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Morphic words and equidistributed sequences

Mélodie Andrieua, Anna E. Frida

aAix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France

Abstract

The problem we consider is the following: Given an infinite word w on an
ordered alphabet, construct the sequence νw = (ν[n])n, equidistributed on [0, 1]
and such that ν[m] < ν[n] if and only if σm(w) < σn(w), where σ is the shift
operation, erasing the first symbol of w. The sequence νw exists and is unique
for every word with well-defined positive uniform frequencies of every factor, or,
in dynamical terms, for every element of a uniquely ergodic subshift. In this
paper we describe the construction of νw for the case when the subshift of w is
generated by a morphism of a special kind; then we overcome some technical
difficulties to extend the result to all binary morphisms. The sequence νw in
this case is also constructed with a morphism.

At last, we introduce a software tool which, given a binary morphism ϕ,
computes the morphism on extended intervals and first elements of the equidis-
tributed sequences associated with fixed points of ϕ.

Keywords: morphic word, morphism, substitution, unique ergodicity,
frequency of factors, Thue-Morse word, k-regular sequence
2010 MSC: 68R15, 37B10

1. Introduction

Consider an infinite word w = w[0]w[1] · · ·w[n] · · · on an ordered alphabet
Σ; here w[n] ∈ Σ. Suppose that the uniform frequency µ(u) of every factor u of
w exists and is strictly positive, that is, that the dynamical system (subshift)
associated with w is uniquely ergodic, and µ is the unique ergodic measure on
it (see [12] for a discussion of this notion). Now for a factor u of w, define ν(u)
as the sum of measures µ of all words of the same length as u which are lexico-
graphically less than u, and ν(w) as the limit ν(w) = limn→∞ ν(w[0] · · ·w[n]).

The function ν on infinite words has been considered by Lopez and Narbel
[19] from the dynamical point of view. On the other hand, as it was proven
in [5], for every appropriate word w, the sequence (ν(σn(w)))∞n=0, where σ is
the shift operation, is uniformly distributed on [0, 1], and moreover, for n 6= m,
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we have ν(σn(w)) 6= ν(σm(w)). This makes it possible to call the sequence
(ν(σn(w)))∞n=0 the canonical representative of the infinite permutation defined
by the shifts of w. Infinite permutations in this sense were introduced in [13];
as for permutations defined by words, their study was initiated independently
by Makarov [21, 22, 23] and by Bandt, Keller and Pompe [7]; see also [11] and
the monograph [4] summarizing that approach. The fact that the sequence
{ν(σn(w))}∞n=0 is uniformly distributed means in particular that the respective
permutation is also equidistributed (see [6] for the definition and discussion of
an equidistributed permutation).

In this paper, given a morphism ϕ with several nice properties, we describe
how to find ν(w) for any infinite word w from the respective subshift Lϕ, and
in particular for a fixed point wϕ of ϕ. This result generalizes the Makarov’s
construction for the Thue-Morse word [22]. A previous result in this direction,
stated in combinatorial terms and considering not the whole subshift but just a
fixed point of the morphism, can be found in [5].

The next result of the paper concerns the binary case: if the morphism is
binary, even if it does not belong to the “nice” class, our technique can be
adapted to it. We also support the binary case by a software tool.

After introducing usual definitions in Section 2 and the object of our study in
Section 3, we have to devote Section 4 to a discussion of properties of morphic
subshifts. Section 5 starts with a correct extension of the interval [0, 1] to a
wider set, which is needed to distinguish images of consecutive elements of the
subshift. It also contains the first of main results of the paper, Theorem 1,
giving a way to construct a morphism on numbers corresponding to the initial
morphism ϕ, and a sequence νw for any element w ∈ Lϕ. The construction is
supported by examples.

Section 6 contains a discussion of the case when the morphism ϕ is k-uniform
and thus its fixed point w is k-automatic [1]. It is proved that in this case, the
sequence νw is k-regular (see [2] for the respective definitions).

The construction from Theorem 1 works only for a restricted class of mor-
phisms. However, in Section 7 we use some additional machinery to extend this
result to any binary morphism. So, given a binary morphism, we know how to
construct an equidistributed sequence corresponding to its fixed point(s) and to
any element of the respective subshift.

At last, in Section 8, we discuss and refer to a software tool developed to
compute the morphisms on numbers and sequences described in the paper.

2. Definitions and notation

We consider infinite words w = w[0]w[1] · · ·w[n] · · · , where w[i] ∈ Σ, on an
ordered alphabet Σ. In this paper, we usually take Σ = {a, b, c, . . .}, under the
convention that a < b < c < · · · . The order of symbols of Σ naturally extends
to the lexicographic order on finite and infinite words.

The factor w[i] · · ·w[j] of a finite or infinite word w, where j ≥ i, is denoted
also by w[i..j]. The set of all factors of w of length n is denoted by Facn(w).
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The set of infinite words over Σ is denoted by Σω. As usual, the shift
operation σ corresponds to erasing the first symbol: σ(w[0]w[1] · · ·w[n] · · · ) =
w[1]w[2] · · ·w[n + 1] · · · . Given an infinite word w ∈ Σω, we denote by Lw the
closure of the orbit of w under σ. The dynamical system (Lw, σ) is called a
subshift generated by w.

An infinite word w and its subshift Lw are called ultimately periodic if w =
uvvvv · · · for some finite words u and v. If a word (or subshift) is not ultimately
periodic, it is called aperiodic.

Given a set S, we denote by S∗ the set of finite concatenations of elements
of S. In particular, if S is an alphabet, S∗ is the set of finite words on S; but
if S is an interval of reals, S∗ is the set of finite sequences of numbers from I.
A morphism f : S∗ → S∗ is a mapping which preserves concatenation, so that
f(xy) = f(x)f(y) for all x, y ∈ S. Clearly, a morphism is defined by its values
on all elements on S.

Consider a morphism ϕ : Σ∗ 7→ Σ∗, where Σ is an alphabet. If the image
of a symbol of x ∈ Σ starts with x, the morphism ϕ admits a finite or right
infinite fixed point wx starting with x and defined as the limit limn→∞ ϕn(x).
If in addition ϕ(x) 6= x, ϕ has no other fixed points starting with x.

If the fixed point wx = ϕ(wx) = limn→∞ ϕn(x) is infinite, it is called also a
pure morphic infinite word, and the associated subshift (Lwx

, σ) is called a pure
morphic subshift. In most cases considered in this paper (in particular, when
the morphism is primitive, see the definition in Section 4), the subshift does not
depend on the letter x and the fixed point wx but is uniquely defined by ϕ. In
this case, it is denoted by (Lϕ, σ), and its set of factors of length n is denoted
by Facn(Lϕ).

Note that every element u of a pure morphic subshift (Lϕ, σ) can be obtained
from the ϕ-image of another element v = v[0]v[1] · · · ∈ Lϕ by the shift operation
applied p times, where p ≥ 0. Moreover, we can choose p to be less than the
length of ϕ(v[0]): here of course we suppose that ϕ(v[0]) is not empty. So,
u = σp(ϕ(v)), where 0 ≤ p < |ϕ(v[0])|. Note that in the general case, v and p,
as well as v[0] for a given p, are not unique.

A word w is called recurrent if each of its factors s = w[i..j] appears in
it an infinite number of times. If in addition the distances between successive
occurrences of s are bounded, the word is called uniformly recurrent. As it is
well-known, an infinite word w is uniformly recurrent if and only if the associated
subshift (Lw, σ) is minimal, meaning that Lw does not contain any proper subset
which would be closed under σ. An even stronger condition is the existence of
the unique σ-invariant probability measure µ on Lw, which is equivalent to the
existence of uniform positive frequencies of all factors. In this case, the word w
and the dynamical system (Lw, σ) generated by it are called uniquely ergodic.

3. Equidistributed sequences arising from words

Note that an infinite word w is ultimately periodic if and only if σm(w) =
σn(w) for some m 6= n; so, if w is aperiodic, for each m 6= n we have either
σm(w) > σn(w) or σm(w) < σn(w).
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Consider an aperiodic word w with well-defined non-zero uniform frequency
µ(u) of every factor u. The subshift Lw is uniquely ergodic, and its unique
ergodic measure µ is completely determined by the frequencies µ(u) which can
be interpreted as the values of the measure on cylinders: here a cylinder [u] is
the set of elements of Lw starting with a word u.

Now let us associate with an infinite word v ∈ Lw, that is, with an infinite
word with the same set of factors that w, the measure

ν(v) = µ([wmin, v]),

of the interval [wmin, v]: here wmin is the lexicographically minimal element of
the subshift Lw, existing since the set Lw is closed, and the interval [wmin, v] is
defined as the set of all infinite words from Lw which are greater than or equal
to wmin and less than or equal to v.

The mapping ν : Lw 7→ [0, 1] is well-defined, and moreover, since among the
shift images of w the frequency of words from the interval [wmin, v] is the same
as in the whole subshift,

ν(v) = lim
n→∞

#{k|σk(w) < v, k ≤ n}
n

.

Comparing it to the definition of a uniformly distributed (or, which is the same,
equidistributed) sequence (x[n]) on an interval [a, b], meaning that for every
interval [c, d] ⊆ [a, b], we have

lim
n→∞

#({x[0], · · · , x[n]} ∩ [c, d])

n
=
d− c
b− a

,

we see that for all v ∈ Lw, the sequence νv = (ν(σn(v)))+∞
n=0 is equidistributed

on [0, 1]. Indeed, since our subshift is uniquely ergodic, the proportion of words
which are less than or equal to σn(v) is the same in v, w and the shift Lw in
total; see also a discussion in [5].

We will denote the real number ν(σn(w)) by ν[n]. By the construction, the
sequence νw = (ν[0], ν[1], . . .) is unique for every uniquely ergodic infinite word
w.

The mapping ν has been considered by Lopez and Narbel in [19]. On the
other hand, the equidistributed sequence νw for a sequence w, under another
notation, was considered in [6] because of its relation to the infinite permutation
generated by w; see [21, 23, 11] for a discussion of infinite permutations defined
by words.

Example 1. The famous Thue-Morse word wtm = abbabaabbaababba · · · [3] is
defined as the fixed point starting with a of the morphism ϕtm : a→ ab, b→ ba.
The sequence νtm = νwtm

is equal to the fixed point

1

2
, 1,

3

4
,

1

4
,

5

8
,

1

8
,

3

8
,

7

8
, · · · ,
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of the morphism ftm : [0, 1]∗ 7→ [0, 1]∗:

ftm(x) =

{
x
2 + 1

4 ,
x
2 + 3

4 , if 0 ≤ x ≤ 1
2 ,

x
2 + 1

4 ,
x
2 −

1
4 , if 1

2 < x ≤ 1.
(1)

Note that morphisms on intervals have been discussed in Section 2 and, as any
other morphisms considered in this paper, they transform a concatenation into
a concatenation.

This construction (or, more precisely, a similar construction on the interval
[−1, 1]) was found by Makarov in 2009 [22]; below in Section 5 we shall prove
its correctness as a corollary of a more general statement, Theorem 1.

In particular, we see from that construction that ν(0) = 1/2 and ν(1) = 1,
which means that the Thue-Morse word is the maximal element of its subshift
starting with a, and if we erase the first symbol from it, the result is the lexico-
graphically maximal element of the subshift Ltm. These are known results (see,
e. g., [8, 15]).

Note also that due to the symmetry between a in b, the value of ν(w′tm)
of the other fixed point w′tm = baababbaabba · · · of the same morphism ϕtm is
also 1/2. So, the mapping ν is not injective on the respective subshift Ltm.
As it was discussed in [19], this is a typical situation and it can be resolved by
extending [0, 1] to a new wider domain described later in Section 5. However,
if we consider just a recurrent infinite word w and its orbit, that is, the set of
its shifts, and not the whole dynamical system to which it belongs, it is not
necessary. Indeed, two infinite words with the same value of ν can never appear
in the same orbit due to the following statement.

Proposition 1. [5] Let w be a recurrent aperiodic word and u and v be two of
its factors. Then the orbit of w cannot contain at the same time the lexicograph-
ically maximal word from Lw starting with u and the lexicographically minimal
word from Lw starting with v.

In this paper, we consider only uniformly recurrent and, moreover, uniquely
ergodic words, so, Proposition 1 can always be used.

4. Properties of morphic symbolic subshifts

In this section, we define the class of morphisms such that we can directly
generalize the Thue-Morse construction above to their subshifts: namely, these
are primitive order-preserving morphisms with separable subshifts. For such
a morphism, we construct an interval morphism similar to the Thue-Morse
construction from Example 1, and prove its correctness. The considered family
of morphisms includes in particular all morphisms considered by Valyuzhenich
[29], and much more. Note that similar definitions have been introduced in [5],
but here they are updated to better fit our wider goals.

Consider an alphabet Σ = {a1, . . . , aq} and let ϕ : Σ∗ 7→ Σ∗ be a morphism
with an aperiodic fixed point u = ϕ(u) starting with a letter a.
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The matrix M of a morphism ϕ on a q-letter alphabet is a q × q-matrix
whose element mij is equal to the number of occurrences of ai in ϕ(aj). The
matrix M and the morphism ϕ are called primitive if in some power Mn of M
all the entries are positive, i.e., for every b ∈ Σ all the symbols of Σ appear
in ϕn(b) for some n. The classical Perron-Frobenius theorem says that every
primitive matrix has a dominant positive Perron-Frobenius eigenvalue θ such
that θ > |λ| for any other eigenvalue λ of M . It is also well-known [25] that
a fixed point of a primitive morphism is uniquely ergodic; moreover, for every
sequence of factors (vn) of Lϕ of increasing length, the limit

lim
n→∞

|ϕ(vn)|
|vn|

exists and is equal to θ.
Note in particular that every primitive morphism is non-erasing, which

means that the images of all symbols are non-empty.

Example 2. The Thue-Morse morphism is primitive with the matrix ( 1 1
1 1 ).

The Fibonacci morphism ϕf : a → ab, b → a is primitive with the matrix
M = ( 1 1

1 0 ): M is not positive, but M2 = ( 2 1
1 1 ) is. The Sierpinski morphism

a→ aba, b→ bbb is not primitive since in all the powers of its matrix ( 2 1
0 3 ), the

left lower element is 0, and indeed, a never appears in images of b.

We say that a morphism ϕ is order-preserving on an infinite word u if for
any n,m > 0 we have σn(u) < σm(u) if and only if ϕ(σn(u)) < ϕ(σm(u)); here
< denotes the lexicographic order. A morphism is called order-preserving if it is
order-preserving on all infinite words, or, equivalently, if for any infinite words
u and v we have u < v if and only if ϕ(u) < ϕ(v). If this property holds only
for u, v ∈ Lϕ, we say that ϕ is order-preserving on its subshift. Note that in [5],
order-preserving morphisms were called monotone.

Example 3. The Thue-Morse morphism ϕtm is order-preserving since ab =
ϕtm(a) < ϕtm(b) = ba. The Fibonacci morphism from Example 2 is not order-
preserving since ab = ϕf (a) > ϕf (ba) = aab, whereas a < ba. At the same
time, ϕ2

f : a → aba, b → ab is order-preserving since for all x, y ∈ {a, b} we

have ϕ2
f (ax) = abaax′ < ababy′ = ϕf (by), where x′, y′ ∈ {a, b}∗. So, to use

our construction on the Fibonacci word uf = ϕf (uf ) = abaab · · · we should
consider uf as the fixed point of ϕ2

f which is order-preserving.

The last condition on the morphism ϕ, or, more precisely, on the subshift
(Lϕ, σ), is to be separable. To define this property, consider an element u ∈ Lϕ
and all the ways to represent it as σp(ϕ(u′)) with u′ ∈ Lϕ and 0 ≤ p < |ϕ(a)|,
where a = u′[0] is the first symbol of u′. At least one such pair (u′, p) exists by
the definition of Lϕ. If this pair is unique, we call the pair (a, p) the type τ(u)
of u. A subshift is typable if for all elements u ∈ Lϕ, the type of u exists. If in
addition the

∑
a∈Σ |ϕ(a)| possible types can be ordered so that for all u, v ∈ Lϕ

with τ(u) < τ(v), we always have u < v, we say that the subshift Lϕ is separable.
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Example 4. The Thue-Morse subshift Ltm is separable. Indeed, first, any
two consecutive as (or bs) in its element determine a boundary between images
of letters and thus all such boundaries. Also, the last symbols of ϕtm(a) and
ϕtm(b) are different, the incomplete image of a symbol in the beginning can also
be uniquely reconstructed, so, the morphism is typable. Moreover, if τ(u) =
(a, 0) and τ(v) = (b, 1), we always have u > v, i.e., all as which are first
symbols of ϕtm(a) = ab give greater words than as which are second symbols
of ϕtm(b) = ba. The situation with bs is symmetric, so, we can order the types
as (b, 1) < (a, 0) < (b, 0) < (a, 1) to have u < v whenever τ(u) < τ(v) for
u, v ∈ Ltm.

Example 5. The subshift L generated by the morphism ϕ : a → aab, b → abb
is not typable because of the common suffix b of images of letters. Indeed,
consider a special infinite word u such that au, bu ∈ L: such a word exists since
the subshift is not periodic. Then the word bϕ(u) belongs both to σ2(ϕ(au))
and to σ2(ϕ(bu)), so that its type is not well-defined.

Example 6. The subshift generated by the morphism ϕ : a → aabab, b → bba
is typable but not separable. Indeed, consider u1 = abaa · · · = σ3(ϕ(aa · · · )),
u2 = ababaa · · · = σ(ϕ(aa · · · )), u3 = abbb · · · = σ3(ϕ(ab · · · )). Then u1 < u2 <
u3 whereas τ(u1) = τ(u3) = (a, 3) and τ(u2) = (a, 1).

For recurrence and, in some cases, precise formulas for the frequencies of
factors in fixed points of morphisms, see [25, 14].

In what follows, given a primitive order-preserving separable morphism ϕ
and the respective minimal subshift Lϕ, we define a mapping which allows to
build the sequence νw, and in particular its first value ν(w), for any infinite
word w ∈ Lϕ. However, to do it, we first have to consider the extended domain
to make the mapping ν injective.

5. Extended intervals and morphisms

As Lopez and Narbel showed in [19], and as we discussed above just after
Example 1, the mapping ν : L 7→ [0, 1] defined in Section 3 for any minimal
subshift L is surjective but not injective. In the Thue-Morse example, the
image of the greatest word starting from a, which is wtm itself, is 1/2, as well
as the image of the smallest word starting from b. As it was proved in [19],
this happens exactly with consecutive words, or, equivalently, for consecutive
cylinders. Recall that for a finite word u, a cylinder [u] here is the set of all
infinite words from L starting from u. Finite words u1, u2 (and their cylinders
[u1], [u2]) are called consecutive if u1 < u2 and there is no word w ∈ L such
that w1 < w < w2, where w1 is the greatest element of L starting with u1

and w2 is the smallest element of L starting with u2. The infinite words w1

and w2 are also called consecutive. As it was proved in [19], consecutive infinite
words are exactly words w1 6= w2 for which ν(w1) = ν(w2). Every pair of infinite
consecutive words corresponds to a pair (or, more precisely, a countable number
of pairs) of consecutive cylinders. For example, in the Thue-Morse subshift, the
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words wtm and w′tm are consecutive, as well as the respective cylinders [a] and
[b], or [abb] and [baab], or any other pair of cylinders corresponding to prefixes
of respectively wtm and w′tm.

Let Z be the set of ν-images of elements of consecutive pairs of words: it is a
countable set since a consecutive pair can be defined by two finite (consecutive)
words. To make the mapping ν injective and following [19], we replace Z in
[0, 1] by two copies Z− and Z+, and thus consider ν as a mapping from L to
the associated extended interval X = XL = ([0, 1]\Z) ∪ Z− ∪ Z+. Here for
each pair w1 < w2 of consecutive words with ν(w1) = ν(w2) = x we denote
ν(w1) = a− ∈ Z− and ν(w2) = a+ ∈ Z+. It is natural to set a− < a+ and to
make them both inherit from [0, 1] the relation with other elements of X. To
unify the notation, we may also say for a number a ∈ [0, 1]\Z that a− = a+ = a.

Let ϕ be a primitive order-preserving morphism on an ordered alphabet
Σ = {a1, . . . , aq}, a1 < · · · < aq, with a separable subshift (L, σ), and XL be
the associated extended interval defined above. We will define a morphism on
XL corresponding to ϕ, thus extending to XL a construction from [5].

Denote by µ = (µ1, . . . , µq) the vector of measures of cylinders [ai] in L, or,
which is the same, of frequencies of symbols in any element of L. Since the
morphism is primitive, these measures exist and are not equal to 0. Denote the
intervals Ia1 = [0, µ−1 ], Ia2 = [µ+

1 , (µ1 +µ2)−], . . ., Iaq = [(1−µq)+, 1], Ia ⊂ XL.
Now let us take all the k =

∑q
i=1 |ϕ(ai)| types of elements of L and denote

them according to their order:

τ1 < τ2 < · · · < τk,

with τi = (bi, pi). Types and their order exist since the subshift is separable.
For each τi = (bi, pi), the frequency of factors of type τi in the subshift is

equal to li = µbi/θ, where θ is the Perron-Frobenius eigenvalue of ϕ. Indeed,
given a word u from the subshift Lϕ, consider its ϕ-image v interpreted as a
word on the alphabet ϕ(Σ). By the construction, occurrences of ϕ(bi) to v
correspond to occurrences of bi to u. But if now we interpret v as a word on Σ,
v ∈ Lϕ, we see that its prefix corresponding to the prefix of u of length n has a
length which grows as θn with n→∞. So, factors of type τi occur in v exactly
θ times rarer than bi in u. Since the frequencies do not depend on the choice of
an element of Lϕ, we get the formula li = µbi/θ.

Denote

J1 = [0, l−1 ], J2 = [l+1 , (l1 + l2)−], . . . , Jk = [(1− lk)+, 1];

so that in general, Ji = [(
∑i−1
m=1 lm)+, (

∑i
m=1 lm)−]. We will also denote Ji =

Jbi,pi .
The interval Ji is the range of ν(u) corresponding to elements of u ∈ L of

type τi. Note that the first symbol of such a word u is always the symbol number
pi + 1 of ϕ(bi) (the range of pi for a given bi is from 0 to |ϕ(bi)| − 1). So, the
union of elements Ji corresponding to this element equal to am is exactly Im for
every m. In particular, each Ji is a subinterval of some Im. By the construction,
all the ends of these intervals are in Z− or Z+, and thus the intervals Ji do not
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intersect: the ends a− and a+ of consecutive intervals correspond to consecutive
words from L.

Now we define the morphism f : X∗L 7→ X∗L as follows: For x ∈ Ia we have

f(x) = fa,0(x), . . . fa,|ϕ(a)|−1(x).

Here fa,p is the increasing affine bijection fa,p : Ia 7→ Ja,p: If Ia = [x+
1 , x

−
2 ] and

Ja,p = [y+
1 , y

−
2 ], then

fa,p(x) =
y2 − y1

x2 − x1
(x− x1) + y1. (2)

Here, by the convention, the image of any x ∈ Z− (x ∈ Z+) is (fa,p(x))−

(respectively, (fa,p(x))+). Note that the slope
y2 − y1

x2 − x1
of the affine mapping

fa,p(x) is equal to 1/θ since the interval Ja,p is θ times shorter than Ia.
The meaning of intervals Ia and of the morphism f is explained in the

following proposition following directly from the construction.

Proposition 2. Let d : X∗L 7→ Σ∗ be the morphism defined by d(x) = a whenever
x ∈ Ia. Then for all x ∈ XL we have d(f(x)) = ϕ(d(x)).

This proposition means in particular that the lengths of ϕ-images of letters
and of f -images of reals from the respective intervals are synchronized. So, the
following statement holds.

Proposition 3. Given a word w ∈ Lϕ, where ϕ is primitive and order-preserving
and Lϕ is separable, the following statements are equivalent:

• The letter ϕ(w)[n] is the letter indexed p of the ϕ-image of the letter
indexed n′ of w, and

• The number f(νw)[n] is the number indexed p of the f -image of the number
indexed n′ of νw.

Example 7. The Thue-Morse morphism on [0, 1] from Example 1 can now
be more correctly redefined on the respective set Xtm. Here 1/2, which is the
frequency of a, is one of the numbers which is doubled, as well as all binary ratio-
nals from (0, 1). So, we have Ia = [0, 1/2−], Ib = [1/2+, 1], Ja,0 = [1/4+, 1/2−],
Ja,1 = [3/4+, 1], Jb,0 = [1/2+, 3/4−], Jb,1 = [0, 1/4−], and (1) can now be
rewritten as

ftm(x) =

{
fa,0(x), fa,1(x) for x ∈ Ia,
fb,0(x), fb,1(x) for x ∈ Ib,

(3)

where the used linear mappings on Xtm are defined by (2) and, of course,
coincide on [0, 1] with those from (1).

For an example concerning the Fibonacci word as the fixed point of the
square morphism ϕ2

f from Example 3, see [5]; the only difference in the presen-
tation should be extended intervals.

The following statements is one of the main results of the paper.
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Theorem 1. Let ϕ be a primitive morphism defining a separable subshift (L, σ)
and order-preserving on it, f be the morphism on extended intervals associated
with ϕ (and L), and νw ∈ Xω

L be the equidistributed sequence corresponding to
a sequence w ∈ L. Then f(νw) = νϕ(w) (see the commutative diagram below).

w
ϕ−−−−→ ϕ(w)yν yν

νw
f−−−−→ νϕ(w)

Proof. We shall prove first, that the two sequences have the same order
among elements, and second, that f(νw) is equidistributed on [0, 1]. Since the
equidistributed sequence on [0, 1] corresponding to any ordering of elements is
at most unique (if it exists, each of its element is uniquely defined as the fraction
of elements in the ordering smaller than it, see also a discussion after Definition
2.3 in [6]), this is sufficient.

Suppose that f(νw)[n] < f(νw)[m] for some n,m ∈ N; our goal is to prove
that νϕ(w)[n] < νϕ(w)[m].

Suppose first that f(νw)[n] and f(νw)[m] are situated in the same interval
Jc,p. Since all such intervals are disjoint, this means that f(νw)[n] is obtained as
fc,p(νw[n′]) and f(νw)[m] is obtained as fc,p(νw[m′]) for some n′,m′ ∈ N, where
νw[n′], νw[m′] ∈ Ic. So, by the definition of Ic, we have w[n′] = w[m′] = c.
Moreover, since f and ϕ are synchronized as described in Proposition 3, the
symbols of ϕ-images of w[n′] and w[m′] numbered p are ϕ(w)[n] and ϕ(w)[m].
So, the inequality f(νw)[n] < f(νw)[m] implies that νw[n′] < νw[m′] since
fc,p is an affine mapping with a positive slope, then that σn

′
(w) < σm

′
(w)

by the definition of νw, then that ϕ(σn
′
(w)) < ϕ(σm

′
(w)) since ϕ is order-

preserving on L, and σp(ϕ(σn
′
(w))) < σp(ϕ(σm

′
(w))) since first p symbols of

ϕ(σn
′
(w)) and ϕ(σm

′
(w)) are equal (to the first p symbols of ϕ(c)). But since

ϕ and f are synchronized by Proposition 3, σp(ϕ(σn
′
(w))) = σn(ϕ(w)) and

σp(ϕ(σm
′
(w))) = σm(ϕ(w)). So, σn(ϕ(w)) < σm(ϕ(w)), and, by the definition

of νϕ(w), νϕ(w)[n] < νϕ(w)[m].
Now suppose that f(νw)[n] ∈ Jcn,pn and f(νw)[m] ∈ Jcm,pm , where Jcn,pn 6=

Jcm,pm . These intervals are disjoint and correspond to types (cn, pn) < (cm, pm).
So, f(νw)[n] is the number indexed pn in the f -image of some νw[n′] ∈ Icn , and
f(νw)[m] is the number indexed pm in the f -image of some νw[m′] ∈ Icm . By
the construction of intervals Ic, this means that w[n′] = cn and w[m′] = cm, and
moreover, due to Proposition 3, ϕ(w)[n] is the symbol indexed pn of the ϕ-image
of w[n′] and ϕ(w)[m] is the symbol indexed pm of the ϕ-image of w[m′]. Since
the morphism ϕ is separable, the type of σn(ϕ(w)) is thus equal to (cn, pn), and
it is less than the type of σm(ϕ(w)) equal to (cm, pm). So, σn(ϕ(w)) < σm(ϕ(w))
and thus νϕ(w)[n] < νϕ(w)[m], which was to be proved.

We have proved that the sequences f(νw) and νϕ(w) have the same order
among elements; it remains to prove that f(νw) is equidistributed on XL. In-
deed, let us consider any subinterval I of length l of some interval Ic. The
frequency of elements of νw which are in I is l since νw is equidistributed. Due
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to the definition of f , the images of the interval I are fc,1(I), . . . , fc,|ϕ(c)|(I).
These are intervals from XL of length l/θ each, where θ is the Perron-Frobenius
eigenvalue of ϕ. The frequency of elements of f(νw) from each of these intervals
is also l/θ, since f and ϕ are synchronized in length and since θ is the limit of
the ratio |ϕ(w[0] · · ·w[n])|/n with n→∞; we use also the fact that the intervals
Jx,p form a disjoint partition of XL. On the other hand, every subinterval J of
some Jc,p, where p = 1, . . . , |ϕ(c)| is the fc,p-image of a respective subinterval
I of Ic which is θ times longer than it. So, the frequency of elements from J
in f(νw) is equal to the length of J . This is true for all subintervals of Jc,p
and thus by union for all subintervals of XL, meaning exactly that the sequence
f(νw) is equidistributed on XL. 2

Corollary 1. Let w = wa ∈ Lϕ be the fixed point of ϕ starting with a. Then
νw is the unique fixed point of f starting from a number from Ia, which is the
fixed point of fa,0.

Proof. First of all, the fixed point wa of ϕ starting with a is unique since
the morphism is primitive and thus ϕ(a) 6= a. We know from Theorem 1 that
νϕ(wa) = f(νwa), but since wa = ϕ(wa), here it means that νwa = f(νwa), and
so wa is a fixed point of f starting with a number from Ia which is a fixed point
of fa,0, the first applied interval morphism. Since fa,0 is an affine function with
the slope 1/θ < 1, this fixed point is unique. 2

Example 8. The sequence νtm, νtm[k] ∈ Xtm, corresponding to the Thue-
Morse word wtm starting with a, is the fixed point starting with 1/2− of the
morphism (3):

1/2−, 1, 3/4−, 1/4−, 5/8−, 1/8−, 3/8−, 7/8−, · · · .

The other fixed point w′tm of ϕtm, starting with b, corresponds to the fixed point
of the same morphism (3) starting with 1/2+:

1/2+, 0, 1/4+, 3/4+, 3/8+, 7/8+, 5/8+, 1/8+, · · · .

Compared to Example 1, we see that the fixed points here differ from the original
definitions of νtm and νtm′ by signs − or + added to numbers.

Remark 1. The set Z existing in Xtm in two copies, Z+ and Z−, contains
not only binary rationals from the fixed points above. As another example,
consider the number 1/6. We have 1/6 = fb,1(fa,1(1/6)), and thus 1/6 corre-
sponds to words au starting from a and satisfying au = σ(ϕtm(σ(ϕtm(au)))) =
σ3(ϕ2

tm(au)) = aϕ2
tm(u). This equation has two solutions awtm < aw′tm. So, we

have ν(awtm) = 1/6− and ν(aw′tm) = 1/6+. Since 1/6 is the frequency of aa in
the Thue-Morse word, we see that awtm is the maximal element of Ltm starting
from aa and aw′tm is the minimal element of Ltm starting from ab.

Other examples, starting with the Fibonacci morphism, can be treated with
the software tool described below in Section 8 and available online.
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6. Morphism f and k-regular sequences

Let ϕ be a primitive order-preserving morphism, w be some of its fixed
points, and L be the separable subshift generated by w. Since the morphism is
primitive, the subshift L does not depend on the choice of the fixed point of ϕ
and is minimal.

Consider the morphism f : X∗L 7→ X∗L described above and the sequence
νw which is its fixed point corresponding to w. As we have discussed above,
each mapping fa,p(x) from the definition of f is an affine mapping sending
the interval Ia of length µa to the interval Ja,p of length µa/θ, where θ is the
Perron-Frobenius eigenvalue of ϕ. So, in the definition (2) of fa,p, we have
(y2 − y1)/(x2 − x1) = 1/θ. We get the following

Corollary 2. Under the conditions of Theorem 1, the mappings fa,p from the
definition of the morphism f are of the form

fa,p(x) = x/θ + Ca,p, (4)

where θ is the Perron-Frobenius eigenvalue of ϕ and Ca,p is a constant defined,
in the notation of (2), by

Ca,p = y1 − x1/θ.

This statement is particularly interesting when the morphism ϕ is k-uniform,
that is, the length of all ϕ-images of letters is the same and equal to k ≥ 2. Since
θ is the limit of the ratio |ϕ(w[0..n])|/n, here we have θ = k. The word w is k-
automatic (for the definition and discussion on k-automatic words and k-regular
sequences, the reader is referred to [1, 2]).

Lemma 1. Under the conditions of Theorem 1, if the morphism ϕ is k-uniform,
then the sequence νw is k-regular.

Proof. First of all, the morphism f is also k-uniform. With the definition
(4) of each mapping fa,p, we can write the following expression for an element
νw[kn+ p] of the sequence (νw[n])∞n=0, where n ≥ 0 and p ∈ {0, . . . , k − 1}:

νw[kn+ p] =
1

k
νw[n] + Cw[n],p

=
1

k
νw[n] +

k−1∑
q=0

∑
a∈Σ

Ca,qX(w[n] = a)X(q = p).

Here X(P ) is the characteristic sequence of a property P , equal to 1 if the
property holds and to 0 otherwise.

The sequence w is k-automatic and thus k-regular, as well as the sequences
X(w[n] = a) and X(w[n] = a)X(q = p). So, the sequence νw is also k-regular
by Theorem 16.1.3 from [2]. 2
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7. The binary case

In this section, we adapt Theorem 1 to all binary morphisms with aperiodic
uniformly recurrent fixed points. To do it, we first discuss what may happen. In
this section, we consider the alphabet Σ2 = {a, b} with a < b and a morphism
ϕ : Σ∗2 7→ Σ∗2.

7.1. Non-primitive case

First of all, let us discuss the condition of the morphism ϕ to be primitive.
In fact, everywhere in the proof we used not the primitivity itself but the facts
that the subshift Lϕ is uniquely ergodic, and for any finite factor u of Lϕ, the
relation |ϕ(u)|/|u| has a limit, denoted θ with |u| → ∞. We also need the
subshift to be aperiodic.

If ϕ is primitive, all the conditions except for perhaps aperiodicity hold.
Consider the case of non-primitive ϕ. It may have several fixed points with
different orbit closures, but without loss of generality, suppose that ϕ has an
infinite fixed point w starting with ϕ(a) in which both letters appear. The
condition that ϕ is not primitive means then that ϕ(b) ∈ b∗.

Proposition 4. The fixed point w and its orbit closure can be minimal and
aperiodic only if ϕ(b) = b and ϕ(a) = axa, where x is a finite word containing
b. In this case, w is also uniquely ergodic, and there exists a limit

lim
u∈Fac(w),|u|→∞

|ϕ(u)|
|u|

= θ. (5)

Proof. If ϕ(b) is the empty word, then w = ϕ(a)ω is periodic. If ϕ(b) = bk

with k ≥ 2, then Lw is not minimal since contains bω. The same is true if
ϕ(b) = b and ϕ(a) ends with b. So, the only case when Lw is minimal and
can be aperiodic is ϕ(b) = b and ϕ(a) = axa, where x is a word containing
b. In this case, w is uniformly recurrent: indeed, the distance between two
consecutive occurences of a is bounded by |x|+1 and thus the distance between
two consecutive occurrences of any factor of ϕn(a) is bounded by |ϕn(ax)|.
Moreover, due to Theorem 3 of [10], w is a primitive morphic sequence. In
particular, it is uniquely ergodic, and the limit (5) exists. 2

Note that in this case, the word w and its subshift can be periodic if ϕ(a) =
(ab)ka for some k. In other cases, we can work with ϕ, w and Lw exactly as if
ϕ were primitive.

Example 9. If ϕ(a) = aaba, ϕ(b) = b, the minimal subshift Lw generated by
w is the orbit closure of the fixed point w of ϕ starting with a:

w = aabaaababaabaaabaaababaaba · · · .

We can work with Lw exactly as if ϕ were primitive.
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7.2. Preserving order

How can we work with a morphism which is not order-preserving? The
following proposition shows that in the binary case, we can just replace it by its
square, as we did in Example 3 for the Fibonacci morphism.

Proposition 5. For every binary morphism ϕ with an aperiodic subshift, if ϕ
is not order-preserving, then ϕ2 is.

Proof. Borchert and Rampersad proved (see Theorem 15 in [9]) that every
aperiodic binary morphism is either order-preserving or order-reversing, the
latter property meaning that ϕ(u) > ϕ(v) whenever u < v for infinite words
u, v. Clearly, the square of an order-reversing morphism is order-preserving. 2

So, if by chance a binary morphism is not order-preserving, its square is,
and we can consider the subshift as generated by the square morphism. Now
let us consider two different types of inseparability.

7.3. Common suffixes

Here we consider the situation when the morphism ϕ is not typable because
of a non-empty common suffix of images of letters, like in Example 5. Since we
consider only the minimal (or, which is the same, uniformly recurrent) aperiodic
case, we can use Proposition 4 and see that if ϕ is not primitive, the common
suffix is empty. So, in our case, the morphism ϕ is primitive.

The following classical statement will be useful. We give its proof for the
sake of completeness.

Proposition 6. Suppose that ϕ : a → pas, b → pbs, where s is any common
suffix of ϕ(a) and ϕ(b). Then Lϕ = Lϕ′ , where ϕ′ : a→ spa, b→ spb.

Proof. Clearly, both subshifts generated by ϕ and ϕ′ contain the word s and
are closed under the operation sending a word u = u1u2 · · ·un to the word
pu1

spu2
s · · · spun

. So, the intersection of the two sets of factors is infinite, and
since both subshifts are minimal, they are equal. 2

Example 10. For the morphism ϕ : a → aab, b → abb from Example 5, we
have ϕ′ : a→ baa, b→ bab.

Clearly, if one of the images of symbols is not a suffix of the other, it is
sufficient to apply Proposition 6 once to get a new morphism, which is also
primitive and with images of letters ending with different symbols, like in the
previous example. If it is not the case, however, it can be necessary to apply
the operation from Proposition 6 several times:

Example 11. If ϕ : a → ab, b → babab, then, to get a morphism with images
of letters ending by different symbols, we follow three steps:

ϕ :

{
a→ ab

b→ babab
→ ϕ′ :

{
a→ ab

b→ abbab

→ ϕ′′ :

{
a→ ab

b→ ababb
→ ϕ′′′ :

{
a→ ba

b→ babab.
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Note that in terms used in [26], ϕ′ is a left conjugate of ϕ; for conjugacy of
morphisms see also [28]. The next proposition follows from results of [26], but
it does not take more space to give a new proof than to explain the relationship
between used terminology. The meaning of the proposition is that the number
of necessary steps is always finite.

Proposition 7. Let ϕ be a primitive binary morphism with aperiodic subshift
and, without loss of generality, |ϕ(a)| ≥ |ϕ(b)|. Then after applying the op-
eration from Proposition 6 with the maximal common suffix at most k times,
where k ≤ b|ϕ(a)|/|ϕ(b)|c + 1, we get a morphism whose images of letters end
by different symbols.

Proof. If one image of letter is not a suffix of the other, the statement is
obvious and k = 1 is enough. Suppose now the opposite: let ϕ(a) = ps, ϕ(b) =
s. Suppose that we can continue to exchange the prefix and the suffix s of
the image of a at least (|ϕ(a)| + |ϕ(b)|)/|ϕ(b)| times. It would mean that the
word sps = ϕ(ba) is periodic with the period |s|. But it is also periodic with
the period |ps|, so, due to the Fine and Wilf theorem, it is periodic with the
period gcd(|s|, |ps|). In particular, it means that ϕ(a) = ps and ϕ(b) = s are
powers of the same word, and thus the subshift generated by ϕ is periodic, a
contradiction. So, if k is the maximal number of replaced suffixes, we have
k < (|ϕ(a)|+ |ϕ(b)|)/|ϕ(b)|, which means k ≤ b|ϕ(a)|/|ϕ(b)|c+ 1. 2

Example 12. Note that nevertheless, successive transfers of the longest com-
mon suffixes to the left can touch more symbols than there are in the longer
image of a letter. For example, consider ϕ : a→ abbab, b→ bab; then

ϕ :

{
a→ abbab

b→ bab
→ ϕ′ :

{
a→ babab

b→ bab
→ ϕ′′ :

{
a→ babba

b→ bab.

Here the longer image of a letter is of length 5, and there are 3+3=6 letters
replaced.

So, we may assume that given a primitive binary morphism ϕ, we can always
transfer common suffixes of images of letters to the left until we get a morphism
ψ = ϕ(k) with the same subshift and with images of letters ending by different
symbols. To justify this passage completely, we should also describe how we can
apply Theorem 1 to ϕ if we know how to do it for ψ. The following proposition
gives a recipe for that.

Proposition 8. Suppose that a binary morphism ϕ is transformed to another
morphism ψ by a series of transfers of common suffixes to the left: ϕ → ϕ′ →
· · · → ϕ(k) = ψ, where the suffix transferred at the passage from ϕ(i) to ϕ(i+1) is
of length pi+1. Then for every infinite word w, we have ψ(w) = πϕ(w), where
the word π of length p = p1+· · ·+pk is the concatenation of all replaced common
suffixes in order from right to left.

Proof. For each step i, it is not difficult to see that ϕ(i+1)(w) = πi+1ϕ
(i)(w),

where πi+1 is the replaced common suffix of length pi+1. It remains to combine
these arguments for all i and to set π = πk · · ·π2π1. 2
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Corollary 3. The morphism ϕ is order-preserving if and only if ψ is order-
preserving.

This corollary means just that we can successively take a square of our mor-
phism if it is necessary to make it order-preserving, and then transfer common
suffixes as we need.

Example 13. Consider the fixed point w = aabaababb · · · of the morphism
ϕ : a → aab, b → abb from Examples 5 and 10. To find the value ν(w) and
all the sequence νw, we pass to the morphism ψ = ϕ′ : a → baa, b → bab.
The morphism ψ falls into conditions of Theorem 1, and gives rise to the the
following morphism on intervals:

f(x) =

{
fa,0(x), fa,1(x), fa,2(x) for x ∈ [0, 1/2−]

fb,0(x), fb,1(x), fb,2(x) for x ∈ [1/2+, 1]

=

{
x/3 + 1/2, x/3, x/3 + 1/6 for x ∈ [0, 1/2−]

x/3 + 1/2, x/3 + 1/6, x/3 + 2/3 for x ∈ [1/2+, 1].

The only fixed point v = babbaabab · · · of ψ corresponds to the only fixed point
νv of f starting with the fixed point ν(v) = 3/4 of fb,0(x) = x/3 + 1/2: νv =
3/4, 5/12, 11/12, 23/36, . . .. At the same time, the fixed point w of ϕ due to
the previous proposition satisfies w = ϕ(w) = σ(ψ(w)), and due to Proposition
3 and Theorem 1, corresponds to the fixed point νw of σ(f): νw = σ(f(νw)).
In particular, it starts with the fixed point ν(w) = 0 of fa,1(x) = x/3: νw =
0, 1/6+, 10/18+, 1/18+, 2/9+, · · · . Here we have to add pluses to values since
these are lower ends of intervals.

Example 14. Consider the morphism ϕ : a → ab, b → babab from Example
11. After moving p = 2 + 2 + 1 = 5 symbols from right to left, we get an
order-preserving separable morphism ψ = ϕ′′′ : a→ ba, b→ babab inducing the
same subshift L.

Note that by the construction, for every u ∈ L, we have ϕ(u) = σ5(ψ(u)).
In particular, it is true for both fixed points wa and wb of ϕ. Let us start with
the fixed point w = wa starting with a:

w = ab.babab.babab.ab.babab.ab.babab.babab. . . . = ϕ(w) = σ5(ψ(w))

(dots are put between ϕ-images of symbols for readability). Since w starts with
a and ψ(a) is of length 2, we have

w = σ5(ψ(w)) = σ3(ψ(σ(w))).

Passing to the sequences ν, we see that

νw = σ3(f(σ(νw))),

where f is the morphism on extended intervals corresponding to ψ. Denote
νw = ν[1]ν[2]ν[3] · · · . Here ν[1] ∈ Ia, ν[2], ν[3] ∈ Ib and so on along the word w.
Then σ(νw)) = ν[2]ν[3]ν[4] · · · , and

f(σ(νw)) = fb,0(ν[2])fb,1(ν[2]) · · · fb,4(ν[2])fb,0(ν[3])fb,1(ν[3]) · · ·
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At last, applying σ3, we see that

νw = ν[1]ν[2]ν[3]ν[4] · · · = fb,3(ν[2])fb,4(ν[2])fb,0(ν[3])fb,1(ν[3]) · · ·

So, the number ν[2] can be reconstructed as the fixed point of the mapping fb,4,
and ν[3] as the fixed point of the mapping fb,0. All the other elements of νw,
including ν[1], can be computed one-by-one as functions of previously known
values. In particular, ν[1] = fb,3(ν[2]).

For the other fixed point

w = wb = babab.ab.babab.ab.babab.ab.babab.babab. . . . = ϕ(w) = σ5(ψ(w)),

we also have w = σ5(ψ(w)), but since the length of the image of the first symbol
b is 5, it means just that

w = ψ(σ(w)).

For the sequence ν, it means that

νw = f(σ(νw)).

So, ν[2] is the fixed point of fa,1, ν[3] is the fixed point of fb,0, and all the other
numbers of the sequence ν can be found starting from them.

The same idea can be used for every morphism obtained from a “good” one
by transferring common prefixes of images of symbols to the right: the needed
values can be reconstructed from one or several fixed points of mappings fx,i.

7.4. Inseparable types

In this subsection, we propose a method to avoid the situation described
in Example 6, when the types of elements of the orbit of w are well-defined
but cannot be ordered since the relations between words of two given types
can be different. We shall show that it happens because of prefixes of these
words of bounded length, which can be classified and considered as symbols of
a new larger alphabet. The sequence on this new alphabet will inherit all good
properties of w and will be separable.

As we have seen above, we may restrict ourselves to a binary order-preserving
morphism ϕ such that the last symbols of ϕ(a) and ϕ(b) are different, and the
subshift of ϕ is minimal with aperiodic fixed points. Due to Proposition 4, the
morphism ϕ is either primitive or of the form ϕ(a) = axa, ϕ(b) = b for a finite
word x containing b.

To discuss the subject, we have to introduce yet another property of morphic
subshifts called circularity. There exist several very close definitions of this
property discussed in particular in [18]; we shall use the following one. The
fixed point w of a morphism ϕ (and the whole subshift Lϕ) are called circular
if there exists a positive constant D called a synchronization delay such that in
any factor u of w (Lϕ) of length at least D, there exists a synchronization point.
Here a synchronization point is a place in u where in any occurrence of u to w
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(Lϕ) there is a boundary between images of two symbols: u = ps, where p is a
suffix of ϕ(p′), s is a prefix of ϕ(s′), p′s′ is a factor of w (Lϕ).

The smallest value of a synchronization delay can be called the synchroniza-
tion delay.

Example 15. The Thue-Morse word wtm is circular with D ≤ 5. Indeed,
each factor of wtm of length 5 contains one of factors aa or bb, and thus a
synchronization point between two letters a or two letters b. For example,
aabba contains two synchronization points, after the first and the third symbol,
and appears in wtm only as a suffix of ϕtm(bab).

The Sierpinski morphism a → aba, b → bbb is not circular since for all n,
the word bn appears in it and has no synchronization points: the boundaries
between images of b in it can pass anywhere.

Note that in our case, when the last letters of images of symbols are all
different, a synchronization point u = ps determines a unique decomposition
to images of symbols of the whole preceeding prefix p of u: we reconstruct it
from right to left taking each time the image of symbol ending by the given last
letter. At the same time, the suffix s, if it is short, may leave some ambiguity
if s is the prefix of both images of letters or, in the case of ϕ(a) prefix of ϕ(b)
(or vice versa), s is a prefix of ϕ(ab) and of ϕ(ba).

It is well-known that a fixed point of a primitive morphism is circular [24, 18].
It is also not difficult to extract from the main result of [17] and Theorem 12
from [18] that the non-primitive fixed points from Proposition 4 are also circular.
So, all morphisms we consider are circular. To be accurate, we redefine the
(smallest) synchronization delay D so that, in addition to the main property,
each word of length D or more contains both letters: since w is uniformly
recurrent, there is no problems with that. We need it to have |ϕ(u)| ≥ D+m−1
for all u with |u| ≥ D, where m is the maximum of |ϕ(a)|, |ϕ(b)|.

Now let us define another morphism over a greater alphabet preserving all
good properties of ϕ and with separable types. To do it, we consider the al-
phabet AD of all factors of w of length D and define the trivial isomorphism
π :FacD(w) 7→ AD which can be naturally extended to π :FacD+n(w) 7→ An+1

D

for all n and to π : Lw 7→ AωD, by π(x1 · · ·xDy) = π(x1 · · ·xD)π(x2 · · ·xDy)
for all letters xi and all words y. Clearly, π commutes with the shift σ and
thus we can consider the subshift (π(Lw), σ). Moreover, in addition to π−1 :
AD 7→FacD(w), it is reasonable to consider a simpler mapping ρ : AD 7→ Σ2,
where for each a ∈ AD, the symbol ρ(a) is its first symbol. The alphabet AD
and words over it inherit the lexicographic order on Σ2.

Now, given a morphism ϕ : Σ∗2 7→ Σ∗2, let us define the morphism χ : A∗D 7→
A∗D as follows: for all a ∈ AD such that a = π(u) and ρ(a) = x (so that x is
the first symbol of u), the image χ(a) is defined as the first |ϕ(x)| symbols of
π(ϕ(u)) = π(ϕ(π−1(a))). This mapping is well-defined since by the definition
of D, we have |ϕ(u)| ≥ D + |ϕ(x)| − 1.

Example 16. Let us continue Example 6 (the subshift Lϕ defined by the mor-
phism ϕ : a → aabab, b → bba) and define the respective morphism χ. To
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do it, we first observe that the synchronization delay of Lϕ is 5: indeed, the
longest word without the synchronization point is babb which can be decom-
posed both as the factor of ϕ(ab) without the prefix and the suffix of length 2
each, and the factor of ϕ(bb) without the prefix and the suffix of length 1 each.
Its continuations babba and babbb disambiguate the situation.

The set Fac5(w) is of cardinality 17: in the lexicographic order, Fac5(Lϕ) =
{aaaba, aabab, abaab, ababa, ababb, abbaa, abbab, abbba, baaab, baaba, babaa,
babba, babbb, bbaaa, bbabb, bbbaa, bbbab}. We denote the elements of the alphabet
A5, in the same order, as A5 = {a1, . . . , a8, b1, . . . , b9}: so, π(aaaba) = a1 and
so on till π(bbbab) = b9. Note that by the notation, ρ(ai) = a and ρ(bj) = b for
all well-defined i and j.

To define χ, we take the ϕ-images of words from Fac5(Lϕ) and then their
prefixes of length 9 for words starting from a and of length 7 for words starting
from b. Then we take π-images of these words. For example, to find χ(a1), we
take ϕ(aaaba) = aababaababaababbbaaabab, then its prefix of length 9 which is
aababaaba, then its π-image a2a4b3a3b2. So, χ(a1) = a2a4b3a3b2, and continuing
the same method, we get

χ :



a1, a2 → a2a4b3a3b2,

a3, a4, a5 → a2a5b5a8b8,

a6, a7, a8 → a2a5b5a8b9,

b1, b2, b3, b4, b5 → b6b1a1,

b6, b7 → b7b4a6,

b8, b9 → b7b4a7.

Note that for all x ∈ A5, ϕ(ρ(x)) = ρ(χ(x)), so, ϕ ◦ ρ = ρ ◦χ. In particular, the
two fixed points of ϕ, starting from a and from b, are ρ-images of the two fixed
points of χ, starting from a2 and b7.

The next proposition, following directly from the construction, claims that
this is a general situation.

Proposition 9. 1. If the morphism ϕ is order-preserving on its subshift,
then so is χ.

2. If ϕ-images of letters end by different symbols, then different χ-images of
symbols of AD end by different letters of AD. Moreover, these last letters
do not occur anywhere else in χ-images of symbols.

3. There are as many fixed points of χ as of ϕ, and any fixed point of ϕ can
be obtained as the ρ-image of a fixed point of χ.

4. If ϕ-images of letters end by different symbols, then ρ is an isomorphism
between (Lχ, σ) and (Lϕ, σ), and moreover, it preserves the lexicographic
order of words on the respective subshifts.

5. If ϕ-images of letters end by different symbols, then the subshift (Lχ, σ) is
separable.

Proof. The first four properties follow directly from the construction. It
remains to show the separability of (Lχ, σ). First let us prove that this subshift
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is typable. Indeed, for any representation u = σp(χ(u′)), where u′ ∈ Lχ and
0 ≤ p < |χ(u′[0])|, consider the ρ-images v = ρ(u) ∈ Lϕ and v′ = ρ(u′) ∈ Lϕ.
Clearly, v = σpϕ(v′). The morphism ϕ is circular, the last symbols of two images
of letters are different, which means that any synchronization point determines
all preceeding synchronization points, and so the type of v is well-defined: it is
(v′[0], p). But u = π(v) and u′ = π(v′) since v and v′ belong to Lϕ and by the
definition of π, so, since v′ and p are unique, so is u′ (and the same p). The
type of u is thus well-defined as (u′[0], p). Note that we uniquely reconstruct
u′[0] even if there are several symbols in AD with the same χ-image, like in the
example above.

It remains to prove that the types in Lχ are comparable. Consider two
elements u1, u2 ∈ Lχ of different types (x1, p1) and (x2, p2). If their first symbols
(uniquely defined by types) are different, the order is determined by them. If
by contrary the first symbols are the same, let us compare the suffixes of χ(x1)
and χ(x2) which are prefixes of u1 and u2. If χ(x1) 6= χ(x2), then, by a previous
property, the last symbols of these two images are different and do not appear
anywhere else in χ-images of letters. So, the order between u1 and u2 is again
uniquely determined by the prefixes of u1 and u2 which are suffixes of χ(x1)
and χ(x2). If χ(x1) = χ(x2) but p1 6= p2, the same argument holds. At last, if
χ(x1) = χ(x2), p1 = p2, but x1 6= x2, we have u1 < u2 if and only if x1 < x2

since the morphism χ is order-preserving on Lχ. This completes the proof of
separability of the subshift (Lχ, σ). 2

This construction completes the algorithm allowing to treat every binary
pure morphic uniquely ergodic subshift (Lϕ, σ). First, if the morphism ϕ is
not order-preserving, we pass to its square according to Proposition 5. Then,
if the resulting morphism is not typable because of common suffixes of images
of letters, we transfer these common suffixes to to the left as many times as
needed due to Proposition 7. At last, we find a synchronization delay and
construct the morphism χ on the extended alphabet which, due to Proposition
9, has all the desired properties. So, the morphism f constructed as described
in the beginning of Section 5 due to Theorem 1 gives a equidistributed morphic
subshift on the interval [0, 1]. Again due to propositions from this section, this
is the same subshift as it would be for the initial morphism ϕ instead of χ.
The value and the infinite sequence corresponding to a fixed point of the initial
morphism, we can use the method described in Examples 13 and 14.

Remark 2. Note that the restriction to the binary alphabet is crucial. On the
three-letter alphabet, it is easy to construct a morphism which does not become
order-preserving even when we consider its powers:

g : a→ ac, b→ ab, c→ cb.

It can be easily seen that gn(b) < gn(a) for all n ≥ 1. Moreover, it is not
possible to transfer the common suffix b of g(b) and g(c) to the left since g(a)
does not end with b. So, we see two technical problems in one example. The
extension of the result to general morphisms on larger alphabets is thus an open
problem.
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8. Computational tool

We conclude the paper by a presentation of the software which, given a
binary morphism ϕ with an aperiodic uniformly recurrent fixed point, computes
the respective morphism f on numbers and first l elements of the sequence
corresponding to each of the fixed points of ϕ. The code is available at
https://www.i2m.univ-amu.fr/perso/anna.frid/MorphismsOnReals/mp.py.
A web page where the computation can be done online for a relatively small
input (images of letters not longer than about 5 letters, if the morphism is not
order-preserving, or about 25 letters, if it is) is
https://www.i2m.univ-amu.fr/perso/anna.frid/MorphismsOnReals/mp.html.

1) Given a binary morphism ϕ, we first check if it is primitive: in the binary
case, it is clearly sufficient to check if the square of its matrix is positive. If
the morphism is not primitive, we continue to consider it if it falls into the case
of Proposition 4. Then we check if ϕ admits a fixed point starting with each
letter, that is, if ϕ(x) starts with x for some letter x. To check fixed points
for aperiodicity, we use the result of [27] and eliminate periodic fixed points
corresponding ϕ(a) = a(ba)m and ϕ(b) = b(ab)n for some m,n ≥ 0 such that
m+ n ≥ 1, and those whose images are powers of a common word of length at
least 2. Among the non-primitive morphisms from Proposition 4, we eliminate
those of the form ϕ(a) = a(bma)n and ϕ(b) = b (and of course the symmetric
case).

2) In the primitive case, we check if the morphism is order-preserving. If
one image of a letter is not a prefix of the other one, the check is straighfor-
ward; if it is, we can transfer the common prefix to the end of both images
until they can be directly compared. Corollary 3 assures that the property of
being order-preserving is stable under this operation. If the morphism is not
order-preserving, we pass to its square due to Proposition 5, even though it
considerably increases the complexity of the computation. Then we check if the
two images of letters have a common suffix, at if it is the case, we transfer it to
the beginning of the images as it was described in Proposition 6. Due to further
results of Subsection 7.3, it is sufficient to repeat this procedure a finite number
of times, and the resulting morphism ψ remains order-preserving.

3) The morphism µ considered at this stage (here µ can be the initial ϕ, or
its square, or the ψ obtained from ϕ or ϕ2 by transferring common suffixes to
the left) is circular. Now we have to compute a synchronization delay D of µ to
check if µ is separable; if it is not, we will have to use yet another morphism on
a greater alphabet. This is a slow part of the computation, especially as in the
general case, there is no known upper bound for D. We only know from a recent
paper by Klouda and Medková [16] that for a uniform binary morphism, D is
bounded by m3, where m is the morphism length. So, in the general case, we
unfortunately do not have an upper bound for the complexity of the following
procedure.

First, we find all factors of length 2 of the subshift as follows: starting from
the set A of all factors of length 2 of images of letters, we expand A while there
are new words of length 2 situated at the boundary between images of letters
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in words µ(a), a ∈ A. Clearly, as soon as there are no new words of length 2
obtained like that, the set of factors of length 2 of the subshift L is complete.

Now, starting with the set of factors of length 2, we use the following fact: If
m is the shorter length of an image of a letter, then every factor of L of length
ml + 1 is contained in a µ-image of a factor of L of length l + 1. If m ≥ 2, this
fact is sufficient to find all factors of L together with their types for any given
length greater than 2. If m = 1 and µ is primitive, we can pass to its square to
get m > 1. At last, for the non-primitive case of ϕ(a) = axa, ϕ(b) = b, we need
the following two lemmas which allow to initialize and continue the process of
finding all factors of any given length.

Lemma 2. Let ϕ be a binary morphism such that ϕ(a) = axa and ϕ(b) = b,
where x is a finite word containing b. If we denote by hb the highest power of
b appearing in x, then the factors of length hb + 2 of Lϕ are exactly those of
ϕ2(a).

Proof. Any factor of ϕ2(a) is also a factor of Lϕ. Conversely, let u be a factor
of length hb + 2 of the subshift. Then u contains an occurrence of a and thus
any its given occurrence has common letters with an occurrence of ϕ(a). If it
is contained in ϕ(a), the statement is proved; if not, since |ϕ(a)| ≥ hb + 2, the
word u overruns ϕ(a) from at most one side, so, it is a factor of ϕ(a)bkϕ(a) for
some k ≤ hp. In particular, ϕ(a)bkϕ(a) is a factor of the subshift, and for that,
its preimage abka had to appear, at some point, in ϕ(a). So, ϕ(a)bkϕ(a) and
its factor u are factors of ϕ(ϕ(a)). 2

Lemma 3. Let ϕ be a binary morphism such that ϕ(a) = axa and ϕ(b) = b,
where x is a finite word containing b. If we denote by hb the highest power of
b appearing in x, then for every l ≥ hb + 2, every factor of Lϕ of length less
than p(l) is a factor of some ϕ(y), where y is a factor of Lϕ of length at most
l. Furthermore, we have p(l) > l. Here p(l) is defined by

p(l) = 1 + q(hb + |ϕ(a)|) + r,

where q and r stand for the quotient and the rest in the euclidean division of
l − 1 by hb + 1.

Proof. The shortest word that can be written by concatenating l−1 ϕ-images
of letters and which does not contain the word bhb+1 is (ϕ(b)hbϕ(a))qϕ(b)r of
length q(hb+ |ϕ(a)|) + r. As a consequence, the length of the shortest factors of
Lϕ that lie on l+ 1 (and not less) ϕ-images of letters is at least q(hb + |ϕ(a)|) +
r + 2 = p(l) + 1, meaning that all factors of length p(l) or less lie on at most l
ϕ-images of letters. It is easy to check that for l ≥ hb + 2 we have p(l) > l. 2

So, in each situation, we can find all factors of any given length together with
their types. A synchronization delay is reached as soon as every word appears
in the list with only one type. It is reasonable to check all the shorter lengths
and find the smallest synchronization delay D not an upper bound for it, to
consider a smaller alphabet and to have a nicer output (and probably to gain
in computation time).
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4) We have obtained the set of factors of length D, and each of them cor-
responds to a type. However, the same type may correspond to several words,
and if they are not lexicographically consecutive, the morphism is not separable.
If it is the case, we pass to a morphism χ on a larger alphabet as described in
Subsection 7.4.

5) The morphism considered at this stage satisfies the conditions of Theorem
1 and so we construct the morphism on intervals as described in Section 5.

6) To find numeric sequences corresponding to fixed points of the initial
morphism ϕ, we start with finding fixed points of respective mappings fc,p as
described in Examples 1, 13, 14.

At last, note that the Perron-Frobenius eigenvalue is an algebraic number,
making it possible for a mathematical software to do exact computations at
each stage, and to print the outputs with arbitrary precision.

As we have discussed, the algorithm we use is not very fast. First, there is
no general upper bound for the synchronization delay D, and at the same time,
computing D is the slowest part of the process. To avoid it, it would be nice to
invent a faster way to check the subshift for separability. It would be also helpful
to learn how to deal directly with order-reversing morphisms, since taking the
morphism square before looking for separability slows down this slowest part of
computation. We leave these questions to further research.

References

[1] J.-P. Allouche, J. Shallit, Automatic sequences — theory, applications, gen-
eralizations. Cambridge University Press, 2003.

[2] J.-P. Allouche, J. Shallit, The ring of k-regular sequences, Theoret. Com-
put. Sci. 98 (1992), 163–197.

[3] J.-P. Allouche, J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence,
Sequences and their Applications, Discrete Mathematics and Theoretical
Computer Science, Springer, London, 1999. P. 1–16.
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