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MAXIMAL MEASURE AND ENTROPIC CONTINUITY OF LYAPUNOV

EXPONENTS FOR Cr SURFACE DIFFEOMORPHISMS WITH LARGE

ENTROPY

DAVID BURGUET

Abstract. We prove a finite smooth version of the entropic continuity of Lyapunov ex-
ponents proved recently by Buzzi, Crovisier and Sarig for C∞ surface diffeomorphisms [10].
As a consequence we show that any Cr, r > 1, smooth surface diffeomorphism f with
htop(f) > 1

r
lim supn

1
n

log+ ‖dfn‖∞ admits a measure of maximal entropy. We also prove
the Cr continuity of the topological entropy at f .

Introduction

The entropy of a dynamical system quantifies the dynamical complexity by counting dis-
tinct orbits. There are topological and measure theoretical versions which are related by a
variational principle : the topological entropy of a continuous map on a compact space is
equal to the supremum of the entropy of the invariant (probability) measures. An invariant
measure is said to be of maximal entropy (or a maximal measure) when its entropy is equal to
the topological entropy, i.e. this measure realizes the supremum in the variational principle.
In general a topological system may not admit a measure of maximal entropy. But such a
measure exists for dynamical systems satisfying some expansiveness properties. In particular
Newhouse [15] has proved their existence for C∞ systems by using Yomdin’s theory. In the
present paper we show the existence of a measure of maximal entropy for Cr, 1 < r < +∞,
smooth surface diffeomorphisms with large entropy.

Other important dynamical quantities for smooth systems are given by the Lyapunov
exponents which estimate the exponential growth of the derivative. For C∞ surface diffeo-
morphisms, J. Buzzi, S. Crovisier and O. Sarig proved recently a property of continuity in the
entropy of the Lyapunov exponents with many statistical applications [10]. More precisely,
they showed that for a C∞ surface diffeomorphism f , if νk is a converging sequence of ergodic
measures with limk h(νk) = htop(f), then the Lyapunov exponents of νk are going to the (av-
erage) Lyapunov exponents of the limit (which is a measure of maximal entropy). We prove
a Cr version of this fact for 1 < r < +∞.

1. Statements

We define now some notations to state our main results. For a Cr, r ≥ 1, diffeomor-
phism f on a compact Riemannian surface (M, ‖ · ‖) we let F : PTM 	 be the induced
map on the projective tangent bundle PTM = T 1M/±1 and we denote by φ, ψ : PTM→ R
the continuous observables on PTM given respectively by φ : (x, v) 7→ log ‖dxf(v)‖ and

ψ : (x, v) 7→ log ‖dxf(v)‖ − 1
r log+ ‖dxf‖ with ‖dxf‖ = supv∈TxM\{0}

‖dxf(v)‖
‖v‖ . For k ∈
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N∗ we define more generally φk : (x, v) 7→ log ‖dxfk(v)‖ and ψk : (x, v) 7→ φk(x, v) −
1
r

∑k−1
l=0 log+ ‖dfkxf‖. Then we let λ+(x) and λ−(x) be the pointwise Lyapunov exponents

given by λ+(x) = lim supn→+∞
1
n log ‖dxfn‖ and λ−(x) = lim infn→−∞

1
n log ‖dxfn‖ for any

x ∈M and λ+(µ) =
∫
λ+(x) dµ(x), λ−(µ) =

∫
λ−(x) dµ(x), for any f -invariant measure µ.

Also we put λ+(f) := limn
1
n log+ ‖dfn‖∞ with ‖dfn‖∞ = supx∈M ‖dxfn‖. The function

f 7→ λ+(f) is upper semi-continuous in the C1 topology on the set of C1 diffeomorphisms
on M. For an f -invariant measure µ with λ+(x) > 0 ≥ λ−(x) for µ a.e. x, there are by
Oseledets∗ theorem one-dimensional invariant vector spaces E+(x) and E−(x), resp. called
the unstable and stable Oseledets bundle, such that

∀µ a.e. x ∀v ∈ E±(x) \ {0}, lim
n→±∞

1

n
log ‖dxfn(v)‖ = λ±(x).

Then we let µ̂+ be the F -invariant measure given by the lift of µ on PTM with µ̂+(E+) = 1.
When writing µ̂+ we assume implicitly that the push-forward measure µ on M satisfies
λ+(x) > 0 ≥ λ−(x) for µ a.e. x.

A sequence of Cr, with r > 1, surface diffeomorphisms (fk)k on M is said to converge Cr
weakly to a diffeomorphism f , when fk goes to f in the C1 topology and the sequence (fk)k
is Cr bounded. In particular f is Cr−1.

Theorem (Buzzi-Crovisier-Sarig, Theorem C [10]). Let (fk)k∈N be a sequence of Cr, with
r > 1, surface diffeomorphisms converging Cr weakly to a diffeomorphism f . Let (Fk)k∈N
and F be the lifts of (fk)k∈N and f to PTM. Assume there is a sequence (ν̂+

k )k of ergodic
Fk-invariant measures converging to µ̂.

Then there are β ∈ [0, 1] and F -invariant measures µ̂0 and µ̂+
1 with µ̂ = (1− β)µ̂0 + βµ̂+

1 ,
such that:

lim sup
k→+∞

h(νk) ≤ βh(µ1) +
λ+(f) + λ+(f−1)

r − 1
.

In particular when f (= fk for all k) is C∞ and h(νk) goes to the topological entropy of f ,
then β is equal to 1 and therefore λ+(νk) goes to λ+(µ):

Corollary (Entropic continuity of Lyapunov exponents [10]). Let f be a C∞ surface diffeo-
morphism with htop(f) > 0.

Then if (νk)k is a sequence of ergodic measures converging to µ with limk h(νk) = htop(f),
then

• h(µ) = htop(f) †,
• limk λ

+(νk) = λ+(µ).

We state an improved version of Buzzi-Crovisier-Sarig Theorem, which allows to prove the
same entropy continuity of Lyapunov exponents for Cr, 1 < r < +∞, surface diffeomorphisms
with large enough entropy (see Corollary 1).

Main Theorem. Let (fk)k∈N be a sequence of Cr, with r > 1, surface diffeomorphisms con-
verging Cr weakly to a diffeomorphism f . Let (Fk)k∈N and F be the lifts of (fk)k∈N and f

∗We refer to [16] for background on Lyapunov exponents and Pesin theory.
†This follows from the upper semi-continuity of the entropy function h on the set of f -invariant probability

measures for a C∞ diffeomorphism f (in any dimension), which was first proved by Newhouse in [15].



Existence of maximal measure for Cr surface diffeos 3

to PTM. Assume there is a sequence (ν̂+
k )k of ergodic Fk-invariant measures converging to µ̂.

Then for any α > λ+(f)
r , there are β = βα ∈ [0, 1] and F -invariant measures µ̂0 = µ̂0,α and

µ̂+
1 = µ̂+

1,α with µ̂ = (1− β)µ̂0 + βµ̂+
1 , such that:

lim sup
k→+∞

h(νk) ≤ βh(µ1) + (1− β)α.

The Main Theorem implies Buzzi-Crovisier-Sarig statement. Indeed, either limk λ
+(νk) =∫

φdµ̂ ≤ λ+(f)
r and we get by Ruelle inequality, lim supk h(νk) ≤ λ+(f)

r or there exists α ∈]
λ+(f)
r ,min

(∫
φdµ̂, λ

+(f)
r−1

)[
. By applying our Main Theorem with respect to α, there is a

decomposition µ̂ = (1−βα)µ̂0,α+βαµ̂
+
1,α satisfying lim supk→+∞ h(νk) ≤ βαh(µ1,α)+(1−βα)α.

But it follows from the proofs that βαµ1,α is a component of βµ1 with β and µ1 being as in
Buzzi-Crovisier-Sarig’s statement (see Remark 6). In particular βαh(µ1,α) ≤ βh(µ1), therefore

lim supk→+∞ h(νk) ≤ βh(µ1) + λ+(f)+λ+(f−1)
r−1 . In Theorem C [10], the authors also proved∫

φdµ̂0 = 0 whenever β 6= 1. Therefore we get here (1− βα)
∫
φdµ̂0,α ≥ (1− β)

∫
φdµ̂0 = 0,

then
∫
φdµ̂0,α ≥ 0. But maybe we could have

∫
φdµ̂0,α > 0.

Corollary 1 (Existence of maximal measures and entropic continuity of Lyapunov expo-

nents). Let f be a Cr, with r > 1, surface diffeomorphism satisfying htop(f) > λ+(f)
r .

Then f admits a measure of maximal entropy. More precisely, if (νk)k is a sequence of
ergodic measures converging to µ with limk h(νk) = htop(f), then

• h(µ) = htop(f),
• limk λ

+(νk) = λ+(µ).

It was proved in [9] that any Cr surface diffeomorphism satisfying htop(f) > λ+(f)
r admits

at most finitely many ergodic measures of maximal entropy. On the other hand, J. Buzzi has

built examples of Cr surface diffeomorphisms for any +∞ > r > 1 with
htop(f)
λ+(f)

arbitrarily

close to 1/r without a measure of maximal entropy [7]. Such results were already known for
interval maps [3, 6, 8].

Proof. We consider the constant sequence of diffeomorphisms equal to f . By taking a subse-
quence, we can assume that (ν̂+

k )k is converging to a lift µ̂ of µ. By using the notations of

the Main Theorem with htop(f) > α > λ+(f)
r , we have

htop(f) = lim
k→+∞

h(νk),

≤ βh(µ1) + (1− β)α,

≤ βhtop(f) + (1− β)α,

(1− β)htop(f) ≤ (1− β)α.

But htop(f) > α, therefore β = 1, i.e. µ̂+
1 = µ̂ and limk λ

+(νk) = λ+(µ). Moreover htop(f) =
limk→+∞ h(νk) ≤ βh(µ1)+(1−β)α = h(µ). Consequently µ is a measure of maximal entropy
of f .

�

Corollary 2 (Continuity of topological entropy and maximal measures). Let (fk)k be a se-
quence of Cr, with r > 1, surface diffeomorphisms converging Cr weakly to a diffeomorphism
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f with htop(f) ≥ λ+(f)
r .

Then

htop(f) = lim
k
htop(fk).

Moreover if htop(f) > λ+(f)
r and νk is a maximal measure of fk for large k, then any limit

measure of (νk)k for the weak-∗ topology is a maximal measure of f .

Proof. By Katok’s horseshoes theorem [14], the topological entropy is lower semi-continuous
for the C1 topology on the set of Cr surface diffeomorphisms. Therefore it is enough to show
the upper semi-continuity.

By the variational principle there is a sequence of probability measures (νk)k∈K , K ⊂ N
with ]K =∞, such that :

• νk is an ergodic fk-invariant measure for each k,
• limk∈K h(νk) = lim supk∈N htop(fk).

By extracting a subsequence we can assume (ν̂+
k )k is converging to a F -invariant measure

µ̂ in the weak-∗ topology. We can then apply the Main Theorem for any α > λ+(f)
r to get for

some f -invariant measures µ1, µ0 and β ∈ [0, 1] (depending on α) with µ = (1− β)µ0 + βµ1:

lim sup
k

htop(fk) = lim
k
h(νk),

≤ βh(µ1) + (1− β)α,(1.1)

≤ βhtop(f) + (1− β)α,

≤ max(htop(f), α).

By letting α go to λ+(f)
r we get

lim sup
k

htop(fk) ≤ htop(f).

If htop(f) > λ+(f)
r , we can fix α ∈

]
λ+(f)
r , htop(f)

[
and the inequalities (1.1) may be then

rewritten as follows :

lim sup
k

htop(fk) ≤ βh(µ1) + (1− β)α,

≤ htop(f).

By the lower semi-continuity of the topological entropy, we have htop(f) ≤ lim supk htop(fk)
and therefore these inequalities are equalities, which implies β = 1, then µ1 = µ, and h(µ) =
htop(f). �

The corresponding result was proved for interval maps in [5] by using a different method.
We also refer to [5] for counterexamples of the upper semi-continuity property for interval

maps f with htop(f) < λ+(f)
r . Finally, in [7], the author built, for any r > 1, a Cr surface

diffeomorphism f with lim sup
g
Cr−→f

htop(g) = λ+(f)
r > htop(f) = 0. We recall also that

upper semi-continuity of the topological entropy in the C∞ topology was established in any
dimension by Y. Yomdin in [18].

Newhouse proved that for a C∞ system (M, f), the entropy function h : M(M, f) → R+

is an upper semi-continuous function on the setM(M, f) of f -invariant probability measure.
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It follows from our Main Thereom, that the entropy function is upper semi-continuous at

ergodic measures with entropy larger than λ+(f)
r for a Cr, r > 1, surface diffeomorphism f .

Corollary 3 (Upper semi-continuity of the entropy function at ergodic measures with large
entropy). Let f : M 	 be a Cr, r > 1, surface diffeomorphism.

Then for any ergodic measure µ with h(µ) ≥ λ+(f)
r , we have

lim sup
ν→µ

h(ν) ≤ h(µ).

Proof. By continuity of the ergodic decomposition at ergodic measures and by harmonicity
of the entropy function, we have for any ergodic measure µ (see e.g. Lemma 8.2.13 in [12]):

lim sup
ν ergodic, ν→µ

h(ν) = lim sup
ν→µ

h(µ).

Let (νk)k∈N be a sequence of ergodic f -invariant measures with limk h(νk) = lim supν→µ h(ν).

By extracting a subsequence we can assume that the sequence (ν̂+
k )k is converging to some

lift µ̂ of µ. Take α with α > λ+(f)
r . Then, in the decomposition µ̂ = (1 − β)µ̂0 + βµ̂+

1 given
by the Main Theorem, we have µ1 = µ0 by ergodicity of µ. Therefore

lim
k
h(νk) ≤ βh(µ) + (1− β)α.

By letting α go to λ+(f)
r we get

lim
k
h(νk) ≤ βh(µ) + (1− β)

λ+(f)

r
,

≤ h(µ).

�

2. Main steps of the proof

We follow the strategy of the proof of [10]. We point out below the main differences:

• Geometric and neutral empirical component. For λ+(νk) >
λ+(f)
r we split the orbit

of a νk-typical point x into two parts. We consider the empirical measures from x at
times lying between to M -close consecutive times where the unstable manifold has a
”bounded geometry”. We take their limit in k, then in M . In this way we get an
invariant component of µ̂. In [10] the authors consider rather such empirical measures
for α-hyperbolic times and then take the limit when α go to zero.
• Entropy computations. To compute the asymptotic entropy of the νk’s, we use the

static entropy w.r.t. partitions and its conditional version. Instead the authors in [10]
used Katok’s like formulas.
• Cr Reparametrizations. Finally we use here reparametrization methods from [4] and

[2] respectively rather than Yomdin’s reparametrizations of the projective action F as
done in [10]. This is the principal difference with [10].
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2.1. Empirical measures. Let (X,T ) be a topological system. For a fixed Borel measurable
subset G of X we let E(x) = EG(x) be the set of times of visits in G from x:

E(x) = {n ∈ Z, Tnx ∈ G} .
When a < b are two consecutive times in E(x), then [a, b[ is called a neutral block (by

following the terminology of [9]). For all M we let then

EM (x) =
⋃

a<b∈E(x), |a−b|≤M

[a, b[.

The complement of EM (x) is made of disjoint neutral blocks of length larger than M . We
consider the associated empirical measures :

∀n, µMx,n =
1

n

∑
k∈EM (x)∩[0,n[

δTkx.

Let ν be an ergodic measure. We denote by χM the indicator function of {x, 0 ∈ EM (x)}.
By the Birkhoff ergodic theorem, there is a set G of full ν-measure such that the empirical
measures

(
µMx,n

)
n

are converging for any x ∈ G and any M ∈ N∗ to ξM := χMν in the weak-∗
topology. We also let ηM = ν − ξM . Moreover we put βM =

∫
χM dν, then ξM = βM · ξM

when βM 6= 0 and ηM = (1 − βM ) · ηM when βM 6= 1 with ξM , ηM being thus probability

measures. Following partially [10], the measures ξM and ηM are respectively called here the
geometric and neutral components of ν. In general these measures are not T -invariant. From
the definition one easily checks that ξM ≥ ξN for M ≥ N .

2.2. Pesin unstable manifolds. We consider a smooth compact riemannian manifold (M, ‖·
‖). Let expx be the exponential map at x and let Rinj be the radius of injectivity of (M, ‖·‖).
We consider the distance d on M induced by the Riemannian structure. Let f : M 	 be a
Cr, r > 1, surface diffeomorphism. We denote by R the set of Lyapunov regular points with
λ+(x) > 0 > λ−(x). For x ∈M we let W u(x) denote the unstable manifold at x :

W u(x) :=

{
y ∈M, lim

n

1

n
log d(fnx, fny) < 0

}
.

By Pesin unstable manifold theorem, the set W u(x) for x ∈ R is a Cr submanifold tangent
to E+(x) at x.

For x ∈ R, we let x̂ be the vector in PTM associated to the unstable Oseledets bundle
E+(x). For δ > 0 the point x is said δ-hyperbolic with respect to φ (resp. ψ) when we have
φl(F

−lx̂) ≥ δl (resp. ψl(F
−lx̂) ≥ δl) for all l > 0. Note that if x is δ-hyperbolic with respect

to ψ then it is δ-hyperbolic with respect to φ.

Let ν be an ergodic measure with λ+(ν) − log+ ‖df‖∞
r > δ > 0 > λ−(ν). By applying the

Ergodic Maximal Inequality (see e.g. Theorem 1.1 in [1]) to the measure preserving system
(F−1, ν̂+) with the observable ψδ = δ − ψ ◦ F−1, we get with Aδ = {x̂ ∈ PTM, ∃k ≥
0 s.t.

∑k
l=0 ψ

δ(F−lx̂) > 0}: ∫
Aδ

ψδ dν̂+ ≥ 0.

But the set Hδ :=
{
x̂ ∈ PTM, ∀l > 0 ψl(F

−lx̂) ≥ δl
}

of δ-hyperbolic points w.r.t. ψ is just

the complement set PTM\Aδ of Aδ. Therefore
∫
Hδ

(δ−ψ ◦F−1) dν̂+ ≤
∫

(δ−ψ ◦F−1) dν̂+ =

δ − λ+(ν) + 1
r

∫ log+ ‖df‖
r dν < 0. In particular we have ν̂+(Hδ) > 0.
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A point x ∈ R is said to have κ-bounded geometry for κ > 0 when exp−1
x W u(x) contains

the graph of an κ-admissible map at x, which is defined as a 1-Lipschitz map f : I →
E+(x)⊥ ⊂ TxM, with I being an interval of E+(x) containing 0 with length κ. We let Gκ be
the subset of points in R with κ-bounded geometry.

Lemma 1. The set Gκ is Borel measurable.

Proof. For x ∈ R we have W u(x) =
⋃
n∈N f

nW u
loc(f

−nx) with W u
loc being the Pesin unstable

local manifold at x. The sequence (f−nW u
loc(f

nx))n is increasing in n for the inclusion.

Therefore, if we let Gnκ be the subset of points x in Gκ, such that exp−1
x fnW u

loc(f
−nx) contains

the graph of a κ-admissible map, then we have

Gκ =
⋃
n

Gnκ.

There are closed subsets, (Rl)l∈N, called the Pesin blocks, such that R =
⋃
lRl and x 7→

W u
loc(x) is continuous on Rl for each l (see e.g. [16]). Let (xp)p be sequence in Gnκ ∩Rl which

converges to x ∈ Rl. By extracting a subsequence we can assume that the associated sequence
of κ-admissible maps fp at xp is converging pointwisely to a κ-admissible map at x, when p
goes to infinity. In particular Gnκ ∩ Rl is a closed set and therefore Gκ =

⋃
l,n (Gnκ ∩Rl) is

Borel measurable.
�

2.3. Entropy of conditional measures. We consider an ergodic hyperbolic measure ν, i.e
an ergodic measure with ν(R) = 1. A measurable partition ς is subordinated to the Pesin
unstable local lamination W u

loc of ν if the atom ς(x) of ς containing x is a neighborhood of
x inside the curve W u

loc(x) and f−1ς � ς. By Rokhlin’s disintegration theorem, there are a
measurable set Z of full ν-measure and probability measures νx on ς(x) for x ∈ Z, called the
conditional measures on unstable manifolds, satisfying ν =

∫
νx dν(x). Moreover νy = νx

for x, y ∈ Z in the same atom of ς. Ledrappier and Young [13] proved the existence of such
subordinated measurable partitions and showed that for ν-a.e. x, we have with Bn(x, ρ) being
the Bowen ball Bn(x, ρ) :=

⋂
0≤k<n f

−kB(fkx, ρ) (where B(fkx, ρ) denotes the ball for d at

fkx with radius ρ):

(2.1) lim
ρ→0

lim inf
n
− 1

n
log νx (Bn(x, ρ)) = h(ν).

Fix an error term ι > 0 depending‡ on ν. There is ρ > 0 and a measurable set F ⊂ Z ∩ R
with ν(F) > 0 such that

∀x ∈ F, lim inf
n
− 1

n
log νx (Bn(x, ρ)) ≥ h(ν)− ι.

We fix x∗ ∈ F with νx∗(F) > 0 and we let ζ = νx∗ (·)
νx∗ (F) be the probability measure induced

by νx∗ on F. Observe that νx = νx∗ for ζ a.e. x. We let D be the Cr curve given by the
Pesin local unstable manifold W u

loc(x∗) at x∗. For a finite measurable partition P and a Borel
probability measure µ we let Hµ(P ) be the static entropy, Hµ(P ) = −

∑
A∈P µ(A) logµ(A).

Moreover we let Pn =
∨n−1
k=0 f

−kP be the n-iterated partition, n ∈ N. We also denote by Pnx
the atom of Pn containing the point x ∈M.

‡In the proof of the Main Theorem we will take ι = ι(νk)
k−→ 0 for the converging sequence of ergodic

measures (νk)k.



8 David Burguet

Lemma 2. For any (finite measurable) partition P with diameter less than ρ, we have

lim inf
n

1

n
Hζ(P

n) ≥ h(ν)− ι.

Proof.

lim inf
n

1

n
Hζ(P

n) = lim inf
n

∫
− 1

n
log ζ(Pnx ) dζ(x), by the definition of Hζ ,

≥
∫

lim inf
n
− 1

n
log ζ(Pnx ) dζ(x), by Fatou’s Lemma,

≥
∫

lim inf
n
− 1

n
log νx∗(P

n
x ) dζ(x), by the definition of ζ,

≥
∫

lim inf
n
− 1

n
log νx(Pnx ) dζ(x), as νx = νx∗ for ζ a.e. x,

≥
∫

lim inf
n
− 1

n
log νx(Bn(x, ρ)) dζ(x), as diam(P ) < ρ,

≥ h(ν)− ι, by the choice of F.

�

2.4. Entropy splitting of the neutral and the geometric component. The natural
projection from PTM to M is denoted by π. We consider a distance d̂ on the projective
tangent bundle PTM, such that d̂(x̂, ŷ) ≥ d(πx̂, πŷ) for all x̂, ŷ ∈ PTM. In this section we

split the entropy contribution of the neutral and geometric components η̂M and ξ̂M of the
ergodic F -invariant measure ν̂+ associated to G = Hδ∩π−1Gκ ⊂ PTM, where the parameters
δ and κ will be fixed later on. We also consider their projections ηM and ξM on M. Let F

and P as in the previous subsection. Without loss of generality we can assume

• {x̂, x ∈ F} ⊂ G with G being the set of full ν̂+-measure of points x̂ such that the

empirical measures µMx̂,n are converging to ξ̂M for any M (see Subsection 2.1),
• the boundary of P has zero ν-measure,
• for any M ∈ N and for any continuous function ϕ : PTM→ R,

(2.2)
1

n

∑
k∈EM (x)∩[1,n[

ϕ(F kx̂)
n−→
∫
ϕdξ̂M uniformly in x ∈ F.

• for any continuous function ϑ : M→ R,

(2.3)
1

n

∑
k∈[1,n[

ϑ(fkx)
n−→
∫
ϑ dν uniformly in x ∈ F.

Let us detail the proof of the third item. If F = (ϕk)k∈N is a dense countable family in the
set C0(PTM,R) of real continuous functions on PTM endowed with the supremum norm ‖·‖∞,
then for all k,M , by Egorov’s theorem applied to the pointwise converging sequence (fn :

F → R)n =
(
x 7→

∫
ϕk dµ

M
x̂,n

)
n
, there is a subset FMk of F with ν(FMk ) > ν(F)

(
1− 1

2k+M+3

)
such that

∫
ϕk dµ

M
x̂,n converges to

∫
ϕk dξ

M uniformly in x ∈ FMk . Let F′ =
⋂
k,M FMk . We

have ν(F′) ≥ ν(F)
2 . Then, if ϕ ∈ C0(PTM,R), we may find for any ε > 0 a function ϕk ∈ F
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with ‖ϕ− ϕk‖∞ < ε. Let M ∈ N. Take N = Nk,M
ε such that |

∫
ϕk dµ

M
x̂,n −

∫
ϕk dξ

M | < ε for

n > N and for all x ∈ FMk . In particular for all x ∈ F′ we have for n > N∣∣∣∣∫ ϕdµMx̂,n −
∫
ϕdξM

∣∣∣∣ ≤ ∣∣∣∣∫ ϕk dµ
M
x̂,n −

∫
ϕdµMx̂,n

∣∣∣∣+

∣∣∣∣∫ ϕk dµ
M
x̂,n −

∫
ϕk dξ

M

∣∣∣∣
+

∣∣∣∣∫ ϕk dξ
M −

∫
ϕdξM

∣∣∣∣ ,
≤2‖ϕ− ϕk‖∞ +

∣∣∣∣∫ ϕk dµ
M
x̂,n −

∫
ϕk dξ

M

∣∣∣∣ ,
<3ε.

This proves (2.2) by taking F′ in the place of F. One proves similarly (2.3).

Fix now M . For each n ∈ N and x ∈ F we let En(x) = E(x̂) ∩ [0, n[ and EMn (x) =
EM (x̂)∩ [0, n[. We also let EMn be the partition of F with atoms AE := {x ∈ D, EMn (x) = E}
for E ⊂ [0, n[. Given a partition Q of PTM, we also let QEMn be the partition of F̂ :=
{x̂, x ∈ F ∩D} finer than π−1EMn with atoms

{
x̂ ∈ F̂, EMn (x) = E and ∀k ∈ E, F kx̂ ∈ Qk

}
for E ⊂ [0, n[ and (Qk)k∈E ∈ QE . We let ∂Q be the boundary of the partition Q, which is the
union of the boundaries of its atoms. For a measure η and a subset A of M with η(A) > 0 we

denote by ηA = η(A∩·)
η(A) the induced probability measure on A. Moreover, for two sets A,B we

let A∆B denote the symmetric difference of A and B, i.e. A∆B = (A \B)∪ (B \A). Finally,

let H :]0, 1[→ R+ be the map t 7→ −t log t− (1− t) log (1− t). Recall that ζ̂+ is the lift of ζ
on PTM to the unstable Oseledets bundle (with ζ as in Subsection 2.3).

Lemma 3. For any finite partition Q and any m ∈ N∗ with ξ̂M (∂Qm) = 0 we have

(2.4) h(ν) ≤ βM
1

m
H
ξ̂
M (Qm) + lim sup

n

1

n
Hζ̂+(π−1Pn|QEMn ) +H(2/M) +

12 log ]Q

M
+ ι.

Before the proof of Lemma 3, we first recall a technical lemma from [2].

Lemma 4 (Lemma 6 in [2]). Let (X,T ) be a topological system. Let µ be a Borel probability
measure on X and let E be a finite subset of N. For any finite partition Q of X, we have
with µE := 1

]E

∑
k∈E T

k
∗ µ and QE :=

∨
k∈E T

−kQ:

1

]E
Hµ(QE) ≤ 1

m
HµE (Qm) + 6m

](E + 1)∆E

]E
log ]Q.

Proof of Lemma 3. As the complement of EMn (x) is the disjoint union of neutral blocks with

length larger than M , there are at most AMn =
∑[2n/M ]+1

k=0

(
n
k

)
possible values for EMn (x) so

that

1

n
Hζ(P

n) =
1

n
Hζ(P

n|EMn ) +Hζ(E
M
n ),

≤ 1

n
Hζ(P

n|EMn ) + logAMn ,

lim inf
n

1

n
Hζ(P

n) ≤ lim sup
n

1

n
Hζ(P

n|EMn ) +H(2/M) by using Stirling’s formula.
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Moreover

1

n
Hζ(P

n|EMn ) =
1

n
Hζ̂+(π−1Pn|π−1EMn ),

≤ 1

n
Hζ̂+(QEMn |π−1EMn ) +

1

n
Hζ̂+(π−1Pn|QEMn ).

For E ⊂ [0, n[ we let ζ̂+
E,n = n

]E

∫
µMx̂,n dζAE (x), which may be also written as

(
ζ̂+
π−1AE

)E
by using the notations of Lemma 4. By Lemma 4 applied to the system (PTM, F ) and the

measures µ := ζ̂+
π−1AE

for AE ∈ EMn we have for all n > m ∈ N∗:

Hζ̂+

(
QEMn |π−1EMn

)
=
∑
E

ζ(AE)Hζ̂+
π−1AE

(QE),

≤
∑
E

ζ(AE)]E

(
1

m
Hζ̂+E,n

(Qm) + 6m
](E + 1)∆E

]E
log ]Q

)
.

Recall again that if E = EMn (x) for some x then the complement set of E in [1, n[ is made
of neutral blocks of length larger than M , therefore ](E + 1)∆E ≤ 2M

n . Moreover it follows

from ξM (∂Qm) = 0 and (2.2), that µMx̂,n(Am) for Am ∈ Qm and ]EMn (x)/n are converging to

ξ̂
M

(Am) and βM respectively uniformly in x ∈ F when n goes to infinity. Then we get by
taking the limit in n:

lim sup
n

1

n
Hζ̂+

(
QEMn |π−1EMn

)
≤βM

1

m
H
ξ̂
M (Qm) +

12m log ]Q

M
,

h(ν)− ι ≤ lim inf
n

1

n
Hζ(P

n) ≤βM
1

m
H
ξ̂
M (Qm) + lim sup

n

1

n
Hζ̂+(π−1Pn|QEMn )

+H(2/M) +
12m log ]Q

M
.

�

2.5. Bounding the entropy of the neutral component. For a C1 diffeomorphism f on

M we put C(f) := 2AfH(A−1
f )+ log+ ‖df‖∞

r +Br with Af = log+ ‖df‖∞+log+ ‖df−1‖∞+1 and

a universal constant Br depending only r precised later on. Clearly f 7→ C(f) is continuous

in the C1 topology and λ+(f)
r = limN3p→+∞

C(fp)
p whenever λ+(f) > 0 (indeed Afp

p−→ +∞,

therefore H(A−1
fp )

p−→ 0). In particular, if λ
+(f)
r < α and fk

k−→ f in the C1 topology, then there

is p with limk
C(fpk )

p < α.

In this section we consider the empirical measures associated to an ergodic hyperbolic

measure ν with λ+(ν) > log ‖df‖∞
r + δ, δ > 0. Without loss of generality we can assume

δ < r−1
r log 2. Then as observed in Subsection 2.2 we have ν̂+(Hδ) > 0. For x ∈ R we let

mn(x) = max{k < n, F kx̂ ∈ Hδ}. By a standard application of the ergodic theorem we have

mn(x)

n

n−→ 1 for ν a.e. x.

By taking a smaller subset F, we can assume the above convergence of mn is uniform on F

and that supx∈F min{k ≤ n, F kx̂ ∈ Hδ} ≤ N for some positive integer N .
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We bound the term lim supn
1
nHζ̂+(π−1Pn|QEMn ) in the right member of (2.4) Lemma 3,

which corresponds to the local entropy contribution plus the entropy in the neutral part.

Lemma 5. There is κ > 0 such that the empirical measures associated to G := π−1Gκ ∩Hδ

satisfy the following properties. For all q,M ∈ N∗, there are εq > 0 (depending only on

‖dk(f q)‖∞, 2 ≤ q ≤ r §) and γq,M (f) > 0 with

(2.5) ∀K > 0 lim sup
q

lim sup
M

(
sup
f

{
γq,M (f) | ‖df‖∞ ∨ ‖df−1‖∞ < K

})
= 0

such that for any partition Q of PTM with diameter less than εq, we have:

lim sup
n

1

n
Hζ̂+(π−1Pn|QEMn ) ≤(1− βM )C(f)

+

(
log 2 +

1

r − 1

)(∫
log+ ‖df q‖

q
dξM −

∫
φdξ̂M

)
+ γq,M (f).

The proof of Lemma 5 appears after the statement of Proposition 4, which is a semi-local
Reparametrization Lemma.

Proposition 4. There is κ > 0 such that the empirical measures associated to G := π−1Gκ∩
Hδ satisfy the following properties. For all q ∈ N∗ there are εq > 0 (depending only on

‖dk(f q)‖∞, 2 ≤ q ≤ r ) and γq,M (f) > 0 with

∀K > 0 lim sup
q

lim sup
M

(
sup
f

{
γq,M (f) | ‖df‖∞ ∨ ‖df−1‖∞ < K

})
= 0

such that for any partition Q with diameter less than ε < εq, the following property holds for
n large enough.

Any atom Fn of the partition QEMn may be covered by a family ΨFn of Cr curves ψ : [−1, 1]→
M satisfying ‖d(fk ◦ ψ)‖∞ ≤ 1 for any k = 0, · · · , n− 1, such that

1

n
log ]ΨFn ≤

(
1− ]EMn

n

)
C(f)

+

(
log 2 +

1

r − 1

)(∫
log+ ‖dxf q‖ε

q
dζMFn(x)−

∫
φdζ̂MFn

)
+ γq,M (f) + τn,

where limn τn = 0, EMn = EMn (x) for x ∈ Fn, ζ̂MFn =
∫
µMx̂,n dζFn(x) and ζMFn = π∗ζ̂

M
Fn

its
push-forward on M.

The proof of Proposition 4 is given in the last section. Proposition 4 is very similar to the

Reparametrization Lemma in [4]. Here we reparametrize an atom Fn of QEMn instead of Qn

in [4].

§Here

‖dk(fq)‖∞ = sup
α∈N2, |α|=k

sup
x,y

∥∥∥∂αy (
exp−1

f(x) ◦f ◦ expx

)
(·)

∥∥∥
∞
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Proof of Lemma 5 assuming Proposition 4. We take κ > 0 and εq > 0 as in Proposition 4.
Observe that

Hζ̂+(π−1Pn|QEMn ) ≤
∑

Fn∈QEMn

ζ̂+(Fn) log ]{An ∈ Pn, π−1(An) ∩ F̂ ∩ Fn 6= ∅}.

As ν(∂P ) = 0, for all γ > 0, there is χ > 0 and a continuous function ϑ : M→ R+ equal to
1 on the χ-neighborhood ∂Pχ of ∂P satisfying

∫
ϑ dν < γ. Then we have uniformly in x ∈ F

by (2.3):

(2.6) lim sup
n

1

n
]{0 ≤ k < n, fkx ∈ ∂Pχ} ≤ lim

n

1

n

n−1∑
k=0

ϑ(fkx) =

∫
ϑ dν < γ.

Assume that for arbitrarily large n there is Fn ∈ QEMn and ψ ∈ ΨFn with ]{An ∈ Pn, An ∩
ψ([−1, 1])∩F 6= ∅} > ([χ−1]+1)]P γn. We reparametrize ψ on F by [χ−1]+1 affine contractions
θ so that the length of fk ◦ ψ ◦ θ is less than χ for all 0 ≤ k < n and (ψ ◦ θ)([−1, 1]) ∩ F 6= ∅.
Then we have ]{0 ≤ k < n, ∂P ∩ fk ◦ ψ ◦ θ([−1, 1]) 6= ∅} > γn for some θ. In particular
we get ]{0 ≤ k < n, fkx ∈ ∂Pχ} > γn for any x ∈ ψ ◦ θ([−1, 1]), which contradicts (2.6).
Therefore we have

lim sup
n

sup
Fn, ψ∈ΨFn

1

n
log {An ∈ Pn, An ∩ ψ([−1, 1]) ∩ F 6= ∅} = 0.

Together with Proposition 4 we get

lim sup
n

1

n
Hζ̂+(π−1Pn|QEMn ) ≤ lim sup

n

∑
Fn∈QEMn

ζ̂+(Fn)
1

n
log ]ΨFn ,

≤ lim sup
n

∑
Fn∈QEMn

ζ̂+(Fn)

(
1− ]EMn

n

)
C(f)+

+ lim sup
n

∑
Fn∈QEMn

ζ̂+(Fn)

(
log 2 +

1

r − 1

)(∫
log+ ‖df q‖

q
dζMFn −

∫
φdζ̂MFn

)
+ γq,M (f),

≤ (1− βM )C(f) +

(
log 2 +

1

r − 1

)(∫
log+ ‖df q‖

q
dξM −

∫
φdξ̂M

)
+ γq,M (f).

This concludes the proof of Lemma 5.
�

2.6. Proof of the Main Theorem. We first reduce the Main Theorem to the following
statement.

Proposition 5. Let (fk)k∈N be a sequence of Cr, with r > 1, surface diffeomorphisms converg-
ing Cr weakly to a diffeomorphism f . Assume there is a sequence (ν̂+

k )k of ergodic Fk-invariant

measures converging to µ̂ with limk λ
+(νk) >

log+ ‖df‖∞
r .

Then, there are F -invariant measures µ̂0 and µ̂+
1 with µ̂ = (1 − β)µ̂0 + βµ̂+

1 , β ∈ [0, 1],
such that:

lim sup
k→+∞

h(νk) ≤ βh(µ1) + (1− β)C(f).
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Proof of the Main Theorem assuming Proposition 5. Let (ν̂+
k )k be a sequence of ergodic Fk-

invariant measures converging to µ̂.

As previously mentionned, for any α > λ+(f)/r there is p ∈ N∗ with α > C(fp)
p . We can

also assume log ‖dfp‖∞
pr < α. Let ν̂+,p

k be an ergodic component of ν̂+
k for F pk and let us denote

by νpk its push forward on M. We have hfpk
(νpk) = phfk(νk) for all k. By taking a subsequence

we can assume that (ν̂+,p
k )k is converging. Its limit µ̂p satisfies 1

p

∑
0≤l<p F

k
∗ µ̂

p = µ̂. If

limk λ
+(νpk) < log+ ‖dfp‖∞

r < pα, then by Ruelle’s inequality we get

lim sup
k→+∞

hfk(νk) = lim sup
k→+∞

1

p
hfpk

(νpk),

≤ lim
k→+∞

1

p
λ+(νpk),

≤ α.

This proves the Main Theorem with β = 1.

We consider then the case limk λ
+(νpk) > log+ ‖dfp‖∞

r . By applying Proposition 4 to the

p-power systems, we get F p-invariant measure µ̂p0 and µ̂+,p
1 with µ̂p = (1 − β)µ̂p0 + βµ̂+,p

1 ,

β ∈ [0, 1], such that we have with µp1 = π∗µ̂
+,p
1 :

lim sup
k→+∞

hfpk
(νpk) ≤ βhfp(µp1) + (1− β)C(fp).

But hfp(µ
p
1) = phf (µ1) with µ1 = 1

p

∑
0≤l<p f

kµp1. One easily checks that µ̂+
1 = 1

p

∑
0≤l<p F

kµ̂+,p
1 .

Moreover we have :

lim sup
k→+∞

hfk(νk) = lim sup
k→+∞

1

p
hfpk

(νpk),

≤ β 1

p
hfp(µ

p
1) + (1− β)

C(fp)

p
,

≤ βhf (µ1) + (1− β)α.

�

We show now Proposition 5 by using Lemma 5. Without loss of generality we can assume
lim infk h(νk) > 0. For µ a.e. x, we have λ−(x) ≤ 0. If not, some ergodic component µ̃ of µ
would have two positive Lyapunov exponents and therefore should be the periodic measure
at a source S (see e.g. Proposition 4.4 in [17]). But then for large k the probability νk would
give positive measure to the basin of attraction of the sink S for f−1 and therefore νk would
be equal to µ̃ contradicting lim infk h(νk) > 0.

Let δ > 0 with limk λ
+(νk) >

log ‖df‖∞
r + δ. Then take κ as in Lemma 5. We consider

the empirical measures associated to G = π−1Gκ ∩Hδ. By a diagonal argument, there is a
subsequence in k such that the geometric component ξ̂Mk of ν̂+

k is converging to some ξ̂M∞ for

all M ∈ N. Let us also denote by β∞M the limit in k of βkM . Then consider a subsequence in

M such that ξ̂M∞ is converging to βµ̂1 with β = limM β∞M . We also let (1 − β)µ̂0 = µ̂ − βµ̂1.
In this way, µ̂0 and µ̂1 are both probability measures.

Lemma 6. The measures µ̂0 and µ̂1 satisfy the following properties:

• µ̂1 and µ̂0 are F -invariant,
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• λ+(x) ≥ δ for µ1-a.e. x and µ̂1 = µ̂+
1 .

Proof. The neutral blocks in the complement set of EM (x) have length larger than M . There-
fore for any continuous function ϕ : PTM→ R and for any k, we have∣∣∣∣∫ ϕdξ̂Mk −

∫
ϕ ◦ F dξ̂Mk

∣∣∣∣ ≤ 2 supx̂ |ϕ(x̂)|
M

.

Letting k, then M go to infinity, we get
∫
ϕdµ̂1 =

∫
ϕ ◦ F dµ̂1, i.e. µ̂1 is F -invariant.

We let KM be the compact subset of PTM given by KM = {x̂ ∈ PTM, ∃1 ≤ m ≤
M φm(x̂) ≥ mδ}. Let x̂ ∈ Gk, where Gk is the set where the empirical measures are converging

to ξ̂Mk (see Subsection 2.1). Observe that

(2.7) lim
n
µMx̂,n(KM ) = ξ̂Mk (KM ) = ξ̂Mk (PTM).

Indeed for any k ∈ EM (x̂) there is 1 ≤ m ≤ M with Fm(F kx̂) ∈ G ⊂ Hδ. Moreover,
as already mentioned, δ-hyperbolic points w.r.t. ψ are δ-hyperbolic w.r.t. φ. Therefore
φm(F kx̂) ≥ mδ. Consequently we have limn µ

M
x̂,n(KM ) = limn µ

M
x̂,n(PTM) = ξMk (PTM). The

set KM being compact in PTM, we get ξMk (KM ) ≥ limn µ
M
x̂,n(KM ) and (2.7) follows.

Also we have ξ̂M∞ (KM ) ≥ lim supk ξ̂
M
k (KM ) = lim supk ξ̂

M
k (PTM) = β∞M . Therefore

we have µ̂1(
⋃
M KM ) = 1 as ξ̂M∞ goes increasingly in M to βµ̂1. The F -invariant set⋂

k∈Z F
−k (

⋃
M KM ) has also full µ̂1-measure and for all x̂ = (x, v) in this set we have

lim supn
1
n log ‖dxfn(v)‖ ≥ δ. Consequently the measure µ̂1 is supported on the unstable

bundle E+(x) and λ+(x) ≥ δ for µ1-a.e. x. �

Remark 6. In Theorem C of [10], the measure βµ̂+
1 is obtained as the limit when δ goes to

zero of the component associated to the set Gδ := {x, ∀l > 0 φl(x̂) ≥ δl} ⊃ π−1Gκ ∩Hδ.

We pursue now the proof of Proposition 5. Let q,M ∈ N∗. Fix a sequence (ιk)k of positive

numbers with ιk
k−→ 0. We consider a partition Q satisfying diam(Q) < εq with εq as in Lemma

5. The sequence (fk)k being Cr bounded, one can choose εq independently of fk, k ∈ N.
By a standard argument of countability we may assume that for all m ∈ N∗ the boundary of

Qm has zero-measure for µ̂1 and all the measures ξ̂Mk , M ∈ N∗ and k ∈ N∪ {∞}. Combining

Lemma 5 and Lemma 3 we get with γq,Q,M (f) = γq,M (f) +H
(

2
M

)
+ 12 log ]Q

M :

h(νk) ≤βkM
1

m
H
ξ̂k
M (Qm) + (1− βkM )C(fk)

+

(
log 2 +

1

r − 1

)(∫
log+ ‖df qk‖

q
dξMk −

∫
φdξ̂k

M
)

+ γq,Q,M (fk) + ιk.

By letting k, then M go to infinity, we obtain for all m:

lim sup
k

h(νk) ≤β
1

m
Hµ̂+1

(Qm) + (1− β)C(f)

+

(
log 2 +

1

r − 1

)(∫
log+ ‖df q‖

q
dµ1 −

∫
φdµ̂+

1

)
+ lim sup

M
sup
k
γq,Q,M (fk).
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By letting m go to infinity, we get:

lim sup
k

h(νk) ≤βh(µ̂+
1 ) + (1− β)C(f)

+

(
log 2 +

1

r − 1

)(∫
log+ ‖df q‖

q
dµ1 −

∫
φdµ̂+

1

)
+ lim sup

M
sup
k
γq,M (fk).

But h(µ̂+
1 ) = h(µ1) (see e.g. Corollary 4.2 in [10] ) and

∫
φdµ̂+

1 = λ+(µ1) = limq

∫ log+ ‖dfq‖
q dµ1.

Therefore by letting q go to infinity we finally obtain with the asymptotic property (2.5) of
γq,M :

lim sup
k

h(νk) ≤ βh(µ1) + (1− β)C(f).

3. Semi-local Reparametrization Lemma

In this section we prove the semi-local Reparametrization Lemma stated in Proposition 4.

3.1. Strongly bounded curves. To simplify the exposition (by avoiding irrelevant techni-
cal details involving the exponential map) we assume that M is the two-torus T2 with the
usual Riemannian structure inherited from R2. Borrowing from [2] we first make the following
definitions.

A Cr embedded curve σ : [−1, 1]→M is said bounded when maxk=2,··· ,r ‖dkσ‖∞ ≤ ‖dσ‖∞6 .

Lemma 7. Assume σ is a bounded curve. Then for any x ∈ σ([−1, 1]), the curve σ contains

the graph of a κ-admissible map at x with κ = ‖dσ‖∞
6 .

Proof. Let x = σ(s), s ∈ [−1, 1]. One checks easily (see Lemma 7 in [4] for further details)

that for all t ∈ [−1, 1] the angle ∠σ′(s), σ′(t) < π
6 ≤ 1 and therefore

∫ 1
0 σ
′(t)· σ

′(s)
‖σ′(s)‖ dt ≥

‖dσ‖∞
6 .

Therefore, as σ′(s) ∈ E+(x), the image of σ contains the graph of an ‖dσ‖∞6 -admissible map
at x. �

A Cr bounded curve σ : [−1, 1]→M is said strongly ε-bounded for ε > 0 if ‖dσ‖∞ ≤ ε. For
n ∈ N∗ and ε > 0 a curve is said strongly (n, ε)-bounded when fk ◦ σ is strongly ε-bounded
for all k = 0, · · · , n− 1.

We consider a Cr smooth diffeomorphism g : M 	 with N 3 r ≥ 2. For x̂ = (x, v) ∈ PTM
with π(x̂) = x, we let kg(x) ≥ k′g(x̂) be the following integers:

kg(x) := [log ‖dxg‖] ,

k′g(x̂) := [log ‖dxg(v)‖] = [φg(x̂)].

In the next lemma, we reparametrize the image by g of a bounded curve. The proof of this
lemma is mostly contained in the proof of the Reparametrization Lemma [2], but we reproduce
it for the sake of completeness.
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Lemma 8. Let
Rinj

2 > ε = εg > 0 satisfying ‖dsgx2ε‖∞ ≤ 3ε‖dxg‖ for all s = 1, · · · , r and
all x ∈ M, where gx2ε = g ◦ expx(2ε·) = g(x + 2ε·) : {wx ∈ TxM, ‖wx‖ ≤ 1} → M. We
assume σ : [−1, 1] → M is a strongly ε-bounded Cr curve and we let σ̂ : [−1, 1] → PTM be
the associated induced map.

Then for some universal constant Cr > 0 depending only on r and for any pair of integers
(k, k′) there is a family Θ of affine maps from [−1, 1] to itself satisfying:

• σ̂−1
({
x̂ ∈ PTM, kg(x) = k and k′g(x̂) = k′

})
⊂
⋃
θ∈Θ θ([−1, 1]),

• ∀θ ∈ Θ, the curve g ◦ σ ◦ θ is bounded,

• ∀θ ∈ Θ, |θ′| ≤ e
k′−k−1
r−1 /4,

• ]Θ ≤ Cre
k−k′
r−1 .

Proof. First step : Taylor polynomial approximation. One computes for an affine map

θ : [−1, 1] 	 with contraction rate b precised later and with y = σ(t), kg(y) = k, k′g(y) = k′,
t ∈ θ([−1, 1]):

‖dr(g ◦ σ ◦ θ)‖∞ ≤ br ‖dr (gy2ε ◦ σ
y
2ε)‖∞ ,with σy2ε := (2ε)−1 exp−1

y ◦σ = 2ε−1 (σ(·)− y),

≤ br
∥∥∥dr−1

(
dσy2εg

y
2ε ◦ dσ

y
2ε

)∥∥∥
∞
,

≤ br2r max
s=0,··· ,r−1

∥∥∥ds (dσy2εgy2ε)∥∥∥∞ max
k=1,··· ,r

‖dkσy2ε‖∞.

By assumption on ε, we have ‖dsgy2ε‖∞ ≤ 3ε‖dyg‖ for any r ≥ s ≥ 1. Moreover maxk=1,··· ,r ‖dkσy2ε‖∞ ≤
1 as σ is strongly ε-bounded. Therefore by Faá di Bruno’s formula, we get for some¶ constants
Cr > 0 depending only on r:

max
s=0,··· ,r−1

‖ds
(
dσy2εg

y
2ε

)
‖∞ ≤ εCr‖dyg‖,

then ,

‖dr(g ◦ σ ◦ θ)‖∞ ≤ εCrbr‖dyg‖ max
k=1,··· ,r

‖dkσy2ε‖∞,

≤ Crbr‖dyg‖‖dσ‖∞,
≤ (Crb

r−1‖dyg‖)‖d(σ ◦ θ)‖∞,

≤ (Crb
r−1ek)‖d(σ ◦ θ)‖∞, because k(y) = k ,

≤ ek′−4‖d(σ ◦ θ)‖∞, by taking b =
(
Cre

k−k′+4
)− 1

r−1
.

Therefore the Taylor polynomial P at 0 of degree r − 1 of d(g ◦ σ ◦ θ) satisfies on [−1, 1]:

‖P − d(g ◦ σ ◦ θ)‖∞ ≤ ek
′−4‖d(σ ◦ θ)‖∞.

We may cover [−1, 1] by at most b−1 + 1 such affine maps θ.

Second step : Bezout theorem. Let a = ek
′‖d(σ ◦ θ)‖∞. Note that for s ∈ [−1, 1] with

k(σ ◦ θ(s)) = k and k′(σ ◦ θ(s)) = k′ we have ‖d(g ◦ σ ◦ θ)(s)‖ ∈ [ae−2, ae2], therefore
‖P (s)‖ ∈ [ae−3, ae3]. Moreover if we have now ‖P (s)‖ ∈ [ae−3, ae3] for some s ∈ [−1, 1] we
get also ‖d(g ◦ σ ◦ θ)(s)‖ ∈ [ae−4, ae4].

¶Although these constants may differ at each step, they are all denoted by Cr.
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By Bezout theorem the semi-algebraic set {s ∈ [−1, 1], ‖P (s)‖ ∈ [e−3a, e3a]} is the disjoint
union of closed intervals (Ji)i∈I with ]I depending only on r. Let θi be the composition of θ
with an affine reparametrization from [−1, 1] onto Ji.

Third step : Landau-Kolmogorov inequality. By the Landau-Kolmogorov inequality
on the interval (see Lemma 6 in [2]), we have for some constants Cr ∈ N∗ and for all 1 ≤ s ≤ r:

‖ds(g ◦ σ ◦ θi)‖∞ ≤ Cr (‖dr(g ◦ σ ◦ θi)‖∞ + ‖d(g ◦ σ ◦ θi)‖∞) ,

≤ Cr
|Ji|
2

(
‖dr(g ◦ σ ◦ θ)‖∞ + sup

t∈Ji
‖d(g ◦ σ ◦ θ)(t)‖

)
,

≤ Cra
|Ji|
2
.

We cut again each Ji into 1000Cr intervals J̃i of the same length with

θ(J̃i) ∩ σ−1
{
x, kg(x) = k and k′g(x) = k′

}
6= ∅.

Let θ̃i be the affine reparametrization from [−1, 1] onto θ(J̃i). We check that g ◦ σ ◦ θ̃i is
bounded:

∀s = 2, · · · , r, ‖ds(g ◦ σ ◦ θ̃i)‖∞ ≤ (1000Cr)
−2‖ds(g ◦ σ ◦ θi)‖∞,

≤ 1

6
(1000Cr)

−1 |Ji|
2
ane
−4,

≤ 1

6
(1000Cr)

−1 |Ji|
2

min
s∈Ji
‖d(g ◦ σ ◦ θ)(s)‖,

≤ 1

6
(1000Cr)

−1 |Ji|
2

min
s∈J̃i
‖d(g ◦ σ ◦ θ)(s)‖,

≤ 1

6
‖d(g ◦ σ ◦ θ̃i)‖∞.

This conclude the proof with Θ being the family of all θ̃i’s. �

We recall now a useful property of bounded curve (see Lemma 7 in [4] for a proof).

Lemma 9. Let σ : [−1, 1]→M be a Cr bounded curve and let B be a ball of radius less than
ε. Then there exists an affine map θ : [−1, 1] 	 such that :

• σ ◦ θ is strongly 3ε-bounded,
• θ([−1, 1]) ⊃ σ−1B.

3.2. Choice of the parameters κ and εq. For a diffeomorphism f : M 	 the scale εf in

Lemma 8 may be chosen such that εfk ≤ εf l ≤ max(1, ‖df‖∞)−k for any q ≥ k ≥ l ≥ 1. We

take κ =
εf
36 and we choose εq <

εfq

3 such that for any x̂, ŷ ∈ PTM which are εq-close and for
any 0 ≤ l ≤ q: ∣∣kf l(x)− kf l(y)

∣∣ ≤ 1,(3.1) ∣∣∣k′f l(x̂)− k′f l(ŷ)
∣∣∣ ≤ 1.

Without loss of generality we can assume the local unstable curve D (defined in Subsection
2.3) is reparametrized by a Cr strongly εq-bounded map σ : [−1, 1]→ D.
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Let Fn be an atom of the partition QEMn and let EMn = EMn (x) for any x̂ ∈ Fn. Recall that
the diameter of Q is less than εq. It follows from (3.1) that for any x̂ ∈ Fn we have with

ζ̂MFn =
∫
µMx̂,n dζFn(x):∑
l∈EMn

∣∣∣kfq(f lx)− k′fq(F lx̂)
∣∣∣ ≤ 10]EMn +

∫
log+ ‖dyf q‖ dζMFn(y)−

∫
φq dζ̂

M
Fn .

Therefore we may fix some 0 ≤ c < q, such that for any x ∈ Fn∑
l∈(c+qN)∩EMn

∣∣∣kfq(f lx)− k′fq(F lx̂)
∣∣∣ ≤ 10

n

q
+

1

q

(∫
log+ ‖dyf q‖ dζMFn(y)−

∫
φq dζ̂

M
Fn

)
,

≤ 10
n

q
+ 2Af

qn

M
+

1

q

∫
log+ ‖dyf q‖ dζMFn(y)−

∫
φdζ̂MFn .

3.3. Combinatorial aspects. We put ∂lE
M
n := {a ∈ EMn with a − 1 /∈ EMn }. Then we let

An := {0 = a1 < a2 < · · · am} be the union of ∂lE
M
n , [0, n[\EMn and (c+ qN)∩ [0, n[. We also

let bi = ai+1 − ai for i = 1, · · · ,m− 1 and bm = n− am.
For a sequence k = (kl, k

′
l)l∈An of integers, a positive integer mn and a subset E of [0, n[,

we let Fk,E,mn
n be the subset of points x̂ ∈ Fn satisfying:

• E = En(x) \ EMn (x),
• kai = kfbi (f

aix) and k′ai = k′
fbi

(F ai x̂) for i = 1, · · · ,m,

• mn(x) = mn.

Lemma 10.

]
{

(k, E,mn), Fk,E,mn
n 6= ∅

}
≤ ne2nAfH(A−1

f )3n(1/q+1/M)enH(1/M).

Proof. Firstly observe that if ai /∈ EMn then bi = 1. In particular
∑

i, ai /∈EMn kai ≤ (n −
]EMn ) log+ ‖df‖∞ ≤ (n − ]EMn )(Af − 1). The number of such sequences (kai)i, ai /∈EMn is

therefore bounded above by
(
rnAf
rn

)
with rn = n − ]EMn and its logarithm is dominated by

rnAfH(A−1
f ) + 1 ≤ nAfH(A−1

f ) + 1. Similarly the number of sequence (k′ai)i, ai /∈EMn is less

than nAfH(A−1
f ) + 1.

Then from the choice of εq in (3.1) there are at most three possible values of kai(x) for
ai ∈ EMn and x ∈ Fn.

Finally as ]E ≤ n/M , the number of admissible sets E is less than
(

n
[n/M ]

)
and thus its

logarithm is bounded above by nH(1/M) + 1. Clearly we can also fix the value of mn up to
a factor n.

�

3.4. The induction. We fix k, mn and E and we reparametrize appropriately the set

Fk,E,mn
n .

Lemma 11. With the above notations there are families (Θi)i≤m of affine maps from [−1, 1]
into itself such that :

• ∀θ ∈ Θi ∀j ≤ i the curve fai ◦ σ ◦ θ is strongly εfbi -bounded,

• σ̂−1
(
Fk,E,mn
n

)
⊂
⋃
θ∈Θi

θ([−1, 1]),
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• ∀θi ∈ Θi ∀j < i,∃θij ∈ Θj ,
|θ′i|
|(θij)′|

≤
∏
j≤l<i e

k′al
−kal−1

r−1 /4,

• ]Θi ≤ C max (1, ‖df‖∞)]E∩[1,ai]
∏
j<iCre

kaj−k
′
aj

r−1 .

Proof. We argue by induction on i ≤ m. By changing the constant C, it is enough to consider
i with ai > N . Recall that the integer N was chosen in such a way that for any x ∈ F

there is 0 ≤ k ≤ N with F kx̂ ∈ Hδ. We assume the family Θi for i < m already built and
we will define Θi+1. Let θi ∈ Θi. We apply Lemma 8 to the strongly εfbi -bounded curve

fai ◦ σ ◦ θi with g = f bi . Let Θ be the family of affine reparametrizations of [−1, 1] satisfying

the conclusions of Lemma 8, in particular fai+1 ◦ σ ◦ θi ◦ θ is bounded, |θ′| ≤ e
k′ai−kai−1

r−1 /4 for

all θ ∈ Θ and ]Θ ≤ Cre
kai−k

′
ai

r−1 . We distinguish three cases:

• ai+1 ∈ EMn . The diameter of F ai+1Fn is less than εq ≤
ε
f
bi+1

3 . By Lemma 9 there is

an affine map ψ : [−1, 1] 	 such that fai+1 ◦ σ ◦ θi ◦ θ ◦ ψ is strongly εfbi+1 -bounded

and its image contains the intersection of the bounded curve fai+1 ◦ σ ◦ θi ◦ θ with
fai+1Fn. We let then θi+1 = θi ◦ θ ◦ ψ ∈ Θi+1.
• ai+1 ∈ E \ EMn . Observe that bi+1 = 1, therefore εfbi ≤ εfbi+1 . Then the length of the

curve fai+1◦σ◦θi◦θ is less than 3‖df‖∞εfbi , thus may be covered by [3‖df‖∞]+1 balls of
radius less than εfbi+1 . We then use Lemma 9 as in the previous case to reparametrize

the intersection of this curve with each ball by a strongly εfbi+1 -bounded curve. We

define in this way the associated parametrizations of Θi+1.

• ai+1 /∈ E and ai+1 /∈ EMn . We claim that ‖d(fai+1◦σ◦θi◦θ‖ ≤ εf/6. Take x̂ ∈ Fk,E,mn
n

with x = π(x̂) = σ ◦ θi ◦ θ(s). Let Kx = max{k < ai+1, F
kx̂ ∈ Hδ} ≥ N . Observe

that [Kx, ai+1] ∩ EMn = ∅, therefore for Kx ≤ al < ai+1, we have bl = 1, then
al = ai+1 − i− 1 + l. We argue by contradiction by assuming :

‖d(fai+1 ◦ σ ◦ θi ◦ θ‖ ≥ εf/6 = 6κ(3.2)

By Lemma 7, the point fai+1x belongs to Gκ. We will show F ai+1 x̂ ∈ Hδ. Therefore
we will get F ai+1 x̂ ∈ G = π−1Gκ ∩Hδ contradicting ai+1 /∈ E. To prove F ai+1 x̂ ∈ Hδ

it is enough to show
∑

j≤l<ai+1
ψ(F lx̂) ≥ (ai+1 − j)δ for any Kx ≤ j < ai+1 because

FKx(x̂) belongs to Hδ. For any Kx ≤ j < ai+1 we have :

‖d(fai+1 ◦ σ ◦ θi ◦ θ‖∞ ≤ 2‖ds(fai+1 ◦ σ ◦ θi ◦ θ‖, because fai+1 ◦ σ ◦ θi ◦ θ is bounded,

≤ 2‖dfjxfai+1−j(x̂)‖ × ‖ds(faj ◦ σ ◦ θij)‖ ×
|θ′i| × |θ′|
|(θi

j
)′|

, with aj = j,

≤
εf
3
‖dfjxfai+1−j(x̂)‖

∏
j≤l≤i

e
k′al
−kal−1

r−1 /4 by induction hypothesis,

1

2
≤ ‖dfjxfai+1−j(x̂)‖

∏
j≤l≤i

e
k′al
−kal−1

r−1 /4 by assumption (3.2).(3.3)

Recall again that for j ≤ l ≤ i, we have bl = 1, thus

|kal − log ‖dfalxf‖| ≤ 1
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and

k′al ≤ φ(F al x̂).

Therefore we get for any Kx ≤ j < ai+1 from (3.3):

2ai+1−j ≤ e
r
r−1

∑
j≤l<ai+1

φ(F lx̂)
e
− 1
r−1

∑
j≤l<ai+1

log+ ‖d
flx

f‖
,

(ai+1 − j) log 2 ≤ r

r − 1

∑
j≤l<ai+1

ψ(F lx̂), by definition of ψ,

(ai+1 − j)δ ≤
∑

j≤l<ai+1

ψ(F lx̂), as δ was chosen less than
r − 1

r
log 2.

�

Lemma 12. ∑
i, mn>ai /∈EMn

kai − k′ai
r − 1

≤
(
n− ]EMn

)( log+ ‖df‖∞
r

+
1

r − 1

)
.

Proof. The intersection of [0,mn[ with the complement set of EMn is the disjoint union of
neutral blocks and possibly an interval of integers of the form [l,mn[. In any case F jx̂

belongs to Hδ for such an interval [i, j[ for any x ∈ Fk,E,mn
n . In particular, we have∑

l,al∈[i,j[

k′ai −
kai
r
≥ (δ − 1)(j− i)

therefore ∑
i, mn>ai /∈EMn

k′ai −
kai
r
≥ −(n− ]EMn ),

∑
i, mn>ai /∈EMn

kai − k′ai
r − 1

≤ n− ]EMn
r − 1

+

∑
i, mn>ai /∈EMn kai

r
,

≤
(
n− ]EMn

)( log+ ‖df‖∞
r

+
1

r − 1

)
.

�

3.5. Conclusion. We let Ψn be the family of Cr curves σ ◦ θ for θ ∈ Θm = Θm(k, E,mn)
with Θm as in Lemma 11 over all admissible parameters k, E,mn. For θ ∈ Θm the curve
fai ◦ σ ◦ θ is strongly εfbi -bounded for any i = 1, · · · ,m, in particular

∀i = 1, · · · ,m, ‖d(fai ◦ σ ◦ θ)‖∞ ≤ εfbi ≤ max(1, ‖df‖∞)−bi ,

therefore

∀j = 0, · · · , n, ‖d(f j ◦ σ ◦ θ)‖∞ ≤ 1.

By combining the previous estimates, we get moreover:
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]Ψn ≤ ]
{

(k, E,mn), Fk,E,mn
n 6= ∅

}
× sup

k,E,mn

]Θn(k, E,mn),

≤ ne2(n−]EMn )AfH(Af )3n(1/q+1/M)enH(1/M) sup
k,E,mn

]Θn(k, E,mn), by Lemma 10,

≤ ne2(n−]EMn )AfH(Af )3n(1/q+1/M)enH(1/M) max(1, ‖df‖∞)]E
∏
j≤m

Cre
kaj−k

′
aj

r−1 , by Lemma 11.

Then we decompose the product into four terms :

•
∑

i, mn>ai /∈EMn
kai−k

′
ai

r−1 ≤ (n− ]EMn )
(

log+ ‖df‖∞
r + 1

r−1

)
by Lemma 12,

•
∑

i, mn≤ai
kai−k

′
ai

r−1 ≤ (n−mn)
Af
r−1 ,

•
∑

i,ai∈EMn ∩(c+qN)

kai−k
′
ai

r−1 ≤ 10nq + 2Af
qn
M + 1

r−1

(∫ log+ ‖dyfq‖
q dζMFn(y)−

∫
φdζ̂MFn

)
,

•
∑

i,ai∈EMn \(c+qN)

kai−k
′
ai

r−1 ≤ 2Af
qn
M .

By letting

Br =
1

r − 1
+ logCr,

γq,M (f) := 2

(
1

q
+

1

M

)
logCr +H(1/M) +

10 + log 3

q
+

4qAf + log 3

M
,

τn = sup
x∈F

(
1− mn(x)

n

)
Af
r − 1

+
log(nC)

n
,

we get with C(f) := 2AfH(A−1
f ) + log+ ‖df‖∞

r +Br:

1

n
log ]ΨFn ≤

(
1− ]EMn

n

)
C(f)

+

(
log 2 +

1

r − 1

)(∫
log+ ‖dxf q‖

q
dζMFn(x)−

∫
φdζ̂MFn

)
+ γq,M (f) + τn,

This concludes the proof of Proposition 4.
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[7] Buzzi, Jérôme, Cr surface diffeomorphisms with no maximal entropy measure, Ergodic Theory Dynam.
Systems 34, 2014, p 1770-1793.
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