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A B S T R A C T   

Next-generation sequencing now enables the rapid and affordable production of reliable biological data at 
multiple molecular levels, collectively referred to as “omics”. To maximize the potential for discovery, compu
tational biologists have created and adapted integrative multi-omic analytical methods. When applied to diseases 
with traceable pathophysiology such as cancer, these new algorithms and statistical approaches have enabled the 
discovery of clinically relevant molecular mechanisms and biomarkers. In contrast, these methods have been 
much less applied to the field of molecular psychiatry, although diagnostic and prognostic biomarkers are 
similarly needed. In the present review, we first briefly summarize main findings from two decades of studies that 
investigated single molecular processes in relation to mood disorders. Then, we conduct a systematic review of 
multi-omic strategies that have been proposed and used more recently. We also list databases and types of data 
available to researchers for future work. Finally, we present the newest methodologies that have been employed 
for multi-omics integration in other medical fields, and discuss their potential for molecular psychiatry studies.   

1. Introduction 

Mood disorders are defined in the 5th Edition of the Diagnostic and 
Statistical Manual of Mental Disorders (DSM-5) as a group of psychiatric 
disorders characterized by the recurrence of clinically significant 
changes in mood state, energy, cognitive processes, sleep, or appetite. 
Among this group, Bipolar Disorder (BD) and Major Depressive Disorder 
(MDD) are the most prevailing syndromes in the general population. 
Indeed, BD affects around 1% of the global population (Ferrari, 2015), 

whereas MDD reaches a 12-months prevalence of 10.4% and a lifetime 
prevalence of up to 20.6% (Hasin et al., 2018). Mood disorders impose a 
substantial burden on patients and caregivers due to their recurrence 
and the frequently associated psychiatric comorbidities, including sub
stance use, anxiety disorders, and suicidal behaviors (Isometsä, 2014). 
Consequently, they represent an economic and public health issue that 
needs to be addressed. Unfortunately, their heterogeneous etiology, 
ranging from genetic predisposition to environmental factors, compli
cates understanding underlying biological mechanisms. Furthermore, 
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the development of prognostic and diagnostic biomarkers in psychiatry 
is still at its debut, and the need for personalized approaches to improve 
therapeutic outcomes is rising (Nemeroff, 2020). 

Over the last decade, researchers have turned to high-throughput 
technologies to try and bridge the gap between the lack of biological 
insights into mood disorders and their worldwide impact. Indeed, the 
emergence of Next Generation Sequencing (NGS) tools and their finan
cial and technological accessibility has enabled the production of peta
bytes of biological data at different molecular levels, thereby 
accelerating the shift from a monogenic paradigm to a holistic view, 
where numerous molecular regulatory mechanisms interact to drive 
phenotypes. The relationship between these different omic layers turns 
out, in most cases, to be non-linear and to involve intricated mecha
nisms, such as transcriptomic adaptations under epigenetic regulation. 
In this context, multi-omic data integration is proposed as a set of tools 
to identify the main processes guiding these interactions and test hy
potheses on molecular etiologies. This approach, which takes full 
advantage of multidimensional databases, creates new research avenues 
to explore and new challenges to overcome. Applied to psychiatry, it is 
expected to help refine diagnosis and patient stratification and improve 
therapeutic decisions (Fig. 01). 

The present systematic review aims to describe the contribution of 
omics data integration to psychiatry, focusing on mood disorders. Omics 
data integration can be classified into two main categories, as illustrated 
in Fig. 02:  

i) Horizontal integration (indirect): This “meta-analysis” strategy 
combines datasets related to the same molecular layer, generated on 
distinct clinical cohorts but with a given phenotype as a common 
denominator.  

ii) Vertical integration (direct): This approach associates data on 
multiple layers generated from the same cohort of individuals, 
allowing a more comprehensive view of the different layers’ in
teractions and identifying omics-phenotype causal relationships with 
higher statistical power. 

In the first part of our systematic literature review, we first briefly 
summarize the most significant contributions and recommend dedicated 
reviews on mood disorders studies based on unique or horizontally 
(indirect) integrated single omic data. Then, we present our systematic 
literature search focused on identifying studies that combined at least 2 
omic approaches (as defined in the Methods section below; see Fig. 03), 
to assess which strategies have been prioritized for data integration in 

the field, and what results were obtained when compared to previous 
single-layer approaches. Finally, we discuss how similar endeavors are 
ongoing in other medical areas and may guide future developments in 
molecular psychiatry. 

2. Materials and methods 

2.1. Search strategy 

A systematic literature search was performed using the MEDLINE, 
Crossref, and Scopus databases to identify research and review articles 
published between January 1st, 2000 and May 15, 2021. Selected arti
cles had to include one of the following terms: “Genome-wide associa
tion study (GWAS)”, “RNA-Seq”,”Transcriptomics”, “Transcriptome”, 
“Epigenetics”, “miRNA”, “DNA Methylation”, “Histone methylation”, 
“Chromatin Conformation,” and “Proteomics.” These terms were asso
ciated with either “Bipolar Disorder” or “Major Depressive Disorder”. 
Furthermore, the term “Multiomics” was also associated with each of the 
following: “Bipolar Disorder”, “Major Depressive Disorder”, and “Psy
chiatry”. Papers resulting from these queries were investigated accord
ing to the Preferred Reporting Items for Systematic Reviews (PRISMA) 
protocol (Moher et al., 2009), as shown in Fig. 03. 

2.2. Inclusion and exclusion criteria 

Papers investigating BP or MDD patients and integrating more than 
two datasets either horizontally (meta-analyses of a single type of omics 
data – single-omics) or vertically (multi-omics) were included. Publi
cations that did not include patients with either BD or MDD in their 
discovery cohort were excluded. No other specific study design was 
required for inclusion in our corpus, but a description of samples (bio
logical origin, size, and diagnosis) was necessary. Research on non- 
human species was considered out-of-scope and excluded. Regarding 
multi-omics studies, we considered relevant all genome-wide studies 
that conducted an integration of more than one “omic” level. 

3. Results 

Below, we present the meta-analyses for patients with mood disor
ders identified during the systematic search summarizing the main 
findings from each single omic approach. 
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Fig. 01. Illustration of the concept of multi-omics data integration enhancing patient stratification and precision medicine. Different omics data-levels are collected 
from the brain and peripheral tissues which are then integrated using computational biology tools, providing complementary information on the studied diseases 
resulting in better patient stratification and adapted treatments. 
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3.1. Horizontally integrated single-omic studies of mood disorders 

3.1.1. Genomics 
GWAS meta-analyses are commonly applied to capture the shared 

genetic background of mood disorders. Among the 20 eligible studies 
listed in Supplementary Table 1, eight focused solely on BD, ten on 
MDD, one on both BD and MDD, while the last one covered a broader 
spectrum (ASD, ADHD, BP, MDD, and SCZ). It is worth noting that the 
latest published GWAS add new subjects to previous ones, which ex
plains their concordance. Regarding BD-associated variants, Stahl et al. 
(2019) highlighted 30 loci, among which loci within the ANK3 gene 
were already identified several times in earlier studies. ANK3 encodes 
ankyrin-G, a protein associated with the cell membrane, notably present 
at nodes of Ranvier and the initial axon segment. In addition, the ODZ4 
gene encoding a transmembrane protein which plays a role in neural 
development (Ikeda et al., 2018; Psychiatric GWAS Consortium Bipolar, 
2011; Mühleisen et al., 2014), and POU3F2 a DNA-binding transcription 
factor acting notably in neuronal differentiation (Hou et al., 2016; 
Mühleisen et al., 2014; Stahl et al., 2019), were also pointed out in 
several coupled BD GWAS. 

Similarly, for MDD, successive GWAS aggregating depressive cohorts 
identified specific loci, including DCC, which encodes a functional 
transmembrane receptor for NETRIN-1 and mediates neurite outgrowth 
(Howard et al., 2019; Okbay et al., 2016; Wray et al., 2018); SORCS3, a 
cell surface receptor localized at the postsynaptic density of hippo
campal neurons (Howard et al., 2019; Hyde et al., 2016; Wray et al., 
2018), both SORCS3 and DCC genes significance associations were 
replicated in the Coleman et al., 2020’s mood disorder GWAS; and 
NEGR1, a cell adhesion molecule promoting neuronal spine plasticity (Li 
et al., 2018). It is worth mentioning that only the MAD1L1 gene, which 
plays a role in the cell cycle, was significantly associated in multiple 
studies with both MDD and BD (Hou et al., 2016; Howard et al., 2019; 
Howard et al., 2018; Ikeda et al., 2018). Recently, the MAD1L1 locus has 
been significantly associated with anxiety (Levey et al., 2020) and found 
differentially methylated in post-traumatic stress disorder (Snijders 
et al., 2020). However, this association was not replicated in a recent 

mood cohort GWAS meta-analysis (, Coleman et al., 2020). The lack of 
other loci associated with both MDD and BD, despite common symp
toms, likely reflects their heterogeneous and complex pathophysiology. 
Some authors suggested that inconsistent patient phenotyping may also 
partly explain this low overlap (Ormel, 2019). Of note, copy number 
variants (CNVS), single nucleotide variants (SNVs), and other genomics 
polymorphisms were investigated in MD and are not discussed here 
further (see Gordovez and McMahon, 2020 and McIntosh et al., 2019 for 
reviews). Even though these extensive analyses may facilitate identi
fying genomic variants associated with mood disorders, the post-single- 
omic GWAS challenges reside in prioritizing functional and causal var
iants and characterizing their biological mechanisms. 

3.1.2. Transcriptomics 
The advent of microarrays and NGS technologies has permitted 

transcriptomic genome-wide investigation of mood disorders. These 
studies, similar to the other types of functional omic analyses detailed 
further in this review, focuses mainly on two tissues: i) the brain (with 
different regions examined, and a gradual shift from whole-tissue to 
single cell-type, or even single-cell analyses), which is biologically more 
relevant but difficult to collect in large sample size cohorts, and is 
currently available for retrospective investigation only; and ii) periph
eral tissues, such as blood or saliva, which are easier to collect and can 
be used in longitudinal designs and for biomarkers identification. The 
following paragraphs first describe studies on brain and blood separately 
before concluding on possible convergence between the two tissues. 

Among the 4 reported meta-analyses of our systematic screening 
focusing on peripheral tissues Supplementary Table 2, Hess et al. (2019) 
have conducted a meta-analysis of seven studies, including BD (n = 95) 
and schizophrenia (n = 258) patients. They reported significant en
richments for both differentially expressed genes (DEG) and WGCNA co- 
expression modules in the immune system’s biological function, oxida
tive stress, and apoptosis pathways. More recently, Wittenberg et al. 
(2020) reviewed whole-genome data generated from blood samples 
(whole blood, lymphocytes, or PBMC) in case-control studies (1754 
depressed cases and 1145 healthy controls compiled from 10 studies). 
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Fig. 02. Data integration approaches. a. Horizontal integration: the same molecular data-layer is retrieved from different cohorts. b. Vertical integration: multiple 
omics data are available from the same cohort. 
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The meta-analysis was done at two levels: i) by compiling DEGs iden
tified by at least 2 studies, and ii) by conducting a homogenized re- 
analysis of subject-level data, when such data were available (n = 8), 
or using standardized mean difference otherwise (whole blood studies, 
n = 4). The three approaches highlighted genes associated with the 
immune response system, especially neutrophil activation. Noteworthy, 
they also explored sample type (whole blood/PBMC) and data hetero
geneity issues with respect to such meta-analysis. Results showed that 
MDD-related adaptations were more consistent within (e.g. whole blood 
vs. whole blood) than across (whole blood vs. PBMC) sample type. 
Importantly, findings were also more concordant among whole blood 
than among PBMC studies, indicating that neutrophils (not present in 
the PBMC fraction) and related GO terms exhibit a more robust associ
ation with MDD and highlighting the importance of investigating rele
vant cell types. 

Regarding brain tissue-based meta-analyses, Seney et al. (2018) were 
interested in opposite transcriptional alterations in men and women. 
They focused on three brain regions (dorsolateral prefrontal cortex, 
subgenual anterior cingulate cortex, and basolateral amygdala), with a 
total cohort of 26 MDD cases and 13 controls in men, and 24 MDD cases 
and 9 controls in women. The authors reported sex-specific changes in 
MDD, with relatively few overlapping DEG. The altered pathways 
included opposite transcription gene variations with a decrease in 
synapse-related genes in male MDD and an increase in female MDD. 

In addition to Ciobanu et al. (2016)’s review of replicated finding, 
only one cross-tissue investigative meta-analysis have been published 
(Forero et al., 2017). First, in their review, Ciobanu et al. (2016) 
included transcriptomic datasets obtained from peripheral (n = 10 ar
ticles) and brain (n = 15 articles) tissues in MDD covering adrenal gland, 
colon transverse, and whole blood along with ten brain structures 
(dorsal prefrontal cortex, hippocampus, or cerebellum as main exam
ples). The authors reported 57 replicated DEGs in the brain and 21 in 
peripheral tissues. Their findings suggest more significant overlaps and 
greater homogeneity among brain regions than peripheral tissues. Sec
ond, Forero et al. (2017) investigated brain and blood transcriptomics 
profiles in MDD. This meta-analysis was of a larger scale than the pre
vious one, as 24 primary datasets were used: 6 from blood, 18 from 4 
brain regions (amygdala, cerebellum, prefrontal, and anterior cingulate 
cortices). The authors identified several enrichment pathways involving 
synaptic plasticity in the brain datasets but, surprisingly, no significant 
pathway enrichment in blood. 

Altogether, even if MDD-related DEGs vary according to tissue type 
(blood/brain), results from pathways enrichment appear relatively 
convergent towards an implication of groups of genes associated with 
the immune system and/or inflammation. But, one should be concerned 
that blood-based analyses can be less informative than investigations 
based on brain tissue, where mood disorders pathophysiological mech
anisms primarily occur. 

3.1.3. Epigenetics 
The mood disorders heritability has been estimated via monozygotic 

twin studies between 31% to 42% for MDD (Flint and Kendler, 2014), 
and between 70% to 90% for BD (Gordovez and McMahon, 2020). 
Despite these significant genetic contributions, it is widely acknowl
edged that mood disorders and their clinical course involve additional 
factors, including environmental ones and life events, such as childhood 
trauma (Aldinger and Schulze, 2017). While mechanisms potentially 
mediating interactions between genetic determinism and environmental 
exposure have long remained elusive, their importance is not to neglect. 
Recently, convincing illustrations of the relevance of G x E interactions 
have been published in relation to epigenetic consequences of prenatal 
or early-life factors, which act as distal risk factors for mood disorders 
(Czamara et al., 2021; Czamara et al., 2019). 

Epigenetics refers to physical and chemical substrates that regulate 
the architecture and activity of the genome without any change in the 
underlying DNA sequence. They include chromatin conformation, DNA 

methylation, histone modifications, miRNAs, and other non-coding 
RNAs (Penner-Goeke and Binder, 2019). In their critical review, 
Legrand et al. (2021) questioned the epigenetics of BD, retracing the 
evolution of this emerging field and significant discoveries. Here, we 
focus on whole-genome epigenetic approaches, mostly related to DNA 
methylation and miRNAs in the current literature. 

3.1.3.1. DNA methylation. DNA methylation (DNAme) is the addition of 
a methyl group at the 5′ position of cytosine. The modification in
fluences gene expression through multiple mechanisms (Jones, 2012) 
and globally acts as a repressor on gene expression. Accumulating evi
dence indicates that DNAme contributes to gene x environment in
teractions, including for monozygotic twins discordant for psychiatric 
phenotypes (van Dongen et al., 2014), or following severe traumatic life 
experiences (Wolf et al., 2018). While initial DNAme studies focused on 
candidate genes, like brain-derived neurotrophic factor (BDNF) or the 
glucocorticoid receptor, advance in NGS technologies (MBD-seq, 
MeDIP-Seq, RRBS, WGBS) and the development of relatively affordable 
microarrays (450 k and more recently Infinium EPIC arrays), now allow 
conceiving genome-wide case/control analyses to identify differentially 
methylated regions (DMRs) or perform MWAS (methylome-wide asso
ciation study). 

As observed for transcriptomics studies, the tissues characterized in 
mood disorders DNAme studies vary widely, including studies investi
gating different brain regions and others focusing on peripheral tissues 
(whole blood). For example, for genome-wide MDD investigations, Li 
et al. (2019) outlined genes related to neurogenesis, neuroplasticity, and 
estrogen signaling regardless of the sample’s tissue origin. On the other 
hand, for BD DNAme analyses, Teroganova et al. (2016) highlighted 
differentially methylated genes in peripheral tissues of BD and schizo
phrenia patients, including well-known BDNF promoter regions 
involved in neuroplasticity and dopaminergic pathways. 

Of note, Li et al. (2019) underlined a limited number of systematic 
reviews and meta-analyses on DNAme and MDD, and we observed a 
similar issue for BD. This lack of quantitative reviews is even more 
pronounced for genome-wide studies. Thus, we notice an urgent need 
for genome-wide meta-analyses of DNAme in mood disorders. 

3.1.3.2. Micro-RNAs. Recently, non-coding RNAs and particularly 
micro-RNAs (miRNAs), have become the focus of significant attention. It 
is now acknowledged that they play an extensive role in regulating gene 
expression (He and Hannon, 2004). Their canonical mode of action in
volves silencing mRNAs with complementary target sequences. A 
miRNA can act on numerous mRNAs, and reciprocally, an mRNA is 
regulated by various miRNAs. Many public repositories list predicted 
and experimentally validated targets of miRNAs, such as MiRBase 
(Kozomara et al., 2019). 

Ferrúa et al. (2019) focused on bioinformatic analysis of peripheral 
miRNAs in patients with depressive symptoms. This systematic review 
emphasized AKT, BRAF, and PIK3CA as the target of many differentially 
expressed miRNAs. The study also inferred potentially affected path
ways such as mTOR, phosphoinositide 3-kinase PI3K/Akt, and MAPK 
signaling pathways. 

These pathway enrichment analyses of the miRNA targeted genes 
concur with those uncovered at other molecular levels mentioned above. 
Furthermore, miRNAs were also identified as potential biomarkers of 
BD, schizophrenia (Amoah et al., 2019; Fries et al., 2018), MDD 
(Gururajan et al., 2016), suicidal behavior in BD patients (Squassina, 
2020), and nausea intensity in MDD patients treated with mood stabi
lizers (Yrondi et al., 2020). Altogether, these results suggest that miR
NAs may be potential diagnostic and predictive biomarkers in 
psychiatric disease (Gibbons et al., 2020). 

3.1.3.3. Metabolomics. Metabolomics in mood disorders is an emerging 
field of research. This omics aims to depict the state of the metabolism’s 
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end products (metabolites) and establish metabolic profiles for various 
pathways, including carbohydrate, protein, and fatty acid metabolism. 
MacDonald (2019) performed an extensive systematic review on 
metabolomics biomarkers of mood disorders, looking at 266 studies 
measuring metabolites using different techniques: in vivo brain imaging, 
chromatography, nuclear magnetic resonance, and mass spectrometry. 
Among the metabolites identified, 122 were reported in two or more BD 
or MDD studies, and involved mainly in neurotransmission and energy 
metabolism. Recently, Bot et al. (2020) investigated the metabolic 
profile of a large cohort of patients with depressive symptoms (N = 5283 
MDD and 10,145 Controls) in a meta-analysis. Of the 21 metabolites that 
met the significance criteria (FDR < 0.05), higher blood levels of very- 
low-density lipoprotein triglycerides, and lower concentration of high- 
density lipoproteins were related to depression and were consistent 
with previous findings. 

Despite the growing appeal towards metabolomic-based biomarkers 
in psychiatric diseases, few meta-analyses are to be reported, especially 
for BD, for which no specific meta-analysis seems to be available. In the 
same way, no meta-analysis or systematic review on mood disorders and 
proteomics was identified during the systematic search. 

3.1.3.4. Metagenomics. Lately, the influence of the gut microbiota on 
mood disorders has attracted increasing attention, with the hope that 
related studies may lead to innovative treatments and diagnosis tools. 
Despite these promises, a lack of functional and publicly available data 
has to be deplored. Indeed, the only comprehensive meta-analysis on gut 
microbiota and depression available at the time of literature screening, 
from Sanada et al. (2020), focused solely on the gut microbiota 
composition, with no functional data available, therefore falling outside 
the scope of the present review. 

3.2. Multi-omics integration methods 

Understanding complex pathologies such as mood disorders require 
a holistic vision. These diseases result from an intricate interplay be
tween different actors (genomics, transcriptomics, epigenetics, prote
omics, and metabolomics) and environmental factors that regulate the 
neuronal mechanism underlying cognitive and emotional processes. 
Although single-omic approaches have brought a better understanding 
of psychiatric illness, it is now proposed that combining multiple types 
of data through systems biology may harness further progress. There
fore, in the second part of this review, we also provide a systematic 
review of the application of multi-omics approaches to mood disorders. 
Several reviews described multi-omics data integration methodologies 
and their mathematical aspects. Available approaches can be catego
rized differently according to various criteria: horizontal, vertical or 
neither vertical nor horizontal integration methods as illustrated by 
Eidem et al. (2018). The machine learning criteria distinguishing un
supervised, semi-supervised or supervised approaches are also widely 
used (Bersanelli et al., 2016; Huang et al., 2017; Wu et al., 2019). This 
distinction reflects, for example, whether one proceeds in an exploratory 
manner or applies clinical labels to individual cases. Another categori
zation criteria distinguish early, intermediate, and late integration ap
proaches (Cantini et al., 2021; Rappoport and Shamir, 2018). For 
example, step by step combination of results obtained from single omics 
can be processed concatenating omics before clustering with an “early” 
integration approach or after clustering using a “late” integration 
approach (Rappoport and Shamir, 2018). Genuine “intermediate” joint 
multi-omics integrative methods remain rarer and constitute a highly 
active area of research (Cantini et al., 2021). Below, we first list the most 
commonly used methods (with concrete examples from other research 
fields), and then detail their application to mood disorders. 

3.2.1. Step by step methods 
These methods simplify data integration by finding correlations and 

overlaps after analyzing each data type separately while respecting its 
specificities. Ready-to-use tools or pipelines are not available for this 
kind of approach. An example of a typical pipeline begins with a dif
ferential analysis carried out on each omic, followed by integration via 
overlaps (identifying entities commonly dysregulated across distinct 
layers) or correlation (to assess the covariance of omics quantitative 
data). A major drawback of these methods lies in their over
simplification of the problematic as, among others, known biological 
interactions between omic types are not taken into account. As the full 
range of information extractable from the data is not exploited, only 
strong effects can be unveiled, potentially missing the subtle interactions 
at stake in psychiatric disease. 

3.2.2. Network-based methods 
Network theory is widely used at the single-omic level, notably with 

gene-gene expression correlation methods. Graph theory and network 
methods are often used in systems biology, and can also help charac
terize the interconnectivity between multi-omic layers. Various tools 
have been developed based on the adaptability of network modeling 
methodologies. Some rely on pre-existing knowledge, such as the 
Protein-Protein Interaction networks (PPI), as an integration guide. For 
example, iOmicsPASS has been applied to breast cancer data and 
revealed a molecular signature for the basal-like subtype that could not 
be identified using single-omic analyses (Koh et al., 2019). Other tools 
explore the inherent characteristics of the generated networks, such as 
their topology features (network connectivity patterns; node degree: 
number of connections with other nodes; and centrality: number of 
times a node acts as a bridge between pairs of nodes in the network). 
Among network-based approaches, similarity network fusion (SNF) was 
able to identify differential survival profiles among subtypes of 5 cancer 
types from the TCGA research network, allowing a better patient strat
ification (Wang et al., 2014). 

3.2.3. Dimension reduction methods 
Dimensionality reduction methods for the joint analysis of multi- 

omics datasets were reviewed and benchmarked using simulated data, 
cancer datasets, and, more recently, single-cell datasets (Cantini et al., 
2021; Tini et al., 2018; Wu et al., 2019). Matrix decomposition algo
rithms offer an answer to the multidimensionality issue of NGS data (a 
much higher number of features than samples). In order to extract the 
nature of the data variance, dimension reduction methods aim at 
decomposing a matrix of N samples by M measures into a matrix product 
of smaller matrices representing the components that best summarize 
the data. The most commonly used algorithms include Principal 
Component Analysis (PCA), and Canonical Correlation Analysis (CCA). 
Among other examples, the DIABLO method of the mixOmics R package 
(Rohart et al., 2017) relies on Partial Least Squares (PLS) regression and 
proposes to integrate several omic matrices by maximizing correlations 
between the extracted components and phenotypic variables. This 
package also encapsulates all the algorithms mentioned above (PCA, 
CCA and PLS) and their variants and has been used in numerous multi- 
omic studies. Matrix factorization methods are another toolset to 
circumvent the growing size of data matrices, of which JIVE (Joint and 
Individual Variation Explained) (Lock et al., 2013) is a popular multi- 
channel integration method. JIVE decomposes the matrices into a 
combination of matrix pairs representing each omic’s specific and 
common variation. It has been applied to glioblastoma to uncover 
miRNA-mRNA interactions and improve the stratification of tumor 
subtypes (Lock et al., 2013). 

3.2.4. Bayesian methods 
One major advantage of Bayesian models is the possibility of 

enhancing the statistical model with a priori information. Thus, these 
methods are particularly interesting when one wishes to assess the 
probability of a sample clustering assignment. However, these models 
often require proper attribution of a prior probability distribution for 
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each omic type, based on one or more parameters, and a posterior 
probability distribution of expected results to identify the clustering 
pattern (Bersanelli et al., 2016). In addition, these models are costly in 
terms of computing resources. Among these, iRIGS is a framework 
adapted to identify genes associated with the risk of developing 
schizophrenia, using GWAS results combined with a gene-gene network 
integrating multi-omic data (differential expression, de novo mutations, 
chromatin states (Wang et al., 2019a). 

3.2.5. Advanced machine learning 
Machine learning and artificial intelligence (AI) have seen remark

able advances over the last decade. The complexity and quantity of NGS 
data are ideally suited for machine and deep learning algorithms, as 
these methods rely on extensive data as training sets to improve from 
experience. Multi-omic integration can be described as a variant of a 
known AI clustering problem named multi-view clustering. iClusterPlus 
(Mo et al., 2018), an improvement of the iCluster method (Shen et al., 
2009), is among the most commonly used methods. It relies on a 
generalized linear regression to formulate a joint model, uncover in
sights on mechanisms driving the phenotype of interest, and was 
initially applied to colorectal cancer to reveal tumor subtypes. 

Further, iClusterBayes (Mo et al., 2018) is a Bayesian computational 
and statistical enhancement of iClusterPlus, that has been applied to 
glioblastoma data generated by the TCGA Research Network. Rappoport 
and Shamir (2018) benchmarked iClusterBayes and other machine 
learning methods, including those cited previously (JIVE, CCA, and 
SNF), on 10 cancer datasets. They concluded that no single method 
systematically outperformed the others, and advocated for their careful 
use to analyze omics data, as these methods largely disregard their 
specificities (inter-omic dependency). 

3.3. Multi-omic integration applied to mood disorders 

Here, we systematically identified and reviewed 21 multi-omic 
publications described in detail in Table 1. Several factors likely ac
count for this relatively modest number of papers, among which the 
relative youth of the field and the low amounts of publicly available 
data, notably for brain tissue. In addition, the majority of these articles 
have used step-by-step approaches due to the current absence of state-of- 
the-art methods. Below, we summarize their main findings, subjectively 
organized from simplest to most advanced approaches. 

3.3.1. Step-by-step approach – overlap 
Zhao et al. (2015) investigated the relation between DNAme and the 

transcriptome (RNA-seq) in BA9 tissue from a cohort of 5 SCZ, 7 BD 
patients, and 6 controls. They found that 11 of the 146 genes with hyper- 
methylation in the promoter region showed a down-regulation at the 
expression level, and 4 of the 411 hypomethylated showed an up- 
regulation, indicating that a vast majority of DMRs had no detectable 
effect on gene expression, at least when analyzing such a small sample 
size. A high percentage of intronic DMR overlapped with miRNAs that 
were predicted to target genes identified as differentially expressed, 
indicating that DNAme may alter gene expression in part via intronic 
miRNAs. The down-regulated genes showed significant enrichment in 
neurogenesis and nervous system development. Ju et al. (2019) also 
overlapped DNAme and gene expression analyses. They investigated 
molecular predictors of response to antidepressant treatment in pe
ripheral blood samples from 177 MDD (comparing 82 responders to 
escitalopram and 95 non-responders, sampled before treatment initia
tion – a predictive approach) and 102 healthy controls. They identified 
303 differentially methylated CG sites, among which, again, only a 
minority (n = 16) were located within DEGs (with CHN2 and JAK2 the 2 
most significant DEGs, involved respectively in neurodevelopmental 
hippocampal axon pruning and synaptic plasticity). Recently Xie (2021) 
reprocessed available mRNA and DNAme data from studies by Leday 
et al. (2018) and Crawford et al. (2018). The analysis included 128 MDD 

and 64 healthy controls’ transcriptomic data and methylomic data for 
100 distinct MDD patients and 50 controls. The overlap study identified: 
46 hypomethylated and up-regulated genes involved in PI3K-Akt, IL-17, 
and axon guidance signaling pathways, among others; and 71 hyper
methylated and down-regulated genes involved in the MAPK and NF- 
kappa B signaling pathways. Furthermore, from these overlaps, the 
authors also developed a random forest-based classifier to discriminate 
MDD cases and controls, using mRNA and DNAme data separately; 
comparison of the 2 classifiers showed a better predictive power for the 
one based on gene expression (AUC > 0.95). 

3.3.2. Step-by-step approach – correlation 
The integration of different molecular layers by correlation testing 

has been used mainly to assess relationships between DNAme and gene 
expression in mood disorders. Chen et al. (2014) used Pearson correla
tion to identify candidate genes with differential methylation and 
expression patterns in cerebellar samples from 39 SCZ and 36 BD pa
tients, as well as 43 controls. Among the 20 genes where 204 signifi
cantly differentially methylated CpGs were identified, four (PIK3R1, 
BTN3A3, NHLH1, and SLC16A7) were differentially expressed. Fries 
et al. (2017) combined correlation and pathway analyses to identify 
molecular differences between PBMCs from 6 young BD patients, 6 
unaffected subjects at high-risk of BD, and 6 healthy controls, using 
DNAme and transcriptomics. Results identified 135 genes with a sig
nificant correlation between gene expression and DNAme, while In
genuity pathway analysis on the 43 genes either differentially expressed 
(n = 33) or methylated (n = 10) at individual level implicated circadian 
rhythms, immune system, synaptic scaffolding, and glucocorticoid re
ceptor signaling. Abdolmaleky et al. (2019) used Spearman correlation 
to analyze transcriptomic (10 BD, 10 SCZ, and 10 healthy control) and 
DNAme (27 k CpG sites analyzed in 3–4 individuals from each group) 
brain data. Among other findings, an anti-correlation between DNAme 
(increased) and gene expression (decreased) was observed for the 
CCND1 locus in SCZ and BD patients. Zhu et al. (2019) used both partial 
correlation and an overlap test to identify methylation differences 
associated with changes in gene expression in circulating monocytes in 
79 monozygotic twin pairs discordant for MDD. Results indicated that 
differentially methylated genes were significantly overrepresented in 
previous GWAS MDD loci (2.32 times, P value = 2.4 × 10− 4) and, 
interestingly, were more likely to be differentially expressed (2.44 times, 
P value = 1.1 × 10− 4). Correlations were also assessed between miRNA 
and mRNA data from patients with mood disorders. Pisanu et al. (2019) 
tested for, and identified, negative correlations between miRNA 
expression and differentially expressed mRNAs in 10 responders and 10 
non-responders to lithium BD patients. This resulted in correlations 
among 30 miRNAs and 277 mRNAs, with one downregulated and one 
up-regulated sub-cluster network centered on miR-320a and miR-155- 
3p, respectively, which are involved in the inflammatory response and 
the regulation of G-protein signaling. Chen et al. (2018) applied corre
lation analysis to identify miRNA/mRNA co-expressed modules using 
WGCNA and sequencing data generated using brain tissue from a larger 
cohort composed of 95 patients with SCZ, 74 with BD, and 225 healthy 
individuals. They identified a disease-associated module (daM) enriched 
for rare and de novo variants (but not for GWAS loci), which included 
545 mRNAs and 5 miRNAs (miR-320b, miR-320c, miR-320d, miR-320e 
and miR-585). Among this module’s hub genes were 6 transcription 
factors, including POU3F2, which plays a role in brain development and 
was identified as a key regulator. 

3.3.3. Step-by-step approach – regression 
Regression approaches were applied several times to mood disorders, 

often determining the relationship between genomic variations and 
other molecular layers. Mehta et al. (2014) used a regression approach 
to uncover 293 eCNVRs (expression-influencing copy number variation 
regions) that significantly influenced 429 unique transcripts in pre
frontal cortex tissue from 35 controls, 34 BD, and 35 SCZ patients, with 
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Table 1 
Selected multi-omic studies applied to mood disorders.  

Paper RNA DNAme miR SNP ChIP Cohort Biological 
samples 

Integration 
method 

Covariate correction Relevent results Code available 

Abdolmaleky 
et al., 2019 

x x    

mRNA: 10 BD, 
10 SCZ, 10 HC 
DNAm: 4 BD, 4 
HC, 4 SCZ 

Brain (BA46, 
DLPFC) 

Spearman 
correlation 

Matching samples Anti-correlation between DNAm and 
expression of the CCND1 locus 

No 

Aberg et al., 
2018  

x  x  812 MDD, 320 
HC 

Whole blood Regression 
analysis 

Quantity of DNAm 
captured, batches, 
peak location, age, 
gender & blood cell 
composition 

23 CpG-SNPs with case/control methylation 
effect involved in neural function 

No 

Bhak et al., 
2019 

x x    56 MDD SAs, 
39 MDD, 87 HC 

Whole blood Random forest* Not mentionned Suicidal vs non suicidal MDDs classifer with 
an accuracy accuracy of 92.6% 

Uppon request 

Belzeaux et al., 
2019 

x  x   237 MDD Whole blood Multiple logistic 
regression 

Not mentionned 
Combined MLRA of treatment-worsening 
suicidal ideation including miR-5695, STMN1 
mRNA, and MADRS 

No 

Chen et al., 
2014 

x x    
36 BD,39 SCZ, 
43 HC 

Brain 
Pearson’s 
correlation & 
linear regression 

Age, gender, brain pH 
& PMI 

PIK3R, BTN3A3, NHLH1 and SLC16A7 among 
20 significantly correlated CpGs / gene 
expression showed correlated DEGs and 
DMGs patterns in psychotic patients brains 

No 

Chen et al., 
2018 

x  x x  26 BD,25 SCZ, 
24 HC 

Brain Correlation Gender age, brain pH, 
RIN & PMI 

SCZ/BD associated module enriched for 
genes implicated in rare and de novo 
variants, and for miRNA targets with key 
regulators including POU3F2, SOX9, PAX6, 
SOX5, EPAS1, and ZNF423 

No 

Ciuculete et al., 
2020 x x  x  

mRNA: 15 
MDD, 15 HC 
DNAm & 
meQTL: 23 
MDD, 36 HC 

Brain & 
whole blood 

Regression 
analysis, 
Spearman 
correlation 

Blood cell 
composition & 
batches 

Lower methylation at cg24627299 was 
observed in MDD patients, associated with 
expression levels of the MET ligand HGF in 
blood 

No 

Fries et al., 
2017 

x x    
6 BD, 6 BD HC 
offsprings, 6 
HC 

PBMCs 
Pathway analysis 
& Pearson’s 
correlation 

Matching samples 
42 combines DEGs and DMGS enriched in the 
circadian rhythm, immune system and 
synaptic scaffolding 

No 

Gandal et al., 
2018 x   x  

222 BD,51 
ASD, 559 SCZ, 
963 HC 

Brain 
(frontal, 
temporal 
cortices) 

Regression 
analysis 

RIN, PMI & hidden 
factors 

5 gene/isoform networks enriched in 
inflammatory and postsynaptic density/ 
receptor-mediated presynaptic signaling 
pathways as well as endothelial and pericyte 
genes 

No 

Ju et al., 2019 x x    177 MDD, 102 
HC 

Whole blood Overlap test Age & gender 
16 DMPs overlapping with CHN2 and JAK2 
DEGs involved in the inflammatory response 
and neurodevelopment 

No 

Li et al., 2020 x   x  

eQTL: n = 2251 
GWAS: 
246.363 MDD 
& 561.190 HC 

Brain 
SMR & Bayesian 
framework * 

Diagnosis, gender, 
institution, 
AOD, PMI, RIN, 
Batches & hidden 
factors 

LRFN5 and DCC genes identified as 
depression risk genes involved in synaptic 
plasticity 

No 

Mehta et al., 
2014 

x   x  23 BD, 23 SCZ, 
26 HC 

Brain GLM Likelihood 
ratio test 

Age, gender, ethnicity 
& PMI 

429 transcripts significantly associated with 
CNVR, enriched in the corticotrophin- 
releasing hormone signaling pathway 

No 

Pai et al., 2019 x x  x  

RNA seq:17 BD 
& SCZ, 17 HC 
EWAS & 
Genotypes: 26 
BD, 29 SCZ, 27 
HC 

Brain: PFC 
neurons 

Regression 
analysis 

Age, gender, PMI & 
ancestry 

Concordance between DEG and DMG and 
enrichments related to embryonic 
development, synaptic function and immune 
cell activation 

https://github.com/shraddhapai/ 
EpiPsychosis_IGF2 

(continued on next page) 
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Table 1 (continued ) 

Paper RNA DNAme miR SNP ChIP Cohort Biological 
samples 

Integration 
method 

Covariate correction Relevent results Code available 

Pisanu et al., 
2018 

x   x  

mRNA: 10 BD 
LR, 10 NR 
Genotype: 59 
LR, 146 NR 

LCL 

Multiple linear 
principal 
components 
regression 

Matching samples ZNF429 and ZNF493 as potential lithium- 
responsive biomarkers 

No 

Pisanu et al., 
2019 

x  x   

mRNA: 10 BD 
LR, 10 NR  
miRNA: 12 BD 
LR, 12 NR 

LCL 
Negative 
correlation 
between 

Matching samples 
A 30 miRNAs and 277 genes correlation 
network centered on miR-320a and miR-155- 
3p 

No 

Wang et al., 
2018 x   x x 

H3K27ac: 117 
SCZ, 109 HC. 
mRNA: 259 BD, 
630 SCZ, 1094 
HC 
SNP: 172 BD, 
497 SCZ, 619 
HC 

Brain 
(DLPFC) 

WGCNA & Deep 
Boltzmann 
Machine* 

Matching samples 
between training and 
test datasets 

An improved model linking regulatory 
network including immunological, synaptic, 
and metabolic pathways and higher 
psychiatric level phenotypes 

https://github. 
com/gersteinlab/PsychENCODE-DSPN 

Wang et al., 
2019a 

x   x  

mRNA: 258 
SCZ, 279 HC 
GWAS: 36.989 
SCZ, 113.075 
HC 

Brain & 
Whole blood 

Bayesian 
framework* 

Not mentioned 
104 high-confidence risk genes involved in 
neurogenesis 

https://www.vumc.org/cgg/irigs 

Wang et al., 
2019b x   x  

23 BD, 24 SCZ, 
24 HC Brain 

Vertical & 
horizontal 
approaches: 
regression model 
* 

No correction 
MAPK1, YWHAE, TPH1 and AKT1 as key 
features genes in BD and SCZ 

https://github. 
com/shuanggema/VHintegr 

Xie, 2021 x x    

mRNA: 128 
MDD, 64 HC. 
DNAme: 100 
MDD, 50 HC. 

Whole Blood Overlap Batch effect 

46 Hypomethylated and up-regulated genes 
involved in -among others- PI3K-Akt IL-17 
and axon guidance signaling pathways, 71 
Hypermethylated and down-regulated genes 
involved in the MAPK and NF-kappa B 
signaling pathways 

No 

Zhao et al., 
2015 x x    

7 BD, 5 SCZ, 6 
HC Brain (BA9) Overlap Test Matching samples 

7,5% of hypermethylated BD genes showed 
decreased expression and less than 1% of the 
hypomethylated ones showed and increase. 
DMR-related miRNAs down-regulated genes 
in neurogenesis and nervous system 
development 

No 

Zhu et al., 
2019 x x    

72 MDD and 72 
non MDD twins PBMCs 

Partial 
correlation 

Blood cell 
composition 
estimation & batches 

DMGs are 2.44 times more likely to be DEGs 
and are significantly enriched in previous 
MDD GWAS loci 

No 

Legends: AOD, alcohol and other drug; ASD, acute stress disorder; BA, Brodmann area; BD, bipolar disorder; CNVR copy number variation regions; DEG, differentially expressed gene; DLPFC, dorsolateral prefrontal 
cortex; DMG, differentially methylated gene; DMP, differentially methylated probe; DMR, differentially methylated region; DNAme, DNA methylation; eQTL, expression quantitative trait locus; EWAS, epigenome-wide 
association study; GLM, generalized linear model; GWAS, genome wide association study; HC, healthy controls; LCL, lymphoblastoid cell lines; LR, lithium responder; MDD, major depressive disorder; meQTL, DNA 
methylation quantitative trait locus; miR, micro RNA; NR, non responder; PBMC, peripheral blood mononuclear cells; PFC, prefrontal cortex; PMI, post mortem intervals; RIN, RNA integrity number; SA, suicidal attempt, 
SCZ, schizophrenia; SMR, summary data-based Mendelian randomization; SNP, single nucleotide polymorphism; WGCNA, weighted correlation network analysis. * Advanced integration approaches. 
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enrichment in the corticotrophin-releasing hormone signaling pathway. 
The PsychENCODE consortium generated brain RNA-seq and genotype 
data from a large cohort of 51 patients with autism, 559 SCZ, 222 BD, 
and 963 controls (Gandal et al., 2018). After a comprehensive investi
gation of this new transcriptome dataset (including alternative splicing, 
non-coding genes, and co-expression analyses), the authors combined 
transcriptome with genotype data to compute both gene- and isoform- 
level expression quantitative trait loci (eQTL). Expression prediction 
regression models were also tested by conducting a transcriptome-wide 
association study (TWAS). Taking advantage of these new brain eQTL 
and large publicly available GWAS in SCZ, autism, and BD, they iden
tified genes whose expression, although not significantly different across 
disease groups, is regulated in cis by disease-associated variants. Pisanu 
et al. (2018) used a multiple linear principal components regression 
model to analyze gene expression changes induced by lithium chloride 
exposure in LCLs from 10 lithium responders (LR) and 10 non- 
responders (NR) BD patients, as well as genotype data of 56 LR and 
141 NR patients. Among the 29 genes whose expression was signifi
cantly affected by lithium treatment, two (ZNF429 and ZNF493) were 
also associated with lithium response using genotype data (analyzed at 
gene level). Regarding treatment response, regression methods were 
also applied by Belzeaux et al. (2019) to analyze mRNA, miRNA, and 
clinical data in relation to antidepressant treatment-worsening suicidal 
ideation (TWSI) in 237 MDD patients from a double-blinded trial. The 
authors compared multiple logistic regression models and found that the 
model that included miR-5695, STMN1 mRNA, and the MADRS 
(Montgomery-Asberg Depression Rating Scale) score at baseline signif
icantly outperformed those based on a single omic, or clinical data 
alone. Regression approaches were also applied for methylome or 
epigenome-wide association studies (MWAS or EWAS) and for inte
grating meDNA data with genotype or transcriptome several times. 
Aberg et al. (2018) concurrently analyzed genotype and DNAme using 
Methyl-binding domain sequencing (MBD-seq) from blood and brain for 
the NESDA MDD collection (320 controls and 812 cases). They focused 
on CpGs created/deleted by SNPs (with minor allele frequency > 10%). 
Twenty-three CpG showed a significant methylation quantitative trait 
locus (meQTL) effect. These so-called CpG-SNPs were over-represented 
among three recent MDD GWAS findings, with genes involved in neural 
function. Pai et al. (2019) also investigated genetic-epigenetic in
teractions, focusing on frontal cortex tissue. DNAme was assessed using 
neuronal nuclei (sorted using FACS in 29 SC, 26 BD patients, and 27 
controls), while gene expression was investigated at whole tissue level 
(in 17 randomly selected cases and 17 controls), and SNPs were also 
characterized. Results showed a concordance of enriched pathways in 
both transcriptomic and methylomic analyses, including immune acti
vation, embryonic development, and synaptic transmission. The cis
meQTL analysis (SNP-CpG regression) showed a significant genetic- 
epigenetic interaction in 13 out of the 18 differentially methylated 
CpG sites. Ciuculete et al. (2020) considered a step-by-step approach 
with regressions using blood and brain DNAme data. In their discovery 
cohort of 59 adolescents, they first identified an increase in blood 
DNAme at the cg24627299 site that was associated with higher 
depression scores and suicidal ideation during a 1-year follow-up. Then 
using genotype data from the same discovery cohort, they identified that 
rs39748 a SNP located at ~16 kb downstream, was associated with the 
level of DNAme at this CpG site. Using a replication cohort with brain 
DNAme data for 45 individuals and multiple published datasets, they 
found that this site was inversely correlated with MET expression in 
blood and hypomethylated with an increased MET expression in MDD 
subjects’ brains. 

3.3.4. Advanced approaches 
Elaborated approaches have been used to integrate GWAS with eQTL 

data – see (Reynolds et al., 2021) for a comprehensive review of post- 
GWAS data integration strategies. In most cases, these studies use data 
from non-overlapping cohorts of patients. One of the exceptions, Li et al. 

(2020) identified risk genes for MDD in Europeans and Han Chinese 
using SMR ‘Summary-based Mendelian Randomization’ coupled with a 
‘Bayesian integration risk gene selectors’ (iRIGS) algorithms. The au
thors integrated GWAS data and eQTL, RNA-seq data in the DLPFC, and 
chromatin conformation data (Hi-C) from multiple sources and very 
large cohorts. Results identified several genes, the most significant of 
which was LRFN5, involved in the formation and differentiation of 
synapses, and DCC, involved in synaptic plasticity. 

Among advanced approaches, machine learning classification was 
used by Bhak et al. (2019) to distinguish depressive subjects with (n =
56) or without (n = 39) suicidal behavior and healthy controls (n = 87). 
Using a random forest classifier, the authors integrated blood data on 
DEGs and differentially methylated CpG sites with leave-one-out cross- 
validation. This resulted in an MDD suicidal vs. MDD non-suicidal 
classifier with an accuracy of 92.6%, and 63 features composed of 
differentially methylated sites only. Strikingly, Wang et al. (2018) was 
the only study using deep learning algorithms on mood disorder data 
despite its growing popularity. Both WGCNA and deep Boltzmann ma
chine algorithm were applied to the transcriptome, genome (SNP), and 
chromatin conformation (Hi-C) PsychENCODE data from DLPFC tissue 
of BD, SCZ patients, and controls. It resulted in an enhanced model 
linking psychiatric phenotypes to omics data, with genes involved in 
immunological and synaptic processes common to both schizophrenia 
and bipolar disorder. 

Because of the rarity of studies leveraging such advanced ap
proaches, we broadened our scope of analysis to SCZ and identified two 
additional relevant studies. In the first one, Wang et al., 2019a applied 
the iRIGS framework to infer risk gene probability from the GWAS data 
generated by the Schizophrenia Working Group of the PGC (36,989 SCZ 
cases and 113,075 controls). As a result, they built 104 networks derived 
risk genes (NRGs) and identified 104 high-confidence risk genes (HRGs) 
collectively involved in neurogenesis, glutamatergic neurotransmission, 
synaptic plasticity, and calcium channel and signaling, and targeted by 
miR-137. In the second SCZ publication, Wang et al. (2019b) proposed 
two integrative approaches of CNV and gene expression data from the 
same individuals (24 SCZ, 23 BD, and 24 controls from the Stanley 
foundation). The vertical approach, which aims to override collinearity 
among different omics, used a “reverse regression” of the CNVs on gene 
expression, and sparse PCA to reduce the number of selected features 
within a logistic regression model. The approach, which aims to study 
the impact of CNV on the expression of genes common to the two dis
eases, was based on linear regression with LASSO penalties. The sparse 
PCA in the vertical integration identified previously known SCZ and BD 
genes (MAPK1, YWHAE, TPH1, and AKT1). In contrast, the horizontal 
one showed BRCA1 as a potential SCZ biomarker, suggesting that 
visualizing data using multiple analysis strategies and methods can help 
identify key disease-associated genes and biomarkers. 

4. Discussion 

This review first summarized recent studies that used single omic 
approaches in mood disorders and then looked in more detail at inte
grative studies that included more than one omic. Cohort size varied a 
lot among both single and multiple omics studies. We also noted that 
most recent research focused on the epigenetic aspect of mood disorders 
in both cases, emphasizing the contribution of DNAme and miRs, fol
lowed by their transcriptomic impact. 

Up to now, despite the insights that single omic based studies have 
provided on the etiology of mood disorders, these studies failed at 
identifying reliable classifiers or molecular signatures that would 
improve diagnosis or patient stratification, neither for MDD nor BD. 
Most of these studies have observed small effect sizes, which contributes 
to the difficulty in uncovering reproducible functional perturbation in 
mood disorders. This could be explained by the subtlety and heteroge
neity of molecular signatures associated with these disorders, among 
other factors. Accordingly, the well-known complexity of the brain 
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Table 2 
Available multi-omic data on mood affective disorders.  

Studies DOI Technologies RNA DNAm SNP Discription Biological 
samples 

Phenotype data avalaibility Molecular data 
availability 

Papers 

Netherlands Study of 
Depression and 
Anxiety (NESDA) & 
Netherland Twin 
Register (NTR) 

doi:https://doi. 
org/10.100 
2/mpr.256  

doi:https://doi. 
org/10.1375/twi 
n.5.5.401 

Affymetrix 6.0 Human SNP & Human 
Genome U219 Array x  x 

SNP Genotypes: 
5061 samples 
mRNA 
Expression: 5429 
samples 

Blood & 
Sliva 

MDD Diagnosis, menopausal 
status, BMI, alcohol 
consumption, smoking habits, 
and sociodemographic data 

dbGaP Study Accession: 
phs000486.v1.p1 Aberg et al., 2018 

Stanley Medical 
Research Center 
(SMRC) 

doi:10.1002/ 
ajmg.b.32691 

Illumina Infinium Human Methylation 
27 k &  
Human Genome U133 Plus 2.0 array 

x x  

mRNA: 10 BD, 
10 SCZ, 10 HC 
DNAm: 4 BD, 4 
HC, 4 SCZ 

Brain 
(BA46, 
DLPFC) 

Not publically available GEO: GSE120342 
Abdolmaleky 
et al., 2019 

Pai et al., 2019 
doi:10.1038/ 
s41467-019- 
09786-7 

Illumina NextSeq 500 
Illumina MethylationEPIC BeadChip 
Illumina Human PsychArray-24 v1.1 

x x x 

RNA seq:17 BD 
& SCZ, 17 HC 
DNAm & 
Genotypes: 26 
BD, 29 SCZ, 27 
HC 

Brain: PFC 
neurons 

Age, gender, ethnicity, brain 
weight, smoking habits, PMI, 
antipsychotics use, valproate use, 
and lithium use 

GEO: GSE112525 
Wang et al., 
2019b and Pai 
et al., 2019 

CommonMind 
Consortium 

doi:10.1038/ 
s41597-019- 
0183-6 

HiSeq 2000 or HiSeq 4000 
HumanOmniExpressExome 8v 1.1b 
chip,HumanHap650Y, Human1M-Duo, 
and HumanOmni5M-Quad 

x  x 

RNA Seq: 353 
SCZ, 128 BD/ 
MD, 501 HC. 
SNP: n = 1076 

Brain 
RIN, library batch, 
diagnosis, age of death, genetic 
ancestry, PMI, and gender 

https://www.synapse. 
org//#!Synapse:sy 
n2759792/wiki/69613 

Wang et al., 
2019aandH. J. Li 
et al., 2020 

The PsychENCODE 
project 

doi:10.1038/ 
nn.4156 

Details for each study available in 
supplimatry data of https://doi.org/1 
0.1126/science.aat8464 

x  x 

RNAseq: 259 BD, 
630 SCZ and 
1094 HC 
SNP: 172 BD, 
497 SCZ and 619 
HC 

Brain 
(DLPFC) Age, gender, ethnicity 

http://resource.psych 
encode.org/#Raw Gandal et al., 2018 

Legends:BA, Brodmann area; BD, bipolar disorder; DLPFC, dorsolateral prefrontal cortex; DNAm, DNA methylation; HC, Healthy Controls; GEO, gene expression omnibus accession; MD; Mood disorders; MDD, major 
depressive disorder; miR, micro RNA; PFC, prefrontal cortex; PMI, post mortem intervals; RIN, RNA integrity number; SCZ, Schizophrenia; SNP, single nucleotide polymorphism. 
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histological and structural organization, with multiple intricated glial 
and neuronal cell types, participates in this heterogeneity, and its un
derlying genetic architecture. In addition to such variable interactions at 
each omic level, these studies also likely suffer from their relatively 
small sample size, diagnostic heterogeneity, as well as insufficient 
consideration of meaningful additional factors, in particular, patient’s 
medications. 

From a systems biology point of view, it, therefore, appears that 
restricting analyses to a single biological level may not have the capacity 
to capture the complexity of molecular relationships and regulatory 
processes involved in mood disorders. With the aim of improving the 
identification of biomarkers with clinical potential, recent studies have 
moved towards multi-integrative methods, as reviewed in the second 
part of the present work. Over the last decade, rapid technical progress 
and increased availability of large datasets through collaborative and 
open-source efforts have opened new avenues for multi-omics data 
integration strategies. Among the 21 multi-omic studies reviewed herein 
(Table 1), most used step-by-step approaches. Such approaches, how
ever, by definition only allow extracting information whose variance is 
strong enough to be detected as significant at the level of a single omic 
layer. Surprisingly, only one publication used a deep machine learning 
approach (Wang et al., 2018), despite the outstanding progress and 
popularity that such methods have gained recently, particularly in other 
research fields such as cancer. This is explained at least in part by 
technical challenges and higher costs associated with generating multi- 
omic data on large collections of biological samples. Yet, the application 
to multi-omics data of approaches based on matrix factorization and 
dimensionality reduction, as benchmarked recently by Cantini et al. 
(2021), would help the research community to prioritize genes and 
molecular biomarkers, and to uncover regulatory principles driving 
their pathophysiological dysregulation, as well as their potential as 
targets for drug repurposing programs. Furthermore, the clustering of 
patients using network-based methods such as SNF (Wang et al., 2014), 
or best consensus among various clustering methods (Brière et al., 
2021), should improve patient stratification, and help better understand 
disease heterogeneity by identifying more homogeneous sub-groups of 
patients with MDD or BD. 

We note that studies identified in the present systematic review 
mainly use case-control designs, with a striking paucity of studies based 
on other potentially relevant designs (e.g. longitudinal, dimensional). 
This could be explained by the relative novelty of multi-omics tools and 
integration methods designed around case-control studies. Furthermore, 
these methods could be used to cluster patients into molecularly ho
mogeneous subgroups, which could potentially help in getting a finer 
understanding of the mood disorder spectrum. The current lack of sta
tistically significant and reliable molecular signatures for mood disor
ders could be potentially overcome in the future by studies exploiting 
larger cohorts, and including groups of individuals at high risk for mood 
disorders, in prodromal phases of MDD and BD, or with variable 
symptom severity, using dimensional approaches. Additionally, future 
studies should seek to gather extensive longitudinal multi-omics 
profiling, which would likely help acquiring a better understanding of 
biological processes associated with mood disorders and their interac
tion with environmental factors at their earliest stage. Despite their 
substantial financial and logistics requirements, such prospective studies 
could notably mitigate the impact of significant confounding factors (e. 
g. medication), and ultimately lead to predictive biomarkers. 

Lastly, the limited availability of bioinformatic code used for data 
analysis is concerning, as only 3 studies made their scripts public. 
Greater transparency is necessary to encourage the generalized use of 
multi-omics integration in molecular psychiatry. Even if some of the 
methods are already released as packages, many of their adaptations 
applied to molecular psychiatry need to be better documented to facil
itate their use, determine their limitations, and ultimately lead to proper 
applicative recommendations. Besides, almost half of the studies 
reviewed here did not report corrections for known confounding 

covariates and were limited to matching sample groups in terms of de
mographic and clinical variables. Above all, none of the multi-omic 
studies has taken medications into account (let alone frequent combi
nations of medications), although available evidence suggests that this 
factor may be critical. 

5. Conclusion 

In conclusion, we would like to advocate for the use of multi-omics 
data in psychiatry. Indeed, applying advanced integration methods 
could greatly benefit patients with mood disorders by promoting the 
discovery of biomarkers and, ultimately, precision psychiatry. This 
would help to overcome the lack of stratification indicators in the cur
rent nosology. It is, therefore, necessary to encourage collaboration 
between clinicians, biologists, and computational biologists. It is also 
essential to promote data availability, notably through public, freely 
accessible databases, as performed e.g. in oncology with the cancer 
genome atlas project (TCGA). Within this line, publicly available multi- 
omic data discussed in the present review are gathered in Table 2. 

Further initiatives should be encouraged to generate multi-omic 
datasets for higher numbers of individuals, with prospective longitudi
nal data collection complemented by clinical and phenotypic data (eg 
brain imaging). The specificities of each data type, their increasing 
amounts, and analysis of their dynamic interactions raise new chal
lenges for multi-omics and multi-view integration methods. Overall, 
developing such approaches is nevertheless expected, in the long term, 
to strongly benefit affected patients and their families. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.pnpbp.2022.110520. 
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Köhler, S., Ligthart, L., van den Maagdenberg, Arn M.J.M., Mook-Kanamori, D.O., de 
Mutsert, R., Tiemeier, H., Schram, M.T., Stehouwer, Coen D.A., Terwindt, Gisela M., 
Willems van Dijk, K., Fu, Jingyuan, Zhernakova, A., Beekman, Marian, Slagboom, P. 
E., Boomsma, D.I., Penninx, B.W.J.H., Beekman, M., Suchiman, H.E.D., Deelen, J., 
Amin, N., Beulens, J.W., van der Bom, J.A., Bomer, N., Demirkan, A., van Hilten, J. 
A., Meessen, J.M.T.A., Pool, R., Moed, M.H., Fu, J., Onderwater, G.L.J., Rutters, F., 
So-Osman, C., van der Flier, W.M., van der Heijden, A.A.W.A., van der Spek, A., 
Asselbergs, F.W., Boersma, E., Elders, P.M., Geleijnse, J.M., Ikram, M.A., 
Kloppenburg, M., Meulenbelt, I., Mooijaart, S.P., Nelissen, R.G.H.H., Netea, M.G., 
Stehouwer, C.D.A., Teunissen, C.E., Terwindt, G.M., ’t Hart, L.M., van den 
Maagdenberg, A.M.J.M., van der Harst, P., van der Horst, I.C.C., van der Kallen, C.J. 
H., van Greevenbroek, M.M.J., van Spil, W.E., Wijmenga, C., Zwinderman, A.H., 
Zhernikova, A., Jukema, J.W., Sattar, N., 2020. Metabolomics profile in depression: 
a pooled analysis of 230 metabolic markers in 5283 cases with depression and 
10,145 controls. Biol. Psychiatry 87, 409–418. https://doi.org/10.1016/j. 
biopsych.2019.08.016. 
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Isometsä, E., 2014. Suicidal behaviour in mood disorders-who, when, and why? Can. J. 
Psychiatr. 59, 120–130. https://doi.org/10.1177/070674371405900303. 

Jones, P.A., 2012. Functions of DNA methylation: islands, start sites, gene bodies and 
beyond. Nat. Rev. Genet. 13, 484–492. https://doi.org/10.1038/nrg3230. 

Ju, C., Fiori, L.M., Belzeaux, R., Theroux, J.-F., Chen, G.G., Aouabed, Z., Blier, P., 
Farzan, F., Frey, B.N., Giacobbe, P., Lam, R.W., Leri, F., MacQueen, G.M., Milev, R., 
Müller, D.J., Parikh, S.V., Rotzinger, S., Soares, C.N., Uher, R., Li, Q., Foster, J.A., 
Kennedy, S.H., Turecki, G., 2019. Integrated genome-wide methylation and 
expression analyses reveal functional predictors of response to antidepressants. 
Transl. Psychiatry 9, 254. https://doi.org/10.1038/s41398-019-0589-0. 

Koh, H.W.L., Fermin, D., Vogel, C., Choi, K.P., Ewing, R.M., Choi, H., 2019. iOmicsPASS: 
network-based integration of multiomics data for predictive subnetwork discovery. 
NPJ Syst. Biol. Appl. 5 https://doi.org/10.1038/s41540-019-0099-y. 

Kozomara, A., Birgaoanu, M., Griffiths-Jones, S., 2019. MiRBase: from microRNA 
sequences to function. Nucleic Acids Res. 47, D155–D162. https://doi.org/10.1093/ 
nar/gky1141. 
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