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MAXIMAL MEASURE AND ENTROPIC CONTINUITY OF

LYAPUNOV EXPONENTS FOR Cr SURFACE

DIFFEOMORPHISMS WITH LARGE ENTROPY

DAVID BURGUET

Abstract. We prove a finite smooth version of the entropic continuity
of Lyapunov exponents of Buzzi-Crovisier-Sarig for C∞ surface diffeomor-
phisms [10]. As a consequence we show that any Cr, r > 1, smooth
surface diffeomorphism f with htop(f) > 1

r
lim supn

1
n

log+ ‖dfn‖ admits
a measure of maximal entropy. We also prove the Cr continuity of the
topological entropy at f .

Introduction

The entropy of a dynamical system quantifies the dynamical complexity by
counting distinct orbits. There are topological and measure theoretical ver-
sions which are related by a variational principle : the topological entropy of a
continuous map on a compact space is equal to the supremum of the entropy of
the invariant (probability) measures. An invariant measure is said of maximal
entropy when its entropy is equal to the topological entropy, i.e. this measure
realizes the supremum in the variational principle. In general a topological
system does not admit measures of maximal entropy. But such measures exist
for systems satisfying some expansiveness properties. In particular Newhouse
[14] has proved their existence for C∞ systems by using Yomdin’s theory. In
the present paper we show the existence of a measure of maximal entropy for
Cr smooth surface diffeomorphisms with 1 < r < +∞ with large entropy.

Other important dynamical quantities for smooth systems are given by the
Lyapunov exponents which estimate the exponential growth of the derivative.
For C∞ surface diffeomorphisms, J. Buzzi, S. Crovisier and O. Sarig proved re-
cently a property of continuity in the entropy of the Lyapunov exponents with
many statistical applications [10]. More precisely, for a C∞ surface diffeomor-
phism f , if νk is a sequence of ergodic measures with limk h(νk) = htop(f), then
the Lyapunov exponents of νk are going to the (average) Lyapunov exponents
of µ. We prove a Cr version of their result for 1 < r < +∞.

1. Statements

We define now some notations to state our main result. For a diffeomor-
phism f on a compact Riemannian surface (M, ‖ · ‖) we let F : PTM 	 be
the induced map on the projective tangent bundle PTM = T 1M/±1 and
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φ : PTM → R be the continuous observable on PTM given by (x, v) 7→
log ‖dxf(v)‖. For k ∈ N∗ we define more generally φk : (x, v) 7→ log ‖dxfk(v)‖.
Then we let λ+(x) and λ−(x) be the pointwise Lyapunov exponents given by
λ+(x) = lim supn→+∞

1
n log ‖dxfn‖ and λ−(x) = lim infn→−∞

1
n log ‖dxfn‖,

for any x ∈M and λ+(µ) =
∫
λ+(x) dµ(x) for any f -invariant measure µ.

Also we put λ+(f) := limn
1
n log ‖dfn‖. Observe that f 7→ λ+(f) is upper

semi-continuous in the C1 topology. For a f -invariant measure µ with λ+(x) >
0 ≥ λ−(x) for µ a.e. x, there are by Oseledets∗ theorem one-dimensional
invariant vector spaces E+(x) and E−(x), resp. called the unstable and stable
Oseledets bundle, such that

∀ a.e. x ∀v ∈ E±(x) \ {0}, lim
n→±∞

1

n
log ‖dxfn(v)‖ = λ±(x).

Then we let µ̂+ be the F -invariant measure given by the lift of µ on PTM
supported on the one-dimensional Oseledets unstable bundle. When writ-
ing µ̂+ we assume implicitly that the push-forward measure µ on M satisfies
λ+(x) > 0 ≥ λ−(x) for µ a.e. x.

Theorem (Buzzi-Crovisier-Sarig, Theorem C in [10]). Let (fk)k∈N be a se-
quence of Cr, with r > 1, surface diffeomorphisms converging to f in the Cr

topology. Assume there is a sequence (ν̂+
k )k of ergodic Fk-invariant measures

converging to µ̂.
Then there are F -invariant measures µ̂0 and µ̂+

1 with µ̂ = (1−β)µ̂0 +βµ̂+
1 ,

β > 0, such that:

• λ+(x) > 0 ≥ λ−(x) for µ1-a.e. x,
•
∫
φdµ̂0 = 0,

• lim supk→+∞ h(νk) ≤ βh(µ1) + λ+(f)+λ+(f−1)
r−1 .

Observe that λ+(νk) =
∫
φdν̂+

k
k−→
∫
φdµ̂ = βλ+(µ1), therefore β =

limk
λ+(νk)
λ+(µ1)

. In particular when f is C∞ and h(νk) goes to the topological

entropy of f , then β is equal to 1 and therefore λ+(νk) goes to λ+(µ). We
state an improved version of Buzzi-Crovisier-Sarig Theorem, which allows to
prove the same entropy continuity of Lyapunov exponents for Cr surface dif-
feomorphisms with large enough entropy.

A sequence of Cr, with r > 1, surface diffeomorphisms (fk)k on M is said to
converge Cr weakly to f , when fk goes to f in the C1 topology and the sequence
(fk)k is Cr bounded (in particular f is Cr−1 and for r ≤ 2 the derivative of f
is (r − 1)-Hölder).

Main Theorem. Let (fk)k∈N be a sequence of Cr, with r > 1, surface diffeo-
morphisms converging Cr weakly to f . Assume there is a sequence (ν̂+

k )k of

ergodic Fk-invariant measures converging to µ̂ with
∫
φdµ̂ > α > λ+(f)

r .

Then there are F -invariant measures µ̂0 and µ̂+
1 with µ̂ = (1−β)µ̂0 +βµ̂+

1 ,
β > 0, such that

∗We refer to [15] for background on Lyapunov exponents and Pesin theory.



Existence of maximal measure for Cr surface diffeos 3

• λ+(x) ≥ α > 0 ≥ λ−(x) for µ1-a.e. x,
•
∫
φdµ̂0 = α,

• lim supk→+∞ h(νk) ≤ βh(µ1) + (1− β)α.

The Main Theorem implies Buzzi-Crovisier-Sarig statement. Indeed, either

limk λ
+(νk) =

∫
φdµ̂ ≤ λ+(f)

r and we get by Ruelle inequality, lim supk h(νk) ≤
λ+(f)
r or we are for some α ∈

]
λ+(f)
r ,min

(∫
φdµ̂, λ

+(f)
r−1

)[
in the settings of the

Main Theorem. By applying the Main Theorem, there is then a decomposition
µ̂ = (1−βα)µ̂0,α+βαµ̂

+
1,α satisfying lim supk→+∞ h(νk) ≤ βαh(µ1,α)+(1−βα)α.

But it follows from the proofs that βαµ1,α is a component of βµ1 with β and
µ1 being as in Buzzi-Crovisier-Sarig’s statement (see Remark 4). In particular

βαh(µ1,α) ≤ βh(µ1), therefore lim supk→+∞ h(νk) ≤ βh(µ1) + λ+(f)+λ+(f−1)
r−1 .

Corollary 1 (Existence of maximal measures). Let f be a Cr, with r > 1,

surface diffeomorphism satisfying htop(f) > λ+(f)
r .

Then f admits a measure of maximal entropy. More precisely, if (νk)k is a
sequence of ergodic measures converging to µ with limk h(νk) = htop(f), then

• h(µ) = htop(f),
• limk λ

+(νk) = λ+(µ).

It was proved in [9] that any Cr surface diffeomorphism satisfying htop(f) >
λ+(f)
r admits at most finitely many ergodic measures of maximal entropy. In

the other hand, J. Buzzi has built examples of Cr surface diffeomorphisms

for any +∞ > r > 1 with
htop(f)
λ+(f)

arbitrarily close to 1/r without measure

of maximal entropy [7]. Such results were already known for interval maps
[3, 6, 8].

Proof. We consider the constant sequence of diffeomorphisms equal to f . By

using the notations of the Main Theorem with htop(f) > α > λ+(f)
r , we have

htop(f) = lim
k→+∞

h(νk),

≤ βh(µ1) + (1− β)α,

≤ βhtop(f) + (1− β)α,

(1− β)htop(f) ≤ (1− β)α.

But htop(f) > α, therefore β = 1, i.e. µ1 = µ and limk λ
+(νk) = λ+(µ).

Moreover htop(f) = limk→+∞ h(νk) ≤ βh(µ1)+(1−β)α = h(µ). Consequently
µ is a measure of maximal entropy.

�

Corollary 2 (Continuity of topological entropy). Let (fk)k be a sequence
of Cr, with r > 1, surface diffeomorphisms converging Cr weakly to f with

htop(f) ≥ λ+(f)
r . Then

htop(f) = lim
k
htop(fk).
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Moreover if htop(f) > λ+(f)
r and νk is a maximal measure of fk for large

enough k, then any limit measure of (νk)k for the weak-∗ topology is a maximal
measure of f .

Proof. By Katok’s horseshoes theorem [13], the topological entropy is lower
semi-continuous for the C1 topology on the set of Cr surface diffeomorphisms.
Therefore it is enough to show the upper semi-continuity.

Let (νk)k∈K , K ⊂ N with ]K = ∞, be a sequence of ergodic fk-invariant
measures with limk∈K h(νk) = lim supk∈N htop(fk). If lim supk∈K λ

+(νk) ≤
λ+(f)
r then we get by Ruelle’s inequality

lim sup
k∈N

htop(fk) = lim
k∈K

h(νk) ≤
λ+(f)

r
≤ htop(f).

By extracting a subsequence we can therefore assume limk λ
+(νk) >

λ+(f)
r

and that (νk)k is converging to a measure µ in the weak-∗ topology (this case

always holds when htop(f) > λ+(f)
r ). We can then apply the Main Theorem for

some α ∈]λ
+(f)
r ,min (limk λ

+(νk), htop(f)) [ to get for some f -invariant mea-
sure µ1 and β ∈ [0, 1]:

lim sup
k

htop(fk) = lim
k
h(νk),

≤ βh(µ1) + (1− β)α,

≤ htop(f).

In fact, by the lower semi-continuity, we have necessarily β = 1 and h(µ1) =
htop(f). �

The corresponding result was proved for interval maps in [5] by using a
different method. We also refer to [5] for counterexamples of the upper semi-

continuity property for interval maps f with htop(f) < λ+(f)
r . Finally, in

[7], the author built, for any r > 1, a Cr surface diffeomorphism f with

lim sup
g
Cr−→f

htop(g) = λ+(f)
r > htop(f) = 0. We recall also that upper semi-

continuity of the topological entropy in the C∞ topology was established in
any dimension by Y. Yomdin [16].

2. Main steps of the proof

We follow the strategy of the proof of [10]. We point out below the main
differences:

• hyperbolic and neutral empirical component. For λ+(νk) > α > 0 we
split the orbit of a νk-typical point x into the hyperbolic part and its
complement the neutral part. The hyperbolic part is given by the
integers k lying between to M -close consecutive α-hyperbolic times
for the sequence (φ(F kx̂))k with x̂ = (x, E+(x)). We then consider the
associated M -empirical measures and their limit in k, then in M . In
this way we get an invariant component of µ̂ (called the hyperbolic
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component). This decomposition follows exactly the approach in [10].
But here α > 0 is fixed, whereas α is taken close to zero in [10].
• Entropy computations. To compute the asymptotic entropy of the νk’s

in terms of the entropy of its neutral and hyperbolic empirical com-
ponent, we use the static entropy w.r.t. partitions and its conditional
version. Instead the authors in [10] used Katok’s like formulas and
combinatorial arguments.
• Cr Reparametrizations. Finally to estimate the entropy of the neutral

component and the local entropy of the hyperbolic component we use
here reparametrization methods from [4] and [2] respectively rather
than Yomdin’s reparametrizations of the projective action F as done
in [10]. This is the principal difference with [10].

2.1. Hyperbolic times and associated empirical measures. In this sec-
tion we mostly follow the presentation of the neutral decomposition of Section
6 in [10]. We work with the map F induced on the projective tangent bun-
dle and with the continuous observable φ, but the same construction may be
applied to any continuous observable of a topological system.

We let H be the α-hyperbolic set and E(x̂)) ⊂ Z for x̂ ∈ PTM be the
associated set of α-hyperbolic times at x̂:

H =
{
x̂ ∈ PTM, ∀l > 0 φl(F

−lx̂) ≥ αl
}
},

E(x̂) = {n ∈ Z, Fnx̂ ∈ H} .
When a < b are two consecutive times in E(x̂), then [a, b[ is a neutral block

as defined in [10], i.e. φk(F
ax̂) < kα for all 1 ≤ k < · · · < b − a. From

φb−a−1(F ax̂) < (b− a− 1)α and φb−a(F
ax̂) ≥ (b− a)α we get:

(2.1) |φb−a(F ax̂)− (b− a)α| ≤ ‖φ‖∞.
For all M we let

EM (x̂) =
⋃

a<b∈E(x̂), |a−b|≤M

[a, b[.

The complement of EM (x̂) is made of neutral blocks of length larger than M .
We consider the associated empirical measures :

∀n, µ̂Mx̂,n =
1

n

∑
k∈EM (x̂)∩[0,n[

δFkx̂.

Let ν be an ergodic measure with λ+(ν) > α > 0. By applying the Ergodic
Maximal Inequality (see e.g. Theorem 1.1 in [1]) to the measure preserving
system (F−1, ν̂+) with the observable ψ = α − φ ◦ F−1, we get with A =

{x̂, ∃k ≥ 1
∑k−1

l=0 ψ(F−lx̂) > 0}:∫
A
ψ dν̂+ ≥ 0.

But A = PTM \H, therefore
∫
H(α−φ◦F−1) dν̂+ ≤

∫
(α−φ◦F−1) dν̂+ = α−

λ+(ν). In particular we have ν̂+(H) > λ+(ν)−α
‖φ‖∞ > 0. Let χM be the indicator
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function of {x̂, 0 ∈ EM (x̂)}. By Birkhoff ergodic theorem, there is a set G of

full ν-measure such that the empirical measures
(
µ̂Mx̂,n

)
n

with x̂ = (x, E+(x))

are converging for any x ∈ G and any M ∈ N∗ to ξ̂M := χM ν̂+ in the weak-∗
topology. We also let η̂M = ν̂+− ξ̂M . Moreover we put βM =

∫
χM dν̂+, then

ξ̂M = βM · ξ̂
M

and η̂M = (1 − βM ) · η̂M with ξ̂
M

, η̂M being thus probability

measures. Finally in the next sections we will write ξM , ηM , µMx,n, ... for the

push-forward measures on M of ξ̂M , η̂M , µ̂Mx̂,n,...

Lemma 1. The empirical measures ξ̂M and η̂M satisfy the following proper-
ties:

(1) ξ̂M ≥ ξ̂N for M ≥ N .
(2) βM > 0 for M large enough,

(3)
∣∣∫ φdη̂M − α∣∣ ≤ ‖φ‖∞M ,

(4) for ξ̂
M

(KM ) = 1 with KM := {x̂, ∃0 ≤ m ≤M with φm(x̂) ≥ mα}.

Proof. The first item follows obviously from the definitions. The second item
follows from ν̂+(H) = limn

1
n]E(x̂)∩ [1, n] > 0 for ν̂+ a.e. x̂ and the inequality

lim supn
1
n supx̂ ]

(
E(x̂) \ EM (x̂)

)
∩ [1, n] < 1/M . To prove the third item, it is

enough to sum Inequality (2.1) over all neutral blocks [a, b[ in the complement
set of EM (x̂). The last item follows immediately from the definition of the

empirical measure ξ̂M and the compactness of KM .
�

For x̂ ∈ PTM we let mn(x̂) = maxE(x̂) ∩ [0, n[.

Lemma 2.
mn(x̂)

n

n−→ 1 for ν̂+ a.e. x̂.

Proof. For ν̂+ a.e. x̂, we have εn(x̂) := 1
nφn(x̂) − λ+(ν)

n−→ 0 and mn(x̂)
n−→

+∞. Then by definition of mn(x̂), the interval of integers [mn(x̂), n] lies in a

neutral block starting at mn(x̂), therefore φn−mn(x̂)(F
mn(x̂)x̂) ≤ α(n−mn(x̂)).

Consequently

φn(x̂)− φmn(x̂)(x̂) = φn−mn(x̂)(F
mn(x̂)x̂),

(n−mn(x̂))λ+(ν) + nεn(x̂)−mn(x̂)εmn(x̂)(x̂) ≤ α(n−mn(x̂)),

1

n
(λ+(ν)− α)(n−mn(x̂)) ≤ |εn(x̂)|+ |εmn(x̂)(x̂)| n−→ 0.

�

2.2. Entropy of conditional measures. A measurable partition ς is sub-
ordinated to the Pesin unstable local lamination W u of ν if the atom of ς
containing x is a neighborhood of x inside the curve W u(x) and f−1ς � ς. By
Rokhlin’s disintegration theorem, there is for ν-a.e. x a probability measure
νx on ς(x), called the condiational measures on unstable manifolds, satisfying
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ν =
∫
νx dν(x). Ledrappier-Young [12] proved the existence of such subor-

dinated measurable partitions and that for ν-a.e. x, we have with Bn(x, ρ)
being the Bowen ball Bn(x, ρ) =

⋂
0≤k<n f

−kB(fkx, ρ):

(2.2) lim
ρ→0

lim inf
n
− 1

n
log νx (Bn(x, ρ)) = h(ν).

Fix an error term δ depending† on ν. There is ρ > 0 and a measurable set

F ⊂ G with ν(F) > 0 such that the empirical measures
(
µ̂Mx̂,n

)
n

are converging

uniformly in x ∈ F to ξ̂M , i.e. for all continuous function ψ : PTM → R

(2.3)
1

n

∑
k∈EM (x̂)∩[1,n[

ψ(F kx̂)
n−→
∫
ψ dξM uniformly in x ∈ F

and such that

∀x ∈ F, lim inf
n
− 1

n
log νx (Bn(x, ρ)) ≥ h(ν)− δ.

We fix x∗ ∈ F with νx∗(F) > 0 and we let ζ be the probability measure
induced by νx∗ on F. We let D be the Cr curve given by the Pesin local
unstable manifold W u(x∗) at x∗. For a finite measurable partition P and
a Borel probability measure µ we let Hµ(P ) be the static entropy, H(µ) =

−
∑

A∈P µ(A) logµ(A). For a partition P of M , we let Pn =
∨n−1
k=0 f

−kP be
the n-iterated partition, n ∈ N. We also let Px be the atom of P containing
the point x ∈M .

Lemma 3. For any (finite measurable) partition P with diameter less than
ρ, we have

lim inf
n

1

n
Hζ(P

n) ≥ h(ν)− δ.

Proof.

lim inf
n

1

n
Hζ(P

n) = lim inf
n

∫
− 1

n
log ζ(Pnx ) dζ(x), by definition of Hζ ,

≥
∫

lim inf
n
− 1

n
log ζ(Pnx ) dζ(x), by Fatou’s Lemma,

≥
∫

lim inf
n
− 1

n
log νx(Pnx ) dζ(x), by definition of ζ,

≥
∫

lim inf
n
− 1

n
log νx(Bn(x, ρ)) dζ(x), as diam(P ) < ρ,

≥ h(ν)− δ, by the choice of F.

�

†In the proof of the Main Theorem we will take δ = δ(νk)
k−→ 0 for the converging

sequence of ergodic measures (νk)k.
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2.3. Entropy splitting of the neutral and the hyperbolic component.
In this section we split the entropy contribution of the neutral and hyperbolic
components. We consider a partition P with ν(∂P ) = 0 and with diameter
less than ρ (with ρ as in Lemma 3). Fix M . For each n ∈ N and x ∈
F we let EMn (x) = EM (x̂) ∩ [0, n[. We also let EMn be the partition of F

with atoms AE := {x ∈ D, EMn (x) = E} for E ⊂ [0, n[. Given a partition

Q of M , we also let QEMn be the partition of F finer than EMn with atoms{
x ∈ F, EMn (x) = E and ∀k ∈ E, fkx ∈ Qk

}
for E ⊂ [0, n[ and (Qk)k∈E ∈

QE . For a measure η and a subset A of M with η(A) > 0 we denote by ηA =
η(A∩·)
η(A) the induced probability measure on A. Moreover, for sets A,B we let

A∆B denote the symmetric difference of A and B, i.e. A∆B = (A\B)∪(B\A).

Lemma 4. For any partition Q with ξM (∂Q) = 0 we have

(2.4) h(ν) ≤ βM
1

m
HξM (Qm) + lim sup

n

1

n
Hζ(P

n|QEMn ) +
2

M
+

12 log ]Q

M
+ δ.

Proof. As the complement of EMn (x) is the disjoint union of neutral blocks

with length larger than M , there are at most AMn =
∑[2n/M ]+1

k=0

(
n
k

)
possible

values for EMn (x) so that

1

n
Hζ(P

n) =
1

n
Hζ(P

n|EMn ) +Hζ(E
M
n ),

≤ 1

n
Hζ(P

n|EMn ) + logAMn ,

lim inf
n

1

n
Hζ(P

n) ≤ lim sup
n

1

n
Hζ(P

n|EMn ) +
2

M
.

Then
1

n
Hζ(P

n|EMn ) ≤ 1

n
Hζ(Q

EMn |EMn ) +
1

n
Hζ(P

n|QEMn ).

For E ⊂ [0, n[ we let ζE,n = n
]E

∫
µMx,n dζAE . Observe that ζE,n and ]E/n are

converging to ξM and βM respectively uniformly in E when n goes to infinity
(as ζ(F) = 1). By Lemma 6 in [2] we have for all n > m ∈ N∗:

Hζ

(
QEMn |EMn

)
=
∑
E

ζ(AE)HζAE
(QE),

≤
∑
E

ζ(AE)]E

(
1

m
HζE,n(Qm) + 6m log ]Q

](E + 1)∆E

]E

)
.

Then as ξM (∂Q) = 0 we get by taking the limit in n:

lim sup
n

1

n
Hζ

(
QEMn |EMn

)
≤βM

1

m
HξM (Qm) +

12 log ]Q

M
,

h(ν)− δ ≤ lim inf
n

1

n
Hζ(P

n) ≤βM
1

m
HξM (Qm) + lim sup

n

1

n
Hζ(P

n|QEMn )

+
2

M
+

12 log ]Q

M
.
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�

2.4. Bounding the entropy of the neutral component. In this section we

assume the ergodic measure ν satisfies λ+(ν) > α > λ+(f)
r . We bound the term

lim supn
1
nHζ(P

n|QEMn ) in the right member of Lemma 4, which corresponds to
the local entropy contribution plus the entropy in the neutral part. In the next
statement, for any ε > 0 we let ‖dfp‖ε : x 7→ ‖dxfp‖ε := supy∈B(x,ε) ‖dyfp‖.

Lemma 5. For all p,M ∈ N∗, there are εp > 0 (depending only on p, α− λ+(f)
r

and the Cr norm of f) and γp,M > 0 with

lim sup
p

lim sup
M

γp,M = 0

such that for any partition Q with diameter less than ε < εp, we have:

lim sup
n

1

n
Hζ(P

n|QEMn ) ≤(1− βM )α

+

(
log 2 +

1

r − 1

)(∫
log+ ‖dfp‖ε

p
dξM −

∫
φdξ̂M

)
+ γp,M .

We will prove Lemma 5 assuming a semi-local Reparametrization Lemma
(Proposition 3). Let r > 1. Following [2] a curve σ : [−ε, ε]→M is said (resp.
strongly) (ε, r)-bounded when the image of σ is contained in the ball centered
at σ(0) with radius equal to the radius of injectivity of the Riemannian surface
and σ̃ := exp−1

σ(0) ◦σ satisfies maxk=1,··· ,r ‖dkσ̃‖ ≤ ‖dσ̃‖ (resp. ≤ 1). The curve

σ is said strongly (ε, r, n)-bounded for n ∈ N∗ if fk ◦σ is (ε, r)-bounded for all
k = 0, · · · , n− 1. When σ is strongly (ε, r, n)-bounded, then the distortion is
uniformly bounded along σ, i.e. for all x̂ = (x, vx), ŷ = (y, vy) in PTM tangent

to σ and for all k = 0, · · · , n − 1 we have
∣∣φn−k(F kx̂)− φn−k(F kŷ)

∣∣ ≤ log 2
for ε < 1/100 by Lemma 8 in [2].

Lemma 6. For any 0 < α′ < α, there exists C > 0 such that for any strongly
(ε, r, n)-bounded subcurve σ of D intersecting F, the length of fk ◦ σ is less

than Ce−α
′(n−k).

Proof. Let x ∈ F ∩ Im(σ) and x̂ = (x, E+(x)). For 0 ≤ k ≤ mn(x), we have
φmn(x̂)−k(F

kx̂) ≥ α(mn(x̂) − k) as mn(x̂) belongs to E(x̂). Therefore the

length of fk ◦ σ is less than 8εeα(k−mn(x)) by the aforementioned bounded

distorsion property. Finally, observe that mn(x̂)
n is converging uniformly to 1

on F by Lemma 2 and the definition of F. �

Proposition 3. For all p ∈ N∗ there are εp > 0 (depending only on p, α−λ+(f)
r

and the Cr norm of f) and γp,M > 0 with

lim sup
p

lim sup
M

γp,M = 0

such that for any partition Q with diameter less than ε < εp, the following
property holds for n large enough.
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The intersection of any atom Fn of the partition QEMn with D ∩ F may be
covered by a family ΨFn of strongly (ε, r, n)-bounded curves satisfying

1

n
log ]ΨFn ≤

(
1− ]En

n

)
α

+

(
log 2 +

1

r − 1

)(∫
log+ ‖dxfp‖ε

p
dζMFn(x)−

∫
φdζ̂MFn

)
+ γp,M .

where En = EMn (x) for x ∈ Fn, ζ̂MFn = 1
n

∫
µ̂x̂,n dζFn(x) and ζMFn its push-

forward on M .

The proof of Proposition 3 is given in the last section. Proposition 3 is
very similar to the Reparametrization Lemma in [4]. Here we reparametrize
D∩ F∩Fn for Fn an atom of QEn instead of Qn in [4]. The arguments are the
same as in [4] for the hyperbolic part, whereas in the neutral part we use the
bounded geometry property at hyperbolic times established in [2].

Proof of Lemma 5. First observe that

Hζ(P
n|QEn) ≤

∑
Fn∈QEn

ζ(Fn) log ]{An ∈ Pn, An ∩D ∩ F ∩ Fn 6= ∅}.

As ν(∂P ) = 0, for all γ > 0, there is χ > 0 and a continuous function ψ :
X → R+ equal to 1 on the χ-neighborhood ∂Pχ of ∂P satisfying

∫
ψ dν < γ.

Then we have uniformly in x ∈ F:

(2.5) lim sup
n

1

n
]{0 ≤ k < n, fkx ∈ ∂Pχ} ≤ lim

n

1

n

n−1∑
k=0

ψ(fkx) < γ.

Assume that for arbitrarily large n there is Fn ∈ QEMn and σ ∈ ΨFn with
]{An ∈ Pn, An ∩ Im(σ) 6= ∅} > ]P γn. Then we have ]{0 ≤ k < n, ∂P ∩
Im(fk ◦ σ) 6= ∅} > γn. By Lemma 6, the length of fk ◦ σ is less than χ for all
0 ≤ k ≤ n − C for some constant C independent of n. In particular we get
]{0 ≤ k < n, fkx ∈ ∂Pχ} > γn − C for any x ∈ Im(σ), which contradicts
(2.5). Therefore we have

lim sup
n

sup
Fn, σ∈ΨFn

1

n
log {An ∈ Pn, An ∩ Im(σ) 6= ∅} = 0.

Together with Proposition 3 this concludes the proof of Lemma 5.
�

2.5. Proof of the Main Theorem. Let (ν̂+
k )k be a sequence of ergodic fk-

invariant measures converging to µ̂ with
∫
φdµ̂ = limk λ

+(νk) > α > λ+(f)
r .

Without loss of generality we can assume lim infk h(νk) > 0. For µ a.e. x,
we have λ−(x) ≤ 0. If not, some ergodic component µ̃ of µ would have two
positive Lyapunov exponents and therefore should be the periodic measure at
a source. But then νk would be equal to µ̃ for large k contradicting h(νk) > 0.
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There is a subsequence in k such that ξ̂Mk → ξ̂M∞ for all M . Let us also

denote by β∞M the limit of βkM . Then consider a subsequence in M such

that ξ̂M∞ is converging to βµ̂1(= βαµ̂1,α) with β = limM β∞M . We also let
(1− β)µ̂0 = µ̂− βµ̂1. In this way, µ̂0 and µ̂1 are both probability measures.

Lemma 7. The measures µ̂0 and µ̂1 satisfy the following properties:

• µ̂1 is F -invariant,
• λ+(x) ≥ α for µ1-a.e. x and µ̂1 = µ̂+

1 ,
•
∫
φdµ̂0 = α.

Proof. For any continuous function ψ : PTM → R and for any k, we have∣∣∣∣∫ ψ dξ̂Mk −
∫
ψ ◦ F dξ̂Mk

∣∣∣∣ ≤ 2 supx̂ |ψ(x̂)|
M

.

Letting k, then M go to infinity, we get
∫
ψ dµ̂1 =

∫
ψ ◦ F dµ̂1, i.e. µ̂1 is F -

invariant. In particular µ̂1 is supported on the Oseledets bundles. But the set
KM being compact, we have ξ̂M∞ (KM ) ≥ lim supk ξ̂

M
k (KM ) = β∞M by Lemma

1 (4). Therefore we have µ̂1(
⋃
M KM ) = 1 as ξ̂M∞ goes increasingly in M to

µ̂1 by Lemma 1 (1). The F -invariant set
⋂
k F
−k (

⋃
M KM ) has also full µ̂1-

measure and for all x̂ = (x, v) in this set we have lim supn
1
n log ‖dxfn(v)‖ ≥

α. Consequently the measure µ̂1 is supported on the unstable bunddle and
λ+(x) ≥ α for µ1-a.e. x. To check finally

∫
φdµ̂0 = α, it is enough to let M

go to infinity in the third item of Lemma 1.
�

Remark 4. The measure µ̂+
1,α increases when α decreases to zero. In Theorem

C of [10], the measure µ̂+
1 is obtained as the limit of µ̂+

1,α when α goes to zero.

We pursue now the proof of the Main Theorem. Fix a sequence (δk)k of

positive numbers with δk
k−→ 0. Let p,M ∈ N∗. We consider a partition

Q satisfying diam(Q) < ε < εp with εp as in Lemma 5. As α > λ+(f)
r ≥

lim supk
λ+(fk)

r , we may extract a subsequence such that α− λ+(fk)
r is bounded

away from zero. The sequence (fk)k being morevoer Cr bounded, one can
choose εp independently of fk, k ∈ N.

We may also assume ∂Q has zero-measure for µ1 and all the measures ξMk ,
M ∈ N∗ and k ∈ N ∪ {∞}. Combining Lemma 5 and Lemma 4 we get for
ε < εp and for some constant‡ γp,Q,M with lim supp supQ lim supM γp,Q,M = 0:

h(νk) ≤βkM
1

m
Hξk

M (Qm) + (1− βkM )α

+

(
log 2 +

1

r − 1

)(∫
log+ ‖dfpk‖ε

p
dξMk −

∫
φdξ̂k

M
)

+ γp,Q,M + δk.

‡γp,Q,M = γp,M + 2
M

+ 12 log ]Q

Mβ
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By letting k, then M go to infinity, we obtain for all m:

lim sup
k

h(νk) ≤β
1

m
Hµ1(Qm) + (1− β)α

+

(
log 2 +

1

r − 1

)(∫
log+ ‖dfp‖ε

p
dµ1 −

∫
φdµ̂+

1

)
+ lim sup

M
γp,Q,M .

By letting m go to infinity, then ε < εp go to 0, we get:

lim sup
k

h(νk) ≤βh(µ1) + (1− β)α

+

(
log 2 +

1

r − 1

)(∫
log+ ‖dfp‖

p
dµ1 −

∫
φdµ̂+

1

)
+ sup

Q
lim sup

M
γp,Q,M .

But
∫
φdµ̂+

1 = λ+(µ1) = limp

∫ log+ ‖dfp‖
p dµ1. Therefore by letting p go to

infinity we finally obtain :

lim sup
k

h(νk) ≤ βh(µ1) + (1− β)α.

3. Dynamical Reparametrizations with bounded distorsion

In this section we establish a Cr, +∞ > r > 1, version of the bounded
geometry property at hyperbolic times established in [2]. Then we prove the
semi-local Reparametrization Lemma stated in Proposition 3. We first recall
some terminology from [2].

3.1. Control of Cr norms with Landau-Kolmogorov inequality. We
let exp and R = Rinj be respectively the exponential map and the radius of
injectivity of the smooth Riemanian manifold (M, ‖ · ‖). For x ∈M we let for
a given diffeomorphism f on M

fx = exp−1
fx ◦f ◦ expx : B(R) ⊂ TxM ∼ R2 → TfxM ∼ R2.

The Cr norm of f is defined as ‖f‖r = supx∈X ‖fxε ‖r with

‖fxε ‖r = max

(
max
N3s≤r

‖dsfx‖0, ‖d[r]f‖r−[r]

)
,

where ‖g‖s, s > 0, denotes the s-Hölder norm of a function g and ‖g‖0 its
supremum norm. A sequence (fk)k of Cr diffeomorphisms on M is said Cr
bounded when supk ‖fk‖r <∞.

There is ε > 0 depending only on f so small that for any x ∈ M the map
fxε = fx(ε·) satisfies ‖fxε ‖r = ‖dfxε ‖. For any 1 ≥ b > 0 we let ψb : [−ε, ε] 	,
be the linear map x 7→ bx. For any (ε, r)-bounded curve σ : [−ε, ε]→M with
σ(0) = x we let σε = ε−1 exp−1

x ◦σ.
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Lemma 8. Let σ be a strongly (ε, r)-bounded curve with σ(0) = x and vx the
projective vector tangent to σ at x. There exists a constant C = C(r) > 1
depending only on r and (M, ‖ · ‖) such that the map f ◦ σ ◦ ψa : [−ε, ε]→M
is (ε, r)-bounded with

a = a(x, f) = C−1 (‖dxf‖ε/‖dxf(vx)‖)−1/r−1 .

Proof. We assume r ∈ NN . The easy adpatations to the general case are left
to the reader. We compute for some constants C1 > · · · > C4 depending only

on r and (M, ‖ · ‖) and with b = (‖dxf‖ε/‖dxf(vx)‖)−1/r−1:

dr(exp−1
fx ◦f ◦ σ ◦ ψb) = dr(exp−1

fx ◦f ◦ σ)br,

‖dr(exp−1
fx ◦f ◦ σ ◦ ψb)‖ ≤

C4

2
‖fxε ‖r‖σε‖rbr, by Fa di Bruno’s formula,

≤ C4

2
‖fxε ‖rε−1‖ exp−1

x ◦σ‖rbr,

≤ C4

2
‖dfxε ‖ε−1‖ exp−1

x ◦σ‖rbr, by the choice of ε,

≤ C4

2
‖dfxε ‖ε−1‖d(exp−1

x ◦σ)‖br, since σ is (ε, r)-bounded,

≤ C3

2
br−1‖dxf‖ε‖dσ‖b,

≤ C3‖dxf(vx)‖‖dσ‖
2

b, by definition of b,

≤ C3‖dxf(vx)‖‖σ′(0)‖b,
≤ C2‖d(exp−1

fx ◦f ◦ σ ◦ ψb)‖.

Then by the Landau-Kolmogorov inequality (see [2]), we have :

‖ exp−1
fx ◦f ◦ σ ◦ ψb‖r ≤ C1‖d(exp−1

fx ◦f ◦ σ ◦ ψb)‖.

By taking a = b/C1 we get the desired result. �

3.2. Bounded geometry at hyperbolic times k. Let σ : I → M , where
I is an open bounded interval of R, be a Cr embedded smooth curve with
D ⊂ Im(σ). For x ∈ Im(σ) and n ∈ N we let Ixn = Ixn(ε, σ, r) be the largest
subinterval of I such that σ◦ψxn is strongly (ε, n, r)-bounded, where ψxn denotes
the affine reparametrization ψxn = ψxn,r : [−ε, ε] → Ixn with σ ◦ ψxn(0) = x. For

y ∈ Im(σ) we let Dk(y)(= Dε
k,σ(y)) := Im(fk◦σ◦ψyk) and Bk(y) := Im(σ◦ψyk).

A (ε, r)-bounded curve σ with σ(0) = x is said ample when ‖d
(
exp−1

x ◦σ
)
‖ >

1/2. Then the length of σ is larger ε
2 .

Recall that for x ∈ D we let x̂ = (x, vx) ∈ PTM with vx being the line
tangent to D at x.

Lemma 9. Let α > λ+(f)
r . There exist ε > 0 and 1 > τ > 0 depending only

on α and f , and N depending on f , α and D such that for any x ∈ D and
any n ∈ E(x̂) larger than N , the length of Dk(x) is larger than τε.
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Proof. Assume n is a α-hyperbolic time for x with α > λ+(f)
r . Let C be

the universal constant in Lemma 8. We may choose p so large that b :=

α − log ‖dfp‖+(r−1) logC
pr > 0. Finally take ε > 0 with ‖(fp)xε ‖r = ‖d(fp)xε ‖ for

all x ∈M .
Let m be the largest integer m′ less than or equal to n such that fm

′ ◦σ◦ψxm
is ample, i.e.

∥∥∥d(exp−1
fm′x
◦fm′ ◦ σ ◦ ψxm′

)∥∥∥ > 1/2. If there is no such m′, we

let m = 0. For L ∈ N we let AL := min0≤l<L,x∈M a(x, f l). Let K0 = K0(α, f)
and K1 = K1(α, f,D) be integers fixed later on.

• If m > n − K0p and m > 0 then σ ◦ ψxm(AKp·) is strongly (ε, n, r)-
bounded by Lemma 8. Indeed observe that for j = m + 1, · · · , n
we have ‖d(exp−1

fjx
◦f j ◦ σ ◦ ψxm(AKp·))‖ ≤ 1/2, otherwise this would

contradict the definition of m. Moreover the length of Dn(x) is larger
than τε with

τ =
AK0p

2
min
k<K0p

‖df−k‖−1.

• Consider now the case k := n − m ≥ N := K0p and m > 0. Write
n−m = qp+ r with 0 ≤ r < p. By Lemma 8 we have then with C as
in Lemma 8:

|ψxn|
|ψxm|

≥

(
(Cr−1‖dfp‖)k/p

eφk(Fmx̂)

)−1/r−1

,

≥

(
(Cr−1‖dfp‖)1/p

eα

)−k/r−1

, as n is a α-hyperbolic time,

≥ e−kα
(

(Cr−1‖dfp‖)1/pr

eα

)−kr/r−1

,

≥ e−kαe
K0pbr
r−1 , as b = α− log ‖dfp‖+ (r − 1) logC

pr
> 0.(3.1)

It follows that for others universal constant B:

‖d(exp−1
fnx ◦f

n ◦ σ ◦ ψxn)‖ ≥ B‖d0(fn ◦ σ ◦ ψxn)‖,

≥ Bekα‖d0(fm ◦ σ ◦ ψxn)‖, as n is a α-hyperbolic time,

≥ Bekα‖d0(fm ◦ σ ◦ ψxm)‖ × |ψ
x
n|

|ψxm|
, as ψxm, ψ

x
n are affine,

≥ Be
K0pbr
r−1 ‖d(fm ◦ σ ◦ ψxm)‖, by (3.1),(3.2)

‖d(exp−1
fnx ◦f

n ◦ σ ◦ ψxn)‖ ≥ Be
K0pbr
r−1 ‖d(exp−1

fmx ◦f
m ◦ σ ◦ ψxm)‖,

≥ Be
K0pbr
r−1 /2,

≥ 1/2, by choosing K0 = K0(α, f) appropriately.
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Therefore the (ε, n, r)-bounded curve exp−1
fnx ◦f

n ◦ σ ◦ ψxn is ample,

contradicting the definition of m. Consequently, only this case can not
occur.
• Finally assume m = 0 and n > K1. We can follow the same lines as

in the previous case till (3.2):

‖d(exp−1
fnx ◦f

n ◦ σ ◦ ψxn)‖ ≥ Be
K0pbr
r−1 ‖d(σ ◦ ψx0 )‖,

≥ 1/2, by choosing K1 = K1(α, f,D) appropriately.

Again the (ε, n, r)-bounded curve exp−1
fnx ◦f

n ◦σ ◦ψxn is ample, contra-

dicting the definition of m.

This concludes the proof by taking N = pK1(α, f,D).
�

3.3. Proof of Proposition 3. Fix p ∈ N∗ and 0 ≤ q < p. Without loss
of generality we can take M � p. Let Q be a partition with diameter less
than some ε < εp with εp being fixed later on in the proof of Lemma 11. We

consider Fn ∈ QEMn with n > N (as defined in Lemma 9). We let En be the set
EMn (x) for any x ∈ Fn. Put Ep,qn = En ∩ (q + pN). For a sequence of positive
integers K = (ki)i∈Ep,qn , we let

H(K) :=

{
y ∈ F, ∀i ki =

[
log+ ‖df iyfp‖
φp(F iŷ)

]
+ 1

}
.

We first estimate the number of sequences K with H(K) ∩ Fn 6= ∅, then
reparametrize H(K) ∩ Fn for each K. Let ‖df±‖ = max(‖df‖, ‖df−1‖).

Lemma 10. There is a sequence (εn)n with limn εn = 0 depending only on F

such that for any y ∈ Fn we have with ζ̂Mp,q,Fn = 1
n

∫ ∑
k∈Ep,qn δFk(x,vx) dζFn(x)

and ζMp,q,Fn its push-forward on M :

1

n
log2 ] {K, H(K) ∩ Fn 6= ∅} ≤

∫
log+ ‖dfp‖εdζMp,q,Fn −

∫
φdζ̂MFn(3.3)

+
4(p+ 1) log ‖df±‖

M
+

1

p
+ εn.

Proof. First observe En∆ ({0, · · · , p− 1}+ Eq,pn ) ⊂ {−p + 1, · · · , p − 1} +
En∆(En + 1). As ]En∆(En + 1) ≤ 2n/M we have also:

]En∆ ({0, · · · , p− 1}+ Eq,pn ) ≤ 4pn/M.

For all y ∈ Fn we get:

• |
∑

i∈Eq,pn φp(F
iŷ)−

∑
i∈En φ(F iŷ)| ≤ n4p log ‖df±‖

M , as observed above,

• |
∑

i/∈En φ(F iŷ)− α(n− ]En)| ≤ n log ‖df±‖
M , by Lemma 1 (3),

• εn := 2 supy∈F |
∑

0≤i≤n φ(F iŷ)− nλ+(ν)| n−→ 0 by (2.3).
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By combining the two last inequalities we get for all y, z ∈ Fn:∣∣∣∣∣∑
i∈En

φ(F iŷ)− φ(F iẑ)

∣∣∣∣∣ ≤ n
(
εn + 2

log ‖df±‖
M

)
,

then by integrating ẑ with respect to ζ̂Fn∣∣∣∣∣∑
i∈En

φ(F iŷ)− n
∫
φdζ̂MFn

∣∣∣∣∣ ≤ n
(
εn + 2

log ‖df±‖
M

)
.

Together the inequality of the first item we get

(3.4)

∣∣∣∣∣∣
∑
i∈Eq,pn

φp(F
iŷ)− n

∫
φdζ̂MFn

∣∣∣∣∣∣ ≤ n
(
εn +

4(p+ 1) log ‖df±‖
M

)
.

For any y, z ∈ Fn and any i ∈ Eq,pn , the points f iy and f iz lie in the same
atom of Q, thus they are ε-close, in particular log+ ‖df iyfp‖ ≤ log+ ‖df izfp‖ε.
Therefore if y belongs moreover to H(K) we get together with (3.4):
(3.5)
1

n

∑
i

ki ≤ An :=

∫
log+ ‖dfp‖εdζMp,q,Fn−

∫
φdζ̂MFn+

4(p+ 1) log ‖df±‖
M

+
1

p
+εn.

Finally the cardinality of sequences of positive integers (k1, · · · , kN ) with∑
i=1,··· ,N ki ≤ S is less than

(
N
S

)
≤ 2S .

�

Lemma 11. One can choose εp with the following property for any ε < εp.
For any Fn as above there is a family Ψn = Ψq

n of affine reparametrizations
ψ : [−ε, ε] 	, such that for some constant C depending only on r and f (not
on p, M or n):

• Im(σ) ∩H(K) ∩ Fn ⊂
⋃
ψn∈Ψn

Im(σ ◦ ψn),

• ∀ψn ∈ Ψn ∀ q + pN 3 k ≤ n, fk ◦ σ ◦ ψn is strongly (ε, r)-bounded,
•

(3.6) log ]Ψn ≤
∑

i ki
r − 1

+ α(n− ]En) + C

(
n

p
+ n−mn + p](En + 1)∆En

)
.

Proof. First let us observe by arguing as in Lemma 8 that if σ is strongly (ε, r)-
bounded, then there is a family F of affine reparametrizations φ of [−ε, ε] such
that f ◦ σ ◦ φ is strongly (ε, r)-bounded with ]F depending only on f and r.

We argue by induction on n. Let Fn ∈ QEMn and let En be the associated
atom of EMn . Without loss of generality we can assume n belongs to En ac-
cording to our first observation, i.e. mn = n. The term C(n −mn) in (3.6)
follows from this reduction). Let n′ be the largest integer in q + pN less than
or equal to n. We have the following alternative:

(1) [n′ − p, n′] ⊂ En, then we let m = n′ − p,
(2) there is n′ > m ∈ En with ]m,n′[∩En = ∅,
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(3) there is q ∈ [n − 2p, n[∩(En + 1)∆En, then we let m = q or q − 1
depending whether q belongs to En or En + 1.

In the first case (1) we argue as in the Reparamerization Lemma in [4]. By
induction hypothesis there is a family Ψm satisfying the conclusion of Lemma

11 for m with Fm being the atom of QE
M
n containing Fn. Let ψm ∈ Ψm with

Im(σ ◦ψm)∩H(K)∩Fn 6= ∅. Let εp > 0 so small that ‖(fp)xε ‖r = ‖d(fp)xε ‖ for
all x ∈ M and for all ε < εp. By using Lemma 8 for fp as in [4, Proposition
2], there is a family Θ of affine reparametrizations of [−ε, ε] such that:

• fn′ ◦ σ ◦ ψm ◦ θ is strongly (ε, r)-bounded,
• Im(σ ◦ ψm) ∩H(K) ∩ Fn ⊂

⋃
θ∈Θ Im(σ ◦ ψm ◦ θ),

• ]Θ ≤ Ce
kn′
r−1 .

This concludes the proof in case (1) by letting Ψn be the union of affine
reparametrizations ψm ◦ θ over all ψm ∈ Ψm and θ ∈ Θ = Θ(ψm). The contri-

bution of case (1) in (3.6) is given by
∑
i ki

r−1 + C n
p .

In the second case (2) we argue as in Lemma 13 in [2]. For any x ∈ Fn,
the integers m and n are hyperbolic times. By Lemma 9, there is ε̃ and τ
depending only on f and α such that for ε′ < ε̃ the sizes of Dm(x) = Dε′

m(x)

and Dn(x) = Dε′
n (x) are bounded from below by some ε = τε′ < ε′. But

as already observed, the distorsion is bounded on these curves and [m,n′[ is
contained in a neutral block, consequently:

|φn−m(Fmx̂)− α(n−m)| ≤ p log ‖df±‖.
Therefore the length of f−(n−m)Dn(x) ⊂ Dm(x) is larger than ‖df±‖−pe−α(n−m)ε/2.

We can choose εp with εp < τε̃/2. We assume the diameter of Q is less

than ε < εp. Write Fn =
⋂
k∈En f

−kQk for (Qk)k ∈ QEn . For two points

x, y ∈ Fn ∩ f−nQn, either Dn(x) and Dn(y) are disjoint or Dn(x) ∩ Qn =
Dn(y)∩Qn by Lemma 11 in [2]. Let Ψm be the family of affine reparametriza-

tions at step m with respect to the atom Fm of QEMn containing Fn. Let
ψm ∈ Ψm with Im(σ ◦ ψm) ∩ H(K) ∩ Fn 6= ∅. There is a minimal collec-
tion (xi)i∈I(ψm) of points in Im(σ ◦ ψm) ∩ H(K) such that the pairwise dis-
joint curves (En(xi))i cover Im(σ ◦ ψm) ∩ H(K) ∩ Fn. For any i, we have
Dm(xi) ∩ Im(fm ◦ σ ◦ ψm) 6= ∅. From the above lower bound on the length of

Dm(xi), we get ]I(ψm) ≤ 4‖df±‖−1e−α(n−m). Moreover each strongly (ε′, r, n)-
bounded curve ψxin = En(xi) may be obviously covered by a family Fi of
(ε, r, n)-bounded curves with ]Fi ≤ τ−1 +1. We conclude by letting Ψn be the
union of Fi over i ∈ I(ψm) and ψm ∈ Ψm. Case (2) corresponds to the term
α(n− ]En) + Cp](En + 1)∆En in (3.6).

The last case follows easily from our starting observation and leads to an-
other error term of the form Cp](En + 1)∆En in (3.6).

�

By increasing the cardinality of Ψn with a factor depending only on p and
f we may assume σ ◦ ψn is (ε, r, n)-bounded for any ψn ∈ Ψn. We recall that
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mn(x̂)
n is converging uniformly to 1 on F. Together with (3.3), (3.6), (3.5), we

get for some γp,M with lim supp lim supM γp,M = 0:

1

n
log ]Ψq

n ≤
(

1− ]En
n

)
α

+

(
log 2 +

1

r − 1

)(∫
log+ ‖dxfp‖εpdζMp,q,Fn(x)−

∫
φdζ̂MFn

)
+ γp,M .

We finally let ΨFn be the collection Ψq′
n with ]Ψq′

n = min0≤q<p ]Ψ
q
n. We

conclude:

1

n
log ]ΨFn ≤

1

p

∑
0≤q<p

1

n
log ]Ψq

n,

≤
(

1− ]En
n

)
α

+

(
log 2 +

1

r − 1

)1

p

∑
0≤q<p

∫
log+ ‖dxfp‖εdζMp,q,Fn(x)−

∫
φdζ̂MFn


+ γp,M ,

≤
(

1− ]En
n

)
α

+

(
log 2 +

1

r − 1

)(∫
log+ ‖dxfp‖ε

p
dζMFn(x)−

∫
φdζ̂MFn

)
+ γp,M .
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