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MAXIMAL MEASURE AND ENTROPIC CONTINUITY OF LYAPUNOV
EXPONENTS FOR C" SURFACE DIFFEOMORPHISMS WITH LARGE
ENTROPY

DAVID BURGUET

ABSTRACT. We prove a finite smooth version of the entropic continuity of Lyapunov ex-
ponents proved recently by Buzzi, Crovisier and Sarig for C*° surface diffeomorphisms [10].
As a consequence we show that any C", » > 1, smooth surface diffeomorphism f with
hiop(f) > Llimsup, 2 log" ||df™||sc admits a measure of maximal entropy. We also prove
the C" continuity of the topological entropy at f.

INTRODUCTION

The entropy of a dynamical system quantifies the dynamical complexity by counting dis-
tinct orbits. There are topological and measure theoretical versions which are related by a
variational principle : the topological entropy of a continuous map on a compact space is
equal to the supremum of the entropy of the invariant (probability) measures. An invariant
measure is said to be of maximal entropy (or a maximal measure) when its entropy is equal to
the topological entropy, i.e. this measure realizes the supremum in the variational principle.
In general a topological system may not admit a measure of maximal entropy. But such a
measure exists for dynamical systems satisfying some expansiveness properties. In particular
Newhouse [15] has proved their existence for C*° systems by using Yomdin’s theory. In the
present paper we show the existence of a measure of maximal entropy for C", 1 < r < +o0,
smooth surface diffeomorphisms with large entropy.

Other important dynamical quantities for smooth systems are given by the Lyapunov
exponents which estimate the exponential growth of the derivative. For C* surface diffeo-
morphisms, J. Buzzi, S. Crovisier and O. Sarig proved recently a property of continuity in the
entropy of the Lyapunov exponents with many statistical applications [10]. More precisely,
they showed that for a C* surface diffeomorphism f, if vy is a converging sequence of ergodic
measures with limy h(vg) = hiop(f), then the Lyapunov exponents of vy, are going to the (av-
erage) Lyapunov exponents of the limit (which is a measure of maximal entropy). We prove
a C" version of this fact for 1 < r < +o0.

1. STATEMENTS

We define now some notations to state our main results. For a C", r > 1, diffeomor-
phism f on a compact Riemannian surface (M, | - ||) we let F' : PTM O be the induced
map on the projective tangent bundle PTM = T'M/41 and we denote by ¢, : PTM — R
the continuous observables on PTM given respectively by ¢ : (z,v) — log||d,f(v)| and

¥z (2,0) = log [def (W) = }log™ [ldaf]| with ||dof|| = supyer,nn oy M. For k €
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N* we define more generally ¢ : (z,v) +— log|def*(v)| and ¢y : (z,v) — ¢p(z,v) —
%Z;:ol log™ [|dsx, f|. Then we let AT (z) and A~ (z) be the pointwise Lyapunov exponents
given by At (z) = limsup,,_, o 1 log||d,f"|| and A\~ (z) = liminf,,_o % log||d, f"| for any
z €M and A\ (p) = [AT(z)dp(z), A~ (1) = [ A (z) du(z), for any f-invariant measure p.

Also we put AT (f) == lim,, L log™ ||df"[|oo With ||df"||c = supgen [|dof™]|. The function
f +— AT(f) is upper semi-continuous in the C! topology on the set of C! diffeomorphisms
on M. For an f-invariant measure yg with AT (z) > 0 > A~ (z) for u a.e. =, there are by
Oseledets® theorem one-dimensional invariant vector spaces £4(x) and £_(z), resp. called
the unstable and stable Oseledets bundle, such that

o1 n
Vi ae xVoe&i(x)\ {0}, ngr:iloo ;log |de f ()| = AE ().

Then we let 4+ be the F-invariant measure given by the lift of 4 on PTM with g (£y) = 1.
When writing 4" we assume implicitly that the push-forward measure p on M satisfies
AT (z) > 0> A" (z) for p a.e. x.

A sequence of C", with r > 1, surface diffeomorphisms (f;)r on M is said to converge C"
weakly to a diffeomorphism f, when fj goes to f in the C! topology and the sequence (i)
is C" bounded. In particular f is C"~!.

Theorem (Buzzi-Crovisier-Sarig, Theorem C [10]). Let (fi)ren be a sequence of C", with
r > 1, surface diffeomorphisms converging C" weakly to a diffeomorphism f. Let (Fi)ken
and F be the lifts of (fx)keny and f to PTM. Assume there is a sequence (ﬁ;)k of ergodic
Fy-invariant measures converging to fi.

Then there are B € [0,1] and F-invariant measures fig and jif with fi = (1 — B)fio + BAT,

such that: N N .
. A + A -
tim sup k() < Bh(u) + LD FAIT)
k—+o00 r—1

In particular when f (= fj for all k) is C* and h(vy) goes to the topological entropy of f,
then 3 is equal to 1 and therefore A1 (vy) goes to AT (u):

Corollary (Entropic continuity of Lyapunov exponents [10]). Let f be a C*™ surface diffeo-
morphism with hyop(f) > 0.

Then if (vg)k is a sequence of ergodic measures converging to p with limy, h(vg) = hiop(f),
then

o h(p) = hiop(f) T,
o limy AT (vg) = AT ().

We state an improved version of Buzzi-Crovisier-Sarig Theorem, which allows to prove the
same entropy continuity of Lyapunov exponents for C", 1 < r < 400, surface diffeomorphisms
with large enough entropy (see Corollary 1).

Main Theorem. Let (fi)ren be a sequence of C", with r > 1, surface diffeomorphisms con-
verging C" weakly to a diffeomorphism f. Let (Fi)ken and F be the lifts of (fx)ren and f

*We refer to [16] for background on Lyapunov exponents and Pesin theory.
TThis follows from the upper semi-continuity of the entropy function A on the set of f-invariant probability
measures for a C*° diffeomorphism f (in any dimension), which was first proved by Newhouse in [15].
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to PTM. Assume there is a sequence (A,j)k of ergodic Fy-invariant measures converging to [i.

Then for any o > ( ) , there are 8 = B, € [0, 1] and F-invariant measures fig = flo.o and
i = iy o with 1= (1 5)#0 + B, such that:

lim sup h(v) < Bh(m) + (1 — B)a

k—+o00

The Main Theorem implies Buzzi-Crovisier-Sarig statement. Indeed, either limj AT (1) =
[ odi < T( ) and we get by Ruelle inequality, limsupy, h(vg) < w or there exists o €

T—

]/\+(f) min (f gbdu, )) [ By applying our Main Theorem with respect to «, there is a

decomposition i = (1 —,Ba)ﬂ07a+,8aﬂia satisfying lim supy,_, , o A(v) < Bah(p1,0)+(1—Ba)a.
But it follows from the proofs that B, is a component of Bu; with 8 and p; being as in
Buzzi-Crovisier-Sarig’s statement (see Remark 6). In particular Soh(p1,o) < Bh(1), therefore

limsupy,_, o h(v) < Bh(p1) + % In Theorem C [10], the authors also proved
[ ¢djip = 0 whenever 3 # 1. Therefore we get here (1 — 3,) [ ¢dfioa > (1= 8) [ ¢ddjig =0,
then [ ¢ dfig, > 0. But maybe we could have [ ¢ djfigq > 0.

Corollary 1 (Existence of maximal measures and entropic continuity of Lyapunov expo-
nents). Let f be a C", with r > 1, surface diffeomorphism satisfying hiop(f) > el

T
Then f admits a measure of maximal entropy. More precisely, if (vg)r is a sequence of
ergodic measures converging to p with limy h(vg) = hiop(f), then

o p) = huop(f),
o limu AT (vg) = AT (p).

It was proved in [9] that any C" surface diffeomorphism satisfying hip(f) > w admits

at most finitely many ergodic measures of maximal entropy. On the other hand, J. Buzzi has

built examples of C" surface diffeomorphisms for any +oco > r > 1 with ht"p((ff)) arbitrarily

close to 1/r without a measure of maximal entropy [7]. Such results were already known for
interval maps [3, 6, 8].

Proof. We consider the constant sequence of diffeomorphisms equal to f. By taking a subse-
quence, we can assume that (ﬁ;)k is converging to a lift i of u. By using the notations of
the Main Theorem with hop(f) > a > %, we have

e f) = Tim_ (o)

< Sh(p) + (1 = B)a,
< Phiop(f) + (1 = P)a,
(1= Bhiop(f) < (1 = B)ev.

But hiop(f) > @, therefore 8 = 1, i.e. i = ji and limy AT () = A (11). Moreover hyop(f) =
limyg_y 400 h(vg) < Bh(p1)+(1— 5)04 = h(u). Consequently p is a measure of maximal entropy

of f.
O

Corollary 2 (Continuity of topological entropy and maximal measures). Let (fi)r be a se-
quence of C", with r > 1, surface diffeomorphisms converging C" weakly to a diffeomorphism
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F with higp(f) > 200

Then
htop(f) = hlgn htop(fk)~

Moreover if hiop(f) > w and v, is a mazximal measure of fi for large k, then any limit
measure of (v)g for the weak-x topology is a mazimal measure of f.

Proof. By Katok’s horseshoes theorem [14], the topological entropy is lower semi-continuous
for the C! topology on the set of C" surface diffeomorphisms. Therefore it is enough to show
the upper semi-continuity.
By the variational principle there is a sequence of probability measures (vg)rer, K C N
with K = oo, such that :
e v is an ergodic fi-invariant measure for each k,
o limycx h(v;) = limsupgen hiop(fi)-
By extracting a subsequence we can assume (19:) . 1S converging to a F-invariant measure
[t in the weak-* topology. We can then apply the Main Theorem for any o > A ¢ get for

r

some f-invariant measures p1, 1o and § € [0, 1] (depending on «) with p = (1 — 8)po + Bpu:
lim sup hiop(fr) = li]f;n h(vg),
k

(1.1) < Bh(p1) + (1 = Ba,
< Bhuop(f) + (1 = B)ey,
< max(hiop(f), ).

()

By letting « go to A ~ we get

1imksup hiop(fie) < hiop(f).

T

If hiop(f) > w, we can fix a € ]H(f),htop(f) and the inequalities (1.1) may be then
rewritten as follows :

limsup heop (/) < Bh(pn) + (1~ o

S htop(f)-

By the lower semi-continuity of the topological entropy, we have hi,(f) < limsupy, hiop(fx)
and therefore these inequalities are equalities, which implies § = 1, then u; = p, and h(u) =

hiop(f). O

The corresponding result was proved for interval maps in [5] by using a different method.
We also refer to [5] for counterexamples of the upper semi-continuity property for interval

maps [ with hyp(f) < w Finally, in [7], the author built, for any » > 1, a C" surface
diffeomorphism f with limsup ey, hiop(g) = LAICPREN hiop(f) = 0. We recall also that
g

T
upper semi-continuity of the topological entropy in the C* topology was established in any
dimension by Y. Yomdin in [18].
Newhouse proved that for a C* system (M, f), the entropy function i : M(M, f) — R
is an upper semi-continuous function on the set M(M, f) of f-invariant probability measure.
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It follows from our Main Thereom, that the entropy function is upper semi-continuous at

ergodic measures with entropy larger than AT

-+ for a C", r > 1, surface diffeomorphism f.

Corollary 3 (Upper semi-continuity of the entropy function at ergodic measures with large
entropy). Let f: M O be a C", r > 1, surface diffeomorphism.

()

r

Then for any ergodic measure p with h(w) > , we have

limsup h(v) < h(u).

V=l

Proof. By continuity of the ergodic decomposition at ergodic measures and by harmonicity
of the entropy function, we have for any ergodic measure u (see e.g. Lemma 8.2.13 in [12]):

limsup h(v) = limsup h(p).

v ergodic, v—p VL

Let (vk)ren be asequence of ergodic f-invariant measures with limy h(vg) = limsup,,_,,, h(v).

By extracting a subsequence we can assume that the sequence (ﬁ,j )i 1S converging to some

A (f)

lift i of p. Take a with a > “—+*. Then, in the decomposition i = (1 — 3)fio + Bif given
by the Main Theorem, we have pu; = pg by ergodicity of u. Therefore

limh(vg) < Bh(p) + (1= B)a.

By letting a go to el we get

T

i () < 8 () + (1 - ) )

< h(p).

2. MAIN STEPS OF THE PROOF

We follow the strategy of the proof of [10]. We point out below the main differences:

e Geometric and neutral empirical component. For AT (v) > w we split the orbit
of a vi-typical point x into two parts. We consider the empirical measures from z at
times lying between to M-close consecutive times where the unstable manifold has a
”"bounded geometry”. We take their limit in k, then in M. In this way we get an
invariant component of . In [10] the authors consider rather such empirical measures
for a-hyperbolic times and then take the limit when « go to zero.

e Entropy computations. To compute the asymptotic entropy of the v;’s, we use the
static entropy w.r.t. partitions and its conditional version. Instead the authors in [10]
used Katok’s like formulas.

e C" Reparametrizations. Finally we use here reparametrization methods from [4] and
[2] respectively rather than Yomdin’s reparametrizations of the projective action F' as
done in [10]. This is the principal difference with [10].
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2.1. Empirical measures. Let (X,T) be a topological system. For a fixed Borel measurable
subset G of X we let E(z) = Eg(z) be the set of times of visits in G from x:

Ez)={neZ, T"z € G}.

When a < b are two consecutive times in E(x), then [a,b[ is called a neutral block (by
following the terminology of [9]). For all M we let then

EM(z) = U [a, b].

a<b€E(z), |a—b|<M

The complement of EM(z) is made of disjoint neutral blocks of length larger than M. We
consider the associated empirical measures :

1
ke EM (z)N[0,n[

Let v be an ergodic measure. We denote by x the indicator function of {z,0 € EM(z)}.
By the Birkhoff ergodic theorem, there is a set G of full v-measure such that the empirical
measures (/Li\/[n)n are converging for any x € G and any M € N* to &M := xMyp in the weak-*
topology. We also let n™ = v — ¢M. Moreover we put Sy = fXM dv, then €M = By - §M
when By # 0 and ™ = (1 — Bu) - n™ when By # 1 with €M, 9™ being thus probability
measures. Following partially [10], the measures ¢ and n™ are respectively called here the

geometric and neutral components of v. In general these measures are not T-invariant. From
the definition one easily checks that &éM > ¢V for M > N.

2.2. Pesin unstable manifolds. We consider a smooth compact riemannian manifold (M, ||-
|). Let exp, be the exponential map at  and let R;,; be the radius of injectivity of (M, || -|).
We consider the distance d on M induced by the Riemannian structure. Let f : M O be a
C", r > 1, surface diffeomorphism. We denote by R the set of Lyapunov regular points with
AT (xz) > 0> A" (x). For z € M we let W“(x) denote the unstable manifold at z :

1
W (z) = {y e M, limﬁ logd(f"z, f"y) < 0} .

By Pesin unstable manifold theorem, the set W*(x) for x € R is a C" submanifold tangent
to E4(x) at .

For x € R, we let & be the vector in PTM associated to the unstable Oseledets bundle
E+(x). For 6 > 0 the point z is said §-hyperbolic with respect to ¢ (resp. 1) when we have
¢ (F~'2) > 61 (resp. ¢y(F~'2) > 6l) for all I > 0. Note that if = is 6-hyperbolic with respect
to ¢ then it is §-hyperbolic with respect to ¢.

Let v be an ergodic measure with A" (v) — log ldfllee + 55 0 > A7 (v). By applying the
Ergodic Maximal Inequality (see e.g. Theorem 1.1 in [1]) to the measure preserving system
(F~1,0%) with the observable ¢° = 6 — ¢ o F71, we get with As = {& € PTM, 3k >
0s.t. SF ¢ (F'2) > 0}:

Y0 dit > 0.
As
But the set Hs := {i € PTM, VI > 0 ¢y(F~ &) > (51} of d-hyperbolic points w.r.t. 1 is just
the complement set PTM\ As of As. Therefore [, (§—¢oF~1)dit < [(—ypoF~1)dit =

S§—AT(w)+1f M dv < 0. In particular we have 0 (Hg) > 0.
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A point x € R is said to have k-bounded geometry for x > 0 when exp, ! W%(z) contains
the graph of an k-admissible map at x, which is defined as a 1-Lipschitz map f : I —
£y (x)t C T,M, with I being an interval of £, (r) containing 0 with length . We let G, be
the subset of points in R with k-bounded geometry.

Lemma 1. The set G, is Borel measurable.

Proof. For x € R we have W*(x) = ,,en f" Wik (f"x) with W}2_ being the Pesin unstable
local manifold at x. The sequence (f~ "W (f"x)), is increasing in n for the inclusion.
Therefore, if we let GT be the subset of points x in Gy, such that exp, ! f"W (f~"x) contains
the graph of a k-admissible map, then we have

G.=]JGr.

There are closed subsets, (R;)en, called the Pesin blocks, such that R = [J,R; and = —
W (x) is continuous on R; for each [ (see e.g. [16]). Let (x,), be sequence in G} N'R; which
converges to x € R;. By extracting a subsequence we can assume that the associated sequence
of k-admissible maps f, at x;, is converging pointwisely to a xk-admissible map at z, when p
goes to infinity. In particular G} NR; is a closed set and therefore G, = U, ,, (GL NRy) is

Borel measurable.
O

2.3. Entropy of conditional measures. We consider an ergodic hyperbolic measure v, i.e
an ergodic measure with ¥(R) = 1. A measurable partition ¢ is subordinated to the Pesin
unstable local lamination W} of v if the atom ¢(z) of ¢ containing x is a neighborhood of
z inside the curve W (z) and f~'¢ = ¢. By Rokhlin’s disintegration theorem, there are a
measurable set Z of full v-measure and probability measures v, on ¢(z) for x € Z, called the
conditional measures on unstable manifolds, satisfying v = [ v, dv(z). Moreover v, = v,
for z,y € Z in the same atom of ¢. Ledrappier and Young [13] proved the existence of such
subordinated measurable partitions and showed that for v-a.e. x, we have with B,,(z, p) being
the Bowen ball By, (2, p) := Ng<pen [ "B(f*z,p) (where B(f*z,p) denotes the ball for d at

fEz with radius p):

(2.1) lim lim inf ! log vy (Bn(x,p)) = h(v).
n

p—0 n

Fix an error term ¢ > 0 depending? on v. There is p > 0 and a measurable set F C ZNR
with v(F) > 0 such that

1
Va € F,liminf —— log Vg (Bn(z,p)) > h(v) —

We fix z, € F with v, (F) > 0 and we let { = V“*(()) be the probability measure induced
by v;, on F. Observe that v, = v,, for ( a.e. . We let D be the C" curve given by the
Pesin local unstable manifold W} _(z.) at . For a finite measurable partition P and a Borel
probability measure p we let H,,(P) be the static entropy, H,(P) = —>_ ,cp u(A)log u(A).

Moreover we let P" = \/Z;é f~*P be the n-iterated partition, n € N. We also denote by Py
the atom of P™ containing the point x € M.

in the proof of the Main Theorem we will take ¢ = ¢(v) % 0 for the converging sequence of ergodic
measures (Vg)k-
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Lemma 2. For any (finite measurable) partition P with diameter less than p, we have
lim nf %HC(P") > h(v) 1.
Proof.
lin%inf %Hg(P”) = 1irnninf/ —% log ((P;") d((x), by the definition of H,
> /lin%linf —% log ¢(P}') d¢(x), by Fatou’s Lemma,
> /lirr%inf —% log vy, (Py') d¢(z), by the definition of (,
> /hmninf—rlllog vy (PY)d{(z), as v, = vy, for ¢ a.e. x,

1
> /liminf—nlog vy (Bn(z,p)) d¢(z), as diam(P) < p,

n

> h(v) — ¢, by the choice of F.
|

2.4. Entropy splitting of the neutral and the geometric component. The natural
projection from PTM to M is denoted by m. We consider a distance d on the projective
tangent bundle PTM, such that Ei(i‘,g)) > d(nz,my) for all &,y € PTM. In this section we
split the entropy contribution of the neutral and geometric components 7 and éM of the
ergodic F-invariant measure 0% associated to G = HsN7~'G, C PTM, where the parameters
§ and k will be fixed later on. We also consider their projections n™ and &M on M. Let F
and P as in the previous subsection. Without loss of generality we can assume

e {#, z € F} C G with G being the set of full #T-measure of points # such that the

empirical measures p! are converging to &M for any M (see Subsection 2.1),
e the boundary of P has zero v-measure,
e for any M € N and for any continuous function ¢ : PTM — R,

1 n 2 . .
(2.2) — Z o(F*z) /gpdfM uniformly in x € F.

n
keEM (z)N[1,n]

e for any continuous function ¥ : M — R,

1 n . .
(2.3) = Z I(fFe) & /79d1/ uniformly in z € F.
ke[l,n|
Let us detail the proof of the third item. If F = (¢ )ren is a dense countable family in the

set CO(PTM, R) of real continuous functions on PTM endowed with the supremum norm ||-||oo,
then for all k, M, by Egorov’s theorem applied to the pointwise converging sequence (f, :

F — R), = (x = [ ok dugfn) , there is a subset F) of F with v(F}!) > v(F) (1 — W)
n

such that [ ¢ dué\f[n converges to [ ¢, d¢M uniformly in z € FM. Let F/ = sy FM. We

have v(F') > @ Then, if ¢ € CO(PTM, R), we may find for any € > 0 a function ¢y, € F
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with [|¢ — ¢rllec < €. Let M € N. Take N = N such that | [ op dul — [ o deM]| < € for
n > N and for all z € Fl]y. In particular for all z € F/ we have for n > N

’/wdu%— pdé ‘ '/wkdum—/sodu% +‘/80kd/$£/,[n_/@kd§M'
+‘/sokd§M/@d§M,

<2 — @rlloo + ‘/sok dplt, — /sok dsM' ,
<3e.

This proves (2.2) by taking F' in the place of F. One proves similarly (2.3).

Fix now M. For each n € N and 2 € F we let E,(x) = E(2) N [0,n] and EM(z) =
EM(£)N[0,n[. We also let EM be the partition of F with atoms Ag := {x € D, EM(2) = E}
for E C [0,n[. Given a partition @ of PTM, we also let QEy be the partition of F :=
{2, x € FN D} finer than 7 'EM with atoms {2 € F, EM(z) = E and Vk € E, F*i € Q;}
for E C [0,n[ and (Q)rer € QF. We let Q be the boundary of the partition @, which is the
union of the boundaries of its atoms. For a measure 7 and a subset A of M with n(A) > 0 we

denote by n4 = 77(’(4 )) the induced probability measure on A. Moreover, for two sets A, B we

let AAB denote the symmetric difference of A and B, i.e. AAB = (A\ B)U(B\ A). Finally,
let H :]0,1[— R be the map t — —tlogt — (1 —t)log (1 —t). Recall that ¢* is the lift of ¢
on PTM to the unstable Oseledets bundle (with ¢ as in Subsection 2.3).

Lemma 3. For any finite partition Q and any m € N* with éM(ﬁQm) = 0 we have

121
OgﬁQ+L

(24)  h(v) < BM;H{%M(Q’“) + limnsupinéJr (r PIQE) + H(2/M) + T

Before the proof of Lemma 3, we first recall a technical lemma from [2].

Lemma 4 (Lemma 6 in [2]). Let (X,T) be a topological system. Let u be a Borel probability
measure on X and let E be a finite subset of N. For any finite partition () of X, we have

with p? = %E Y okcE TFu and QF = Vier T+Q:

H(E +1)AE

7 H,p (@) +6

1
— log #Q.

m

Proof of Lemma 3. As the complement of EM () is the disjoint union of neutral blocks with

length larger than M, there are at most AM = En/ M+l ( ) possible values for EM(z) so

that

—_

1
CH(P") = —H(PM[EM) + H(E),

— 3

< —He(P"[Ey") +log A}

3

1 1
liminf —H¢(P™) < limsup — H¢(P"[EM) + H(2/M) by using Stirling’s formula.
non n o n
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Moreover
1

1
ZH(P"[EM) = ~H:
n ((PMER) -

o (r P ED),

1 M
< EH@ (QE”

1 y
[m T EN) - He (n T PUIQR).
. . E
For E C [0,n[ we let Cgvn = ﬂ% fui‘/[n dCa(x), which may be also written as (C;ClAE)
by using the notations of Lemma 4. By Lemma 4 applied to the system (PTM, F') and the
measures fi := C;[lAE for Ap € EM we have for all n > m € N*:

He, (@37 'EM) = Y- C(Am B (QF),
E

7r_1AE

1 tH(E+1)AE
< ~H: m LAS N i ,
< Sctanen (Gt @)+ om L s
Recall again that if £ = EM (x) for some x then the complement set of E in [1,n[ is made
of neutral blocks of length larger than M, therefore #(F + 1)AE < % Moreover it follows
from ¢M(0Q™) = 0 and (2.2), that p! (A™) for A™ € Q™ and EX (x)/n are converging to
§M(Am) and () respectively uniformly in z € F when n goes to infinity. Then we get by
taking the limit in n:
N B ) on Ly ow 12mlogiQ
hmnsup EH@ (Q |m " Ep ) SﬁMaﬂﬁM(Q )+ —
1 1 1
h(v) —¢ < limninf HHC(Pn) SﬁMEHgM(Qm) + limnsup EH@:+ (W_lP”\QEy)

12mlog Q)

+ H(2/M) + =

0

2.5. Bounding the entropy of the neutral component. For a C' diffeomorphism f on
M we put C(f) = 247 H (A7) + 25 Wl 4 B with Af = log* [|df || s +1og™ [|df ![|oc+1 and
a universal constant B, depending only r precised later on. Clearly f — C(f) is continuous

in the C' topology and w = limnsp— 400 C(gp) whenever AT(f) > 0 (indeed Aj» 2 oo,
therefore H (AJZ,,l) LN 0). In particular, if w < aand f; LA f in the C! topology, then there

P
is p with limy % < a.

In this section we consider the empirical measures associated to an ergodic hyperbolic
measure v with AT (v) > % + 9, 6 > 0. Without loss of generality we can assume
§ < “=1log2. Then as observed in Subsection 2.2 we have 0" (Hgs) > 0. For € R we let
my(2) = max{k < n, F*# € Hs}. By a standard application of the ergodic theorem we have

n
— 1 for v a.e. z.

By taking a smaller subset F, we can assume the above convergence of m,, is uniform on F
and that sup,cp min{k < n, F*# € Hs} < N for some positive integer N.
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We bound the term limsup,, %Hé (W‘lP”]QE%) in the right member of (2.4) Lemma 3,

which corresponds to the local entropy contribution plus the entropy in the neutral part.

Lemma 5. There is k > 0 such that the empirical measures associated to G := 7~ 1G,. N Hy
satisfy the following properties. For all ¢, M € N*, there are ¢, > 0 (depending only on
IdF(f) oo, 2< g <7 %) and YoM (f) > 0 with

(2.5) VK > 0 limsup limsup <sup {Hem () | 1df lloo v ldf oo < K}) =0
q M f

such that for any partition Q@ of PTM with diameter less than €,, we have:

tisup H. (v PIQEY) <(1 = ()

n
N <log2+ Ti1> </ log (L'dqudiM—/(bdéM)
+7q,M(f)‘

The proof of Lemma 5 appears after the statement of Proposition 4, which is a semi-local
Reparametrization Lemma.

Proposition 4. There is k > 0 such that the empirical measures associated to G := 171G N
Hs satisfy the following properties. For all ¢ € N* there are ¢, > 0 (depending only on
I (fD)lloor 2 < g <7 ) and g0 (f) > 0 with

VK > 0 limsup limsup (sup {vanr () | ldflloo V ldf o < K}> =0
q M f

such that for any partition QQ with diameter less than € < €4, the following property holds for
n large enough.

Any atom F,, of the partition QE% may be covered by a family Vg, of C" curves : [—1,1] —
M satisfying ||d(f* o ¥)||ee < 1 for any k=0,--- ,n — 1, such that

L logtwp, < (1 _ By ) c(f)
n n

1 + da: a € =
() (I i it

+ FYqu(f) + Tn,s

where lim, 7, = 0, EM = EM(z) for x € F,, Q:%L = [uM dlp,(z) and C% = 7&,43{;\1[1 its
push-forward on M.

The proof of Proposition 4 is given in the last section. Proposition 4 is very similar to the

Reparametrization Lemma in [4]. Here we reparametrize an atom F,, of QE' instead of Q"
in [4].

$Here

Id*(f)lo = sup  sup
a€N?, |a|=k =,y

0y (expjj(lz) of o epr) ()H

oo
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Proof of Lemma & assuming Proposition 4. We take k > 0 and ¢; > 0 as in Proposition 4.
Observe that

Hy, (T PMQE ) < YT CH(F) log#{A" € P, n (A NENF, £ 0},
FneQEM
As v(0P) = 0, for all v > 0, there is x > 0 and a continuous function ¥ : M — R™ equal to

1 on the y-neighborhood dPX of JP satisfying [ ¥ dv < . Then we have uniformly in z € F
by (2.3):

(2.6) hmsup lj{O <k<n, ffzedPX} < hm Zf} (ffz) /19(11/ <.

Assume that for arbitrarily large n there is F;, € QEn and ¢ € Up with f{A" € P", A"N
Y([~1,1])NF # 0} > ([x " !]+1)4P"™. We reparametrize ¥ on F by [y ~!]+1 affine contractions
6 so that the length of f¥ o o6 is less than x for all 0 < k < n and (¢ 0 0)([~1,1]) NF # (.
Then we have ${0 < k < n, PN f¥ o of([~1,1]) # 0} > yn for some #. In particular
we get #{0 < k < n, ffx € OPX} > yn for any = € v o 0([—1,1]), which contradicts (2.6).
Therefore we have

1
limsup sup —log{A" € P", A"nNy([-1,1])NF# 0} =0.
n Fn,veVE, n

Together with Proposition 4 we get

1
limsupEHg:+(7T_1P”|QE£4)<hmsup Z (H(F, —logﬁ\I/Fn,
FreQE
S tEy
<hmsup Z ¢ ( 1-— C(f)+
FoeQEM n
1 log™ ||df¢ .
+ lim sup Y & <10g2—|— )</ og” [ldf1]| dgﬁ{-/wgﬁ)
FeQEl —1 q
+7q,M(f)7

+ A~
<= ancth) + (o2 1 ) (L agh — [ 0deh) )

This concludes the proof of Lemma 5.
O

2.6. Proof of the Main Theorem. We first reduce the Main Theorem to the following
statement.

Proposition 5. Let (fx)ren be a sequence of C", with r > 1, surface diffeomorphisms converg-
ing C™ weakly to a diffeomorphism f. Assume there is a sequence (ﬁ,j)k of ergodic Fy-invariant

log™ ||df

measures converging to fi with limg A* (vg) > -

Then, there are F-invariant measures fig and jij with i = (1 — B)jo + Bt , B € [0,1],
such that:
limsup h(vg) < Bh(p1) + (1 = B)C(f).

k—+o0
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Proof of the Main Theorem assuming Proposition 5. Let (19k+ )i be a sequence of ergodic Fj-

invariant measures converging to fi.

Cf?)
P

< a. Let ;P be an ergodic component of 7} for F and let us denote

As previously mentionned, for any o > AT (f)/r there is p € N* with o > . We can

log [|df? ||
pr

also assume

by v}, its push forward on M. We have h flz:(yg ) = phy, (v) for all k. By taking a subsequence

we can assume that (lﬁk+ P)p is converging. Its limit P satisfies % > 0<i<p Fkpp = . If
. <

limy AT (1)) < % < pa, then by Ruelle’s inequality we get

1
limsup Ay, (v) = limsup ~h (),
k—+o0 k—+oo P F

1
< lim -AT(D),
k—+oo p

< a.
This proves the Main Theorem with 5 = 1.
We consider then the case limy At (vF) >
p-power systems, we get FP-invariant measure 4§ and ,&f’p with @7 = (1 — B)ap + ,B[L;r’p ,
3 € [0,1], such that we have with p? = w7 :

llimJSrup hyp () < Bhye (UF) + (1 = B)C(£7).

+
%. By applying Proposition 4 to the

But h g (1)) = phy(pr) with pg = zl? > o<i<p f*uf. One easily checks that i = ]% > o0<i<p FRuP.
Moreover we have :

1
limsup Ay, (v) = limsup ~h (1),
k—4o0 k—+oo P
1 c(fp
< B () + (1= ) L,

< Bhy(m) + (1 - Bla.

O

We show now Proposition 5 by using Lemma 5. Without loss of generality we can assume
liminfy h(vg) > 0. For u a.e. x, we have A\~ (x) < 0. If not, some ergodic component fi of
would have two positive Lyapunov exponents and therefore should be the periodic measure
at a source S (see e.g. Proposition 4.4 in [17]). But then for large k& the probability vy would
give positive measure to the basin of attraction of the sink S for f~! and therefore v}, would
be equal to i contradicting liminfy h(vg) > 0.

Let 6 > 0 with limg A" (vg) > % + 6. Then take ~ as in Lemma 5. We consider
the empirical measures associated to G = 77 'G,, N Hs. By a diagonal argument, there is a
subsequence in k such that the geometric component f,]c\/[ of ﬁ,j is converging to some éé\é[ for
all M € N. Let us also denote by 377 the limit in £ of Bﬂ. Then consider a subsequence in
M such that éoj\g is converging to i1 with = limys 557. We also let (1 — 5)ao = o — Biir.
In this way, fip and fi; are both probability measures.

Lemma 6. The measures fig and fi1 satisfy the following properties:

e (11 and fig are F-invariant,
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e \"(x) > 6§ for pi-a.e. x and iy = fif .

Proof. The neutral blocks in the complement set of £ (x) have length larger than M. There-
fore for any continuous function ¢ : PT'M — R and for any k, we have

/@dé%/gooFdé,y' g%wfﬂ_

Letting k, then M go to infinity, we get [ pdfi1 = [ ¢ o Fdji, i.e. fiy is F-invariant.

We let K be the compact subset of PTM given by Ky = {& € PTM, 31 < m <
M ¢ (2) > md}. Let & € Gi, where Gy, is the set where the empirical measures are converging
to é,]fv" (see Subsection 2.1). Observe that

(27) lim i, (Kar) = €1 (Kar) = € (PTM),

Indeed for any k € EM(Z) there is 1 < m < M with F™(F*%) € G C Hs. Moreover,
as already mentioned, d-hyperbolic points w.r.t. @ are J-hyperbolic w.r.t. ¢. Therefore
¢m (F¥3) > mé. Consequently we have lim,, M%R(KM) = lim,, u%n(PTM) = ¢M(PTM). The
set Ky being compact in PTM, we get M (K ) > limy, Mé\/,[n(KM) and (2.7) follows.

Also we have M(Ky;) > limsupké;y(KM) = limsupké{{\/[(PTl\/I) = B%- Therefore
we have f1(Uy Kv) = 1 as éoj\g goes increasingly in M to [ji;. The F-invariant set
Niez F¥ (Uy Kar) has also full ji-measure and for all # = (z,v) in this set we have

limsup,, 2 log ||dy f"(v)|| > 6. Consequently the measure fi; is supported on the unstable
bundle £y (x) and AT (x) > § for pi-a.e. . O

Remark 6. In Theorem C of [10], the measure ﬁﬂf is obtained as the limit when § goes to
zero of the component associated to the set GO := {x, VI > 0 ¢y(2) > §l} D 771G, N H;s.
We pursue now the proof of Proposition 5. Let ¢, M € N*. Fix a sequence (¢ ) of positive

numbers with ¢ £, 0. We consider a partition @ satisfying diam(Q) < e, with ¢, as in Lemma
5. The sequence (fy); being C" bounded, one can choose €, independently of f, k € N.
By a standard argument of countability we may assume that for all m € N* the boundary of

@™ has zero-measure for i1 and all the measures 5,{:‘/[ , M € N* and k € NU{co}. Combining

Lemma 5 and Lemma 3 we get with 4.0 0 (f) = Yo (f) + H (&) + % :

() <8y H, (@) + (1= B ()

log™ ||df{ R
+ (g2 L) ([P Ml agr - [oa6™)

+ %4.Qm (fr) + th-
By letting k, then M go to infinity, we obtain for all m:

limksup h(vg) Sﬁ%Hﬂf(Qm) + (1= 8)C(f)

1 log™ ||df4
o ) (/o)

+ lim sup sup %,Q,M(fk)-
M k
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By letting m go to infinity, we get:
timsup h(v) <8h(jif) + (1 = A)C(F)

+ <10g2+ 7~11> </ lo&” deq” /¢d >

+ lim sup sup g m (fx)-
M k

But h(ji]) = h(u1) (see e.g. Corollary 4.21in [10] ) and [ ¢di] = AT (u1) = lim, [ logJZ%dm.
Therefore by letting ¢ go to infinity we finally obtain with the asymptotic property (2.5) of
“a,M

1imksup h(vg) < Bh(pa) + (1 = B)C(f).

3. SEMI-LOCAL REPARAMETRIZATION LEMMA

In this section we prove the semi-local Reparametrization Lemma stated in Proposition 4.

3.1. Strongly bounded curves. To simplify the exposition (by avoiding irrelevant techni-
cal details involving the exponential map) we assume that M is the two-torus T? with the
usual Riemannian structure inherited from R?. Borrowing from [2] we first make the following
definitions.

A C" embedded curve o : [—1,1] — M is said bounded when maxg_s ... , [|[d*0 || < %.

Lemma 7. Assume o is a bounded curve. Then for any x € o([—1,1]), the curve o contains
the graph of a k-admissible map at x with k = %.

Proof. Let © = o(s), s € [-1,1]. One checks easily (see Lemma 7 in [4] for further details)

that for all ¢ € [—1, 1] the angle Zo'(s),0’(t) < § < 1 and therefore fol a'(t)- T ,E gH dt > HdJH‘X’.

ldo|loc
6

Therefore, as o/(s) € £, (x), the image of o contains the graph of an -admissible map
at x. U

A C" bounded curve o : [—1,1] — M is said strongly e-bounded for € > 0 if ||do || < €. For

n € N* and € > 0 a curve is said strongly (n, €)-bounded when f* o o is strongly e-bounded
foral k=0,--- ,n—1.

We consider a C" smooth diffeomorphism g : M O with N> r > 2. For & = (z,v) € PTM
with (%) = z, we let ky(z) > k;(#) be the following integers:

kg(x) := [log ||dzg]]]

kg(2) := [log |dzg(v)|I] = [dg(2)].
In the next lemma, we reparametrize the image by g of a bounded curve. The proof of this

lemma is mostly contained in the proof of the Reparametrization Lemma [2], but we reproduce
it for the sake of completeness.
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Lemma 8. Let R;"j > e = €g > 0 satisfying ||d°g5, ||l < 3€||dzgl| for all s = 1,--- ,r and
all x € M, where g5, = goexp,(2e:) = g(z + 2¢) : {w, € T,M, |wy|]| < 1} — M. We
assume o : [—1,1] — M is a strongly e-bounded C" curve and we let 6 : [—1,1] — PTM be

the associated induced map.

Then for some universal constant C, > 0 depending only on r and for any pair of integers
(k, k') there is a family © of affine maps from [—1,1] to itself satisfying:
67 ({&# € PTM, ky(z) =k and k(£) = k'}) C Ugeo 0(1-1,1]),
e VO € O, the cum}e g o a o0 is bounded,
o V0 € 0O, \9’|<e = /4
o 10 < C, T
Proof. First step : Taylor polynomial approximation. One computes for an affine map
¢ : [-1,1] O with contraction rate b precised later and with y = o(t), k¢(y) = k, ky(y) = &',
tef(—1,1)):

ld"(g o0 08)lloo <" [|d" (g5 © 08|l » With o5, == (2€) " exp, ! oo =267 (o) — y),
" (dgy g8 0 do,) ‘ ,

<bp"2" max Hd (da2 926)

s=0

<V

k Yy
| (oo

By assumption on €, we have HclsgzeHoO < 3¢||dyg|| for any 7 > s > 1. Moreover maxy_j.... , |d*cy. |0 <
1 as o is strongly e-bounded. Therefore by Fag di Bruno’s formula, we get for some¥ constants
C, > 0 depending only on 7:

,_pmax ||d® ( gi) oo < €Crl|dygll,
then ,

ld"(g oo 00)loo < eCrb[ldyg|| max |ld*o oo,

< Cpb"||dyglllldo]|oo,
< (G dyglDd(e © 6)loo,
< (Cb"e)||d(o 0 0) |00, because k(y) =k ,

_ 1
< " ||d(o 0 0)]||s, by taking b = (Crek_k,+4) .
Therefore the Taylor polynomial P at 0 of degree r — 1 of d(g o o o 0) satisfies on [—1,1]:
1P = d(g oo 00)|ee < e *d(000)]se

We may cover [—1,1] by at most b~! + 1 such affine maps 6.

Second step : Bezout theorem. Let a = e'||d(c 0 0) . Note that for s € [~1,1] with
k(o 0 6(s)) = k and k'(o0 0 0(s)) = k' we have ||d(g o o 0 6)(s )H € [ae™2 ae?], therefore
|P(s)|| € [ae™3,ae3]. Moreover if we have now ||P(s)|| € [ae™3, ae?] for some s € [-1,1] w

get also ||d(go oo 8)(s)| € [ae™?, ael].

ﬂAlthough these constants may differ at each step, they are all denoted by C..
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By Bezout theorem the semi-algebraic set {s € [~1,1], ||P(s)| € [e~3a, e3a]} is the disjoint
union of closed intervals (J;);e; with §/ depending only on r. Let 6; be the composition of 6
with an affine reparametrization from [—1, 1] onto J;.

Third step : Landau-Kolmogorov inequality. By the Landau-Kolmogorov inequality
on the interval (see Lemma 6 in [2]), we have for some constants C,, € N* and forall 1 < s <1

|d°(g 00 08i)]lec < Cr([ld"(g o008l + [ld(g o0 0bi)loo),

J; -
i (Hd (900°00) ] +sup Hd(goaoext)u),
€J;

S@Q

|Ji]
< .
< Cra 5

We cut again each J; into 1000C),. intervals jz of the same length with
0(J;)No ! {x, ky(z) = k and ki (x) =K'} # 0.

Let ; be the affine reparametrization from [—1,1] onto 6(J;). We check that g oo o 0; is

bounded:
Vs =2,--,r, [d*(g 00 06|l < (1000C,)||d*(g 0 7 0 6;)||sc,

11l

—~

ane_4,

IN

(1000C,)

i ag o 0.0 0)(5))

IN

(1000C,)

Ji
(1000¢,) 7 i (g 0 o 0 6) ()
2 seJ;

VAN
D= D= O =

1 -
< lldlg 0706l

This conclude the proof with © being the family of all 6;’s. O
We recall now a useful property of bounded curve (see Lemma 7 in [4] for a proof).

Lemma 9. Let o : [—1,1] - M be a C" bounded curve and let B be a ball of radius less than
€. Then there exists an affine map 0 : [—1,1] O such that :

e oo is strongly 3e-bounded,

e 0([-1,1]) Do 'B.
3.2. Choice of the parameters x and ¢;. For a diffeomorphism f : M O the scale €; in
Lemma 8 may be chosen such that ep < ep < max(1, [|df||oo) ¥ for any ¢ > k > 1> 1. We
take kK = g—’é and we choose ¢; < % such that for any #,9 € PT'M which are €,-close and for
any 0 <1 <q:
(3.1) \kp(z) —kp(y)| <1,

K (@) = Ku(9)

Without loss of generality we can assume the local unstable curve D (defined in Subsection
2.3) is reparametrized by a C" strongly e,-bounded map o : [—1,1] — D.

<1.
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Let F, be an atom of the partition Q& and let EM = EM(g) for any # € F,. Recall that
the diameter of @ is less than ¢;,. It follows from (3.1) that for any & € F), we have with

Ciy = [ 1 dCr, (2):
S [ksere) = K (P12)

leEM

<1082+ [ log™ 1y 17 dcH ) ~ [ o, dG.
Therefore we may fix some 0 < ¢ < ¢, such that for any x € F),

S [htste) k9] < 102 4 L [rog* I ack ) - [ o,k ).

I€(c+qN)NEM

1 A
< 102 +2AfM /log+ dequdCFn( ) — /(ﬁdC%.

3.3. Combinatorial aspects. We put O,EM := {a € EM with a — 1 ¢ EM}. Then we let
An:={0=a; <as <---a} be the union of ;EM, [0,n[\EM and (c+ ¢N)N[0,n]. We also
let b =a;4+1 —a;fori=1,--- ., m—1and b,, =n — an. B
For a sequence k = (ki, k})ic.a, of integers, a positive integer m,, and a subset E of [0,n][,
we let FoP™ be the subset of points & € F,, satisfying:
o B = Ey(x)\ B} (2),
® ko, = kp,(f*z) and k;, = k}bi (F%g) fori=1,--- ,m,

o my(x) =my.

Lemma 10.
tt{(k,E my), FBmn @} < ne2 ArH(ALY) gn(1/q+1/M) nH (1/M).

Proof. Firstly observe that if a; ¢ EM then b; = 1. In particular > i agpM ko, < (0 —
tEM)logt ||df oo < (n — $E))(Ay — 1). The number of such sequences (kq,);, a;¢EM 18
therefore bounded above by (”;ff ) with 7, = n — fEMand its logarithm is dominated by
rnAfH(Afl) +1< nAfH(Ajil) + 1. Similarly the number of sequence (ky,); o,¢pm is less
than nA;H(A} h+1.

Then from the choice of €; in (3.1) there are at most three possible values of kg, (z) for
a; € Eﬁ/[ and x € F,,.

Finally as £ < n/M, the number of admissible sets E is less than ([n/"M]) and thus its
logarithm is bounded above by nH (1/M) + 1. Clearly we can also fix the value of m,, up to

a factor n.
O

3.4. The induction. We fix k, m,, and E and we reparametrize appropriately the set
k,E,m
F’I’L7 ) 7L‘

Lemma 11. With the above notations there are families (©;)i<m of affine maps from [—1,1]
into itself such that :

e V0 € ©; Vj <i the curve f* oo o8 is strongly €, -bounded,
o 71 (AEP™) € Upeo, 0((-1,1)),
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kfll kal 1

° Vb, € 0, V) < i} €0, i < [jciare /4,

ka]. —Kh

o 10; < Cmax (1, |[df |l o) ]

j<7,

_J_ %

Proof. We argue by induction on ¢ < m. By changing the constant C, it is enough to consider
1 with a; > N. Recall that the integer N was chosen in such a way that for any « € F
there is 0 < k < N with F¥% € Hs. We assume the family ©; for ¢ < m already built and
we will define ©;41. Let §; € ©;. We apply Lemma 8 to the strongly €,-bounded curve

f% o0 o0b; with g = fb. Let © be the family of affine reparametrizations of [—1, 1] satisfying
kg, —ka; —1

the conclusions of Lemma 8, in particular f%+! o g 0 6; 06 is bounded, |#'| < e 1 /4 for

ka; —kb, ka;—ka;

all 0 € © and 0 < Cre” =1 . We distinguish three cases:

® a1 € En . The diameter of F*+1F), is less than ¢; < fb;“ . By Lemma 9 there is
an affine map ¢ : [—1,1] O such that f%+! oo 08; 06041 is strongly efbiﬂ—bounded
and its image contains the intersection of the bounded curve f%+! o g o 6; o 6 with
fUr1F,. We let then 6,11 =0;0001% € ©;4;.

e a;11 € E\ EM. Observe that b;,1 = 1, therefore €y < € pbita- Then the length of the
curve f%+togof;of is less than 3||df || o€ v, , thus may be covered by [3||df o] +1 balls of
radius less than € fhitt- We then use Lemma 9 as in the previous case to reparametrize
the intersection of this curve with each ball by a strongly e fbi 4+1-bounded curve. We

define in this way the associated parametrizations of ©,41. B
e aiy1 ¢ E and a1 ¢ EM. We claim that ||d(f%+ ogob;00] < ;/6. Take & € Fofmn

with 2 = 7(2) = 00 6; 0 0(s). Let K, = max{k < a;y1, F¥i € Hs} > N. Observe
that [K,,a;11] N EM = (, therefore for K, < a; < a;11, we have by = 1, then
a; = a;+1 — % — 1+ 1. We argue by contradiction by assuming :

(3.2 Jd(f 0.500;.00] > e /6 = 65
By Lemma 7, the point f%+1x belongs to G,. We will show F%+1¢ € Hgs. Therefore
we will get F%+1% € G = 7~ 'G, N Hs contradicting a;,1 ¢ E. To prove F*+1% € Hg
it is enough to show > 7., | Y(F'2) > (a1 — j)0 for any K, < j < a;41 because
F%&= (%) belongs to Hs. For any K, < j < a;;1 we have :

|d(f** 00 00; 00| < 2|ds(f*t 00 08; 00|, because f*+! o0 o 6; 08 is bounded,

< 2dpp frr I @) x ds(fT 07 0 0] x LN gy oo
: A i@ ﬂ
71 a foy 2
< Hd fETI( )| H /4 by induction hypothesis,
j<i<i
(3.3) L < ldgip fU ()] H e%/él by assumption (3.2).
2- e G<I<i

Recall again that for j <[ < i, we have b; = 1, thus
|ka, —1og [|dfeus fII] < 1
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and
kj, < ¢(FU%).
Therefore we get for any K, < j < a;4+1 from (3.3):

. 15 1 +
20i+17J) <L eﬁ Zjél<ai+1 P(F f’»’)e—m Zj§l<ai+1 log deleH7

(ai1 — j)log2 < Ll 3" (F'#), by definition of ¢,
" Jj<l<ait1
r—1

(ajy1 —7)0 < Z Y(F'#), as § was chosen less than

j<l<ait1

log 2.
r

Lemma 12.

ka, — K. s (og™T |ldf ||lso 1
Z r—1 < (n jj")< r +7“—1
1, mn>ai¢E£/f
Proof. The intersection of [0,m,[ with the complement set of EM is the disjoint union of
neutral blocks and possibly an interval of integers of the form [I,m,[. In any case Fi%

k,E
an ;M

belongs to Hy for such an interval [i, j[ for any = € . In particular, we have

> koG-
l:ale[i’j[

therefore

ka,
Z kfll - : > —(TL - ﬁEy%

i, mp>a;, ¢ EM

S AP i oA

A r—1 = r—1 r ’
i, mp>a; ¢ EM

r r—1

< (n_ ﬁEéw) <log+ [l df [l 4 1 ) ‘
g

3.5. Conclusion. We let U, be the family of C" curves o o f for § € ©,, = Onm(k, E,my,)
with ©,, as in Lemma 11 over all admissible parameters k, £, m,,. For § € ©,, the curve
f% oo o is strongly efbi—bounded for any i = 1,--- ,m, in particular

Vi=1,--,m, [[d(f" oo 00)|o < € <max(l, lldf||o0) ™%,
therefore
Vji=0,---,n, Hd(fjoaoﬁ)Hoo <1.

By combining the previous estimates, we get moreover:
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H0,, < ﬁ{(k, E,my), FRBmn £ @} x sup tOn(k, E,my),

k,E,mn
< ne2(n1ER) ArH(Af) gn(1/q+1/M) gnH (1/M) sup #0,(k, E,m,), by Lemma 10,
k,E,mn
ka ; 7k
< (8B AL H(Af) gn(1/q+1/M) nH (1/M) max(1, ||df]|so) tiE H C, eijr T, by Lemma 11.
j<m
Then we decompose the product into four terms :
k(L (l + o0
° ZZ rn>as ¢ EM % <(n ijM) (% + T_%) by Lemma 12,
Ka; —kl,, A
i Zi7 my<a; r—1 S ( mn)r fl’
ka, logt ||d,, f4
d Zz ,a; €EEMN(c+gN) ~ r—1 < 10” + 2Af% + i (f % ” o] dCM f¢d<F )
ka;,—k

d Zi,aiEE,y\(c—i-qN) r— 1 = 2Af

By letting
1
B, = ——+logC,,
r—1

10 + log 3 n 4qAys +log 3

Yo (f) =2 <(11+ ]\14> logC,. + H(1/M) +

q Mo
A
Tp, = SUp (1 - mn(x)> r 4 10g(nC)’
xE€F n r—1 n
we get with C(f) := 2AfH(AJ71) + % + B,:
1 EM
Dogpv, < (1- 225 ) e

log™ ||dy
(e (] o)

+ 'Yq,M(f) + T?’Lv

This concludes the proof of Proposition 4.
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