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Introduction

The entropy of a dynamical system quantifies the dynamical complexity by counting distinct orbits. There are topological and measure theoretical versions which are related by a variational principle : the topological entropy of a continuous map on a compact space is equal to the supremum of the entropy of the invariant (probability) measures. An invariant measure is said to be of maximal entropy (or a maximal measure) when its entropy is equal to the topological entropy, i.e. this measure realizes the supremum in the variational principle. In general a topological system may not admit a measure of maximal entropy. But such a measure exists for dynamical systems satisfying some expansiveness properties. In particular Newhouse [START_REF] Newhouse | Continuity properties of entropy[END_REF] has proved their existence for C ∞ systems by using Yomdin's theory. In the present paper we show the existence of a measure of maximal entropy for C r , 1 < r < +∞, smooth surface diffeomorphisms with large entropy.

Other important dynamical quantities for smooth systems are given by the Lyapunov exponents which estimate the exponential growth of the derivative. For C ∞ surface diffeomorphisms, J. Buzzi, S. Crovisier and O. Sarig proved recently a property of continuity in the entropy of the Lyapunov exponents with many statistical applications [START_REF] Buzzi | Continuity properties of Lyapunov exponents for surface diffeomorphisms[END_REF]. More precisely, they showed that for a C ∞ surface diffeomorphism f , if ν k is a converging sequence of ergodic measures with lim k h(ν k ) = h top (f ), then the Lyapunov exponents of ν k are going to the (average) Lyapunov exponents of the limit (which is a measure of maximal entropy). We prove a C r version of this fact for 1 < r < +∞.

Statements

We define now some notations to state our main results. Fix a compact Riemannian surface (M, • ). For r > 1 we let Diff r (M) be the set of C r diffeomorphisms of M. For f ∈ Diff r (M) we let F : PT M be the induced map on the projective tangent bundle PT M = T 1 M/±1 and we denote by φ, ψ : PT M → R the continuous observables on PT M given respectively by φ : (x, v) → log d x f (v) and ψ : (x, v)

→ log d x f (v) -1 r log + d x f with d x f = sup v∈TxM\{0} dxf (v) v
. For k ∈ N * we define more generally φ k : (x, v) → log d x f k (v) and ψ k : (x, v) → φ k (x, v) -1 r k-1 l=0 log + d f k x f . Then we let λ + (x) and λ -(x) be the pointwise Lyapunov exponents given by λ + (x) = lim sup n→+∞ 1 n log d x f n and λ -(x) = lim inf n→-∞ 1 n log d x f n for any x ∈ M and λ + (µ) = λ + (x) dµ(x), λ -(µ) = λ -(x) dµ(x), for any f -invariant measure µ.

Also we put λ + (f ) := lim n 1 n log + df n ∞ with df n ∞ = sup x∈M d x f n . The function f → λ + (f ) is upper semi-continuous in the C 1 topology on the set of C 1 diffeomorphisms on M. For an f -invariant measure µ with λ + (x) > 0 ≥ λ -(x) for µ a.e. x, there are by Oseledets § theorem one-dimensional invariant vector spaces E + (x) and E -(x), resp. called the unstable and stable Oseledets bundle, such that ∀ µ a.e. x ∀v ∈ E ± (x) \ {0}, lim

n→±∞ 1 n log d x f n (v) = λ ± (x).
Then we let μ+ be the F -invariant measure given by the lift of µ on PT M with μ+ (E + ) = 1.

When writing μ+ we assume implicitly that the push-forward measure µ on M satisfies λ + (x) > 0 ≥ λ -(x) for µ a.e. x.

A sequence of C r , with r > 1, surface diffeomorphisms (f k ) k on M is said to converge C r weakly to a diffeomorphism f , when f k goes to f in the C 1 topology and the sequence (f k ) k is C r bounded. In particular f is C r-1 .

Theorem (Buzzi-Crovisier-Sarig, Theorem C [START_REF] Buzzi | Continuity properties of Lyapunov exponents for surface diffeomorphisms[END_REF]). Let (f k ) k∈N be a sequence of C r , with r > 1, surface diffeomorphisms converging C r weakly to a diffeomorphism f . Let (F k ) k∈N and F be the lifts of (f k ) k∈N and f to PT M. Assume there is a sequence (ν + k ) k of ergodic F k -invariant measures converging to μ.

Then there are β ∈ [0, 1] and F -invariant measures μ0 and μ+ 1 with μ = (1 -β)μ 0 + β μ+ 1 , such that:

lim sup k→+∞ h(ν k ) ≤ βh(µ 1 ) + λ + (f ) + λ + (f -1 ) r -1 .
In particular when f (= f k for all k) is C ∞ and h(ν k ) goes to the topological entropy of f , then β is equal to 1 and therefore λ + (ν k ) goes to λ + (µ):

Corollary (Entropic continuity of Lyapunov exponents [START_REF] Buzzi | Continuity properties of Lyapunov exponents for surface diffeomorphisms[END_REF]). Let f be a C ∞ surface diffeomorphism with h top (f ) > 0.

Then if (ν k ) k is a sequence of ergodic measures converging to µ with lim k h(ν k ) = h top (f ), then • h(µ) = h top (f ) § , • lim k λ + (ν k ) = λ + (µ).
We state an improved version of Buzzi-Crovisier-Sarig Theorem, which allows to prove the same entropy continuity of Lyapunov exponents for C r , 1 < r < +∞, surface diffeomorphisms with large enough entropy (see Corollary 1).

Main Theorem. Let (f k ) k∈N be a sequence of C r , with r > 1, surface diffeomorphisms converging C r weakly to a diffeomorphism f . Let (F k ) k∈N and F be the lifts of (f k ) k∈N and f to PT M. Assume there is a sequence (ν + k ) k of ergodic F k -invariant measures converging to μ.

Then for any α > λ + (f ) r , there are β = β α ∈ [0, 1] and F -invariant measures μ0 = μ0,α and μ+

1 = μ+ 1,α with μ = (1 -β)μ 0 + β μ+ 1 , such that: lim sup k→+∞ h(ν k ) ≤ βh(µ 1 ) + (1 -β)α.
In the appendix we explain how the Main Theorem implies Buzzi-Crovisier-Sarig statement. We state now some consequences of the Main Theorem.

Corollary 1 (Existence of maximal measures and entropic continuity of Lyapunov exponents). Let f be a C r , with r > 1, surface diffeomorphism satisfying

h top (f ) > λ + (f ) r .
Then f admits a measure of maximal entropy. More precisely, if

(ν k ) k is a sequence of ergodic measures converging to µ with lim k h(ν k ) = h top (f ), then • h(µ) = h top (f ), • lim k λ + (ν k ) = λ + (µ).
It was proved in [START_REF] Buzzi | Measures of maximal entropy for surface diffeomorphisms[END_REF] that any C r surface diffeomorphism satisfying h top (f ) > λ + (f ) r admits at most finitely many ergodic measures of maximal entropy. On the other hand, J. Buzzi has built examples of C r surface diffeomorphisms for any +∞ > r > 1 with htop(f ) λ + (f ) arbitrarily close to 1/r without a measure of maximal entropy [START_REF] Buzzi | C r surface diffeomorphisms with no maximal entropy measure[END_REF]. It is expected that for any r > 1 there are C r surface diffeomorphisms satisfying h top (f ) = λ + (f ) r > 0 without measure of maximal entropy or with infinitely many such ergodic measures, but these questions are still open. Such results were already known for interval maps [START_REF] Burguet | Existence of measures of maximal entropy for C r interval maps[END_REF][START_REF] Buzzi | Large entropy implies existence of a maximal entropy measure for interval maps[END_REF][START_REF] Buzzi | Représentation markovienne des applications réulieres de lintervalle[END_REF].

Proof. We consider the constant sequence of diffeomorphisms equal to f . By taking a subsequence, we can assume that (ν + k ) k is converging to a lift μ of µ. By using the notations of the Main Theorem with

h top (f ) > α > λ + (f ) r , we have h top (f ) = lim k→+∞ h(ν k ), ≤ βh(µ 1 ) + (1 -β)α, ≤ βh top (f ) + (1 -β)α, (1 -β)h top (f ) ≤ (1 -β)α. But h top (f ) > α, therefore β = 1, i.e. μ+ 1 = μ and lim k λ + (ν k ) = λ + (µ). Moreover h top (f ) = lim k→+∞ h(ν k ) ≤ βh(µ 1 ) + (1 -β)α = h(µ). Consequently µ is a measure of maximal entropy of f .
Corollary 2 (Continuity of topological entropy and maximal measures). Let (f k ) k be a sequence of C r , with r > 1, surface diffeomorphisms converging C r weakly to a diffeomorphism

f with h top (f ) ≥ λ + (f ) r . Then h top (f ) = lim k h top (f k ). Moreover if h top (f ) > λ + (f )
r and ν k is a maximal measure of f k for large k, then any limit measure of (ν k ) k for the weak- * topology is a maximal measure of f . Proof. By Katok's horseshoes theorem [START_REF] Katok | Lyapunov exponents, entropy and periodic orbits for diffeomorphisms[END_REF], the topological entropy is lower semi-continuous for the C 1 topology on the set of C r surface diffeomorphisms. Therefore it is enough to show the upper semi-continuity.

By the variational principle there is a sequence of probability measures (ν k ) k∈K , K ⊂ N with K = ∞, such that :

• ν k is an ergodic f k -invariant measure for each k, • lim k∈K h(ν k ) = lim sup k∈N h top (f k ).
By extracting a subsequence we can assume (ν + k ) k is converging to a F -invariant measure μ in the weak- * topology. We can then apply the Main Theorem for any α > λ + (f ) r to get for some f -invariant measures µ 1 , µ 0 and β ∈ [0, 1] (depending on α) with µ = (1 -β)µ 0 + βµ 1 :

lim sup k h top (f k ) = lim k h(ν k ), ≤ βh(µ 1 ) + (1 -β)α, (1.1) ≤ βh top (f ) + (1 -β)α, ≤ max(h top (f ), α).

By letting α go to

λ + (f ) r we get lim sup k h top (f k ) ≤ h top (f ). If h top (f ) > λ + (f )
r , we can fix α ∈ λ + (f ) r , h top (f ) and the inequalities (1.1) may be then rewritten as follows :

lim sup k h top (f k ) ≤ βh(µ 1 ) + (1 -β)α, ≤ h top (f ).
By the lower semi-continuity of the topological entropy, we have h top (f ) ≤ lim sup k h top (f k ) and therefore these inequalities are equalities, which implies β = 1, then µ 1 = µ, and h(µ) = h top (f ).

The corresponding result was proved for interval maps in [START_REF] Burguet | Jumps of entropy for C r interval maps[END_REF] by using a different method. We also refer to [START_REF] Burguet | Jumps of entropy for C r interval maps[END_REF] for counterexamples of the upper semi-continuity property for interval maps f with h top (f ) < λ + (f ) r . Finally, in [START_REF] Buzzi | C r surface diffeomorphisms with no maximal entropy measure[END_REF], the author built, for any r > 1, a C r surface diffeomorphism f with lim sup

g C r -→f h top (g) = λ + (f ) r > h top (f ) = 0.
We recall also that upper semi-continuity of the topological entropy in the C ∞ topology was established in any dimension by Y. Yomdin in [START_REF] Yomdin | Volume growth and entropy[END_REF].

Newhouse proved that for a C ∞ system (M, f ), the entropy function h : M(M, f ) → R + is an upper semi-continuous function on the set M(M, f ) of f -invariant probability measure. It follows from our Main Thereom, that the entropy function is upper semi-continuous at ergodic measures with entropy larger than λ + (f ) r for a C r , r > 1, surface diffeomorphism f . Corollary 3 (Upper semi-continuity of the entropy function at ergodic measures with large entropy). Let f : M be a C r , r > 1, surface diffeomorphism.

Then for any ergodic measure µ with h(µ) ≥ λ + (f ) r , we have lim sup ν→µ h(ν) ≤ h(µ).

Proof. By continuity of the ergodic decomposition at ergodic measures and by harmonicity of the entropy function, we have for any ergodic measure µ (see e.g. Lemma 8.2.13 in [START_REF] Downarowicz | Entropy in dynamical systems[END_REF]):

lim sup ν ergodic, ν→µ h(ν) = lim sup ν→µ h(µ).
Let (ν k ) k∈N be a sequence of ergodic f -invariant measures with lim k h(ν k ) = lim sup ν→µ h(ν). By extracting a subsequence we can assume that the sequence (ν + k ) k is converging to some lift μ of µ. Take α with α > λ + (f ) r . Then, in the decomposition μ = (1 -β)μ 0 + β μ+ 1 given by the Main Theorem, we have µ 1 = µ 0 = µ by ergodicity of µ. Therefore

lim k h(ν k ) ≤ βh(µ) + (1 -β)α, ≤ max (h(µ), α) .

By letting α go to

λ + (f ) r we get lim k h(ν k ) ≤ h(µ).

Main steps of the proof

We follow the strategy of the proof of [START_REF] Buzzi | Continuity properties of Lyapunov exponents for surface diffeomorphisms[END_REF]. We point out below the main differences:

• Geometric and neutral empirical component. For λ + (ν k ) > λ + (f ) r we split the orbit of a ν k -typical point x into two parts. We consider the empirical measures from x at times lying between to M -close consecutive times where the unstable manifold has a "bounded geometry". We take their limit in k, then in M . In this way we get an invariant component of μ. In [START_REF] Buzzi | Continuity properties of Lyapunov exponents for surface diffeomorphisms[END_REF] the authors consider rather such empirical measures for α-hyperbolic times and then take the limit when α go to zero.

• Entropy computations. To compute the asymptotic entropy of the ν k 's, we use the static entropy w.r.t. partitions and its conditional version. Instead the authors in [START_REF] Buzzi | Continuity properties of Lyapunov exponents for surface diffeomorphisms[END_REF] used Katok's like formulas. • C r Reparametrizations. Finally we use here reparametrization methods from [START_REF] Burguet | Symbolic extensions in intermediate smoothness on surfaces[END_REF] and [START_REF] Burguet | SRB measure for C ∞ surface diffeomorphisms[END_REF] respectively rather than Yomdin's reparametrizations of the projective action F as done in [START_REF] Buzzi | Continuity properties of Lyapunov exponents for surface diffeomorphisms[END_REF]. This is the principal difference with [START_REF] Buzzi | Continuity properties of Lyapunov exponents for surface diffeomorphisms[END_REF].

2.1. Empirical measures. Let (X, T ) be an invertible topological system, i.e. T : X is a homeomorphism of a compact metric space. For a fixed Borel measurable subset G of X we let E(x) = E G (x) be the set of times of visits in G from x ∈ X:

E(x) = {n ∈ Z, T n x ∈ G} .
When a < b are two consecutive times in E(x), then [a, b[ is called a neutral block (by following the terminology of [START_REF] Buzzi | Measures of maximal entropy for surface diffeomorphisms[END_REF]). For all M ∈ N * we let then

E M (x) = a<b∈E(x), |a-b|≤M [a, b[. By convention we let E ∞ (x) = Z. For M ∈ N * the complement of E M (x)
is made of disjoint neutral blocks of length larger than M . We consider the associated empirical measures :

∀n, µ M x,n = 1 n k∈E M (x)∩[0,n[ δ T k x .
We denote by χ M the indicator function of {x, 0 ∈ E M (x)}. The following lemma follows straightforwardly from Birkhoff ergodic theorem:

Lemma 1.
With the above notations, for any T -invariant ergodic measure ν, there is a set G of full ν-measure such that the empirical measures µ M x,n n are converging for any x ∈ G and any M ∈ N * ∪ {∞} to χ M ν in the weak- * topology, when n goes to +∞.

Fix some T -invariant ergodic measure ν. We let ξ M = χ M ν and η M = ν -ξ M . Moreover we put β M = χ M dν, then ξ M = β M • ξ M when β M = 0 and η M = (1 -β M ) • η M when β M = 1 with ξ M , η M
being thus probability measures. Following partially [START_REF] Buzzi | Continuity properties of Lyapunov exponents for surface diffeomorphisms[END_REF], the measures ξ M and η M are respectively called here the geometric and neutral components of ν. In general these measures are not T -invariant, but d(ξ M , T * ξ M ) ≤ 1/M for some standard distance d on the set M(X) of Borel probability measures on X. From the definition one easily checks that ξ M ≥ ξ N for M ≥ N . If ν(G) = 0, then for ν-almost every x we have µ M

x,n = 0 for all n and M . Assume G has positive ν-measure. Then, when M goes to infinity, the function χ M goes to χ ∞ = 1 almost surely with respect to ν, therefore ξ M goes to ν. However in general this convergence is not uniform in ν. In the following we consider a sequence (ν k ) k of ergodic T -invariant measures converging to µ. Then, by a diagonal argument, we may assume by extracting a subsequence that ξ M k := χ M ν k is converging for any M , when k goes to infinity, to some µ M , which is a priori distinct from χ M µ. We still have µ M ≥ µ N for M ≥ N , but the limit

µ 1 = lim M µ M is a T -invariant component of µ, which may differ from µ.
The next lemma follows from Lemma 1 and standard arguments of measure theory:

Lemma 2. There is a Borel subset H with ν(H) > 1 2 such that for any M ∈ N and for any continuous function ϕ : X → R:

(2.1) 1 n k∈E M (x)∩[1,n[ ϕ(T k x) n -→ ϕ dξ M uniformly in x ∈ H.
Proof. We consider a dense countable family F = (ϕ k ) k∈N in the set C 0 (X, R) of real continuous functions on X endowed with the supremum norm • ∞ . Let G be as in Lemma 1. Then for all k, M , by Egorov's theorem applied to the pointwise converging sequence

(f n : G → R) n = x → ϕ k dµ M x,n n , there is a subset F M k of F with ν(F M k ) > 1 - 1 2 k+M +3 such that ϕ k dµ M x,n converges to ϕ k dξ M uniformly in x ∈ F M k . Let H = k,M F M k . We have ν(H) > 1 2 . Then, if ϕ ∈ C 0 (X, R), we may find for any > 0 a function ϕ k ∈ F with ϕ -ϕ k ∞ < . Let M ∈ N. Take N = N k,M such that | ϕ k dµ M x,n -ϕ k dξ M | < for n > N and for all x ∈ F M k .
In particular for all x ∈ H we have for n > N

ϕ dµ M x,n -ϕ dξ M ≤ ϕ k dµ M x,n -ϕ dµ M x,n + ϕ k dµ M x,n -ϕ k dξ M + ϕ k dξ M -ϕ dξ M , ≤2 ϕ -ϕ k ∞ + ϕ k dµ M x,n -ϕ k dξ M , <3 . 
2.2. Pesin unstable manifolds. We consider a smooth compact riemannian manifold (M, • ). Let exp x be the exponential map at x and let R inj be the radius of injectivity of (M, • ).

We consider the distance d on M induced by the Riemannian structure. Let f : M be a C r , r > 1, surface diffeomorphism. We denote by R the set of Lyapunov regular points with

λ + (x) > 0 > λ -(x).
For x ∈ M we let W u (x) denote the unstable manifold at x :

W u (x) := y ∈ M, lim n 1 n log d(f n x, f n y) < 0 .
By Pesin unstable manifold theorem, the set W u (x) for x ∈ R is a C r submanifold tangent to E + (x) at x. For x ∈ R, we let x be the vector in PT M associated to the unstable Oseledets bundle E + (x). For δ > 0 the point x is called δ-hyperbolic with respect to φ (resp. ψ) when we have φ l (F -l x) ≥ δl (resp. ψ l (F -l x) ≥ δl) for all l > 0. Note that if x is δ-hyperbolic with respect to ψ then it is δ-hyperbolic with respect to φ. Let H δ := x ∈ PT M, ∀l > 0 ψ l (F -l x) ≥ δl be the set of δ-hyperbolic points w.r.t. ψ.

Lemma 3. Let ν be an ergodic measure with λ + (ν) -log + df ∞ r > δ > 0 > λ -(ν). Then we have ν+ (H δ ) > 0.
Proof. By applying the Ergodic Maximal Inequality (see e.g. Theorem 1.1 in [START_REF] Brown | Ergodic theory and topological dynamics[END_REF]) to the measure preserving system (F -1 , ν+ ) with the observable

ψ δ = δ -ψ • F -1 , we get with A δ = {x ∈ PT M, ∃k ≥ 0 s.t. k l=0 ψ δ (F -l x) > 0}: A δ ψ δ dν + ≥ 0. Observe that H δ = PT M \ A δ . Therefore H δ ψ δ dν + = ψ δ dν + - A δ ψ δ dν + , ≤ ψ δ dν + , ≤ (δ -ψ • F -1 ) dν + , ≤ δ -λ + (ν) + 1 r log + d x f r dν(x), < 0.
In particular we have ν+ (H δ ) > 0.

A point x ∈ R is said to have κ-bounded geometry for κ > 0 when exp -1 x W u (x) contains the graph of a κ-admissible map at x, which is defined as a 1-Lipschitz map f : I → E + (x) ⊥ ⊂ T x M, with I being an interval of E + (x) containing 0 with length κ. We let G κ be the subset of points in R with κ-bounded geometry.

Lemma 4. The set G κ is Borel measurable. Proof. For x ∈ R we have W u (x) = n∈N f n W u loc (f -n x) with W u loc being the Pesin unstable local manifold at x. The sequence (f n W u loc (f -n x)) n is increasing in n for the inclusion. Therefore, if we let G n κ be the subset of points x in G κ , such that exp -1 x f n W u loc (f -n x)
contains the graph of a κ-admissible map, then we have

G κ = n G n κ .
There are closed subsets, (R l ) l∈N , called the Pesin blocks, such that R = l R l and x → W u loc (x) is continuous on R l for each l (see e.g. [START_REF] Pesin | Lyapunov Exponents and Smooth Ergodic Theory[END_REF]). Let (x p ) p be sequence in G n κ ∩ R l which converges to x ∈ R l . By extracting a subsequence we can assume that the associated sequence of κ-admissible maps f p at x p is converging pointwisely to a κ-admissible map at x, when p goes to infinity. In particular G n κ ∩ R l is a closed set and therefore

G κ = l,n (G n κ ∩ R l ) is Borel measurable. 2.
3. Entropy of conditional measures. We consider an ergodic hyperbolic measure ν, i.e an ergodic measure with ν(R) = 1. A measurable partition ς is subordinated to the Pesin unstable local lamination W u loc of ν if the atom ς(x) of ς containing x is a neighborhood of x inside the curve W u loc (x) and f -1 ς ς. By Rokhlin's disintegration theorem, there are a measurable set Z of full ν-measure and probability measures ν x on ς(x) for x ∈ Z, called the conditional measures on unstable manifolds, satisfying ν = ν x dν(x). Moreover ν y = ν x for x, y ∈ Z in the same atom of ς. Ledrappier and Strelcyn [START_REF] Ledrappier | A proof of the estimation from below in Pesin's entropy formula[END_REF] have proved the existence of such subordinated measurable partitions. We fix such a subordinated partition ς with respect to ν. For x ∈ M, n ∈ N and ρ > 0, we let B n (x, ρ) be the Bowen ball B n (x, ρ) := 0≤k<n f -k B(f k x, ρ) (where B(f k x, ρ) denotes the ball for d at f k x with radius ρ). Lemma 5. [START_REF] Ledrappier | The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesins entropy formula[END_REF] For all ι > 0, there is ρ > 0 and a measurable set

E ⊂ Z ∩ R with ν(E) > 1 2 such that ∀x ∈ E, lim inf n - 1 n log ν x (B n (x, ρ)) ≥ h(ν) -ι. (2.2)
The natural projection from PT M to M is denoted by π. We consider a distance d on the projective tangent bundle PT M, such that d(X, Y ) ≥ d(πX, πY ) for all X, Y ∈ PT M. We let ηM and ξM be the neutral and geometric components of the ergodic F -invariant measure ν+ associated to G = H δ ∩ π -1 G κ ⊂ PT M, where the parameters δ and κ will be fixed later on independently of ν. The importance of this choice of G will appear in Proposition 4 to bound from above the entropy of the neutral component. We also consider the projections η M and ξ M on M of ηM and ξM respectively. By Lemma 2 applied to the system (PT M, F ) and to the ergodic measure ν+ , there is a Borel subset H of PT M with ν+ (H) > 1 2 such that for any M ∈ N * ∪ {∞} and for any continuous function ϕ

: PT M → R (2.3) 1 n k∈E M (x)∩[1,n[ ϕ(F k x) n -→ ϕ d ξM uniformly in x ∈ H.
Fix an error term ι > 0 depending § on ν and let ρ and E be as in Lemma 5. Let F = E ∩ π(H).

Note that ν(F) > 0. We fix also x * ∈ F with ν x * (F) > 0 and we let ζ = νx * (•) νx * (F) be the probability measure induced by ν x * on F. Observe that ν x = ν x * for ζ a.e. x. We let D be the C r curve given by the Pesin local unstable manifold W u loc (x * ) at x * . For a finite measurable partition P and a Borel probability measure µ we let H µ (P ) be the static entropy, H µ (P ) = -A∈P µ(A) log µ(A). Moreover we let P n = n-1 k=0 f -k P be the n-iterated partition, n ∈ N. We also denote by P n

x the atom of P n containing the point x ∈ M. Lemma 6. For any (finite measurable) partition P with diameter less than ρ, we have

lim inf n 1 n H ζ (P n ) ≥ h(ν) -ι. (2.4) Proof. lim inf n 1 n H ζ (P n ) = lim inf n - 1 n log ζ(P n x ) dζ(x), by the definition of H ζ , ≥ lim inf n - 1 n log ζ(P n x ) dζ(x), by Fatou's Lemma, ≥ lim inf n - 1 n log ν x * (P n x ) dζ(x), by the definition of ζ, ≥ lim inf n - 1 n log ν x (P n x ) dζ(x), as ν x = ν x * for ζ a.e. x, ≥ lim inf n - 1 n log ν x (B n (x, ρ)) dζ(x), as diam(P ) < ρ,
≥ h(ν) -ι, by the choice of F ⊂ E and (2.2). § In the proof of the Main Theorem we will take ι = ι(ν k ) k -→ 0 for the converging sequence of ergodic measures (ν k ) k .

2.4.

Entropy splitting of the neutral and the geometric component. In this section we split the entropy contribution of the neutral and geometric components ηM and ξM of the ergodic F -invariant measure ν+ associated to a fixed Borel set G of PT M.

Recall that E(x) denotes the set of integers k with

F k x ∈ G. Fix now M . For each n ∈ N and x ∈ F we let E n (x) = E(x) ∩ [0, n[ and E M n (x) = E M (x) ∩ [0, n[. We also let E M n be the partition of F with atoms A E := {x ∈ D, E M n (x) = E} for E ⊂ [0, n[. Given a partition Q of PT M, we also let Q E M n be the partition of F := {x, x ∈ F ∩ D} finer than π -1 E M n with atoms x ∈ F, E M n (x) = E and ∀k ∈ E, F k x ∈ Q k for E ⊂ [0, n[ and (Q k ) k∈E ∈ Q E .
We let ∂Q be the boundary of the partition Q, which is the union of the boundaries of its atoms. For a measure η and a subset A of M with η(A) > 0 we denote by η A = η(A∩•) η(A) the induced probability measure on A. Moreover, for two sets A, B we let A∆B denote the symmetric difference of A and

B, i.e. A∆B = (A \ B) ∪ (B \ A). Finally, let H :]0, 1[→ R + be the map t → -t log t -(1 -t) log (1 -t).
Recall that ζ+ is the lift of ζ on PT M to the unstable Oseledets bundle (with ζ as in Subsection 2.3).

Lemma 7. For any finite partition P with diameter less than ρ and for any finite partition Q and any m ∈ N * with ξM (∂Q m ) = 0 we have

(2.5) h(ν) ≤ β M 1 m H ξM (Q m ) + lim sup n 1 n H ζ+ (π -1 P n |Q E M n ) + H(2/M ) + 12 log Q M + ι.
Before the proof of Lemma 7, we first recall a technical lemma from [START_REF] Burguet | SRB measure for C ∞ surface diffeomorphisms[END_REF].

Lemma 8 (Lemma 6 in [START_REF] Burguet | SRB measure for C ∞ surface diffeomorphisms[END_REF]). Let (X, T ) be a topological system. Let µ be a Borel probability measure on X and let E be a finite subset of N. For any finite partition Q of X, we have with

µ E := 1 E k∈E T k * µ and Q E := k∈E T -k Q: 1 E H µ (Q E ) ≤ 1 m H µ E (Q m ) + 6m (E + 1)∆E E log Q.
Proof of Lemma 7. As the complement of E M n (x) is the disjoint union of neutral blocks with length larger than M , there are at most

A M n = [2n/M ]+1 k=0 n k possible values for E M n (x) so that 1 n H ζ (P n ) = 1 n H ζ (P n |E M n ) + H ζ (E M n ), ≤ 1 n H ζ (P n |E M n ) + log A M n , lim inf n 1 n H ζ (P n ) ≤ lim sup n 1 n H ζ (P n |E M n ) + H(2/M ) by using Stirling's formula. Moreover 1 n H ζ (P n |E M n ) = 1 n H ζ+ (π -1 P n |π -1 E M n ), ≤ 1 n H ζ+ (Q E M n |π -1 E M n ) + 1 n H ζ+ (π -1 P n |Q E M n ). For E ⊂ [0, n[ we let ζ+ E,n = n E µ M
x,n dζ A E (x), which may be also written as ζ+

π -1 A E E
by using the notations of Lemma 8. By Lemma 8 applied to the system (PT M, F ) and the measures µ := ζ+ π -1 A E for A E ∈ E M n we have for all n > m ∈ N * :

H ζ+ Q E M n |π -1 E M n = E ζ(A E )H ζ+ π -1 A E (Q E ), ≤ E ζ(A E ) E 1 m H ζ+ E,n (Q m ) + 6m (E + 1)∆E E log Q .
Recall again that if E = E M n (x) for some x then the complement set of E in [1, n[ is made of neutral blocks of length larger than M , therefore (E + 1)∆E ≤ 2M n . Moreover it follows from ξ M (∂Q m ) = 0 and (2.3), that µ M

x,n (A m ) for A m ∈ Q m and E M n (x)/n are converging to ξM (A m ) and β M respectively uniformly in x ∈ F when n goes to infinity. Then we get by taking the limit in n:

lim sup n 1 n H ζ+ Q E M n |π -1 E M n ≤β M 1 m H ξM (Q m ) + 12m log Q M , h(ν) -ι ≤ lim inf n 1 n H ζ (P n ) ≤β M 1 m H ξM (Q m ) + lim sup n 1 n H ζ+ (π -1 P n |Q E M n ) + H(2/M ) + 12m log Q M .
2.5. Bounding the entropy of the neutral component. For a 

C 1 diffeomorphism f on M we put C(f ) := 2A f H(A -1 f )+ log + df ∞ r +B r with A f = log + df ∞ +log + df -1 ∞ +1

< α.

In this section we consider the empirical measures associated to an ergodic hyperbolic measure ν with λ + (ν) > log df ∞ r + δ, δ > 0. Without loss of generality we can assume δ < r-1 r log 2. Then by Lemma 3 we have ν+ (H δ ) > 0. For x ∈ R we let m n (x) = max{k < n, F k x ∈ H δ }. By a standard application of Birkhoff ergodic theorem we have

m n (x) n n -→ 1 for ν a.e. x.
By taking a smaller subset F, we can assume the above convergence of m n is uniform on F and that sup x∈F min{k ≤ n, F k x ∈ H δ } ≤ N for some positive integer N . We bound the term lim sup n

1 n H ζ+ (π -1 P n |Q E M n
) in the right hand side of (2.5) Lemma 7, which corresponds to the local entropy contribution plus the entropy in the neutral part. Lemma 9. There is κ > 0 depending only on d k f ∞ , 2 ≤ k ≤ r, § such that the empirical measures associated to G := π -1 G κ ∩ H δ satisfy the following properties. For all q, M ∈ N * , § Here

d k f ∞ = sup α∈N 2 , |α|=k sup x,y ∂ α y exp -1 f (x) •f • exp x (•)
∞ there are q > 0 depending only on d k (f q ) ∞ , 2 ≤ k ≤ r and γ q,M (f ) > 0 such that for any partition Q of PT M with diameter less than q , we have:

lim sup n 1 n H ζ+ (π -1 P n |Q E M n ) ≤(1 -β M )C(f ) + log 2 + 1 r -1 log + df q q dξ M -φ d ξM + γ q,M (f ),
where the error term γ q,M (f ) satisfies

(2.6) ∀K > 0 lim sup q lim sup M sup f ∈Diff r (M) γ q,M (f ) | df ∞ ∨ df -1 ∞ < K = 0.
The proof of Lemma 9 appears after the statement of Proposition 4, which is a semi-local Reparametrization Lemma. Proposition 4. There is κ > 0 depending only on d k f ∞ , 2 ≤ k ≤ r, such that the empirical measures associated to G := π -1 G κ ∩ H δ satisfy the following properties. For all q, M ∈ N * there are q > 0 depending only on d k (f q ) ∞ , 2 ≤ k ≤ r and γ q,M (f ) > 0 satisfying (2.6) such that for any partition Q with diameter less than < q , we have for n large enough :

Any atom F n of the partition Q E M n may be covered by a family Ψ Fn of C r curves ψ : [-1, 1] → M satisfying d(f k • ψ) ∞ ≤ 1 for any k = 0, • • • , n -1, such that 1 n log Ψ Fn ≤ 1 - E M n n C(f ) + log 2 + 1 r -1 log + d x f q q dζ M Fn (x) -φ d ζM Fn + γ q,M (f ) + τ n ,
where

lim n τ n = 0, E M n = E M n (x) for x ∈ F n , ζM Fn = µ M x,n dζ Fn (x) and ζ M Fn = π * ζM Fn its push-forward on M.
The proof of Proposition 4 is given in the last section. Proposition 4 is very similar to the Reparametrization Lemma in [START_REF] Burguet | Symbolic extensions in intermediate smoothness on surfaces[END_REF]. Here we reparametrize an atom

F n of Q E M n instead of Q n in [4].
Proof of Lemma 9 assuming Proposition 4. We take κ > 0 and q > 0 as in Proposition 4. Observe that

H ζ+ (π -1 P n |Q E M n ) ≤ Fn∈Q E M n ζ+ (F n ) log {A n ∈ P n , π -1 (A n ) ∩ F ∩ F n = ∅}.
As ν(∂P ) = 0, for all γ > 0, there is χ > 0 and a continuous function ϑ : M → R + equal to 1 on the χ-neighborhood ∂P χ of ∂P satisfying ϑ dν < γ. Then, by applying (2.3) with ϕ : x → ϑ(x) and M = ∞, we have uniformly in x ∈ F ⊂ π(H):

(2.7) lim sup n 1 n {0 ≤ k < n, f k x ∈ ∂P χ } ≤ lim n 1 n n-1 k=0 ϑ(f k x) = ϑ dν < γ.
Assume that for arbitrarily large n there is 

F n ∈ Q E M n and ψ ∈ Ψ Fn with {A n ∈ P n , A n ∩ ψ([-1, 1]) ∩ F = ∅} > ([χ -1 ] + 1) P γn . As d(f k • ψ) ∞ ≤ 1 for 0 ≤ k < n we may reparametrize ψ on F by [χ -1 ] + 1 affine contractions θ so that the length of f k • ψ • θ is less than χ for all 0 ≤ k < n and (ψ • θ)([-1, 1]) ∩ F = ∅. Then we have {0 ≤ k < n, ∂P ∩ (f k • ψ • θ)([-1, 1]) = ∅} > γn for some θ. In particular we get {0 ≤ k < n, f k x ∈ ∂P χ } > γn for any x ∈ ψ • θ([-1, 1]),
1 n log {A n ∈ P n , A n ∩ ψ([-1, 1]) ∩ F = ∅} = 0.
Together with Proposition 4 and Lemma 2 we get lim sup

n 1 n H ζ+ (π -1 P n |Q E M n ) ≤ lim sup n Fn∈Q E M n ζ+ (F n ) 1 n log Ψ Fn , ≤ lim sup n Fn∈Q E M n ζ+ (F n ) 1 - E M n n C(f )+ + lim sup n Fn∈Q E M n ζ+ (F n ) log 2 + 1 r -1 log + df q q dζ M Fn -φ d ζM Fn + γ q,M (f ), ≤ (1 -β M )C(f ) + log 2 + 1 r -1 log + df q q dξ M -φ d ξM + γ q,M (f ).
This concludes the proof of Lemma 9.

By combining Lemma 9 and Lemma 7 we get:

Proposition 5. Let κ, q and γ q,M (f ) as in Proposition 4. Then for any q, M ∈ N * and for any finite partition Q with diameter less than q and with ξM (∂Q m ) = 0 we have with

γ q,Q,M (f ) = γ q,M (f ) + H 2 M + 12 log Q M : h(ν) ≤β M 1 m H ξM (Q m ) + (1 -β M )C(f ) + log 2 + 1 r -1 log + df q q dξ M -φ d ξM + γ q,Q,M (f ) + ι.
2.6. Proof of the Main Theorem. We first reduce the Main Theorem to the following statement.

Proposition 6. Let (f k ) k∈N be a sequence of C r , with r > 1, surface diffeomorphisms converging C r weakly to a diffeomorphism f . Assume there is a sequence

(ν + k ) k of ergodic F k -invariant measures converging to μ with lim k λ + (ν k ) > log + df ∞ r .
Then, there are F -invariant measures μ0 and μ+

1 with μ = (1 -β)μ 0 + β μ+ 1 , β ∈ [0, 1], such that: lim sup k→+∞ h(ν k ) ≤ βh(µ 1 ) + (1 -β)C(f ).
Proof of the Main Theorem assuming Proposition 6. Let (ν + k ) k be a sequence of ergodic F kinvariant measures converging to μ.

As previously mentionned, for any α > λ + (f )/r there is p ∈ N * with α > C(f p ) p . We can also assume log df p ∞ pr < α. Let ν+,p k be an ergodic component of ν+ k for F p k and let us denote by ν p k its push forward on M. We have

h f p k (ν p k ) = ph f k (ν k ) for all k.
By taking a subsequence we can assume that (ν +,p k ) k is converging. Its limit μp satisfies

1 p 0≤l<p F k * μp = μ. If lim k λ + (ν p k ) ≤ log + df p ∞ r
< pα, then by Ruelle's inequality we get lim sup

k→+∞ h f k (ν k ) = lim sup k→+∞ 1 p h f p k (ν p k ), ≤ lim k→+∞ 1 p λ + (ν p k ), < α.
This proves the Main Theorem with β = 1.

We consider then case lim

k λ + (ν p k ) > log + df p ∞ r
. By applying Proposition 4 to the p-power system, we get F p -invariant measure μp 0 and μ+,p

1 with μp = (1 -β)μ p 0 + β μ+,p 1 , β ∈ [0, 1], such that we have with µ p 1 = π * μ+,p 1 : lim sup k→+∞ h f p k (ν p k ) ≤ βh f p (µ p 1 ) + (1 -β)C(f p ). But h f p (µ p 1 ) = ph f (µ 1 ) with µ 1 = 1 p 0≤l<p f k µ p 1 . One easily checks that μ+ 1 = 1 p 0≤l<p F k μ+,p 1 . Then we have : lim sup k→+∞ h f k (ν k ) = lim sup k→+∞ 1 p h f p k (ν p k ), ≤ β 1 p h f p (µ p 1 ) + (1 -β) C(f p ) p , ≤ βh f (µ 1 ) + (1 -β)α.
This concludes the proof of the Main Theorem.

We show now Proposition 6 by using Lemma 9.

Proof of Proposition 6: Without loss of generality we can assume lim inf k h(ν k ) > 0. For µ a.e. x, we have λ -(x) ≤ 0. If not, some ergodic component μ of µ would have two positive Lyapunov exponents and therefore should be the periodic measure at a source S (see e.g. Proposition 4.4 in [START_REF] Pollicott | Lectures on ergodic theory and Pesin theory on compact manifolds[END_REF]). But then for large k the probability ν k would give positive measure to the basin of attraction of the sink S for f -1 and therefore ν k would be equal to

μ contradicting lim inf k h(ν k ) > 0. Let δ > 0 with lim k λ + (ν k ) > log df ∞ r + δ.
Then take κ as in Lemma 9. We consider the empirical measures associated to G = π -1 G κ ∩ H δ . By a diagonal argument, there is a subsequence in k such that the geometric component ξM k of ν+ k is converging to some ξM ∞ for all M ∈ N. Let us also denote by

β ∞ M the limit in k of β k M . Then consider a subsequence in M such that ξM ∞ is converging to β μ1 with β = lim M β ∞ M .
We also let (1 -β)μ 0 = μ -β μ1 . In this way, μ0 and μ1 are both probability measures. Lemma 10. The measures μ0 and μ1 satisfy the following properties:

• μ1 and μ0 are F -invariant, • λ + (x) ≥ δ for µ 1 -a.e. x and μ1 = μ+ 1 .

Proof. The neutral blocks in the complement set of E M (x) have length larger than M . Therefore for any continuous function ϕ : PT M → R and for any k, we have

ϕ d ξM k -ϕ • F d ξM k ≤ 2 sup x |ϕ(x)| M .
Letting k, then M go to infinity, we get ϕ dμ

1 = ϕ • F dμ 1 , i.e. μ1 is F -invariant.
We let K M be the compact subset of PT M given by

K M = {x ∈ PT M, ∃1 ≤ m ≤ M φ m (x) ≥ mδ}. Let x ∈ G k ,
where G k is the set where the empirical measures are converging to ξM k (see Lemma 1). Observe that

(2.8) lim n µ M x,n (K M ) = ξM k (K M ) = ξM k (PT M). Indeed for any k ∈ E M (x) there is 1 ≤ m ≤ M with F m (F k x) ∈ G ⊂ H δ . Moreover, as already mentioned, δ-hyperbolic points w.r.t. ψ are δ-hyperbolic w.r.t. φ. Therefore φ m (F k x) ≥ mδ. Consequently we have lim n µ M x,n (K M ) = lim n µ M x,n (PT M) = ξM k (PT M). The set K M being compact in PT M, we get ξM k (K M ) ≥ lim n µ M x,n (K M ) and (2.8) follows. Also we have ξM ∞ (K M ) ≥ lim sup k ξM k (K M ) = lim sup k ξM k (PT M) = β ∞ M . Therefore we have μ1 ( M K M ) = 1

as ξM

∞ goes increasingly in M to β μ1 . The F -invariant set k∈Z F -k ( M K M ) has also full μ1 -measure and for all x = (x, v) in this set we have lim sup n 1 n log d x f n (v) ≥ δ. Consequently the measure μ1 is supported on the unstable bundle E + (x) and λ + (x) ≥ δ for µ 1 -a.e. x. Remark 7. In Theorem C of [START_REF] Buzzi | Continuity properties of Lyapunov exponents for surface diffeomorphisms[END_REF], the measure β μ+ 1 is obtained as the limit when δ goes to zero of the component associated to the set

G δ := {x, ∀l > 0 φ l (x) ≥ δl} ⊃ π -1 G κ ∩ H δ . Therefore our measure β α μ+ 1,α is just a component of their measure β μ+ 1 .
We pursue now the proof of Proposition 6. Let q, M ∈ N * . Fix a sequence (ι k ) k of positive numbers with ι k k -→ 0. We consider a partition Q satisfying diam(Q) < q with q as in Lemma 9. The sequence (f k ) k being C r bounded, one can choose q independently of f k , k ∈ N.

By a standard argument of countability we may assume that for all m ∈ N * the boundary of Q m has zero-measure for μ+ 1 and all the measures ξM k , M ∈ N * and k ∈ N ∪ {∞}. By applying Proposition 5 to f k and ν k we get:

h(ν k ) ≤β k M 1 m H ξk M (Q m ) + (1 -β k M )C(f k ) + log 2 + 1 r -1 log + df q k q dξ M k -φ d ξk M + γ q,Q,M (f k ) + ι k .
By letting k, then M go to infinity, we obtain for all m:

lim sup k h(ν k ) ≤β 1 m H μ+ 1 (Q m ) + (1 -β)C(f ) + log 2 + 1 r -1 log + df q q dµ 1 -φ dμ + 1 + lim sup M sup k γ q,Q,M (f k ).
By letting m go to infinity, we get:

lim sup k h(ν k ) ≤βh(μ + 1 ) + (1 -β)C(f ) + log 2 + 1 r -1 log + df q q dµ 1 -φ dμ + 1 + lim sup M sup k γ q,M (f k ).
But h(μ + 1 ) = h(µ 1 ) as the measure preserving systems associated to µ 1 and μ+ 1 are isomorphic. Moreover we have φ dμ + 1 = λ + (µ 1 ) = lim q log + df q q dµ 1 . Therefore by letting q go to infinity we finally obtain with the asymptotic property (2.6) of γ q,M :

lim sup k h(ν k ) ≤ βh(µ 1 ) + (1 -β)C(f ).
This concludes the proof of Proposition 6.

Semi-local Reparametrization Lemma

In this section we prove the semi-local Reparametrization Lemma stated above in Proposition 4.

Strongly bounded curves.

To simplify the exposition (by avoiding irrelevant technical details involving the exponential map) we assume that M is the two-torus T 2 with the usual Riemannian structure inherited from R 2 . Borrowing from [START_REF] Burguet | SRB measure for C ∞ surface diffeomorphisms[END_REF] we first make the following definitions.

A C r embedded curve σ : [-1, 1] → M is said bounded when max k=2,••• ,r d k σ ∞ ≤ dσ ∞ 6
.

Lemma 11. Assume σ is a bounded curve. Then for any x ∈ σ([-1, 1]), the curve σ contains the graph of a κ-admissible map at x with κ = dσ ∞ 6 .

Proof. Let x = σ(s), s ∈ [-1, 1]. One checks easily (see Lemma 7 in [START_REF] Burguet | Symbolic extensions in intermediate smoothness on surfaces[END_REF] for further details) that for all t ∈ [-1, 1] the angle ∠σ (s), σ (t) < π 6 ≤ 1 and therefore

1 0 σ (t)• σ (s) σ (s) dt ≥ dσ ∞ 6 .
Therefore, as σ (s) ∈ E + (x), the image of σ contains the graph of an dσ ∞
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-admissible map at x.

A C r bounded curve σ : [-1, 1] → M is said strongly -bounded for > 0 if dσ ∞ ≤ .
For n ∈ N * and > 0 a curve is said strongly (n, )-bounded when f k • σ is strongly -bounded for all k = 0, • • • , n -1.

We consider a C r smooth diffeomorphism g : M with N r ≥ 2. For x = (x, v) ∈ PT M with π(x) = x, we let k g (x) ≥ k g (x) be the following integers:

k g (x) := [log d x g ] , k g (x) := [log d x g(v) ] = [φ g (x)].
In the next lemma, we reparametrize the image by g of a bounded curve. The proof of this lemma is mostly contained in the proof of the Reparametrization Lemma [START_REF] Burguet | SRB measure for C ∞ surface diffeomorphisms[END_REF], but we reproduce it for the sake of completeness.

Lemma 12. Let R inj 2 > = g > 0 satisfying d s g x 2 ∞ ≤ 3 d x g for all s = 1, • • • , r and all x ∈ M, where g x 2 = g • exp x (2 •) = g(x + 2 •) : {w x ∈ T x M, w x ≤ 1} → M.
We assume σ : [-1, 1] → M is a strongly -bounded C r curve and we let σ : [-1, 1] → PT M be the associated induced map.

Then for some universal constant C r > 0 depending only on r and for any pair of integers (k, k ) there is a family Θ of affine maps from [-1, 1] to itself satisfying:

• σ-1 x ∈ PT M, k g (x) = k and k g (x) = k ⊂ θ∈Θ θ([-1, 1]), • ∀θ ∈ Θ, the curve g • σ • θ is bounded, • ∀θ ∈ Θ, |θ | ≤ e k -k-1 r-1 /4, • Θ ≤ C r e k-k r-1 .
Proof. First step : Taylor polynomial approximation. One computes for an affine map θ : [-1, 1] with contraction rate b precised later and with y = σ(t), k g

(y) = k, k g (y) = k , t ∈ θ([-1, 1]): d r (g • σ • θ) ∞ ≤ b r d r (g y 2 • σ y 2 ) ∞ , with σ y 2 := (2 ) -1 exp -1 y •σ = 2 -1 (σ(•) -y), ≤ b r d r-1 d σ y 2 g y 2 • dσ y 2 ∞ , ≤ b r 2 r max s=0,••• ,r-1 d s d σ y 2 g y 2 ∞ max k=1,••• ,r d k σ y 2 ∞ .
By assumption on , we have d s g y 2 ∞ ≤ 3 d y g for any r ≥ s ≥ 1. Moreover max k=1,••• ,r d k σ y 2 ∞ ≤ 1 as σ is strongly -bounded. Therefore by Faá di Bruno's formula, we get for some § constants C r > 0 depending only on r:

max s=0,••• ,r-1 d s d σ y 2 g y 2 ∞ ≤ C r d y g , then , d r (g • σ • θ) ∞ ≤ C r b r d y g max k=1,••• ,r d k σ y 2 ∞ , ≤ C r b r d y g dσ ∞ , ≤ (C r b r-1 d y g ) d(σ • θ) ∞ , ≤ (C r b r-1 e k ) d(σ • θ) ∞ , because k(y) = k , ≤ e k -4 d(σ • θ) ∞ , by taking b = C r e k-k +4 -1 r-1 .
§ Although these constants may differ at each step, they are all denoted by Cr.

Therefore the Taylor polynomial P at 0 of degree r -1 of d(g • σ • θ) satisfies on [-1, 1]:

P -d(g • σ • θ) ∞ ≤ e k -4 d(σ • θ) ∞ .
We may cover [-1, 1] by at most b -1 + 1 such affine maps θ.

Second step : Bezout theorem. Let a = e k d(σ • θ) ∞ . Note that for s ∈ [-1, 1] with k(σ • θ(s)) = k and k (σ • θ(s)) = k we have d(g • σ • θ)(s) ∈ [ae -2 , ae 2 ], therefore P (s) ∈ [ae -3 , ae 3 ]. Moreover if we have now P (s) ∈ [ae -3 , ae 3 ] for some s ∈ [-1, 1] we get also d(g • σ • θ)(s) ∈ [ae -4 , ae 4 ].
By Bezout theorem the semi-algebraic set {s ∈ [-1, 1], P (s) ∈ [e -3 a, e 3 a]} is the disjoint union of closed intervals (J i ) i∈I with I depending only on r. Let θ i be the composition of θ with an affine reparametrization from [-1, 1] onto J i .

Third step : Landau-Kolmogorov inequality. By the Landau-Kolmogorov inequality on the interval (see Lemma 6 in [START_REF] Burguet | SRB measure for C ∞ surface diffeomorphisms[END_REF]), we have for some constants C r ∈ N * and for all 1 ≤ s ≤ r:

d s (g • σ • θ i ) ∞ ≤ C r ( d r (g • σ • θ i ) ∞ + d(g • σ • θ i ) ∞ ) , ≤ C r |J i | 2 d r (g • σ • θ) ∞ + sup t∈J i d(g • σ • θ)(t) , ≤ C r a |J i | 2 .
We cut again each J i into 1000C r intervals Ji of the same length with

θ( Ji ) ∩ σ -1 x, k g (x) = k and k g (x) = k = ∅.
Let θi be the affine reparametrization from [-1, 1] onto θ( Ji ). We check that g • σ • θi is bounded:

∀s = 2, • • • , r, d s (g • σ • θi ) ∞ ≤ (1000C r ) -2 d s (g • σ • θ i ) ∞ , ≤ 1 6 (1000C r ) -1 |J i | 2 a n e -4 , ≤ 1 6 (1000C r ) -1 |J i | 2 min s∈J i d(g • σ • θ)(s) , ≤ 1 6 (1000C r ) -1 |J i | 2 min s∈ Ji d(g • σ • θ)(s) , ≤ 1 6 d(g • σ • θi ) ∞ .
This conclude the proof with Θ being the family of all θi 's.

We recall now a useful property of bounded curve (see Lemma 7 in [START_REF] Burguet | Symbolic extensions in intermediate smoothness on surfaces[END_REF] for a proof).

Lemma 13. Let σ : [-1, 1] → M be a C r bounded curve and let B be a ball of radius less than . Then there exists an affine map θ : [-1, 1] such that :

• σ • θ is strongly 3 -bounded, • θ([-1, 1]) ⊃ σ -1 B.
3.4. The induction. We fix k, m n and E and we reparametrize appropriately the set F k,E,mn n .

Lemma 15. With the above notations there are families (Θ i ) i≤m of affine maps from [-1, 1] into itself such that :

• ∀θ ∈ Θ i ∀j ≤ i the curve f a i • σ • θ is strongly f b i -bounded, • σ-1 F k,E,mn n ⊂ θ∈Θ i θ([-1, 1]), • ∀θ i ∈ Θ i ∀j < i, ∃θ i j ∈ Θ j , |θ i | |(θ i j ) | ≤ j≤l<i e k a l -ka l -1 r-1 /4, • Θ i ≤ C max (1, df ∞ ) E∩[1,a i ] j<i C r e ka j -k a j r-1 . 
Proof. We argue by induction on i ≤ m. By changing the constant C, it is enough to consider i with a i > N . Recall that the integer N was chosen in such a way that for any x ∈ F there is 0 ≤ k ≤ N with F k x ∈ H δ . We assume the family Θ i for i < m already built and we will define Θ i+1 . Let θ i ∈ Θ i . We apply Lemma 12 to the strongly

f b i -bounded curve f a i • σ • θ i with g = f b i . Let Θ be the family of affine reparametrizations of [-1, 1] satisfying the conclusions of Lemma 12, in particular f a i+1 • σ • θ i • θ is bounded, |θ | ≤ e k a i -ka i -1 r-1
/4 for all θ ∈ Θ and Θ ≤ C r e ka i -k a i r-1

. We distinguish three cases:

• a i+1 ∈ E M n . The diameter of F a i+1 F n is less than q ≤ f b i+1 3 . By Lemma 13 there is an affine map ψ :

[-1, 1] such that f a i+1 • σ • θ i • θ • ψ is strongly f b i+1 -bounded and its image contains the intersection of the bounded curve f a i+1 • σ • θ i • θ with f a i+1 F n . We let then θ i+1 = θ i • θ • ψ ∈ Θ i+1 . • a i+1 ∈ E \ E M n . Observe that b i+1 = 1, therefore f b i ≤ f b i+1 . Then the length of the curve f a i+1 •σ•θ i •θ is less than 3 df ∞ f b i ,
thus may be covered by [3 df ∞ ]+1 balls of radius less than f b i+1 . We then use Lemma 13 as in the previous case to reparametrize the intersection of this curve with each ball by a strongly f b i+1 -bounded curve. We define in this way the associated parametrizations of Θ i+1 .

• a i+1 / ∈ E and a i+1 / ∈ E M n . We claim that d(f

a i+1 •σ•θ i •θ ≤ f /6. Take x ∈ F k,E,mn n with x = π(x) = σ • θ i • θ(s). Let K x = max{k < a i+1 , F k x ∈ H δ } ≥ N . Observe that [K x , a i+1
] ∩ E M n = ∅, therefore for K x ≤ a l < a i+1 , we have b l = 1, then a l = a i+1 -i -1 + l. We argue by contradiction by assuming :

d(f a i+1 • σ • θ i • θ ≥ f /6 = 6κ (3.2)
By Lemma 11, the point f a i+1 x belongs to G κ . We will show F a i+1 x ∈ H δ . Therefore we will get F a i+1 x ∈ G = π -1 G κ ∩ H δ contradicting a i+1 / ∈ E. To prove F a i+1 x ∈ H δ it is enough to show j≤l<a i+1 ψ(F l x) ≥ (a i+1 -j)δ for any K x ≤ j < a i+1 because F Kx (x) belongs to H δ . For any K x ≤ j < a i+1 we have :

d(f a i+1 • σ • θ i • θ ∞ ≤ 2 d s (f a i+1 • σ • θ i • θ , because f a i+1 • σ • θ i • θ is bounded, ≤ 2 d f j x f a i+1 -j (x) × d s (f a j • σ • θ i j ) × |θ i | × |θ | |(θ i j ) |
, with a j = j, Lemma 16.

≤ f 3 d f j x f a i+1 -j (x)
i,

mn>a i / ∈E M n k a i -k a i r -1 ≤ n -E M n log + df ∞ r + 1 r -1 .
Proof. The intersection of [0, m n [ with the complement set of E M n is the disjoint union of neutral blocks and possibly an interval of integers of the form [l, m n [. In any case F j x belongs to H δ for such an interval [i, j[ for any x ∈ F k,E,mn n . In particular, we have l,a l ∈[i,j[ , by Lemma 15.

k a i - k a i r ≥ (δ -1)(j -i) therefore i, mn>a i / ∈E M n k a i - k a i r ≥ -(n -E M n ), i, mn>a i / ∈E M n k a i -k a i r -1 ≤ n -E M n r -1 + i, mn>a i / ∈E M n k a i r , ≤ n -E M n log + df ∞ r + 1 r -1 .
Then we decompose the product into four terms : 

• i, mn>a i / ∈E M n ka i -k a i r-1 ≤ (n -E M n ) log + df ∞

  and a universal constant B r depending only r precised later on. Clearly f → C(f ) is continuous in the C 1 topology and λ + (f ) r = lim N p→+∞ C(f p ) p whenever λ + (f ) > 0 (indeed A f p . In particular, if λ + (f ) r < α and f k k -→ f in the C 1 topology, then there is p with lim k C(f p k ) p

2 ≤ 3 )

 23 d f j x f a i+1 -j (x)Recall again that for j ≤ l ≤ i, we have b l = 1, thus|k a l -log d f a l x f | ≤ 1 and k a l ≤ φ(F a l x). Therefore we get for any K x ≤ j < a i+1 from (3.3):2 a i+1 -j ≤ e + d f l x f , (a i+1 -j) log 2 ≤ r r -1 j≤l<a i+1 ψ(F l x), by definition of ψ, (a i+1 -j)δ ≤ j≤l<a i+1ψ(F l x), as δ was chosen less than r -1 r log 2.

3. 5 .

 5 Conclusion. We let Ψ n be the family of C r curves σ • θ for θ ∈ Θ m = Θ m (k, E, m n ) with Θ m as in Lemma 15 over all admissible parameters k, E, m n . For θ ∈ Θ m the curvef a i • σ • θ is strongly f b i -bounded for any i = 1, • • • , m, in particular ∀i = 1, • • • , m, d(f a i • σ • θ) ∞ ≤ f b i ≤ max(1, df ∞ ) -b i , therefore ∀j = 0, • • • , n, d(f j • σ • θ) ∞ ≤ 1.By combining the previous estimates, we get moreover:Ψ n ≤ (k, E, m n ), F k,E,mn n = ∅ × sup k,E,mn Θ n (k, E, m n ), ≤ ne 2(n-E M n )A f H(A f ) 3 n(1/q+1/M ) e nH(1/M ) sup k,E,mn Θ n (k, E, m n ), by Lemma 14, ≤ ne 2(n-E M n )A f H(A f ) 3 n(1/q+1/M ) e nH(1/M ) max(1, df ∞ ) E j≤mC r e ka j -k a j r-1

+ 1 log

 1 C(f ) := 2A f H(A -1 f ) + log + df ∞ r + d x f q q dζ M Fn (x) -φ d ζM Fn + γ q,M (f ) + τ n ,This concludes the proof of Proposition 4.

3.2.

Choice of the parameters κ and q . For a diffeomorphism f : M the scale f in Lemma 12 may be chosen such that f k ≤ f l ≤ max(1, df ∞ ) -k for any q ≥ k ≥ l ≥ 1. We take κ = f 36 and we choose q < f q 3 such that for any x, ŷ ∈ PT M which are q -close and for any 0 ≤ l ≤ q:

Without loss of generality we can assume the local unstable curve D (defined in Subsection 2.3) is reparametrized by a C r strongly q -bounded map σ : [-1, 1] → D.

Let F n be an atom of the partition

Recall that the diameter of Q is less than q . It follows from (3.1) that for any x ∈ F n we have with ζM Fn = µ M

x,n dζ Fn (x):

Therefore we may fix some 0 ≤ c < q, such that for any

For a sequence k = (k l , k l ) l∈An of integers, a positive integer m n and a subset E of [0, n[, we let F k,E,mn n be the subset of points x ∈ F n satisfying:

Proof. Firstly observe that if

n and its logarithm is dominated by

Then from the choice of q in (3.1) there are at most three possible values of k a i (x) for a i ∈ E M n and x ∈ F n . Finally as E ≤ n/M , the number of admissible sets E is less than n [n/M ] and thus its logarithm is bounded above by nH(1/M ) + 1. Clearly we can also fix the value of m n up to a factor n.

Appendix

We explain in this appendix how our Main Theorem implies Buzzi-Crovisier-Sarig statement.

Let (f k ) k , (ν + k ) k and μ be as in the setting of Theorem . Then, either lim 

. By applying our Main Theorem with respect to α, there is a

But it follows from the proofs that β α µ 1,α is a component of βµ 1 with β and µ 1 being as in Buzzi-Crovisier-Sarig's statement as they consider empirical measure associated to a larger set G (see Remark 7). In particular β α h(µ 1,α ) ≤ βh(µ 1 ), therefore lim sup k→+∞ h(ν k ) ≤ βh(µ 1 ) + λ + (f )+λ + (f -1 ) r-1 .

In Theorem C [START_REF] Buzzi | Continuity properties of Lyapunov exponents for surface diffeomorphisms[END_REF], the authors also proved φ dμ 0 = 0 whenever β = 1. Therefore we get here (1 -β α ) φ dμ 0,α ≥ (1 -β) φ dμ 0 = 0, then φ dμ 0,α ≥ 0. But maybe we could have φ dμ 0,α > 0.