
HAL Id: hal-03568955
https://hal.science/hal-03568955

Submitted on 7 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Comparison of Different Approaches to Clinical
Phenotyping of Lithium Response: A Proof of Principle
Study Employing Genetic Variants of Three Candidate

Circadian Genes
Jan Scott, Mohamed Lajnef, Romain Icick, Frank Bellivier, Cynthia

Marie-Claire, Bruno Etain

To cite this version:
Jan Scott, Mohamed Lajnef, Romain Icick, Frank Bellivier, Cynthia Marie-Claire, et al.. A Compari-
son of Different Approaches to Clinical Phenotyping of Lithium Response: A Proof of Principle Study
Employing Genetic Variants of Three Candidate Circadian Genes. Pharmaceuticals, 2021, 14 (11),
pp.1072. �10.3390/ph14111072�. �hal-03568955�

https://hal.science/hal-03568955
https://hal.archives-ouvertes.fr


pharmaceuticals

Article

A Comparison of Different Approaches to Clinical Phenotyping
of Lithium Response: A Proof of Principle Study Employing
Genetic Variants of Three Candidate Circadian Genes

Jan Scott 1,2 , Mohamed Lajnef 3, Romain Icick 4,5, Frank Bellivier 4,5, Cynthia Marie-Claire 4

and Bruno Etain 4,5,*

����������
�������

Citation: Scott, J.; Lajnef, M.;

Icick, R.; Bellivier, F.; Marie-Claire, C.;

Etain, B. A Comparison of Different

Approaches to Clinical Phenotyping

of Lithium Response: A Proof of

Principle Study Employing Genetic

Variants of Three Candidate

Circadian Genes. Pharmaceuticals

2021, 14, 1072. https://doi.org/

10.3390/ph14111072

Academic Editor: Marco Scarselli

Received: 26 September 2021

Accepted: 22 October 2021

Published: 23 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Neuroscience, Newcastle University, Newcastle NE7 6RU, UK; jan.scott@newcastle.ac.uk
2 Sorbonne Paris Cité, Université Paris Diderot, F-75006 Paris, France
3 INSERM UMR 955, IMRB, Université Paris Est Créteil, F-94000 Créteil, France; mohamed.lajnef@inserm.fr
4 INSERM UMR-S 1144, Université de Paris, F-75006 Paris, France; romain.icick@lrb.aphp.fr (R.I.);

frank.bellivier@inserm.fr (F.B.); cynthia.marie-claire@parisdescartes.fr (C.M.-C.)
5 AP-HP Nord, DMU Neurosciences, GHU Lariboisière-Fernand Widal, Département de Psychiatrie et de

Médecine Addictologique, F-75010 Paris, France
* Correspondence: bruno.etain@inserm.fr

Abstract: Optimal classification of the response to lithium (Li) is crucial in genetic and biomarker
research. This proof of concept study aims at exploring whether different approaches to phenotyping
the response to Li may influence the likelihood of detecting associations between the response and
genetic markers. We operationalized Li response phenotypes using the Retrospective Assessment
of Response to Lithium Scale (i.e., the Alda scale) in a sample of 164 cases with bipolar disorder
(BD). Three phenotypes were defined using the established approaches, whilst two phenotypes were
generated by machine learning algorithms. We examined whether these five different Li response
phenotypes showed different levels of statistically significant associations with polymorphisms of
three candidate circadian genes (RORA, TIMELESS and PPARGC1A), which were selected for this
study because they were plausibly linked with the response to Li. The three original and two revised
Alda ratings showed low levels of discordance (misclassification rates: 8–12%). However, the sig-
nificance of associations with circadian genes differed when examining previously recommended
categorical and continuous phenotypes versus machine-learning derived phenotypes. Findings us-
ing machine learning approaches identified more putative signals of the Li response. Established
approaches to Li response phenotyping are easy to use but may lead to a significant loss of data
(excluding partial responders) due to recent attempts to improve the reliability of the original rating
system. While machine learning approaches require additional modeling to generate Li response
phenotypes, they may offer a more nuanced approach, which, in turn, would enhance the probability
of identifying significant signals in genetic studies.

Keywords: bipolar disorder; lithium; response; phenotype; genetics; circadian genes; machine learning

1. Introduction

Clinical practice guidelines identify lithium (Li) as a first-line treatment for mood stabi-
lization in bipolar disorders (BD) [1,2]. Unfortunately, only approximately 30% of patients
show a good response, and variability in treatment outcome is poorly understood [3–5].
It is envisioned that precision medicine or personalized psychiatry approaches will enable
the stratification of BD cases into treatment-relevant subgroups [6,7]. However, for this
research to be successful, greater attention is needed regarding the method for classifying
clinical phenotypes of the Li response [8].

The ideal research assessment of the Li response would involve the systematic prospec-
tive follow-up of Li-naive cases that are prescribed this medication for the first time [9].
However, this gold-standard approach is complex, so most genetic studies [10–12] identify
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clinical phenotypes of the Li response from ratings of the Retrospective Assessment of
Response to Lithium Scale (usually referred to as the Alda scale) [13]. The Alda scale com-
prises two subscales: The A scale (which measures overall response) and the B scale (which
assesses five potential confounders of response). In the original guidelines, Li response was
reported either by the Total Score as a continuous measure (TS = A score minus B score) or,
more often, as a categorical outcome (with cases classified as good or non-responders, i.e.,
GR or NR) [13,14]. However, when Manchia et al. (2013) undertook an inter-rater reliability
study with researchers from the Consortium on Li Genetics (ConLiGen), reliability was low
for Alda scale ratings of BD cases with high B scale scores (typically cases with complex
clinical presentations). It was suggested that in order to overcome these problems, the Li
response (using the A scale) should only be rated in the subsample of individuals with a
low score on the B scale [15].

More recently, we examined alternative approaches to improving the performance of
the Alda scale [16]. We systematically assessed its clinimetric and psychometric properties
(in a ConLiGen sample N > 2500) and demonstrated that the Alda scale is best viewed
as a multi-dimensional index that assesses several independent modifiers of the noise-
to-signal ratio for Li response (i.e., rating the Alda scale may not be a simple procedure).
Applying this knowledge, we implemented a stepwise algorithm (generated via machine
learning) to produce a best estimate of the Li response. When the algorithm was used
in separate, independent clinical samples, it was shown that this approach can increase
the overall accuracy of the allocation of BD cases to categorical or continuous Li response
phenotypes without sample attrition [16,17]. Furthermore, this best estimate classification
identified clinical characteristics and objective markers of rest–activity rhythms associated
with Li response [16,18]. The next step in assessing the validity of this new strategy for
ascertaining Li response phenotypes is to undertake a “proof of principle” study that
compares established and revised Alda scale ratings and examines their associations with
genetic markers for Li response.

To select plausible genes for this proof of principle study, we decided to focus on
genes involved in the circadian system. We argue that this is justified as it is repeatedly
suggested that the therapeutic action of Li can be partly explained by modifications and
stabilization of circadian rhythms [19,20]. For instance, recent meta-analyses and reviews
suggest that Li modifies the phase preference and amplitude of rhythms in BD cases and
that genetic polymorphisms associated with circadian rhythm dysregulation contribute to
the Li response [21–25]. More specifically, our own research group identified significant
associations between certain TIMELESS and RORA genotypes and circadian phenotypes
(phase preference and amplitude of rhythms) in BD cases and found that the Li response
may be associated with some PPARGC1A and/or RORA genotypes [26,27]. Other publi-
cations similarly identify that levels of expression and/or polymorphisms of core clock
genes (such as TIMELESS) may be associated with the level of Li response [28,29]. Given
these findings, we hypothesized that there may be significant associations between the Li
response and these three circadian/clock genes (RORA, TIMELESS and PPARGC1A) and
that these genes may be plausible candidates for this proof of principle study.

In sum, although the Alda scale is the most widely employed rating of Li response,
there is a lack of consensus on how best to ascertain clinical phenotypes, which potentially
hinders progress in this research field. This paper describes a database study of Li response
that explores the strengths and weaknesses of different approaches to rating the Alda scale
in a well-characterized clinical sample of adults with a diagnosis of BD. We report overall
agreement between different approaches to evaluating Li response phenotypes and rates
of discordance. Then, we examine associations between each clinical phenotype for Li
response and genetic variants in three candidate circadian genes. Finally, we consider the
advantages and disadvantages of the different approaches.
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2. Results
2.1. Sample Characteristics and Li Response Phenotypes

As shown in Table 1, most of the sample was female (60%) and met diagnostic criteria
for BD-I (78%). Mean age at interview was approximately 45 and mean duration of illness
was just under 20 years. Regarding the Alda scale, the mean A scale score was 6.33; for the
B scale, the modal score was zero for items B1-3 and one for items B4-5.

Table 1. Sample characteristics (n = 164, unless otherwise stated).

Characteristic Mean (s.d.) or Number (% *)

Demography and diagnosis
Female 99 (60%)

Mean age at interview in years 44.70 (12.29)
Bipolar Disorder type I 128 (78%)

Mean duration of illness in years 19.43 (11.27)
Alda Scale scores

A scale score 6.33 (2.99)
B scale items: prevalence of raw scores **

B1—Number of episodes pre-Li 112 (68%): 45 (27%): 8 (5%)
B2—Frequency of episodes pre-Li 100 (61%): 57 (34%): 8 (5%)

B3—Duration Li treatment 122 (74%): 15 (9%): 28 (17%)
B4—Adherence to Li 18 (11%): 140 (85%): 7 (4%)

B5—Co-prescriptions/Polypharmacy 57 (34%): 63 (39%): 45 (27%)
Genotypes ***

RORA (rs17204910) CC: 34 - TC: 88 - TT: 34
PPARGC1A (rs2932965) AA: 23 - AG: 79 - GG: 53
TIMELESS (rs774045) AA: 1 - AG: 45 - GG: 110

s.d.: standard deviation; Li: lithium; * reported to the nearest whole number; ** B items are scored as 0:1:2 (high
score indicates more confounding); *** N = 156.

According to the original approaches, 21% (n = 35) of cases were classified as GR
according to the original categorical approach (Alda Cats) and, using a continuous measure
of Li response, the mean TS (Total Score) was 3.7 (s.d 2.8; median = 4). Using the approach
proposed by Manchia et al. 2013 for estimating Li response, we found that there were
106 cases with a B score < 4; in this subgroup, the mean A scale score was 6.9 (s.d. 2.8;
median = 8). Machine learning classified 26% cases (n = 43) as GR (using the categorical
“Algo” approach); the nearest equivalent of the continuous measurement of Li response,
namely the probability of GR (GRp), was estimated as GRp > 0.62.

2.2. Comparison of Accuracy and Discordance for Li Response Phenotypes

When we compared traditional and machine learning approaches to classification
(i.e., Alda Cats versus Algo, TS versus GRp and A/Low B versus GRp), we found that the
PPVs were all >80%, the NPVs were all >95% and overall agreements were all >90%. The
proportion of cases with discordant classifications was lowest for categorical phenotypes
(8%) and highest for A/Low B versus GRp (12%). The latter was likely influenced by the
reduced sample size (as only 106 cases met the A/Low B criteria).

2.3. Associations between Genotypes and Li Response Phenotypes

As shown in Figure 1, the A/Low B phenotype showed no associations with any of
the studied SNPs (there was a trend with TIMELESS); TS showed a significant association
with TIMELESS, whilst Alda Cats showed significant associations with TIMELESS and
PPARGCIA. The Algo classification showed significant associations with all three SNPs,
whilst GRp showed associations with TIMELESS and PPARGC1A (with a trend for RORA).
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Figure 1. Examination of Li response phenotypes and SNPs within TIMELESS, PPARGC1A and RORA. (An A-dominant
model was used for TIMELESS and PPARGC1A).

The classification trees for Li response categories are shown in Figure 2. As can be
seen in Figure 2a, only the TIMELESS genotype met the criteria for inclusion in the tree
based on Alda Cats (X2 = 21.1; Adjusted p value < 0.001). Overall, 89% of TIMELESS GG
homozygotes were NR (Node 1), whilst 43% of those with TIMELESS AA/AG genotypes
were GR (Node 2). The most obvious difference in the classification tree (Figure 2b) based
on the Algo is that both the RORA (X2 = 12.46; Adjusted p value < 0.002) and TIMELESS
(X2 = 5.03; Adjusted p value < 0.02) genotypes were included in the model (i.e., including
PPARGC1A did not further improve the classification). For RORA, 91% of CC homozygotes
were NR (Node 1), while 47% of TT homozygotes were GR (Node 3). Among individuals
with a RORA TC genotype (Node 2), 80% of TIMELESS GG homozygotes were NR (Node 4),
whilst 43% of individuals with a TIMELESS AA/AG genotype were GR (Node 5).
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Figure 2. Classification tree models for Li response phenotypes (NR = non-response; GR = good
response) and genotypes of candidate circadian genes (rs17204910-R: RORA; rs774045-T: TIMELESS).
(a) Classification tree using the original categories (Alda Cats). (b) Classification tree using the
machine learning algorithm (Algo).

For readers less familiar with CHAID (Chi-Square Automatic Interaction Detector)
analysis, we briefly summarize here how to interpret the outputs. A CHAID analysis
generates a bifurcating decision tree composed of a root node (the variable with the
strongest association with the dependent variable and lowest p value), which then branches
and grows iteratively into internal and terminal nodes (the latter represent variables that
carry the maximum information). The order of importance of explanatory variables is
represented by the tree structure and the percentages shown within the nodes are an
indicator of the relevance of each characteristic as a primary predictor of Li response status
(similar to PPV and NPV). In the current study, the classification rates are reported for
different combinations of genotypes. As the roots and nodes may link in different ways
(following an “if–then” type sequence), there may be more than one classification rate
associated with variables included in the tree. Tree building ends when the p values of
all the observed independent variables are above the specified threshold for statistical
significance, so the absence of any genotype or demographic variables from the trees
that we report indicates that those items (although included in the list of variables for
analysis) did not make a meaningful additional contribution to case classification. We have
not reported summary statistics for each root and node (this has been done to make the
classification tree easier to interpret, but all these statistics are available upon request).

3. Discussion

The primary goal of this study was not to interpret any associations between genetic
variants of circadian genes and Li response per se (nor to discuss any biological relevance
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of these genes), but to examine if machine learning approaches to clinical phenotyping
are viable and have any advantages over established strategies. This is important as it
is increasingly acknowledged that advances in precision psychiatry need an integrated
science approach to ensure reliable and valid ascertainment of clinical phenotypes and
of any differential associations with genetic and/or other type of biomarkers of disease
or treatment outcome [4]. In this proof of principle study, we explored links between
clinical phenotypes of Li response (three original and two revised estimates) and genetic
variants in three candidate circadian genes. The latter were selected for their involvement
in the molecular mechanisms of the regulation of circadian rhythms and their previous
associations with BD and/or treatment response and thus were plausible candidates to be
used in a proof of principle study.

We demonstrated that, although discordance rates for case classification between the
different approaches to phenotyping were low, the subtle shifts in the balance between GR
and NR may enable the revised approaches to identify more potential genetic signals of
Li response than the traditional approaches. Further, an exploratory data mining analysis
(using CHAID analysis) identified a subtle inter-relationship between genotypes (especially
those of TIMELESS and RORA) and the revised categorical (Algo) phenotype that was not
discovered by the original (Alda Cats) approach to the classification of responders.

Of course, our findings must be treated with caution as the study population was
recruited from a limited number of academic psychiatry clinics in the same country and
represents a convenience sample extracted from a pre-existing dataset. Importantly, the
selection and number of candidate genes and SNPs may be questioned, as we focused on
one candidate biological pathway and used only one SNP per gene, which is obviously
restrictive and likely biased. This selection of candidate genes is, by definition, debatable
and other approaches may have focused rather on genes that reached (or nearly reached)
significant thresholds in previous GWAS studies [30,31]. Moreover, this sample may be
regarded as too small to detect any differences between genotype-based groups for response
to Li. However, a design with group sample sizes (based on genotype distribution) can
detect effect sizes of 0.5 for TIMELESS and PPARGC1A and an effect size of 0.6 for RORA,
with a power above 0.80, assuming a two-sided criterion for detection (based on means
and SDs of the Alda total score) that allows a maximum Type I error rate of alpha = 0.05.
Despite these limitations, the potential strength of this study is that it highlights that the
three established and most widely used approaches to operationalizing the Li response
do not produce consistent signals. This is important as nearly all genetic studies of the Li
response have reported their findings based on the Alda Cats approach alongside one of
the two continuous measures [10]. The disparities in findings across these three traditional
response phenotypes are a cause for concern and, whilst imperfect, the revised algorithms
do show greater consistency.

Of the three original approaches, the A/Low B strategy is the newest estimate of Li
response, and it was introduced because of concerns over the accuracy of the TS and, by
default, of the Alda Cats [15]. It can be argued that the A/Low B approach is justifiable as
(a) it is easy to implement and was introduced to enhance inter-rater reliability, and (b) it
is likely to minimize false positives. However, excluding cases with high B scale scores
can adversely impact treatment research as (a) it reduces the sample size for investigation
(e.g., 34% of the current sample were excluded from analyses using this approach and there
was a clear drop of -log(p) as compared to TS), and (b) it assumes that all confounders
are equally important across all samples (which other research indicates is unlikely).
As such, this estimate represents a pragmatic rather than empirical approach to trying to
overcome some of the psychometric weaknesses of the Alda scale. In the current study, this
approach produced results that are difficult to reconcile with findings associated with other
established approaches (Alda Cats and/or TS) and failed to identify signals identified by
the machine learning approaches.

The most obvious advantage of the best estimate approach to phenotyping is that
it offers a more nuanced approach to defining the Li response as the machine learning
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algorithms address the differential impact on response (or confidence in assessing response)
of some confounders and/or the complexity of inter-relationships between confounders
within a given study population. The Algo classification is easier to replicate and interpret,
as it balances GR versus NR. Further, the Algo and GRp approaches appear to show more
similarities than differences (in contrast to original approaches). However, we believe
that the model for generating GRp requires more work (i.e., it probably needs further
refinement of thresholds and/or greater consideration of other confounders and/or their
inter-relationships, with a broader range of demographic and clinical factors than those
currently considered by the Alda scale). Overall, the main advantage of the best estimate
approach is that, unlike the ‘A/Low B’ strategy, the GR/NR split is empirically derived,
and the algorithm attempts to classify all cases without exception (also, thresholds for GRp
could be modified according to study priorities, e.g., preference for identifying true GR or
true NR).

At a practical level, the machine learning approaches to evaluating the Li response
can be applied in two ways. For investigators with limited resources, existing machine
learning algorithms can be applied to generate Li response phenotypes (by running existing
statistical syntax derived from ConLiGen samples; [16,30]). Alternatively, researchers with
more time and resources could run the machine learning model de novo and generate
Li response phenotypes that are specific to their BD study population. This can provide
insights into how sampling influences the identification of Li response phenotypes and
may help in the discovery of linked biomarkers in datasets with genomic data [32], brain
imaging [33] or other types of biomarkers [34].

In conclusion, we note that the original TS/Alda Cats approaches to rating the Alda
scale are somewhat simplistic. For instance, it fails to address the issue of Li non-response
due to minimal direct benefit from Li (A score rating) versus non-response associated
with high levels of confounding (e.g., those with high B and high A score versus those
with high B and low A score, etc.). The A/Low B approach has some advantages, not
least that it can be efficiently applied. However, this more stringent approach leads to
a reduction in sample size. This might be accommodated in large studies, but it is a
significant issue in smaller-scale studies. Furthermore, this approach actively deselects
cases with high B scores (which, as we know, often have complex presentations). This may
be appropriate for signal detection in genetic research, but it undermines clinical research
aimed at understanding the Li response in difficult-to-treat cases (i.e., those that often
require the most input and resources). The latter represent a real-world clinical population
where response prediction would be highly valued. The next step for the current project
is to replicate the findings in a larger study designed with the specific aim of testing the
revised approaches to phenotyping in a representative clinical cohort, at the level of the
entire circadian system genes and/or at a genome-wide level.

4. Materials and Methods

The study received ethical approval from the French Ethics and Data Protection
and Freedom of Information Commissions (CPPRB, RCB:2008-AO14-65-50). Here, we
briefly outline the methodology; full details regarding machine learning, genotyping
procedures and analyses are available elsewhere and/or are summarized in the published
protocol [16,17] (ClinicalTrials.org: NCT02627404).

4.1. Sample

The study uses de-identified data from 164 adults aged >18 years who gave written
informed consent to participate in a study of Li response and provided a blood sample
for genotyping. Study participants were unrelated individuals of Caucasian origin, who
had a diagnosis of BD that met DSM-IV criteria [35] according to the French version of the
Diagnostic Interview for Genetic Studies [36,37] and who were in remission at the time of
recruitment (>=3 months since the last major mood episode) [38] and currently euthymic
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according to the MADRS (Montgomery Asberg Depression Rating Scale) and the YMRS
(Young Mania Rating Scale) [39,40].

4.2. Phenotyping

Lithium response was estimated from ratings of the two subscales (A and B) of the
Alda scale [13]. The A scale assesses change in illness activity whilst receiving Li (which
represents the clinically assessed change in frequency, severity and duration of episodes),
with response rated on a 0–10 continuum and a higher A scale score indicative of better
response. The B scale items are all rated 0–2. Each item measures a clinical characteristic
that may attenuate or confound response, namely B1—number of episodes prior to Li
(a score of 2 suggests fewer episodes, making judgements about the impact of Li more
difficult); B2—frequency of episodes prior to Li (a score of 2 suggests low frequency);
B3—assesses duration of Li treatment (a score of 2 would suggest a short period of time,
making judgements about benefits more difficult); B4—measures adherence with Li (a score
of 2 indicating poor adherence) and B5—assesses complexity of treatment regime, including
polypharmacy and co-prescription of mood stabilizers (a high score indicating a more
complex treatment regime).The Li response phenotypes are operationalized as follows:

(a) Original approaches to rating the Alda scale The three most widely used approaches are:

- Total Score (TS): a continuous measure represented by the TS (A scale minus
B scale score); if B > A, then the TS is reported as zero.

- Original classification (Alda Cats): Li response categorized as GR (TS >= 7) or
NR (TS < 7).

- A score in cases with a low B scale score (A/Low B): Li response is represented by
the A scale score (continuous variable), but assessment is restricted to individuals
with B < 4; those with high B scores are excluded from the analysis.

(b) Machine learning approach to rating the Alda scale In the best estimate classification
approach, a machine learning algorithm determines a set of “if–then” rules for deter-
mining the probability of GR and NR. The analysis enters the B scale item scores in
a sequence; this usually starts with treatment complexity (adherence and polyphar-
macy), then duration of Li treatment and/or illness activity (the exact sequence and
combination of item scores is generated by the machine learning model). The algo-
rithm stops running once the optimal classification is reached, irrespective of whether
all B items have been included (for details, see [16]). Here, we report the findings on
Li response phenotypes as a categorical measure (New Algorithm; Algo). To create
a continuous measure to compare with TS and A/Low B, we also estimated GRp
(a measure of probability of GR in this sample).

4.3. Genotyping, Quality Control and Selection of Polymorphisms in RORA, PPARGC1A
and TIMELESS

Genomic DNA samples were extracted from peripheral blood leukocytes or B-
lymphoblastoid cell lines by standard procedures. Genotyping was performed at the Centre
National de Genotypage (CNG, Paris, France) using HumanHap550 or 610-Quad Beadchips
(Illumina Inc., San Diego, CA, USA.). Analyses were performed using PLINK v1.07 30 [41].
All available single-nucleotide polymorphisms (SNPs) within RORA, PPARGC1A and
TIMELESS and within 10 kilobase pairs (Kbp) upstream and downstream from the coding
sequence (extracted from the RefSeq Database (National Center for Biotechnology Informa-
tion; https://www.ncbi.nlm.nih.gov/refseq/, accessed on 18 October 2021)) were used to
explore exonic and intronic regions, as well as cis-regulatory regions. SNPs were included
in the following association analysis if they fulfilled the following quality criteria (assessed
using PLINK software, v 1.9): (1) minor allele frequencies (MAF) greater than or equal
to 5%; (2) genotyping call rate for at least 97% of SNPs; (3) call rate averaged 90% and
(4) SNP heterozygosis between (m−3 s.d.) and (m+3 s.d.). In order to select the SNPs, we
used PLINK to determine the associations between SNPs and the Alda total score. Briefly,
for each gene, the program: (1) determines which SNPs are in linkage disequilibrium
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(LD) (above a certain threshold, fixed in this study at r2 = 0.05); (2) performs a single SNP
association analysis using a non-parametric approach; and (3) determines the associated
SNP having the highest statistical significance (selection of the “best SNP” option). This
method allowed us to identify, among all available SNPs within a given gene, which SNP
was the most strongly associated with the phenotype (whatever the level of significance).
Among all available SNPs in the three selected genes (RORA n = 140; PPARGC1A n = 25;
and TIMELESS n = 8), this approach retained rs17204910 in RORA, rs2932965 in PPARGC1A
and rs774045 in TIMELESS. For these three SNPs, all genotypes were in Hardy–Weinberg
equilibrium.

4.4. Statistical Analysis

First, we compared estimates of Li response using the original and new approaches to
rating the Alda scale, reporting the positive and negative predictive values (PPV, NPV),
the overall accuracy and discordance rates. For the purposes of the analyses, we assumed
that the original ratings represent the “gold standard” (i.e., for categorical outcomes, false
positives are cases that were classified as GR according to the new algorithms but not
the original rating). The classification obtained for Alda Categories was compared with
Algo, whilst the A score/Low B measure was compared with GR according to the Algo
(with analyses undertaken using the program that is publicly available on the Oxford
University evidence-based medicine website: https://www.cebm.ox.ac.uk, accessed on
18 October 2021). To interpret the findings, we used the indicators established for diagnos-
tic test comparisons used in clinical settings, which suggested that we could expect the
new Alda ratings to show PPV, NPV and accuracy estimates of >80–85% (compared with
established ratings).

Associations between genotypes of TIMELESS (GG versus GA/AA), RORA (CC
versus TC versus TT) and PPARGC1A (GG versus GA/AA) and Li response phenotypes
are reported as −log10(p), and levels of statistical significance are reported as p < 0.017
(corrected for 3 genes) and p < 0.003 (corrected for 3 genes and 5 phenotypes).

Next, for categorical classifications (Alda Cats and Algo), we employed Chi-Square
Automatic Interaction Detector (CHAID) analysis to explore whether any combinations
of genes improved the ascertainment of GR or NR cases. This analysis generated a classi-
fication tree, which represents a sequential model consisting of a set of if–then rules for
the partition of heterogenous input data into groups that are homogenous regarding the
dependent/outcome variable categories. To avoid overfitting of CHAID, we adjusted the
model for age and sex (i.e., known variables of influence that were not considered already
within the Alda rating) and analyses were cross-validated. In the figures shown, the order
of importance of explanatory variables is explicitly represented by the tree structure, and
tree building ended when the p values of all the observed independent variables were
above the specified threshold for statistical significance (usually, an alpha level of 0.05, cor-
rected for the number of statistical tests within each predictor using a Bonferroni multiplier
that adjusted all p values for multiple testing).

5. Conclusions

Established approaches to Li response phenotyping are easy to use but may lead to a
significant loss of data (excluding partial responders) due to recent attempts to improve
the reliability of the original rating system. While machine learning approaches require
additional modeling to generate Li response phenotypes, they may offer a more nuanced
approach, which, in turn, would enhance the probability of identifying significant signals
in genetic studies.
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