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MAXIMAL MEASURE AND ENTROPIC CONTINUITY OF LYAPUNOV

EXPONENTS FOR Cr SURFACE DIFFEOMORPHISMS WITH LARGE

ENTROPY

DAVID BURGUET

Abstract. We prove a finite smooth version of the entropic continuity of Lyapunov expo-
nents of Buzzi-Crovisier-Sarig for C∞ surface diffeomorphisms [9]. As a consequence we show
that any Cr, r > 1, smooth surface diffeomorphism f with htop(f) > 1

r
lim supn

1
n

log+ ‖dfn‖
admits a measure of maximal entropy.

Introduction

The entropy of a dynamical system quantifies the dynamical complexity by counting dis-
tinct orbits. There are topological and measure theoretical versions which are related by a
variational principle : the topological entropy of a continuous map on a compact space is
equal to the supremum of the entropy of the invariant (probability) measures. An invariant
measure is said of maximal entropy when its entropy is equal to the topological entropy,
i.e. this measure realizes the supremum in the variational principle. In general a topological
system does not admit measures of maximal entropy. But such measures exist for systems
satisfying some expansiveness properties. In particular Newhouse [12] has proved their exis-
tence for C∞ systems by using Yomdin’s theory. In the present paper we show the existence
of a measure of maximal entropy for Cr smooth surface diffeomorphisms with 1 < r < +∞
with large entropy.

Other important dynamical quantities for smooth systems are given by the Lyapunov
exponents which estimate the exponential growth of the derivative. For C∞ surface diffeo-
morphisms, J. Buzzi, S. Crovisier and O. Sarig proved recently a property of continuity in the
entropy of the Lyapunov exponents with many statistical applications [9]. More precisely, for a
C∞ surface diffeomorphism f , if νk is a sequence of ergodic measures with limk h(νk) = htop(f),
then the Lyapunov exponents of νk are going to the (average) Lyapunov exponents of µ. We
prove a Cr version of their result for 1 < r < +∞.

1. Statements

We define now some notations to state our main result. For a diffeomorphism f on a com-
pact Riemannian surface (M, ‖·‖) we let F : PTM 	 be the induced map on the projective tan-
gent bundle PTM = T 1M/±1 and φ : PTM → R be the continuous observable on PTM given
by (x, v) 7→ log ‖dxf(v)‖. For k ∈ N∗ we define more generally φk : (x, v) 7→ log ‖dxfk(v)‖.
Then we let λ+(x) = lim supn→+∞

1
n log ‖dxfn‖, resp. λ−(x) = lim infn→−∞

1
n log ‖dxfn‖, for

any x ∈M and λ+(µ) =
∫
λ+(x) dµ(x) for any f -invariant measure µ.
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Also we put λ+(f) := limn
1
n log ‖dfn‖. For a f -invariant measure µ with λ+(x) > 0 ≥

λ−(x) for µ a.e. x, there are by Oseledets∗ theorem one-dimensional invariant vector spaces
E+(x) and E−(x), resp. called the unstable and stable Oseledets bundle, such that

∀ a.e. x ∀v ∈ E±(x) \ {0}, lim
n→±∞

1

n
log ‖dxfn(v)‖ = λ±(x).

Then we let µ̂+ be the F -invariant measure given by the lift of µ on PTM supported on the
one-dimensional Oseledets unstable bundle. When writing µ̂+ we assume implicitly that the
push-forward measure µ on M satisfies λ+(x) > 0 ≥ λ−(x) for µ a.e. x.

Theorem (Buzzi-Crovisier-Sarig, Theorem C in [9]). Let f be a Cr, with r > 1, surface
diffeomorphism. Assume there is a sequence (ν̂+

k )k of ergodic F -invariant measures converging
to µ̂.

Then there are F -invariant measures µ̂0 and µ̂+
1 with µ̂ = (1 − β)µ̂0 + βµ̂+

1 , β > 0, such
that:

• λ+(x) > 0 ≥ λ−(x) for µ1-a.e. x,
•
∫
φdµ̂0 = 0,

• lim supk→+∞ h(νk) ≤ βh(µ1) + λ+(f)+λ+(f−1)
r−1 .

Observe that λ+(νk) =
∫
φdν̂+

k
k−→
∫
φdµ̂ = βλ+(µ1), therefore β = limk

λ+(νk)
λ+(µ1)

. In

particular when f is C∞ and h(νk) goes to the topological entropy, then β is equal to 1
and therefore λ+(νk) goes to λ+(µ). We state an improved version of Buzzi-Crovisier-Sarig
Theorem, which allows to prove the same entropy continuity of Lyapunov exponents for Cr
surface diffeomorphisms with large enough entropy.

Main Theorem. Let f be a Cr, with r > 1, surface diffeomorphism. Assume there is a

sequence (ν̂+
k )k of ergodic F -invariant measures converging to µ̂ with

∫
φdµ̂ > α > λ+(f)

r .

Then there are F -invariant measures µ̂0 and µ̂+
1 with µ̂ = (1 − β)µ̂0 + βµ̂+

1 , β > 0, such
that

• λ+(x) ≥ α > 0 ≥ λ−(x) for µ1-a.e. x,
•
∫
φdµ̂0 = α,

• lim supk→+∞ h(νk) ≤ βh(µ1) + (1− β)α.

The Main Theorem implies Buzzi-Crovisier-Sarig statement. Indeed, either limk λ
+(νk) =∫

φdµ̂ ≤ λ+(f)
r and we get by Ruelle inequality, lim supk h(νk) ≤ λ+(f)

r or we are in the

settings of the Main Theorem for some α ∈
]
λ+(f)
r ,min

(∫
φdµ̂, λ

+(f)
r−1

)[
. By applying

the Main Theorem, there is then a decomposition µ̂ = (1 − βα)µ̂0,α + βαµ̂
+
1,α satisfying

lim supk→+∞ h(νk) ≤ βαh(µ1,α) + (1− βα)α. But it follows from the proofs that βαµ1,α is a
component of βµ1 with β and µ1 being as in Buzzi-Crovisier-Sarig’s statement (see Remark

2). In particular βαh(µ1,α) ≤ βh(µ1), therefore lim supk→+∞ h(νk) ≤ βh(µ1) + λ+(f)+λ+(f−1)
r−1 .

Corollary. Let f be a Cr, with r > 1, surface diffeomorphism satisfying htop(f) > λ+(f)
r .

Then f admits a measure of maximal entropy. More precisely, if (νk)k is a sequence of
ergodic measures converging to µ with limk h(νk) = htop(f), then

• h(µ) = htop(f),

∗We refer to [13] for background on Lyapunov exponents and Pesin theory.
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• limk λ
+(νk) = λ+(µ).

It was proved in [8] that any Cr surface diffeomorphism satisfying htop(f) > λ+(f)
r admits

at most finitely many ergodic measures of maximal entropy. In the other hand, J. Buzzi has

built examples of Cr surface diffeomorphisms for any +∞ > r > 1 with
htop(f)
λ+(f)

arbitrarily

close to 1/r without measure of maximal entropy [6]. Such results were already known for
interval maps [3, 5, 7].

Proof of the Corollary. By using the notations of the Main Theorem with htop(f) > α >
λ+(f)
r , we have

htop(f) = lim
k→+∞

h(νk),

≤ βh(µ1) + (1− β)α,

≤ βhtop(f) + (1− β)α,

(1− β)htop(f) ≤ (1− β)α.

But htop(f) > α, therefore β = 1, i.e. µ1 = µ and limk λ
+(νk) = λ+(µ). Moreover htop(f) =

limk→+∞ h(νk) ≤ βh(µ1)+(1−β)α = h(µ). Consequently µ is a measure of maximal entropy.
�

2. Main steps of the proof

We follow the strategy of the proof of [9]. We point out below the main differences:

• hyperbolic and neutral empirical component. For λ+(νk) > α > 0 we split the orbit
of a νk-typical point x into the hyperbolic part and its complement the neutral part.
The hyperbolic part is given by the integers k lying between to M -close consecutive
α-hyperbolic times for the sequence (φ(F kx̂))k with x̂ = (x, E+(x)). We then consider
the associated M -empirical measures and their limit in k, then in M . In this way we
get an invariant component of µ̂ (called the hyperbolic component). This decomposi-
tion follows exactly the approach in [9]. But here α > 0 is fixed, whereas α is taken
close to zero in [9].
• Entropy computations. To compute the asymptotic entropy of the νk’s in terms of the

entropy of its neutral and hyperbolic empirical component, we use the static entropy
w.r.t. partitions and its conditional version. Instead the authors in [9] used Katok’s
like formulas and combinatorial arguments.
• Cr Reparametrizations. Finally to estimate the entropy of the neutral component and

the local entropy of the hyperbolic component we use here reparametrization methods
from [4] and [2] respectively rather than Yomdin’s reparametrizations of the projective
action F as done in [9]. This is the principal difference with [9].

2.1. Hyperbolic times and associated empirical measures. In this section we mostly
follow the presentation of the neutral decomposition of Section 6 in [9]. We work with the
map F induced on the projective tangent bundle and with the continuous observable φ, but
the same construction may be applied to any continuous observable of a topological system.

We let H be the α-hyperbolic set and E(x̂)) ⊂ Z for x̂ ∈ PTM be the associated set of
α-hyperbolic times at x̂:

H =
{
x̂ ∈ PTM, ∀l > 0 φl(F

−lx̂) ≥ αl
}
},
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E(x̂) = {n ∈ Z, Fnx̂ ∈ H} .
When a < b are two consecutive times in E(x̂), then [a, b[ is a neutral block as defined in

[9], i.e. φk(F
ax̂) < kα for all 1 ≤ k < · · · < b − a. From φb−a−1(F ax̂) < (b − a − 1)α and

φb−a(F
ax̂) ≥ (b− a)α we get:

(2.1) |φb−a(F ax̂)− (b− a)α| ≤ ‖φ‖∞.

For all M we let

EM (x̂) =
⋃

a<b∈E(x̂), |a−b|≤M

[a, b[.

The complement of EM (x̂) is made of neutral blocks of length larger than M . We consider
the associated empirical measures :

∀n, µ̂Mx̂,n =
1

n

∑
k∈EM (x̂)∩[0,n[

δFkx̂.

Let ν be an ergodic measure with λ+(ν) > α > 0. By applying the Ergodic Maximal
Inequality (see e.g. Theorem 1.1 in [1]) to the measure preserving system (F−1, ν̂+) with the

observable ψ = α− φ ◦ F−1, we get with A = {x̂, ∃k ≥ 1
∑k−1

l=0 ψ(F−lx̂) > 0}:∫
A
ψ dν̂+ ≥ 0.

But A = PTM \H, therefore
∫
H(α − φ ◦ F−1) dν̂+ ≤

∫
(α − φ ◦ F−1) dν̂+ = α − λ+(ν). In

particular we have ν̂+(H) > λ+(ν)−α
‖φ‖∞ > 0. Let χM be the indicator function of {x̂, 0 ∈ EM (x̂)}.

By Birkhoff ergodic theorem, there is a set G of full ν-measure such that the empirical measures(
µ̂Mx̂,n

)
n

with x̂ = (x, E+(x)) are converging for any x ∈ G and any M ∈ N∗ to ξ̂M := χM ν̂+

in the weak-∗ topology. We also let η̂M = ν̂+ − ξ̂M . Moreover we put βM =
∫
χM dν̂+, then

ξ̂M = βM · ξ̂
M

and η̂M = (1−βM ) · η̂M with ξ̂
M

, η̂M being thus probability measures. Finally

in the next sections we will write ξM , ηM , µMx,n, ... for the push-forward measures on M of

ξ̂M , η̂M , µ̂Mx̂,n,...

Lemma 1. The empirical measures ξ̂M and η̂M satisfy the following properties:

(1) ξ̂M ≥ ξ̂N for M ≥ N .
(2) βM > 0 for M large enough,

(3)
∣∣∫ φdη̂M − α∣∣ ≤ ‖φ‖∞M ,

(4) for ξ̂
M

(KM ) = 1 with KM := {x̂, ∃0 ≤ m ≤M with φm(x̂) ≥ mα}.

Proof. The first item follows obviously from the definitions. The second item follows from
ν̂+(H) = limn

1
n]E(x̂)∩[1, n] > 0 for ν̂+ a.e. x̂ and the inequality lim supn

1
n supx̂ ]

(
E(x̂) \ EM (x̂)

)
∩

[1, n] < 1/M . To prove the third item, it is enough to sum Inequality (2.1) over all neutral
blocks [a, b[ in the complement set of EM (x̂). The last item follows immediately from the

definition of the empirical measure ξ̂M and the compactness of KM .
�

For x̂ ∈ PTM we let mn(x̂) = maxE(x̂) ∩ [0, n[.
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Lemma 2.
mn(x̂)

n

n−→ 1 for ν̂+ a.e. x̂.

Proof. For ν̂+ a.e. x̂, we have εn(x̂) := 1
nφn(x̂) − λ+(ν)

n−→ 0 and mn(x̂)
n−→ +∞. Then

by definition of mn(x̂), the interval of integers [mn(x̂), n] lies in a neutral block starting at

mn(x̂), therefore φn−mn(x̂)(F
mn(x̂)x̂) ≤ α(n−mn(x̂)). Consequently

φn(x̂)− φmn(x̂)(x̂) = φn−mn(x̂)(F
mn(x̂)x̂),

(n−mn(x̂))λ+(ν) + nεn(x̂)−mn(x̂)εmn(x̂)(x̂) ≤ α(n−mn(x̂)),

1

n
(λ+(ν)− α)(n−mn(x̂)) ≤ |εn(x̂)|+ |εmn(x̂)(x̂)| n−→ 0.

�

2.2. Entropy of conditional measures. A measurable partition ς is subordinated to the
Pesin unstable local lamination W u of ν if the atom of ς containing x is a neighborhood of x
inside the curve W u(x) and f−1ς � ς. By Rokhlin’s disintegration theorem, there is for ν-a.e.
x a probability measure νx on ς(x), called the condiational measures on unstable manifolds,
satisfying ν =

∫
νx dν(x). Ledrappier-Young [11] proved the existence of such subordinated

measurable partitions and that for ν-a.e. x, we have with Bn(x, ρ) being the Bowen ball
Bn(x, ρ) =

⋂
0≤k<n f

−kB(fkx, ρ):

(2.2) lim
ρ→0

lim inf
n
− 1

n
log νx (Bn(x, ρ)) = h(ν).

Fix an error term δ depending† on ν. There is ρ > 0 and a measurable set F ⊂ G with

ν(F) > 0 such that the empirical measures
(
µ̂Mx̂,n

)
n

are converging uniformly in x ∈ F to ξ̂M ,

i.e. for all continuous function ψ : PTM → R

(2.3)
1

n

∑
k∈EM (x̂)∩[1,n[

ψ(F kx̂)
n−→
∫
ψ dξM uniformly in x ∈ F

and such that

∀x ∈ F, lim inf
n
− 1

n
log νx (Bn(x, ρ)) ≥ h(ν)− δ.

We fix x∗ ∈ F with νx∗(F) > 0 and we let ζ be the probability measure induced by νx∗ on
F. We let D be the Cr curve given by the Pesin local unstable manifold W u(x∗) at x∗. For a
finite measurable partition P and a Borel probability measure µ we let Hµ(P ) be the static

entropy, H(µ) = −
∑

A∈P µ(A) logµ(A). For a partition P of M , we let Pn =
∨n−1
k=0 f

−kP be
the n-iterated partition, n ∈ N. We also let Px be the atom of P containing the point x ∈M .

Lemma 3. For any (finite measurable) partition P with diameter less than ρ, we have

lim inf
n

1

n
Hζ(P

n) ≥ h(ν)− δ.

†In the proof of the Main Theorem we will take δ = δ(νk)
k−→ 0 for the converging sequence of ergodic

measures (νk)k.



6 David Burguet

Proof.

lim inf
n

1

n
Hζ(P

n) = lim inf
n

∫
− 1

n
log ζ(Pnx ) dζ(x), by definition of Hζ ,

≥
∫

lim inf
n
− 1

n
log ζ(Pnx ) dζ(x), by Fatou’s Lemma,

≥
∫

lim inf
n
− 1

n
log νx(Pnx ) dζ(x), by definition of ζ,

≥
∫

lim inf
n
− 1

n
log νx(Bn(x, ρ)) dζ(x), as diam(P ) < ρ,

≥ h(ν)− δ, by the choice of F.

�

2.3. Entropy splitting of the neutral and the hyperbolic component. In this section
we split the entropy contribution of the neutral and hyperbolic components. We consider a
partition P with ν(∂P ) = 0 and with diameter less than ρ. Fix M . For each n ∈ N and
x ∈ F we let EMn (x) = EM (x̂) ∩ [0, n[. We also let EMn be the partition of F with atoms

AE := {x ∈ D, EMn (x) = E} for E ⊂ [0, n[. Given a partition Q of M , we also let QEMn be
the partition of F finer than EMn with atoms

{
x ∈ F, EMn (x) = E and ∀k ∈ E, fkx ∈ Qk

}
for

E ⊂ [0, n[ and (Qk)k∈E ∈ QE . For a measure η and a subset A of M with η(A) > 0 we denote

by ηA = η(A∩·)
η(A) the induced probability measure on A. Moreover, for sets A,B we let A∆B

denote the symmetric difference of A and B, i.e. A∆B = (A \B) ∪ (B \A).

Lemma 4. For any partition Q with ξM (∂Q) = 0 we have

(2.4) h(ν) ≤ βM
1

m
HξM (Qm) + lim sup

n

1

n
Hζ(P

n|QEMn ) +
2

M
+

12 log ]Q

M
+ δ.

Proof. As the complement of EMn (x) is the disjoint union of neutral blocks with length larger

than M , there are at most AMn =
∑[2n/M ]+1

k=0

(
n
k

)
possible values for EMn (x) so that

1

n
Hζ(P

n) =
1

n
Hζ(P

n|EMn ) +Hζ(E
M
n ),

≤ 1

n
Hζ(P

n|EMn ) + logAMn ,

lim inf
n

1

n
Hζ(P

n) ≤ lim sup
n

1

n
Hζ(P

n|EMn ) +
2

M
.

Then

1

n
Hζ(P

n|EMn ) ≤ 1

n
Hζ(Q

EMn |EMn ) +
1

n
Hζ(P

n|QEMn ).

For E ⊂ [0, n[ we let ζE,n = n
]E

∫
µMx,n dζAE . Observe that ζE,n and ]E/n are converging to

ξM and βM respectively uniformly in E when n goes to infinity (as ζ(F) = 1). By Lemma 6
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in [2] we have for all n > m ∈ N∗:

Hζ

(
QEMn |EMn

)
=
∑
E

ζ(AE)HζAE
(QE),

≤
∑
E

ζ(AE)]E

(
1

m
HζE,n(Qm) + 6m log ]Q

](E + 1)∆E

]E

)
.

Then as ξM (∂Q) = 0 we get by taking the limit in n:

lim sup
n

1

n
Hζ

(
QEMn |EMn

)
≤ βM

1

m
HξM (Qm) +

12 log ]Q

M
,

h(ν)− δ ≤ lim inf
n

1

n
Hζ(P

n) ≤ βM
1

m
HξM (Qm) + lim sup

n

1

n
Hζ(P

n|QEMn ) +
2

M
+

12 log ]Q

M
.

�

2.4. Bounding the entropy of the neutral component. In this section we assume the

ergodic measure ν satisfies λ+(ν) > α > λ+(f)
r . We bound the term lim supn

1
nHζ(P

n|QEMn )
in the right member of Lemma 4, which corresponds to the local entropy contribution plus
the entropy in the neutral part. In the next statement, for any ε > 0 we let ‖dfp‖ε : x 7→
‖dxfp‖ε := supy∈B(x,ε) ‖dyfp‖.

Lemma 5. For all p,M ∈ N∗, there are εp > 0 and γp,M > 0 with lim supp lim supM γp,M = 0
such that for any partition Q with diameter less than ε < εp, we have:

lim sup
n

1

n
Hζ(P

n|QEMn ) ≤ (1−βM )α+

(
log 2 +

1

r − 1

)(∫
log+ ‖dfp‖ε

p
dξM −

∫
φdξ̂M

)
+γp,M .

We will prove Lemma 5 assuming a semi-local Reparametrization Lemma (Proposition 1).
Let r > 1. Following []curve σ : [−ε, ε]→M is said (resp. strongly) (ε, r)-bounded when the
image of σ is contained in the ball centered at σ(0) with radius equal to the radius of injectivity
of the Riemannian surface and σ̃ := exp−1

σ(0) ◦σ satisfies maxk=1,··· ,r ‖dkσ̃‖ ≤ ‖dσ̃‖ (resp. ≤ 1).

The curve σ is said strongly (ε, r, n)-bounded for n ∈ N∗ if fk ◦ σ is (ε, r)-bounded for all
k = 0, · · · , n − 1. When σ is strongly (ε, r, n)-bounded, then the distorsion is uniformly
bounded along σ, i.e. for all x̂ = (x, vx), ŷ = (y, vy) in PTM tangent to σ and for all

k = 0, · · · , n − 1 we have
∣∣φn−k(F kx̂)− φn−k(F kŷ)

∣∣ ≤ log 2 for ε < 1/100 (see [2, 4] for
details).

Lemma 6. For any 0 < α′ < α, there exists C > 0 such that for any strongly (ε, r, n)-bounded

subcurve σ of D intersecting F, the length of fk ◦ σ is less than Ce−α
′(n−k).

Proof. Let x ∈ F ∩ Im(σ) and x̂ = (x, E+(x)). For 0 ≤ k ≤ mn(x), we have φmn(x̂)−k(F
kx̂) ≥

α(mn(x̂)−k) as mn(x̂) belongs to E(x̂). Therefore the length of fk◦σ is less than 8εeα(k−mn(x))

by the aforementioned bounded distorsion property. Finally, observe that mn(x̂)
n is converging

uniformly to 1 on F by Lemma 2 and the definition of F. �

Proposition 1. For all p ∈ N∗ there are εp > 0 and γp,M > 0 with lim supp lim supM γp,M = 0
such that for any partition Q with diameter less than ε < εp, the following property holds for
n large enough.
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The intersection of any atom Fn of the partition QEMn with D∩F may be covered by a family
ΨFn of strongly (ε, r, n)-bounded curves satisfying

1

n
log ]ΨFn ≤

(
1− ]En

n

)
α+

(
log 2 +

1

r − 1

)(∫
log+ ‖dxfp‖ε

p
dζMFn(x)−

∫
φdζ̂MFn

)
+γp,M .

where En = EMn (x) for x ∈ Fn, ζ̂MFn = 1
n

∫
µ̂x̂,n dζFn(x) and ζMFn its push-forward on M .

The proof of Proposition 1 is given in the last section. Proposition 1 is very similar to the
Reparametrization Lemma in [4]. Here we reparametrize D ∩ F ∩ Fn for Fn an atom of QEn

instead of Qn in [4]. The arguments are the same as in [4] for the hyperbolic part, whereas
in the neutral part we use the bounded geometry property at hyperbolic times established in
[2].

Proof of Lemma 5. First observe that

Hζ(P
n|QEn) ≤

∑
Fn∈QEn

ζ(Fn) log ]{An ∈ Pn, An ∩D ∩ F ∩ Fn 6= ∅}.

As ν(∂P ) = 0, for all γ > 0, there is χ > 0 and a continuous function ψ : X → R+ equal to
1 on the χ-neighborhood ∂Pχ of ∂P satisfying

∫
ψ dν < γ. Then we have uniformly in x ∈ F:

(2.5) lim sup
n

1

n
]{0 ≤ k < n, fkx ∈ ∂Pχ} ≤ lim

n

1

n

n−1∑
k=0

ψ(fkx) < γ.

Assume that for arbitrarily large n there is Fn ∈ QEMn and σ ∈ ΨFn with ]{An ∈ Pn, An ∩
Im(σ) 6= ∅} > ]P γn. Then we have ]{0 ≤ k < n, ∂P ∩ Im(fk ◦ σ) 6= ∅} > γn. By Lemma
6, the length of fk ◦ σ is less than χ for all 0 ≤ k ≤ n− C for some constant C independent
of n. In particular we get ]{0 ≤ k < n, fkx ∈ ∂Pχ} > γn − C for any x ∈ Im(σ), which
contradicts (2.5). Therefore we have

lim sup
n

sup
Fn, σ∈ΨFn

1

n
log {An ∈ Pn, An ∩ Im(σ) 6= ∅} = 0.

Together with Proposition 1 this concludes the proof of Lemma 5.
�

2.5. Proof of the Main Theorem. Let (ν̂+
k )k be a sequence of ergodic measures converging

to µ̂ with
∫
φdµ̂ = limk λ

+(νk) > α > λ+(f)
r . Without loss of generality we can assume

lim infk h(νk) > 0. For µ a.e. x, we have λ−(x) ≤ 0. If not, some ergodic component µ̃ of µ
would have two positive Lyapunov exponents and therefore should be the periodic measure
at a source. But then νk would be equal to µ̃ for large k contradicting h(νk) > 0.

There is a subsequence in k such that ξ̂Mk → ξ̂M∞ for all M . Let us also denote by β∞M the

limit of βkM . Then consider a subsequence in M such that ξ̂M∞ is converging to βµ̂1(= βαµ̂1,α)
with β = limM β∞M . We also let (1 − β)µ̂0 = µ̂ − βµ̂1. In this way, µ̂0 and µ̂1 are both
probability measures.

Lemma 7. The measures µ̂0 and µ̂1 satisfy the following properties:

• µ̂1 is F -invariant,
• λ+(x) ≥ α for µ1-a.e. x and µ̂1 = µ̂+

1 ,
•
∫
φdµ̂0 = α.
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Proof. For any continuous function ψ : PTM → R and for any k, we have∣∣∣∣∫ ψ dξ̂Mk −
∫
ψ ◦ F dξ̂Mk

∣∣∣∣ ≤ 2 supx̂ |ψ(x̂)|
M

.

Letting k, then M go to infinity, we get
∫
ψ dµ̂1 =

∫
ψ ◦ F dµ̂1, i.e. µ̂1 is F -invariant. In

particular µ̂1 is supported on the Oseledets bundles. But the set KM being compact, we have
ξ̂M∞ (KM ) ≥ lim supk ξ̂

M
k (KM ) = β∞M by Lemma 1 (4). Therefore we have µ̂1(

⋃
M KM ) = 1 as

ξ̂M∞ goes increasingly in M to µ̂1 by Lemma 1 (1). The F -invariant set
⋂
k F
−k (

⋃
M KM ) has

also full µ̂1-measure and for all x̂ = (x, v) in this set we have lim supn
1
n log ‖dxfn(v)‖ ≥ α.

Consequently the measure µ̂1 is supported on the unstable bunddle and λ+(x) ≥ α for µ1-a.e.
x. To check finally

∫
φdµ̂0 = α, it is enough to let M go to infinity in the third item of

Lemma 1.
�

Remark 2. The measure µ̂+
1,α increases when α decreases to zero. In Theorem C of [9], the

measure µ̂+
1 is obtained as the limit of µ̂+

1,α when α goes to zero.

We pursue now the proof of the Main Theorem. Fix a sequence (δk)k of positive numbers

with δk
k−→ 0. Let p,M ∈ N∗. We consider a partition Q satisfying diam(Q) < ε < εp with εp

as in Lemma 5. We may also assume ∂Q has zero-measure for µ1 and all the measures ξMk ,
M ∈ N∗ and k ∈ N∪{∞}. Combining Lemma 5 and Lemma 4 we get for ε < εp and for some

constant‡ γp,Q,M with lim supp supQ lim supM γp,Q,M = 0:

h(νk) ≤ βkM
1

m
Hξk

M (Qm)+(1−βkM )α+

(
log 2 +

1

r − 1

)(∫
log+ ‖dfp‖ε

p
dξMk −

∫
φdξ̂k

M
)

+γp,Q,M+δk.

By letting k, then M go to infinity, we obtain for all m:

lim sup
k

h(νk) ≤ β
1

m
Hµ1(Qm)+(1−β)α+

(
log 2 +

1

r − 1

)(∫
log+ ‖dfp‖ε

p
dµ1 −

∫
φdµ̂+

1

)
+lim sup

M
γp,Q,M .

By letting m go to infinity, then ε < εp go to 0, we get:

lim sup
k

h(νk) ≤ βh(µ1)+(1−β)α+

(
log 2 +

1

r − 1

)(∫
log+ ‖dfp‖

p
dµ1 −

∫
φdµ̂+

1

)
+sup

Q
lim sup

M
γp,Q,M .

But
∫
φdµ̂+

1 = λ+(µ1) = limp

∫ log+ ‖dfp‖
p dµ1. Therefore by letting p go to infinity we finally

obtain :

lim sup
k

h(νk) ≤ βh(µ1) + (1− β)α.

3. Dynamical Reparametrizations with bounded distorsion

In this section we establish a Cr, +∞ > r > 1, version of the bounded geometry property at
hyperbolic times established in [2]. Then we prove the semi-local Reparametrization Lemma
stated in Proposition 1. We first recall some terminology from [2].

‡γp,Q,M = γp,M + 2
M

+ 12 log ]Q

Mβ
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3.1. Control of Cr norms with Landau-Kolmogorov inequality. We let exp and R =
Rinj be respectively the exponential map and the radius of injectivity of the Riemanian
manifold (M, ‖ · ‖). For x ∈M we let

fx = exp−1
fx ◦f ◦ expx : B(R) ⊂ TxM ∼ R2 → TfxM ∼ R2.

There is ε > 0 depending only on f so small that for any x ∈ M the map fxε = fx(ε·)
satisfies ‖fxε ‖r := maxk=1,··· ,r ‖dkfxε ‖ = ‖dfxε ‖. For any 1 ≥ b > 0 we let ψb : [−ε, ε] 	, be
the linear map x 7→ bx. For any (ε, r)-bounded curve σ : [−ε, ε] → M with σ(0) = x we let
σε = ε−1 exp−1

x ◦σ.

Lemma 8. Let σ be a strongly (ε, r)-bounded curve with σ(0) = x and vx the projective vector
tangent to σ at x. There exists a constant C = C(r) > 1 depending only on r and (M, ‖ · ‖)
such that the map f ◦ σ ◦ ψa : [−ε, ε]→M is (ε, r)-bounded with

a = a(x, f) = C−1 (‖dxf‖ε/‖dxf(vx)‖)−1/r−1 .

Proof. We compute for some constants C1 > · · · > C4 depending only on r and (M, ‖ · ‖) and

with b = (‖dxf‖ε/‖dxf(vx)‖)−1/r−1:

dr(exp−1
fx ◦f ◦ σ ◦ ψb) = dr(exp−1

fx ◦f ◦ σ)br,

‖dr(exp−1
fx ◦f ◦ σ ◦ ψb)‖ ≤

C4

2
‖fxε ‖r‖σε‖rbr, by Fa di Bruno’s formula,

≤ C4

2
‖fxε ‖rε−1‖ exp−1

x ◦σ‖rbr,

≤ C4

2
‖dfxε ‖ε−1‖ exp−1

x ◦σ‖rbr, by the choice of ε,

≤ C4

2
‖dfxε ‖ε−1‖d(exp−1

x ◦σ)‖br, since σ is (ε, r)-bounded,

≤ C3

2
br−1‖dxf‖ε‖dσ‖b,

≤ C3‖dxf(vx)‖‖dσ‖
2

b, by definition of b,

≤ C3‖dxf(vx)‖‖σ′(0)‖b,
≤ C2‖d(exp−1

fx ◦f ◦ σ ◦ ψb)‖.

Then by the Landau-Kolmogorov inequality (see [2]), we have :

‖ exp−1
fx ◦f ◦ σ ◦ ψb‖r ≤ C1‖d(exp−1

fx ◦f ◦ σ ◦ ψb)‖.

By taking a = b/C1 we get the desired result. �

3.2. Bounded geometry at hyperbolic times k. Let σ : I → M , where I is an open
bounded interval of R, be a Cr embedded smooth curve with D ⊂ Im(σ). For x ∈ Im(σ)
and n ∈ N we let Ixn = Ixn(ε, σ, r) be the largest subinterval of I such that σ ◦ ψxn is strongly
(ε, n, r)-bounded, where ψxn denotes the affine reparametrization ψxn = ψxn,r : [−ε, ε] → Ixn
with σ ◦ ψxn(0) = x. For y ∈ Im(σ) we let Dk(y)(= Dε

k,σ(y)) := Im(fk ◦ σ ◦ ψyk) and Bk(y) :=

Im(σ ◦ ψyk).

A (ε, r)-bounded curve σ with σ(0) = x is said ample when ‖d
(
exp−1

x ◦σ
)
‖ > 1/2. Then

the length of σ is larger ε
2 .

Recall that for x ∈ D we let x̂ = (x, vx) ∈ PTM with vx being the line tangent to D at x.
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Lemma 9. Let α > λ+(f)
r . There exist ε > 0 and 1 > τ > 0 depending only on α and f , and

N depending on f , α and D such that for any x ∈ D and any n ∈ E(x̂) larger than N , the
length of Dk(x) is larger than τε.

Proof. Assume n is a α-hyperbolic time for x with α > λ+(f)
r . Let C be the universal constant

in Lemma 8. We may choose p so large that b := α − log ‖dfp‖+(r−1) logC
pr > 0. Finally take

ε > 0 with ‖(fp)xε ‖r = ‖d(fp)xε ‖ for all x ∈M .

Let m be the largest integer m′ less than or equal to n such that fm
′ ◦ σ ◦ ψxm is ample,

i.e.
∥∥∥d(exp−1

fm′x
◦fm′ ◦ σ ◦ ψxm′

)∥∥∥ > 1/2. If there is no such m′, we let m = 0. For L ∈ N we

let AL := min0≤l<L,x∈M a(x, f l). Let K0 = K0(α, f) and K1 = K1(α, f,D) be integers fixed
later on.

• If m > n−K0p and m > 0 then σ◦ψxm(AKp·) is strongly (ε, n, r)-bounded by Lemma 8.

Indeed observe that for j = m+1, · · · , n we have ‖d(exp−1
fjx
◦f j◦σ◦ψxm(AKp·))‖ ≤ 1/2,

otherwise this would contradict the definition of m. Moreover the length of Dn(x) is
larger than τε with

τ =
AK0p

2
min
k<K0p

‖df−k‖−1.

• Consider now the case k := n −m ≥ N := K0p and m > 0. Write n −m = qp + r
with 0 ≤ r < p. By Lemma 8 we have then with C as in Lemma 8:

|ψxn|
|ψxm|

≥

(
(Cr−1‖dfp‖)k/p

eφk(Fmx̂)

)−1/r−1

,

≥

(
(Cr−1‖dfp‖)1/p

eα

)−k/r−1

, as n is a α-hyperbolic time,

≥ e−kα
(

(Cr−1‖dfp‖)1/pr

eα

)−kr/r−1

,

≥ e−kαe
K0pbr
r−1 , as b = α− log ‖dfp‖+ (r − 1) logC

pr
> 0.(3.1)

It follows that for others universal constant B:

‖d(exp−1
fnx ◦f

n ◦ σ ◦ ψxn)‖ ≥ B‖d0(fn ◦ σ ◦ ψxn)‖,

≥ Bekα‖d0(fm ◦ σ ◦ ψxn)‖, as n is a α-hyperbolic time,

≥ Bekα‖d0(fm ◦ σ ◦ ψxm)‖ × |ψ
x
n|

|ψxm|
, as ψxm and ψxn are affine,

≥ Be
K0pbr
r−1 ‖d(fm ◦ σ ◦ ψxm)‖,by (3.1),(3.2)

‖d(exp−1
fnx ◦f

n ◦ σ ◦ ψxn)‖ ≥ Be
K0pbr
r−1 ‖d(exp−1

fmx ◦f
m ◦ σ ◦ ψxm)‖,

≥ Be
K0pbr
r−1 /2,

≥ 1/2, by choosing K0 = K0(α, f) appropriately.
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Therefore the (ε, n, r)-bounded curve exp−1
fnx ◦f

n ◦ σ ◦ ψxn is ample, contradicting the

definition of m. Consequently, only this case can not occur.
• Finally assume m = 0 and n > K1. We can follow the same lines as in the previous

case till (3.2):

‖d(exp−1
fnx ◦f

n ◦ σ ◦ ψxn)‖ ≥ Be
K0pbr
r−1 ‖d(σ ◦ ψx0 )‖,

≥ 1/2, by choosing K1 = K1(α, f,D) appropriately.

Again the (ε, n, r)-bounded curve exp−1
fnx ◦f

n ◦ σ ◦ ψxn is ample, contradicting the

definition of m.

This concludes the proof by taking N = pK1(α, f,D).
�

3.3. Proof of Proposition 1. Fix p ∈ N∗ and 0 ≤ q < p. Without loss of generality we can
take M � p. Let Q be a partition with diameter less than some ε < εp with εp being fixed

later on in the proof of Lemma 11. We consider Fn ∈ QEMn with n > N (as defined in Lemma
9). We let En be the set EMn (x) for any x ∈ Fn. Put Ep,qn = En ∩ (q + pN). For a sequence
of positive integers K = (ki)i∈Ep,qn , we let

H(K) :=

{
y ∈ F, ∀i ki =

[
log+ ‖df iyfp‖
φp(F iŷ)

]
+ 1

}
.

We first estimate the number of sequences K with H(K)∩Fn 6= ∅, then reparametrize H(K)∩
Fn for each K. Let ‖df±‖ = max(‖df‖, ‖df−1‖).

Lemma 10. There is a sequence (εn)n with limn εn = 0 depending only on F such that for

any y ∈ Fn we have with ζ̂Mp,q,Fn = 1
n

∫ ∑
k∈Ep,qn δFk(x,vx) dζFn(x) and ζMp,q,Fn its push-forward

on M :

(3.3)
1

n
log2 ] {K, H(K) ∩ Fn 6= ∅} ≤

∫
log+ ‖dfp‖εdζMp,q,Fn−

∫
φdζ̂MFn+

4(p+ 1) log ‖df±‖
M

+
1

p
+εn.

Proof. First observe En∆ ({0, · · · , p− 1}+ Eq,pn ) ⊂ {−p + 1, · · · , p − 1} + En∆(En + 1). As
]En∆(En + 1) ≤ 2n/M we have also ]En∆ ({0, · · · , p− 1}+ Eq,pn ) ≤ 4pn/M . For all y ∈ Fn
we have:

• |
∑

i∈Eq,pn φp(F
iŷ)−

∑
i∈En φ(F iŷ)| ≤ n4p log ‖df±‖

M , as observed above,

• |
∑

i/∈En φ(F iŷ)− α(n− ]En)| ≤ n log ‖df±‖
M , by Lemma 1 (3),

• εn := 2 supy∈F |
∑

0≤i≤n φ(F iŷ)− nλ+(ν)| n−→ 0 by (2.3).

By combining the two last inequalities we get for all y, z ∈ Fn:∣∣∣∣∣∑
i∈En

φ(F iŷ)− φ(F iẑ)

∣∣∣∣∣ ≤ n
(
εn + 2

log ‖df±‖
M

)
,

then by integrating ẑ with respect to ζ̂Fn∣∣∣∣∣∑
i∈En

φ(F iŷ)− n
∫
φdζ̂MFn

∣∣∣∣∣ ≤ n
(
εn + 2

log ‖df±‖
M

)
.
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Together the inequality of the first item we get

(3.4)

∣∣∣∣∣∣
∑
i∈Eq,pn

φp(F
iŷ)− n

∫
φdζ̂MFn

∣∣∣∣∣∣ ≤ n
(
εn +

4(p+ 1) log ‖df±‖
M

)
.

For any y, z ∈ Fn and any i ∈ Eq,pn , the points f iy and f iz lie in the same atom of Q,
thus they are ε-close, in particular log+ ‖df iyfp‖ ≤ log+ ‖df izfp‖ε. Therefore if y belongs
moreover to H(K) we get together with (3.4):

(3.5)
1

n

∑
i

ki ≤ An :=

∫
log+ ‖dfp‖εdζMp,q,Fn −

∫
φdζ̂MFn +

4(p+ 1) log ‖df±‖
M

+
1

p
+ εn.

Finally the cardinality of sequences of positive integers (k1, · · · , kN ) with
∑

i=1,··· ,N ki ≤ S
is less than

(
N
S

)
≤ 2S .

�

Lemma 11. One can choose εp with the following property for any ε < εp. For any Fn as
above there is a family Ψn = Ψq

n of affine reparametrizations ψ : [−ε, ε] 	, such that for some
constant C depending only on r and f (not on p, M or n):

• Im(σ) ∩H(K) ∩ Fn ⊂
⋃
ψn∈Ψn

Im(σ ◦ ψn),

• ∀ψn ∈ Ψn ∀ q + pN 3 k ≤ n, fk ◦ σ ◦ ψn is strongly (ε, r)-bounded,
•

(3.6) log ]Ψn ≤
∑

i ki
r − 1

+ α(n− ]En) + C

(
n

p
+ n−mn + p](En + 1)∆En

)
.

Proof. First let us observe by arguing as in Lemma 8 that if σ is strongly (ε, r)-bounded,
then there is a family F of affine reparametrizations φ of [−ε, ε] such that f ◦σ ◦φ is strongly
(ε, r)-bounded with ]F depending only on f and r.

We argue by induction on n. Let Fn ∈ QEMn and let En be the associated atom of EMn .
Without loss of generality we can assume n belongs to En according to our first observation,
i.e. mn = n. The term C(n−mn) in (3.6) follows from this reduction). Let n′ be the largest
integer in q + pN less than or equal to n. We have the following alternative:

(1) [n′ − p, n′] ⊂ En, then we let m = n′ − p,
(2) there is n′ > m ∈ En with ]m,n′[∩En = ∅,
(3) there is q ∈ [n− 2p, n[∩(En + 1)∆En, then we let m = q or q − 1 depending whether

q belongs to En or En + 1.

In the first case (1) we argue as in the Reparamerization Lemma in [4]. By induction
hypothesis there is a family Ψm satisfying the conclusion of Lemma 11 for m with Fm being

the atom of QE
M
n containing Fn. Let ψm ∈ Ψm with Im(σ ◦ψm)∩H(K)∩Fn 6= ∅. Let εp > 0

so small that ‖(fp)xε ‖r = ‖d(fp)xε ‖ for all x ∈M and for all ε < εp. By using Lemma 8 for fp

as in [4, Proposition 2], there is a family Θ of affine reparametrizations of [−ε, ε] such that:

• fn′ ◦ σ ◦ ψm ◦ θ is strongly (ε, r)-bounded,
• Im(σ ◦ ψm) ∩H(K) ∩ Fn ⊂

⋃
θ∈Θ Im(σ ◦ ψm ◦ θ),

• ]Θ ≤ Ce
kn′
r−1 .
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This concludes the proof in case (1) by letting Ψn be the union of affine reparametrizations
ψm ◦ θ over all ψm ∈ Ψm and θ ∈ Θ = Θ(ψm). The contribution of case (1) in (3.6) is given

by
∑
i ki

r−1 + C n
p .

In the second case (2) we argue as in Lemma 13 in [2]. For any x ∈ Fn, the integers m and
n are hyperbolic times. By Lemma 9, there is ε̃ and τ depending only on f and α such that
for ε′ < ε̃ the sizes of Dm(x) = Dε′

m(x) and Dn(x) = Dε′
n (x) are bounded from below by some

ε = τε′ < ε′. But as already observed, the distorsion is bounded on these curves and [m,n′[
is contained in a neutral block, consequently:

|φn−m(Fmx̂)− α(n−m)| ≤ p log ‖df±‖.

Therefore the length of f−(n−m)Dn(x) ⊂ Dm(x) is larger than ‖df±‖−pe−α(n−m)ε/2.
We can choose εp with εp < τε̃/2. We assume the diameter of Q is less than ε < εp.

Write Fn =
⋂
k∈En f

−kQk for (Qk)k ∈ QEn . For two points x, y ∈ Fn ∩ f−nQn, either Dn(x)
and Dn(y) are disjoint or Dn(x) ∩ Qn = Dn(y) ∩ Qn by Lemma 11 in [2]. Let Ψm be the

family of affine reparametrizations at step m with respect to the atom Fm of QEMn contain-
ing Fn. Let ψm ∈ Ψm with Im(σ ◦ ψm) ∩ H(K) ∩ Fn 6= ∅. There is a minimal collection
(xi)i∈I(ψm) of points in Im(σ ◦ ψm) ∩ H(K) such that the pairwise disjoint curves (En(xi))i
cover Im(σ ◦ ψm) ∩H(K) ∩ Fn. For any i, we have Dm(xi) ∩ Im(fm ◦ σ ◦ ψm) 6= ∅. From the

above lower bound on the length of Dm(xi), we get ]I(ψm) ≤ 4‖df±‖−1e−α(n−m). Moreover
each strongly (ε′, r, n)-bounded curve ψxin = En(xi) may be obviously covered by a family Fi
of (ε, r, n)-bounded curves with ]Fi ≤ τ−1 + 1. We conclude by letting Ψn be the union of Fi
over i ∈ I(ψm) and ψm ∈ Ψm. Case (2) corresponds to the term α(n−]En)+Cp](En+1)∆En
in (3.6).

The last case follows easily from our starting observation and leads to another error term
of the form Cp](En + 1)∆En in (3.6).

�

By increasing the cardinality of Ψn with a factor depending only on p and f we may assume

σ ◦ψn is (ε, r, n)-bounded for any ψn ∈ Ψn. We recall that mn(x̂)
n is converging uniformly to 1

on F. Together with (3.3), (3.6), (3.5), we get for some γp,M with lim supp lim supM γp,M = 0:

1

n
log ]Ψq

n ≤
(

1− ]En
n

)
α+

(
log 2 +

1

r − 1

)(∫
log+ ‖dxfp‖εpdζMp,q,Fn(x)−

∫
φdζ̂MFn

)
+γp,M .

We finally let ΨFn be the collection Ψq′
n with ]Ψq′

n = min0≤q<p ]Ψ
q
n. We conclude:

1

n
log ]ΨFn ≤

1

p

∑
0≤q<p

1

n
log ]Ψq

n,

≤
(

1− ]En
n

)
α+

(
log 2 +

1

r − 1

)1

p

∑
0≤q<p

∫
log+ ‖dxfp‖εdζMp,q,Fn(x)−

∫
φdζ̂MFn

+ γp,M ,

≤
(

1− ]En
n

)
α+

(
log 2 +

1

r − 1

)(∫
log+ ‖dxfp‖ε

p
dζMFn(x)−

∫
φdζ̂MFn

)
+ γp,M .
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[5] Buzzi, Jérôme and Ruette, Sylvie, Large entropy implies existence of a maximal entropy measure for
interval maps, Discrete Contin. Dyn. Syst. A, 14, (2006), p.673-688,
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