝑇 𝒏, (12) 

Connectivity matrix

A connectivity matrix provides the connection pattern of all the nodes in the structure. Let 𝑪 ∈ ℝ 𝑛 𝑒 ×𝑛 𝑛 be the connectivity matrix of the tensegrity systems with rigid bodies, where 𝑛 𝑒 is the total number of axially loaded members (bars and strings). The 𝑖th (𝑖 = 1,2, ⋯ , 𝑛 𝑒 ) row of 𝑪, denoted as 𝑪 𝑖 = [𝑪] (𝑖,:) ∈ ℝ 1×𝑛 𝑛 , represents connectivity information of the 𝑖th element in the structure. Suppose the 𝑖th member is from the 𝑗th node to the 𝑘th node. The 𝑟th (𝑖 = 1,2, ⋯ , 𝑛 𝑛 ) entry the 𝑖th row of 𝑪 satisfies:

[𝑪] 𝑖𝑟 = { -1 , 𝑟 = 𝑗 1 , 𝑟 = 𝑘 0 , 𝑟 = 𝑒𝑙𝑠𝑒 . ( 13 
)

The geometry of axial elements

An axial element vector denotes the start and end nodes of an axial element (bar or string). For example, the 𝑖th axial element vector 𝒉 𝑖 ∈ ℝ 3×1 is:

𝒉 𝑖 = 𝒏 𝑘 -𝒏 𝑗 = 𝑪 𝑖 ⨂𝑰 3 𝒏. ( 14 
)
where the symbol ⨂ represents the Kronecker product. Stacking all the axial elements into a structure element matrix 𝑯 ∈ ℝ 3×𝑛 𝑒 , we get:

𝑯 = 𝑵𝑪 𝑇 . ( 15 
)
The present length of the 𝑖th axial element is:

𝑙 𝑖 = ‖𝒉 𝑖 ‖ = (𝒏 𝑇 (𝑪 𝑖 𝑇 𝑪 𝑖 ) ⊗ 𝐈 3 𝒏) 1 2 . ( 16 
)
Rest length is the length of an axial element with no tension or compression. We use the subscript 0 to denote the rest length of an axial element, i.e., the rest length of the 𝑖th axial element is 𝒍 0𝑖 . The length and rest length vector of all the axial elements are:

𝒍 0 = [𝑙 01 𝑙 02 ⋯ 𝑙 0𝑛 𝑒 ] 𝑇 , ( 17 
) 𝒍 = [𝑙 1 𝑙 2 ⋯ 𝑙 𝑛 𝑒 ] 𝑇 . ( 18 
)

Stiffness of axial elements

Let the cross-sectional area, secant modulus, and tangent modulus of the 𝑖 th element be 𝐴 𝑖 , 𝐸 𝑖 , and 𝐸 𝑡𝑖 , respectively. Then, the cross-sectional area, secant modulus, and tangent modulus vector of the structure 𝑨, 𝑬, 𝑬 𝑡 ∈ ℝ 𝑛 𝑒 can be written as:

𝑨 = [𝐴 1 𝐴 2 ⋯ 𝐴 𝑛 𝑒 ] 𝑇 , ( 19 
) 𝑬 = [𝐸 1 𝐸 2 ⋯ 𝐸 𝑛 𝑒 ] 𝑇 , ( 20 
)
𝑬 𝑡 = [𝐸 𝑡1 𝐸 𝑡2 ⋯ 𝐸 𝑡𝑛 𝑒 ] 𝑇 . ( 21 
)
The internal force of the 𝑖th element is 𝑡 𝑖 = 𝐴 𝑖 𝜎 𝑖 = 𝐸 𝑖 𝐴 𝑖 (𝑙 𝑖 -𝑙 0𝑖 )/𝑙 0𝑖 , the internal force vector of the structure 𝒕 ∈ ℝ 𝑛 𝑒 can be written as:

𝒕 = [𝑡 1 𝑡 2 ⋯ 𝑡 𝑛 𝑒 ] 𝑇 = 𝑬 ̂𝑨 ̂𝒍 ̂0 -1 (𝒍 -𝒍 0 ), (22) 
where 𝑬 ̂ is an operator that converts vector 𝑬 into a diagonal matrix.

Notations of the rigid bodies

Orientation matrix of rigid bodies

Unlike the bars and strings in the rigid body tensegrity, one can use the nodal vector to describe the exact attitude of these axial elements. To describe the attitude of a rigid body, an orientation matrix must be included to show the transition process. There are many approaches to achieve this goal, i.e., Euler angle, Euler principal axis, and quaternion. We chose the Euler angle approach because it is a minimal coordinate method to describe the attitude of rigid bodies. In this problem, we implemented a simple (1-2-3) orientation set, which means to rotate α, β, γ about the principal axis of 𝒃 1 , 𝒃 2 , 𝒃 3 in sequence in the body-fixed frame. The attitude parameter 𝝋 is the vector composed of Euler angle:

𝝋 = [ 𝛼 𝛽 𝛾 ]. (23) 
The attitude matrix is [START_REF] Hurtado | Kinematic and kinetic principles[END_REF]: 

𝑹(𝛼, 𝛽, 𝛾) = 𝑹 3 (𝛾)𝑹 2 (𝛽)𝑹 1 (𝛼) = [ cos 𝛾
Even though the Euler angle has kinematic singularities for the value of 𝛽 = 0, this is only a problem in calculating the velocity of orientation parameters from angular velocities. For solving the static equilibrium and form-finding of general tensegrities, there is no such problem using the Euler angle as the orientation parameter.

Mass center of rigid body

Let the mass center of the 𝑖th rigid body be 𝒏 𝑐𝑖 ∈ ℝ 3×1 . Normally, the position of the mass center can be given by measuring the mass distribution of the rigid body in an experiment. However, in the static analysis, the equilibrium of total force and moment is independent of the choice of the mass center. For simplicity, we can directly use the geometry center of the 𝑖th rigid body nodes as the mass center:

𝒏 𝑐 𝑖 = 1 𝑧 𝑖 𝑰 1,𝑧 𝑖 ⨂𝑰 3 𝒏 𝑞 𝑖 , (25) 
where 𝑰 1,𝑧 𝑖 ∈ ℝ 1×𝑧 𝑖 is an all-ones vector with 𝑧 𝑖 columns, and 𝑧 𝑖 is the number of rigid body nodes in the ith rigid body. Substitute Eq.( 12) into Eq. ( 25), one can compute the mass center from the nodal coordinate vector of the structure:

𝒏 𝑐 𝑖 = 𝑬 𝑛 𝑐 𝑖 𝑇 𝒏, (26) 
where 𝑬 𝑛 𝑐 𝑖 is:

𝑬 𝑛 𝑐 𝑖 = 1 𝑧 𝑖 𝑬 𝑛 𝑞 𝑖 𝑰 𝑧 𝑖 ,1 ⨂𝑰 3 . ( 27 
)

Nodal coordinate of rigid bodies

If there is translation or rotation of the rigid bodies, the nodal coordinate of the 𝑗th node on the 𝑖th rigid body 𝒏 𝑞𝑖𝑗 is:

𝒏 𝑞𝑖𝑗 = 𝒏 𝑐𝑖 + 𝒓 𝑖𝑗 , (28) 
𝒓 𝑖𝑗 = 𝑹 𝑖 𝑇 (𝒏 𝑞𝑖𝑗0 -𝒏 𝑐 𝑖0 ) = (𝑬 𝑛 𝑐𝑖 𝑇 -𝑬 𝑛 𝑞𝑖𝑗 𝑇 ) 𝒏, (29) 
where 𝒓 𝑖𝑗 is the vector from the center of mass 𝒏 𝑐𝑖 to the 𝑗th node in the 𝑖th rigid body, 𝒏 𝑞𝑖𝑗0 and 𝒏 𝑐 𝑖0 is the nodal coordinate vector of the 𝑗th node and the mass center of the 𝑖th rigid body in the body-fixed frame. 𝑹 𝑖 is the attitude matrix of the 𝑖th rigid body.

Minimal coordinate of the system

The minimal coordinate 𝑼 ∈ ℝ 𝑛 𝑈 is used to represent the position of the free tensegrity nodes and the rigid bodies:

U= [ 𝒏 𝑎 𝑼 1 𝑼 2 ⋮ 𝑼 𝑚 ] , ( 30 
)
where 𝑼 𝑖 is the minimal coordinate for the 𝑖th rigid body, including the position of the mass center 𝒏 𝑐𝑖 ∈ ℝ 3 and attitude parameter 𝝋 𝑖 ∈ ℝ 3 :

𝑼 𝑖 = [ 𝒏 𝑐 𝑖 𝝋 𝑖 ], (31) 
The location matrix is used to locate minimal coordinate of free tensegrity nodes and rigid bodies:

𝑼 = [𝑬 𝑈𝑎 [ 𝑬 𝑈 𝑐1 𝑬 𝑈 𝝋 1 ] [ 𝑬 𝑈 𝑐2 𝑬 𝑈 𝝋 2 ] ⋯ [ 𝑬 𝑈 𝑐𝑚 𝑬 𝑈 𝝋 𝑚 ]] [ 𝒏 𝑎 [ 𝒏 𝑐1 𝝋 1 ] [ 𝒏 𝑐2 𝝋 2 ] ⋮ [ 𝒏 𝑐𝑚 𝝋 𝑚 ] ] . (32) 
The nodal coordinate vector of free nodes, mass center, Euler angle, and minimal coordinate of the 𝑖th rigid body is:

𝒏 𝑎 = 𝑬 𝑈 𝑎 𝑇 𝑼, 𝒏 𝑐𝑖 = 𝑬 𝑈 𝑐𝑖 𝑇 𝑼, 𝝋 𝑖 = 𝑬 𝑈 𝝋 𝑖 𝑇 𝑼, 𝑼 𝑖 = 𝑬 𝑈 𝑖 𝑇 𝑼. ( 33 
)
𝑬 𝑈 𝑐 and 𝑬 𝑈 𝜑 is used to extract the mass center and Euler angle information of all rigid bodies:

𝑬 𝑈𝑐 = [𝑬 𝑈𝑐1 𝑬 𝑈𝑐2 ⋯ 𝑬 𝑈𝑐𝑚 ], 𝑬 𝑈𝝋 = [𝑬 𝑈𝝋 1 𝑬 𝑈𝝋 2 ⋯ 𝑬 𝑈𝝋 𝑚 ]. (34) 
𝑬 𝑈 𝑖 is used to extract the minimal coordinate of the 𝑖th rigid body:

3 Kinematics of the rigid body

Attitude kinematics

The angular velocity vector of the 𝑖th rigid body in the inertial frame is [START_REF] Shabana | Dynamics of multibody systems[END_REF]:

𝝎 𝑖 = [ 𝜔 1 𝜔 2 𝜔 3 ] = [𝑩 𝑖 ]𝝋̇𝑖, (36) 
The 𝑩 𝑖 matrix for the Euler angle (1-2-3) orientation set is:

𝑩 𝑖 = [ 1 0 sin 𝛽 0 cos 𝛼 -cos 𝛽 sin 𝛼 0 sin 𝛼 cos 𝛼 cos 𝛽 ]. (37) 

Transformation matrix

The velocity vector of the 𝑗th node on the 𝑖th rigid body is:

𝒏̇𝑞 𝑖𝑗 = 𝒏̇𝑐 𝑖 + 𝝎 𝑖 × 𝒓 𝑖𝑗 . (38) 
Substitute Eq.( 36) into Eq. ( 38), we will have:

d𝒏 𝑞𝑖𝑗 d𝑡 = d𝒏 𝑐𝑖 d𝑡 -𝒓 𝑖𝑗 × 𝝎 𝑖 = d𝒏 𝑐𝑖 d𝑡 -𝒓 𝑖𝑗 × 𝑩 𝑖 d𝝋 𝑖 d𝑡 . ( 39 
)
where 𝒓 𝑖𝑗 × is the anti-symmetric matrix of the vector 𝒓 𝑖𝑗 . Eliminate the time derivative part, and the above equation can be written as:

d𝒏 𝑞𝑖𝑗 = d𝒏 𝑐𝑖 -𝒓 𝑖𝑗 × 𝑩 𝑖 d𝝋 𝑖 . (40) 
So, the partial derivative of 𝒏 𝑞 𝑖𝑗 to 𝑼 𝑖 is:

𝑮 ̅ 𝑖𝑗 = 𝜕𝒏 𝑞𝑖𝑗 𝜕𝑼 𝑖 𝑇 = [𝑰 3 -𝒓 𝑖𝑗 × 𝑩 𝑖 ], (41) 
where 𝜕𝒂 𝜕𝒃 𝑇 and 𝜕𝒃 𝑇 𝜕𝒂 represent the partial derivative of vector 𝒂 to vector 𝒃 in numerator layout, respectively. The partial derivative of 𝒏 𝑞 𝑖𝑗 to the minimal coordinate 𝑼 is:

𝑮 𝑖𝑗 = 𝜕𝒏 𝑞𝑖𝑗 𝜕𝑼 𝑇 = 𝜕𝒏 𝑞𝑖𝑗 𝜕𝑼 𝑖 𝑇 𝜕𝑼 𝑖 𝜕𝑼 𝑇 = 𝑮 ̅ 𝑖𝑗 𝑬 𝑈 𝑖 𝑇 . ( 42 
)
The transformation matrix 𝑮 of the entire structure is:

𝑮 = 𝜕𝒏 𝜕𝑼 𝑇 = 𝜕(𝑬 𝑛 𝑎 𝒏 𝒂 +∑ ∑ 𝑬 𝑛 𝑞𝑖𝑗 𝒏 𝑞𝑖𝑗 𝑧 𝑖 𝑗=1 𝑚 𝑖=1 ) 𝜕𝑼 T = 𝑬 𝑛 𝑎 𝑬 𝑈 𝑎 𝑇 + ∑ ∑ 𝑬 𝑛 𝑞𝑖𝑗 𝑮 𝑖𝑗 𝑧 𝑖 𝑗=1 𝑚 𝑖=1 , ( 43 
)
which maps the difference of nodal coordinate 𝒏 to the difference of minimal coordinate 𝑼.

4 Equilibrium equation

The Lagrangian method

The general form of the Lagrangian equation is:

d d𝑡 ∂𝐿 ∂𝑼 ˙-∂𝐿 ∂𝑼 = 𝑸 𝑛𝑝 , (44) 
where 𝐿 = 𝑇 -𝑉 is the Lagrangian function, 𝑇 and 𝑉 are the kinetic energy and potential energy of the system, 𝑸 𝑛𝑝 is the non-potential force vector of the general tensegrity structures, 𝑼 is the minimal coordinate of the system. For the statics problem, the kinetic energy 𝑇 is zero in this study, and we study the potential energy of the system. For statics problem, the Lagrangian method degenerates to:

∂𝑉 ∂𝑼 = 𝑸 𝑛𝑝 . (45) 
Note that Eq.( 45) is consistent with the principle of stationary total potential energy and the principle of virtual work. However, using the Lagrangian method to derive the equilibrium equation will make it easy to extend to the future study of the dynamic problem. It is required in the Lagrangian method to use minimal coordinate as the variable, which is critical for the derivation. Note that if we use variables with overparameterization like the Euler parameter, modified Rodrigues parameters, etc., there will be an issue in violation of the constraints of the variables.

Energy function

The total potential energy 𝑉 of the tensegrity system with the rigid body is composed of strain potential energy 𝑉 𝑒 and gravitational potential energy 𝑉 𝑔 :

𝑉 = 𝑉 𝑒 + 𝑉 𝑔 . ( 46 
)

Strain potential energy

There is no deformation in a rigid body, so the strain potential energy for a rigid body is zero. The strain potential energy is only stored in the axial members:

𝑉 𝑒 = ∑ ∫ 𝒕 𝑖 𝑙 𝑖 𝑙 0 𝑖 d𝑥 𝑛 𝑒 𝑖=1 . ( 47 
)
From the statics equation of traditional tensegrity [START_REF] Ma | Tensegrity system dynamics based on finite element method[END_REF], we can compute the partial derivative of 𝑉 𝑒 to 𝑼, 𝜕𝑉 𝑒 𝜕𝒏 :

𝜕𝑉 𝑒 𝜕𝑼 = 𝜕𝒏 𝑇 𝜕𝑼 𝜕𝑉 𝑒 𝜕𝒏 = 𝑮 𝑻 (𝑪 𝑇 𝒍 ̂-1 𝒕 ̂𝑪) ⊗ 𝑰 3 𝒏. (48)

Gravitational potential energy

The gravitational potential energy is relative to any member that has mass. In tensegrity with a rigid body, all axial members, point mass, and rigid body will contribute to gravitational potential energy:

𝑉 𝑔 = 𝑉 𝑔𝑒 + 𝑉 𝑔𝑝 + 𝑉 𝑔𝑟 . (49) 
The gravitational potential energy corresponding to the axial elements 𝑉 𝑔𝑒 is:

𝑉 𝑔𝑒 = ∑ 𝑚 𝑒𝑖 2 [ 𝑎 𝑥 𝑎 𝑦 𝑎 𝑧] 𝑛 𝑒 𝑖=1 [ 𝑥 𝑗 𝑖 + 𝑥 𝑘 𝑖 𝑦 𝑗 𝑖 + 𝑦 𝑘 𝑖 𝑧 𝑗 𝑖 + 𝑧 𝑘 𝑖 ] = ∑ 𝑚 𝑒𝑖 2 [ 𝑎 𝑥 𝑎 𝑦 𝑎 𝑧] 𝑛 𝑒 𝑖=1 |𝑪 𝑖 | ⊗ 𝑰 3 𝒏 = 1 2 (𝒎 𝑒 𝑇 |𝑪|) ⊗ [ 𝑎 𝑥 𝑎 𝑦 𝑎 𝑧]𝒏. (50) 
where 𝑚 𝑒𝑖 is the mass of the ith axial element, and 𝒎 𝑒 is the mass vector of all axial elements. 𝑎 𝑥 , 𝑎 𝑦 , 𝑎 𝑧 are the gravitational acceleration in the 𝑋, 𝑌, and 𝑍-axis, respectively. The gravitational potential energy corresponding to point mass 𝑉 𝑔𝑝 is:

𝑉 𝑔𝑝 = ∑ 𝑚 𝑝𝑖 ⊗ [ 𝑎 𝑥 𝑎 𝑦 𝑎 𝑧] 𝑛 𝑛 𝑖=1 [ 𝑥 𝑖 𝑦 𝑖 𝑧 𝑖 ] = 𝒎 𝑝 𝑇 ⊗ [ 𝑎 𝑥 𝑎 𝑦 𝑎 𝑧]𝒏. (51) 
where 𝑚 𝑝𝑖 is the mass of the ith node, and 𝒎 𝑝 is the node mass vector. The gravitational potential energy corresponding to rigid body 𝑉 𝑔𝑟 is:

𝑉 𝑔𝑟 = ∑ 𝑚 𝑞𝑖 ⊗ [ 𝑎 𝑥 𝑎 𝑦 𝑎 𝑧] 𝑛 𝑞 𝑖=1 𝒏 𝑐𝑖 = 𝒎 𝑞 𝑇 ⊗ [ 𝑎 𝑥 𝑎 𝑦 𝑎 𝑧] [ 𝒏 𝑐1 ⋮ 𝒏 𝑐𝑚 ] (52) = 𝒎 𝑞 𝑇 ⊗ [ 𝑎 𝑥 𝑎 𝑦 𝑎 𝑧]𝑬 𝑈𝑐 𝑇 𝑼.
where 𝑚 𝑞𝑖 is the mass of the ith rigid body, and 𝒎 𝑞 is the mass vector rigid bodies. The partial derivative of 𝑉 𝑔 to 𝒏 is:

𝜕𝑉 𝑔 𝜕𝑼 = 𝜕𝒏 𝑇 𝜕𝑼 ( 𝜕𝑉 𝑔𝑒 𝜕𝒏 + 𝜕𝑉 𝑔𝑚 𝜕𝒏 ) + 𝜕𝑉 𝑔𝑟 𝜕𝑼 = {𝑮 𝑻 ( 1 2 |𝑪| 𝑇 𝒎 𝑒 + 𝒎 𝑝 ) + 𝑬 𝑈𝑐 𝒎 𝑞 } ⊗ [ 𝑎 𝑥 𝑎 𝑦 𝑎 𝑧] 𝑇 = 𝒈, ( 53 
)
where 𝒈 is the gravitational force vector.

Nonlinear equilibrium equation

The statics equation of tensegrity with the rigid body is calculated by the partial derivative of V with respect to

𝑼: 𝜕𝑉 𝜕𝑼 = 𝜕𝑉 𝑒 𝜕𝑼 + 𝜕𝑉 𝑔 𝜕𝑼 = 𝑸 𝑛𝑝 . (54) 
Substitute the Eq.( 48) and Eq.(53) into Eq.( 54), we will have:

𝑮 𝑻 (𝑪 𝑇 𝒍 ̂-1 𝒕 ̂𝑪) ⊗ 𝑰 3 𝒏 = 𝑸 𝑛𝑝 -𝒈. (55) 
Eq.( 55) is the static equilibrium equation of the general tensegrity system with rigid bodies. The second part (𝑪 𝑇 𝒍 ̂-1 𝒕 ̂𝑪) ⊗ 𝑰 3 𝒏 is the collection of inner force of members in nodes, which is identical to 𝑲𝒏 in traditional tensegrity structure [START_REF] Ma | Tensegrity system dynamics based on finite element method[END_REF]. Note that (𝑪 𝑇 𝒍 ̂-1 𝒕 ̂𝑪) ⊗ 𝑰 3 is a nonlinear function of nodal coordinate, so Eq. ( 55) is nonlinear. The first part 𝑮 𝑻 transforms the nodal force from the node space to body space, which is identity to the generalized force. Eq.( 55) can be written into a simple form:

𝑲 𝑟 𝒏 = 𝑸 𝑛𝑝 -𝒈, (56) 
where 𝑲 𝑟 is the stiffness matrix of general tensegrity with nodal coordinate vector 𝒏 as the variable:

𝑲 𝑟 = 𝑮 𝑻 (𝑪 𝑇 𝒍 ̂-1 𝒕 ̂𝑪) ⊗ 𝑰 3 . (57) 
The right part of Eq. ( 54) is the generalized force 𝑸 𝑛𝑝 , which can be calculated by using the transformation matrix [START_REF] Hurtado | Kinematic and kinetic principles[END_REF]: where 𝒇 is the non-potential external force vector exerted on the tensegrity node. 𝒇 𝑐𝑖 and 𝒎 𝑐𝑖 is the total force and moment exerted on the 𝑖th rigid body. 𝒇 𝑐 and 𝒎 𝑐 are the collection of force and moment of all rigid bodies.

𝑸 𝑛𝑝 =
𝒇 𝑐 = [ 𝒇 𝑐1 ⋮ 𝒇 𝑐𝑚 ] , 𝒎 𝑐 = [ 𝒎 𝑐1 ⋮ 𝒎 𝑐𝑚 ]. ( 59 
)
𝑩 matrix is defined as:

𝑩 = [ 𝑩 1 ⋱ 𝑩 𝑚 ]. (60) 
4.4 Linearized equilibrium equation

Linearized equilibrium equation with minimal coordinate as the variable

Using Taylor expansion of Eq. ( 56) about a configuration 𝒏 𝑖 in the ith iteration step, we have the linearized equilibrium equation:

𝑲 𝑟 | 𝒏 𝑖 𝒏 𝑖 + 𝑲 𝑇𝑟 (𝑼 𝑖+1 -𝑼 𝑖 ) = 𝑸 𝑛𝑝 -𝒈, (61) 
where 𝑲 𝑇𝑟 is the tangent stiffness matrix of the structure, 𝑼 𝑖 is the minimal coordinate corresponding to 𝒏 𝑖 .

𝑲 𝑟 | 𝒏 𝑖 is the stiffness matrix in 𝒏 𝑖 configuration. By solving Eq.(61), we can obtain a new configuration 𝑼 𝑖+1 in the i+1 iteration step, which is closer to the equilibrium configuration. The out-of-balance forces of the system is defined as:

𝑷 𝑖 = 𝑸 𝑛𝑝 -𝒈 -𝑲 𝑟 | 𝒏 𝑖 𝒏 𝑖 . ( 62 
)
The difference of the minimal coordinate can be simply computed by:

d𝑼 𝑖 = 𝑲 𝑇𝑟 -1 𝑷 𝑖 . ( 63 
)
The above three equations can be used in solving nonlinear equilibrium equations based on an iteration method.

Linearized equilibrium equation in terms of the member force

The Eq.( 55) can be written linearly in terms of the member force 𝒕:

𝑨 𝑟 𝒕 = 𝑸 𝑛𝑝 -𝒈, (64) 
where 𝑨 𝑟 ∈ ℝ 𝑛 𝑈 ×𝑛 𝑒 is the equilibrium matrix for tensegrity with rigid bodies:

𝑨 𝑟 = 𝑮 𝑻 𝑨 2 . ( 65 
)
where 𝑨 2 is the equilibrium equation of traditional tensegrity [START_REF] Ma | Tensegrity system dynamics based on finite element method[END_REF]:

𝑨 2 = 𝑪 𝑇 ⊗ 𝑰 3 b. d. (𝑯). ( 66 
)
where b. d. (𝑯) is the block diagonal matrix of 𝑯. Note that the equilibrium matrix for tensegrity with rigid bodies 𝑨 𝑟 is identical to the 𝑪 matrix in Wang et al. [START_REF] Wang | Topology design of general tensegrity with rigid bodies[END_REF]. The singular value decomposition of the equilibrium matrix 𝑨 𝑟 reveals the self-stress mode and mechanism mode of the structure [START_REF] Pellegrino | Structural computations with the singular value decomposition of the equilibrium matrix[END_REF]:

𝑨 𝑟 = 𝑾𝚺𝑽 𝑇 = [𝑾 𝟏 𝑾 𝟐 ] [ 𝚺 0 𝟎 𝟎 𝟎 ] [ 𝑽 1 𝑇 𝑽 2 𝑇 ], (67) 
where 𝑾 ∈ 𝑹 𝑛 𝑈 ×𝑛 𝑈 , and 𝑽 ∈ 𝑹 𝑛 𝑒 ×𝑛 𝑒 are orthogonal matrices. Let 𝑟 = rank(𝑨 𝑟 ) be the rank of 𝑨 𝑟 . 𝑽 1 ∈ 𝑹 𝑛 𝑒 ×r , 𝑽 2 ∈ 𝑹 𝑛 𝑒 ×(𝑛 𝑒 -r) is respectively the row space and null space of 𝑨 𝑟 , and 𝑾 1 ∈ 𝑹 𝑛 𝑈 ×r , 𝑾 2 ∈ 𝑹 𝑛 𝑈 ×(𝑛 𝑈 -r)

is respectively the column space and left null space of 𝑨 𝑟 . 𝑨 𝑟 𝑽 2 = 𝟎 and 𝑨 𝑟 𝑇 𝑾 2 = 𝟎, 𝑽 2 and 𝑾 2 are the selfstress mode and mechanism mode of the tensegrity structure, respectively.

Compatibility equation

The compatibility equation is the relation between d𝑼 and d𝒍 that guarantees the structural deformations are physically valid. The compatibility equation of the structure is:

𝑩 𝑟 d𝑼 = d𝒍, (68) 
where 𝑩 𝒓 ∈ ℝ 𝑛 𝑒 ×𝑛 𝑈 is the compatibility matrix:

𝑩 𝑟 = 𝜕𝒍 𝜕𝑼 𝑇 = 𝜕𝒍 𝜕𝒏 𝑇 𝜕𝒏 𝜕𝑼 𝑇 = 𝑨 2 𝑇 𝑮. (69) 
It can be found that the compatibility matrix is the transpose of the equilibrium matrix:

𝑩 𝑟 = 𝑨 𝑟 𝑇 . ( 70 
)
This can also be proved by the principle of virtual work.

Tangent stiffness matrix

Refer to the derivation of tangent stiffness in Chen and Jiang [START_REF] Chen | Instability results from purely rotational stiffness for general tensegrity structure with rigid bodies[END_REF], the tangent stiffness matrix of the general tensegrity with the rigid body is:

𝑲 𝑇𝑟 = 𝜕(𝑩 𝑟 𝑇 𝑡) 𝜕𝑼 𝑇 = 𝑩 𝑟 𝑇 𝜕𝒕 𝜕𝑼 𝑇 + 𝜕𝑩 𝑟 𝑇 𝜕𝑼 𝑇 𝒕 = 𝑲 𝐸 + 𝑲 𝐺 . ( 71 
)
The first part of Eq.( 71) is the material stiffness 𝑲 𝐸 caused by the difference of member force:

𝑲 𝐸 = 𝑩 𝑟 𝑇 𝜕𝒕 𝜕𝒍 𝑇 𝜕𝒍 𝜕𝑼 𝑇 = 𝑩 𝑟 𝑇 𝒌 ̂𝑩𝑟 = 𝑨 𝑟 𝒌 ̂𝑨𝑟 𝑇 , (72) 
where 𝒌 = 𝑬 ̂𝑨 ̂𝒍0 -1 is the stiffness of the axial members. The second part of Eq.( 71) is the geometry stiffness 𝑲 𝐺 caused by the difference of structural shape:

𝑲 𝐺 = 𝜕𝑩 𝑟 𝑇 𝜕𝑼 𝑇 𝒕 = 𝛀 𝑇 𝒕 = ∑ 𝛀 𝑖 𝑇 𝒕 𝑖 𝑛 𝑠 𝑖=1 . ( 73 
)
where the Hessian matrix 𝛀 ∈ ℝ 𝑛 𝑒 ×𝑛 𝑈 ×𝑛 𝑈 is expressed as:

𝛀 = 𝜕𝑩 𝑟 𝜕𝑼 = [𝛀 1 𝑇 ⋯ 𝛀 𝑖 𝑇 ⋯ 𝛀 𝑛 𝑒 𝑇 ] 𝑇 . ( 74 
)
where 𝛀 𝑖 = 𝜕𝑩 𝒓𝑖 𝜕𝑼 ∈ ℝ 𝑛 𝑈 ×𝑛 𝑈 is the 𝑖th member's Hessian matrix. Note that the explicit formulation of 𝛀 is vital to calculate the geometry stiffness matrix. Fortunately, 𝛀 𝑖 can be obtained by calculating and comparing two equivalent expressions of the ith cable's acceleration 𝑙 ̈𝑖. The Eq. ( 68) is equivalent to: 

𝑙 ̇𝑖 = 𝑩 𝑟𝑖 𝑼 ̇, (75) 
Comparing Eq. ( 76) with Eq. ( 77), the matrix 𝛀 𝑖 is written as:

𝛀 𝑖 = 𝑮 𝑇 (𝑪 𝑖 𝑇 ⊗ 𝑰 3 ) 𝑷 ℎ𝑛 𝑖 𝑙 𝑖 (𝑪 𝑖 ⊗ 𝑰 3 )𝑮 + 𝑭 𝑖 . ( 78 
)
where 𝑷 ℎ𝑛 𝑖 = 𝑰 3 -𝒉 𝑛 𝑖 𝒉 𝑛 𝑖 𝑇 ∈ ℝ 3×3 denotes the projector to the plane with the normal vector 𝒉 𝑛 𝑖 , in which

𝒉 𝑛 𝑖 = 𝒉 𝑖 𝑙 𝑖
is the ith cable's unit vector. From the derivation in Appendix, the matrix 𝑭 𝑖 ∈ ℝ 𝑛 𝑈 ×𝑛 𝑈 is written as:

𝑭 𝑖 = ∑ ∑ 𝑬 𝑈𝑗 [ 𝟎 𝟎 𝟎 𝑩 𝑗 𝑇 𝒛 𝑖𝑗𝑘 × 𝒓 𝑗𝑘 × 𝑩 𝑗 ] 𝑬 𝑈𝑗 𝑇 𝑧 𝑖 𝑘=1 𝑚 𝑗=1 . ( 79 
)
in which 𝒛 𝑖𝑗𝑘 ∈ ℝ 3 is:

𝒛 𝑖𝑗𝑘 = (𝒉 𝑛 𝑖 𝑇 (𝑪 𝑖 𝑇 ⊗ 𝑰 3 )𝑬 𝑛 𝑞𝑗𝑘 ) 𝑇 . ( 80 
)
Note that the tangent stiffness is a general form of classical tensegrity. That is, if there is no rigid body, the tangent stiffness will degenerate to a classical tensegrity [START_REF] Ma | Tensegrity system dynamics based on finite element method[END_REF]. Also, note that the above derivation is generally consistent with the formulation in Chen and Jiang [START_REF] Chen | Instability results from purely rotational stiffness for general tensegrity structure with rigid bodies[END_REF]. The difference is that the proposed formulation in this paper is capable of considering free and pinned tensegrity nodes in the general tensegrity system, and the use of location matrix makes the formulation in Eq.( 79) be expressed in a more simple and neat form.

5 Form-finding of tensegrity systems with rigid bodies

In this section, we formulate the form-finding method for tensegrity systems with rigid bodies. Three numerical examples are carried out to illustrate the accuracy and efficiency of the proposed form-finding method.

5.1 Form-finding method

Form-finding procedure

The form-finding method is basically solving the nonlinear equilibrium equation. However, the self-equilibrated tensegrities lacking proper constraints have several problems in solving its equilibrium equation [START_REF] Zhang | Stiffness matrix based form-finding method of tensegrity structures[END_REF]. Firstly, the rigid body mode will lead to a singular tangent stiffness matrix. Newton's method is not able to solve the equation with a singular Hessian matrix. Secondly, the tangent stiffness matrix may have a negative eigenvalue, and the result of solving the nonlinear equilibrium equation will converge to an unstable equilibrium configuration. To ensure the result is stable equilibrium, modification of the tangent stiffness matrix to positive definite is necessary. Thirdly, an appropriate optimization objective needs to be defined to guarantee that the result approaches the equilibrium configuration. The form-finding procedure consists of the following main steps, as shown in Figure 2.

Inputs:

(1) Specify the basic data of a tensegrity system with rigid bodies, including the minimal coordinate 𝑼 0 , connectivity matrix 𝑪, axial stiffnesses vector 𝑬, cross-section area vector 𝑨, rest length vector 𝒍 0 , location matrix 𝑬 n a , 𝑬 𝑛 𝑏 , 𝑬 𝑛 𝑞𝑖𝑗 , 𝑬 U a , 𝑬 𝑈 𝑖 , 𝑬 𝑈 𝜑 , coefficient 𝑢 and ε. Compute the nodal coordinate 𝒏 0 , stiffness matrix 𝑲 𝑟 | 𝒏 0 , out-of-balance forces 𝑷 0 in the initial configuration.

Iteration:

(2) Compute the tangent stiffness 𝑲 𝑇𝑟 for the structure in the current configuration. Compute the minimal eigenvalue of the 𝑲 𝑇𝑟 as λ.

(3) Check whether the tangent stiffness matrix is positive definite or not. Use the method in Section 5.1.2 to modify the stiffness matrix such that it is positive definite.

(4) Solve the difference of minimal coordinate d𝑼 𝑖 , employ the line search algorithm in Section 5.1.3 to calculate the updated minimal coordinate 𝑼 𝑖 .

(5) Calculate the nodal coordinate 𝒏 𝑖 , stiffness matrix 𝑲 𝑟 | 𝒏 𝑖 and out-of-balance forces 𝑷 𝑖 . Check whether the current configuration is in equilibrium or not. If not, set 𝑖 ← 𝑖 + 1 and go to step (2).

(6) Terminate the iteration when an equilibrium configuration has been obtained.

Figure 2 Flow chart of the form-finding algorithm.

Modification of tangent stiffness matrix

To guarantee the form-finding result converges to a stable equilibrium. The positive definiteness of the tangent stiffness matrix 𝑲 𝑇𝑟 should be examined and modified. For the configuration 𝑼 𝑖 at an iteration step, if the minimal eigenvalue of the tangent stiffness matrix λ is negative, a sufficiently large identity matrix (|λ| + 𝑢)𝑰 will be added to 𝑲 𝑇𝑟 to obtain the modified tangent stiffness matrix 𝑲 ̃𝑇𝑟 , where 𝑢 is a positive coefficient to guarantee the modified tangent stiffness matrix is not seriously ill. Otherwise, 𝑢𝑰 will be added to the tangent stiffness matrix:

𝑲 ̃𝑇𝑟 = { 𝑲 𝑇 𝑟 + (𝑢 + ‖𝜆‖)𝑰, 𝜆 < 0 𝑲 𝑇 𝑟 + 𝑢𝑰, 𝜆 > 0 . (81) 
From experience, in this paper, we set 𝑢 = 0.1. Using the modified tangent stiffness matrix, the increment of the generalized coordinate vector d𝑼 can be obtained from Eq. ( 63):

d𝑼 𝑖 = 𝑲 ̃𝑇𝑟 -1 𝑷 𝑖 . (82)

Line search algorithm

To increase the convergence speed of solving the nonlinear equilibrium equation. We use a line search algorithm [START_REF] Armitage | Encyclopedia of biostatistics || optimization and nonlinear equations[END_REF][START_REF] Zhang | Stiffness matrix based form-finding method of tensegrity structures[END_REF] in each iteration step to minimize the total potential energy of the system. In the ith step, we update the minimal coordinate vector 𝑼 𝑖 from that in step 𝑖 -1 by:

𝑼 𝑖 = 𝑼 𝑖-1 + 𝑥d𝑼 𝑖 . ( 83 
)
where the coefficient 𝑥 is determined by the following optimization problem of single-variable function on the fixed interval:

min 𝑉(𝑥) s. t. 0 < 𝑥 ≤ 1. (84) 
Given 𝑼 𝑖 , the nodal coordinate vector 𝒏 𝑖 can be calculated by Eqs.( 9), [START_REF] Hangai | Analytical method of structural behaviours of a hybrid structure consisting of cables and rigid structures[END_REF], and ( 28). And the total potential energy can be calculated by Eqs.( 46) to (52). The line search algorithm can be simply implemented by the 'fminbnd' function in MATLAB.

Numerical examples

In 

Patio shade cover

This example presents a structure composed of a rigid triangle piece, five strings, a free node, and four pinned nodes. The index of nodes and elements are marked in black numbers and blue numbers in circles, respectively, as shown in Figure 3. And Figure 3 is the initial configuration of the generalized tensegrity. To generate the prestress of the structure, the rest length of strings is set to be 0.3 times the present length in the initial configuration, which is 𝒍 0 = 0.3𝒍. Figure 4 gives the equilibrium configuration of the form-finding result. The nodal coordinate matrix 𝑵 ∈ ℝ 3×8 in the equilibrium configuration in the form of Eq. ( 3) is given as:

𝑵 = [ 0.8955 -0.8365 0.0310 2.0000 -2.0000 0.0094 1.0000 -1.0000 0.0300 0.3221 0.3204 -1.1787 1.0000 1.0000 -2.3218 -3.0000 -3.0000 -0.1787

0 0 0 0 0 0 0 0 ]. (85) 
From Eq. ( 13), the connectivity matrix 𝑪 ∈ ℝ 5×8 in initial configuration is:

𝑪 𝑠 = [ -1 0 0 1 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 -1 0 1 0 ] . (86) 
From Eq.( 15), one can get the structure element matrix 𝑯 ∈ ℝ 3×5 : 

From Eq. (65), the equilibrium matrix for tensegrity with rigid bodies 𝑨 𝑟 ∈ ℝ 9×5 can be calculated: The mechanism mode is the null space of the material stiffness matrix which means there is no elongation of the axial member in the mechanism mode. For tensegrity systems, the mechanism mode can be stiffened by prestress, and the stability of the system can be checked by the product force [START_REF] Pellegrino | Analysis of prestressed mechanisms[END_REF][START_REF] Calladine | First-order infinitesimal mechanisms[END_REF] or by the positive-definite of tangent stiffness matrix [START_REF] Wang | Topology design of general tensegrity with rigid bodies[END_REF][START_REF] Zhang | Stability conditions for tensegrity structures[END_REF]. The eigenvalue of the tangent stiffness matrix 𝑲 𝑇𝑅 is plotted in Figure 6, we can see that all the eigenvalues of the tangent stiffness matrix are positive, which means the mechanism mode is stiffened by prestress. The deformed shape corresponding to the first four eigenvalues of the tangent stiffness matrix is plotted in Figure 7, where the dotted line is the equilibrium configuration, and the solid line is the deformed shape. As we can see, the 1 st and 4 th mode shapes contain out-of-plane deformation, while the 2 nd and 3 rd mode shapes contain pure planer deformation. 

𝑨

Tensegrity table

This example presents a self-equilibrated tensegrity table composed of two rigid bodies and four strings. Figure 8 is the initial configuration. The rest length of strings is set to be 0.3 times of present length, which is 𝒍 0 = 0.3𝒍, to generate prestress of the structure. Figure 8 shows the equilibrium configuration of the form-finding result. The prestress mode of the equilibrium matrix is:

𝑽 2 = [0.2887 0.2887 0.2887 0.8660] 𝑇 . ( 91 
)
The first three values reveal that the forces of the three long strings are the same. And the fourth value indicates that the inner force of the short string is three times of the long string at an equilibrium state. Figure 10 is the eigenvalue of tangent stiffness. The first six eigenvalues correspond to the rigid body modes of the structure. Figure 11 shows the mode shape of the tensegrity table, where mode 6 is a pure rotational mode that has zero stiffness. The 7 th mode is the most flexible one, which involves the relative rotation of two rigid bodies around the Z-axis.

Figure 11 The mode shape of the tangent stiffness matrix.

Spherical tensegrity

This example presents a spherical tensegrity composed of multiple rigid bodies in which all nodes lie on the vertices of a regular polyhedron. Truncated tensegrity is the simplest way to build spherical tensegrities, and there are a few studies about this topic [START_REF] Li | A monte carlo form-finding method for large scale regular and irregular tensegrity structures[END_REF][START_REF] Zhang | Stiffness matrix based form-finding method of tensegrity structures[END_REF][START_REF] Yuan | Form-finding of tensegrity structures based on the levenberg-marquardt method[END_REF][START_REF] Zhang | Self-equilibrium and super-stability of truncated regular polyhedral tensegrity structures: a unified analytical solution[END_REF]. In this example, we propose a novel method to build spherical tensegrity with rigid bodies and study the equilibrium condition of the structure. Here we use the tetrahedron as an example to illustrate the step-by-step procedure to generate a spherical tensegrity with a rigid body, and the equilibrium configuration as well as the member force of all the other regular polyhedrons tensegrity with rigid bodies.

In Figure 12, four rigid bodies are initially placed in the plane of the tetrahedron, and rigid bodies nodes are placed in the vertices of the tetrahedron. Each rigid body is rotated by an angle φ about the normal line of the plane to generate a new shape with 12 nodes, as shown in Figure 13.

Figure 12 A tetrahedron build with rigid bodies. Figure 13 Rotation of the rigid bodies.

If we connect the nodes of the rigid bodies in the initial configuration, there will be 12 truncating-edge strings and 6 vertical strings, as in Figure 14. To prestress the spherical tensegrity, the rest length of the vertical strings is set to [0.1,0.8] times its present length while truncating-edge strings are identical to its present length. The form-finding result of a truncated tetrahedral generalized tensegrity is shown in Figure 15. The force density of Figure 17 Form-finding solution of octahedral generalized tensegrities.

Figure 18 Form-finding solution of dodecahedral generalized tensegrities.

Figure 19 Form-finding solution of icosahedral generalized tensegrities.

Tensegrity spine

As the last example, we study a tensegrity spine [START_REF] Zappetti | Variable-stiffness tensegrity spine[END_REF][START_REF] Sabelhaus | Model-predictive control with inverse statics optimization for tensegrity spine robots[END_REF] composed of multiple rigid bodies. The rest length of all the diagonal strings is set to 0.9 times the present length. The rest length of the three groups of vertical side strings is set to 0.9 times the present length, while the rest length of the other group of vertical side strings is set to 0.6 times the present length. The equilibrium configuration calculated by the form-finding method is shown in Figure 21.

The rest length of two groups of vertical side strings in the opposite positions is 0.9 times the length in the initial shape, while the rest length of the other two groups of vertical side strings varies from 0.5 to 1.1 times the length in the initial shape. The equilibrium configuration calculated by the form-finding method is shown in Figure 22. 

Conclusions

During the past few decades, pure bar-string network tensegrity has shown its great strength in designing efficient structures in many aspects. However, to embrace a much more general problem of system design using the tensegrity paradigm, rigid bodies must be included. Aiming at extending the ability to analyze rigid body tensegrities with analytical tools, this paper formulates the nonlinear equilibrium equation of the rigid body tensegrity in an explicit form in terms of the minimal coordinate. To get the insight of each structure member, we derived its equivalent form, which is a linear equation in terms of the force vector. Then, we also provide the compatibility equation and tangent stiffness matrix of the system for stability analysis. Finally, based on the equilibrium and stiffness equations, an efficient form-finding method of the rigid body tensegrity is given. In the proposed form-finding method, modification of tangent stiffness matrix and line search algorithm is used to guarantee the result to fast converge to a stable equilibrium configuration. It is also shown that without rigid bodies, the nonlinear equilibrium equations of the general tensegrity degenerate to the ones of the traditional tensegrity. Four numerical examples are given to prove the accuracy and efficiency of the developed principles.

Results show that the developed principles are capable of dealing with form-finding from a non-equilibrium state, finding the prestress and mechanism modes, and conducting stiffness studies.

is the 𝑖th cable's unit vector. The 𝑖th cable's acceleration is:

𝑙 ̈𝑖 = 𝒉 ̇𝑛𝑖 𝑇 𝒉 ̇𝑖 + 𝒉 𝑛 𝑖 𝑇 𝒉 ̈𝑖.

(
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𝒉 ̇𝑛𝑖 is the time derivative of the 𝑖th cable's unit vector, which can be derived as: 

𝒉 ̇𝑛𝑖 =
where 𝑷 ℎ𝑛 𝑖 = 𝑰 3 -𝒉 𝑛 𝑖 𝒉 𝑛 𝑖 𝑇 ∈ ℝ 3×3 is a symmetric matrix. Therefore, using Eqs.( 43), [START_REF] Zhang | Optimization for energy absorption of 3-dimensional tensegrity lattice with truncated octahedral units[END_REF], and (94), the first term of Eq.( 93) can be rewritten as: The acceleration of the 𝑘th node on the 𝑗th rigid is:

𝒏̈𝑞 𝑗𝑘 = 𝒏̈𝑐 𝑗 + 𝝎̇𝑗 × 𝒓 𝑗𝑘 + 𝝎 𝑗 × (𝝎 𝑗 × 𝒓 𝑗𝑘 ).

According to Eqs.( 9) and ( 14), the second term of Eq.( 93) is: 

𝒉

Figure 1

 1 Figure 1 Diagram of tensegrity with rigid bodies, bar (𝑏) and string (𝑠) vectors are marked in black and red.

4

 4 

  this section, four examples are studied to demonstrate the accuracy and efficiency of the proposed formfinding method for tensegrity with rigid bodies. Different examples are carefully chosen to represent generalized tensegrity with one or multiple rigid bodies, with or without free nodes and pinned nodes. In these examples, the equilibrium configurations and prestress are tuned by varying the rest length of the strings in the structure. The tangent modulus and cross-sectional area of the strings in all the examples are set to be 7.6 × 10 10 Pa and 1 × 10 -4 m 2 .

Figure 3 .Figure 4 .

 34 Figure 3. The initial configuration

  of equilibrium matrix reveals the rank of 𝑨 𝑟 is 𝑟 = 4. That is to say, the structure has s = 5 -r = 1 self-stress mode and m = 9 -𝑟 = 5 mechanism modes. The null space of the equilibrium matrix 𝑨 𝑟 gives the self-stress mode 𝑽 2 of the system: 𝑾 2 represent a mechanism mode. The five mechanism mode shapes are plotted in Figure5, where the dashed line and solid lines are the equilibrium configuration and the deformed shape of the mechanism, respectively. The 1 st , 3 rd , and 4 th mechanism modes correspond to the rotation motion of the rigid body about the X, 𝑌, 𝑍-axis. The 2 nd mechanism mode contains the translation motion of the rigid body in the 𝑍-axis, and the 5 th mode contains the translation of free node in the 𝑍-axis, translation of mass center in 𝑋, 𝑌-axis, and rotation of rigid body by 𝑍-axis.

Figure 5

 5 Figure 5 The five mechanism modes of the structure.

Figure 6

 6 Figure 6 Eigenvalue of the tangent stiffness matrix.

Figure 7

 7 Figure 7 Deformed shapes of the modes corresponding to the first four eigenvalues.

Figure 8

 8 Figure 8 The initial configuration of the tensegrity table.

Figure 9

 9 Figure 9 The equilibrium configuration of the tensegrity table.

Figure 10

 10 Figure 10 Eigenvalues of the tangent stiffness matrix.

Figure 14

 14 Figure 14 Initial configuration of a tetrahedron tensegrity with rigid bodies

Figure 16 Form

 16 Figure 16 Form-finding solution of hexahedron generalized tensegrities.

Figure 20

 20 is the initial configuration of the tensegrity spine. The tensegrity spine is composed of 10 rigid body units, and the 10 rigid bodies are connected by four groups of vertical side strings and nine groups of diagonal strings.

Figure 20

 20 Figure 20 The initial configuration of the tensegrity spine.

Figure 21 C

 21 Figure 21 C-shape, achieved by changing the rest length of the strings on one side linearly.

Figure 22 S

 22 Figure 22 S-shape, achieved by changing the rest length of the strings on two sides sinusoidally but with different phases.

  

  1, 2, ⋯ , 𝑛 𝑎 ) , 𝑏 𝛽 (𝛽 = 1, 2, ⋯ , 𝑛 𝑏 ) and 𝑞 𝑖𝑗𝑥 , 𝑞 𝑖𝑗𝑦 , 𝑞 𝑖𝑗𝑧 (𝑖 = 1, 2, ⋯ , 𝑚; 𝑗 = 1,2, ⋯ , 𝑧 𝑖 ) are the indices of the entries corresponding to the free tensegrity nodes, pinned tensegrity nodes, and the 𝑋, 𝑌, 𝑍 freedom of the jth node in the ith rigid body in the nodal vector 𝒏. We use vectors 𝒏 𝑎 , 𝒏 𝑏 , and 𝒏 𝑞 𝑖𝑗 to label the nodal coordinate of the free node, pinned node, and the jth node in the ith rigid body. And 𝑬 𝑛𝑎 ∈ ℝ 3𝑛 𝑛 ×𝑛 𝑎 , 𝑬 𝑛𝑏 ∈ ℝ 3𝑛 𝑛 ×𝑛 𝑏 , and 𝑬 𝑛 𝑞𝑖𝑗 ∈ ℝ 3𝑛 𝑛 ×3 are the location matrices to extract vectors 𝒏 𝑎 , 𝒏 𝑏 , and 𝒏 𝑞 𝑖𝑗 from the vector 𝒏: 𝑬 𝑛𝑎 (: , 𝑘) = 𝑰 3𝑛 𝑛 (: , 𝑎 𝑘 ), 𝑬 𝑛𝑏 (: , 𝑘) = 𝑰 3𝑛 𝑛 (: , 𝑏 𝑘 ), 𝑬 𝑛 𝑞𝑖𝑗 = 𝑰 3𝑛 𝑛 (: , [ 𝑞 𝑖𝑗𝑥 𝑞 𝑖𝑗𝑦 𝑞 𝑖𝑗𝑧]),

  cos 𝛽 cos 𝛾 sin 𝛽 sin 𝛼 + sin 𝛾 cos 𝛼 -cos 𝛾 sin 𝛽 cos 𝛼 + sin 𝛾 sin 𝛼 -sin 𝛾 cos 𝛽 -sin 𝛾 sin 𝛽 sin 𝛼 + cos 𝛾 cos 𝛼 sin 𝛾 sin 𝛽 cos 𝛼 + cos 𝛾 sin 𝛼

			].
	sin 𝛽	-cos 𝛽 sin 𝛼	cos 𝛽 cos 𝛼

  𝑮 𝑻 𝒇 + 𝑬 𝑈 𝑐 𝒇 𝑐 + 𝑬 𝑈 𝝋 𝑩 𝑇 𝒎 𝑐 ,

	𝜕𝒏 𝑇 𝜕𝑼	𝒇 + ∑ 𝑛 𝑒 𝑖=1	𝜕𝒏 𝑐𝑖 𝑇 𝜕𝑼	𝒇 𝑐𝑖	𝑛 𝑒 + ∑ 𝑖=1	𝑇 𝜕𝝎 𝑖 𝜕𝑼 ̇𝒎𝑐𝑖	(58)
	= 𝑮 𝑻 𝒇 + ∑ 𝑬 𝑈𝑐𝑖 𝒇 𝑐𝑖 𝑛 𝑒 𝑖=1	+ ∑ 𝑬 𝑈𝝋𝑖 𝑩 𝑖 𝑛 𝑒 𝑇 𝒎 𝑐𝑖 𝑖=1

13

=

  𝑛 𝑖 𝑇 𝒉 ̈𝑖 = 𝒉 𝑛 𝑖 𝑇 (𝑪 𝑖 𝑇 ⊗ 𝑰 3 )𝒏̈= 𝒉 𝑛 𝑖 𝑇 (𝑪 𝑖 𝑇 ⊗ 𝑰 3 )(𝑬 𝑛 𝑎 𝒏̈𝑎 + ∑ ∑ 𝑬 𝑛 𝑞𝑗𝑘 𝒏̈𝑞 𝑗𝑘 𝒛 𝑖𝑗𝑘 = (𝒉 𝑛 𝑖 𝑇 (𝑪 𝑖 𝑇 ⊗ 𝑰 3 )𝑬 𝑛 𝑞𝑗𝑘 ) Substitute Eq.(98) into Eq.(97), 𝒉 𝑛 𝑖 𝑇 𝒉 ̈𝑖 can be rewritten explicitly with 𝑼 ̇ and 𝑼 ̈: 𝒉 𝑛 𝑖 𝑇 𝒉 ̈𝑖 = 𝒉 𝑛 𝑖 𝑇 (𝑪 𝑖 𝑇 ⊗ 𝑰 3 ) (𝑬 𝑛 𝑎 𝑬 𝑈 𝑎 𝑇 + ∑ ∑ 𝑬 𝑛 𝑞𝑗𝑘 𝑮 ̅ 𝑗𝑘 𝑬 𝑈𝑗 With the Eqs.(94)-(101), Eq.(93) can be rewritten as: 𝑙 ̈𝑖 = 𝑩 𝑟𝑖 𝑼 ̈+ 𝑼 ̇𝑇(𝑮 𝑇 (𝑪 𝑖 𝑇 ⊗ 𝑰 3 ) Compare Eq.(76) with Eq.(102), the matrix 𝛀 𝑖 is: 𝛀 𝑖 = 𝑮 𝑇 (𝑪 𝑖 𝑇 ⊗ 𝑰 3 )

	where 𝒛 𝑖𝑗𝑘 is:						
								𝑇	.	(99)
								𝑚 𝑗=1	𝑧 𝑖 𝑘=1	𝑇	) 𝑼 ̈+
	∑ ∑ 𝑼 ̇𝑇𝑬 𝑈𝑗 [ 𝑘=1 𝑚 𝑗=1	𝟎 𝟎 𝑩 𝑗 𝑇 𝒛 𝑖𝑗𝑘 × 𝒓 𝑗𝑘 × 𝑩 𝑗 𝟎	] 𝑬 𝑈𝑗 𝑇 𝑼 ż𝑖 = 𝑩 𝑟 𝑖 𝑼 ̈+ 𝑼 ̇𝑇𝑭 𝑖 𝑼 ̇,	(100)
	where 𝑭 𝑖 ∈ ℝ 𝑛 𝑈 ×𝑛 𝑈 is:						
	𝑭 𝑖 = ∑ ∑ 𝑧 𝑖 𝑘=1 𝑚 𝑗=1	𝑬 𝑈𝑗 [	𝟎 𝟎 𝑩 𝑗 𝑇 𝒛 𝑖𝑗𝑘 𝟎 × 𝒓 𝑗𝑘 × 𝑩 𝑗	] 𝑬 𝑈𝑗 𝑇	,	(101)
						𝑷 ℎ𝑛 𝑖 𝑙 𝑖	(𝑪 𝑖 ⊗ 𝑰 3 )𝑮 + 𝑭 𝑖 )𝑼 ̇.	(102)
				𝑷 ℎ𝑛 𝑖	
					𝑙 𝑖	
								𝑚 𝑗=1	𝑧 𝑖 𝑘=1	).	(97)
	Substitute Eq.(96) into the second term of Eq.(97), we have:
	𝒉 𝑛 𝑖 𝑇 (𝑪 𝑖 𝑇 ⊗ 𝑰 3 )𝒏̈𝑞 𝑗𝑘 = 𝒛 𝑖𝑗𝑘 𝑇 [𝑰 3 (-𝒓 𝑗𝑘 ) × ] [	𝒏̈𝑐 𝑗 𝝎̇𝑗	] + [𝒏̇𝑐 𝑗 𝑇	𝝎̇𝑗] [	𝟎 3×3 𝟎 3×3 𝟎 3×3 𝒛 𝑖𝑗𝑘 × 𝒓 𝑗𝑘 × ] [	𝒏̇𝑐 𝑗 𝝎 𝑗	] =
	𝒛 𝑖𝑗𝑘 𝑇 [𝑰 3 (-𝒓 𝑗𝑘 ) × 𝑩 𝑗 ]𝑼 ̈𝑗 + 𝑼 ̇𝑗 𝑇 [	𝟎 𝟎 𝑩 𝑗 𝑇 𝒛 𝑖𝑗𝑘 𝟎 × 𝒓 𝑗𝑘 × 𝑩 𝑗	] 𝑼 ̇𝑗 = 𝒉 𝑛 𝑖 𝑇 (𝑪 𝑖 𝑇 ⊗ 𝑰 3 )𝑬 𝑛 𝑞𝑗𝑘 𝑮 ̅ 𝑗𝑘 𝑬 𝑈𝑗 𝑇 𝑼 ̈+	(98)
	𝑼 ̇𝑇𝑬 𝑈𝑗 [ 𝟎 𝟎 𝑩 𝑗 𝑇 𝒛 𝑖𝑗𝑘 𝟎 × 𝒓 𝑗𝑘 × 𝑩 𝑗	] 𝑬 𝑈𝑗 𝑇 𝑼 ̇,

(𝑪 𝑖 ⊗ 𝑰 3 )𝑮 + 𝑭 𝑖 .

(103)
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Appendix

Derivation of the cable acceleration From Eq.( 16), the 𝑖th cable's velocity is:

where 𝒉 𝑛 𝑖 = 𝒉 𝑖 𝑙 𝑖