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Abstract

End-milling of free-form surfaces on multi-axis CNC machines are complex and expensive operations involved
in the production of many high-value parts, such as molds and stamping dies. To carry out such time-expensive
operations, partitioning the surface into zones, in order to mill each zone with the most suitable parameters, is an
approach gaining credit in recent years.

Data clustering algorithms provide tools that appear to be naturally adapted to perform such a procedure. In
this paper, is provided a fine analysis of various clustering algorithms, as well as the feature vectors and the metrics
commonly used. Furthermore, the specific problems that may arise when applying clustering algorithms to free-form

surfaces partitioning are presented and original solutions to deal with them are proposed.
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rection, its performances are worse than those of a ball-
end cutter. Because the steepest-slope direction may vary
a lot across a free-form surface, partitioning this surface
into several zones (each of which will then be machined
along an appropriate direction) is considered as a promis-
ing approach to improve efficiency of the toroidal cutter
choice.

2 Bibliography

Defining zones for end-milling of free-form surfaces is a
complicated problem which has been addressed by many
authors. Most studies focus on 3-axis machining. One of
them is presented in [2]. Using a ball-end cutter, this
method is based on the preferred machining direction
field, which maximizes the width of the machining strip
(or step-over distance) respecting the scallop height con-
straint. This field has the properties of symmetric tensor
of order 2, which makes it possible to identify the critical
points of this tensor corresponding to degenerate points,
where all the directions are equivalent. Then, depend-
ing on the type of each critical point, boundaries between
zones are identified around this point, which define a par-
tition of the surface. Finally, each zone is machined using
an iso-scallop strategy. A very similar method is pro-
posed in [3]: an analytical approach is presented, where
the machining direction that maximizes the strip width
is identified.

Heuristic optimization methods inspired by the vehicle
routing problem are proposed in [4]. The aim is to par-
tition the surface into zones with small variations of the
steepest-slope direction in order to increase the effective
radius of the toroidal cutter. This should maximize the
step-over distances and minimizes the tool-path length.
The best results are obtained by the Clarke and Wright
algorithm (described in [5]), the parallel implementation
of this algorithm being faster.

The same goal, looking for an optimal partition, is pur-
sued in the approach presented in [6]. This approach is
based on adaptive multiagent systems (AMAS) [7]. The
idea is to partition the part surface into zones according
to a criterion based on optimal machining direction which
is, for each point, the steepest-slope direction. The part
surface is meshed, and the optimal direction is calculated
on each mesh unit. The problem is then solved (using the
AMAS approach) by considering an agent on each mesh
unit. The zones are characterized by two antagonistic
criteria: the number of elements (agents) in the zone and
the maximum difference between any two directions in
the zone. The optimization process requires, however,
numerous iterations to converge towards a stable state in
which no agent makes a new decision.

In [8], the authors propose a partitioning approach for
3-axis machining with a toroidal cutter guaranteeing the
efficiency of the toroidal cutter. The first zone contains

all the points that could be machined along the steepest-
slope direction of the point at which the slope angle is
maximal, while satisfying at least a minimal improvement
of the effective radius compared to the same radius ball-
end cutter. The second zone is build similarly considering
the remaining points. This process is iterated until no
point remains.

Other studies addresses 3+2-axis machining, which is
the same as 3-axis machining, adding two rotation axes
used for positioning the part between two milling phases.
Among them, the method proposed in [9] discretizes the
surface with a regular isoparametric mesh and calculates
the Gaussian curvature and the mean curvature for each
node of the mesh. Then, a curvature type: convex, con-
cave, or saddle-like, is assigned to each point. After that,
the points are divided into interference-free points, and
points that are not accessible. This partition is then re-
fined using the fuzzy C-means algorithm, and the number
of zones is decided by the subtractive clustering method
[10].

One of the most noticeable work in partitioning meth-
ods for 3+2-axis machining is the free-form surface par-
titioning method proposed in [11]. They first conduct a
study of the parameters to be used for the feature vec-
tor in order to obtain a better partition of the surface by
using the fuzzy C-means algorithm. Calling S(u,v) the
parametric function defining a free-form surface to be ma-
chined, and n(u,v) the vector normal to this surface at
point (u,v); this study, carried out on two test surfaces,
shows that the parameter combination (u, v, n(u,v)) is ef-
fective. The orientation of the tool, denoted by the vector
T, is calculated such that: the axis of the tool is coplanar
with the feed rate, F and the axis, Zu,, of the machine.
The tilt angle is specified by the user. For points in re-
gions where the surface is convex, the tilt angle can be
null, and it can be very small at concave points such as
local gouging is avoided. The parallel-plane machining
strategy adopted for one test case shows that generally
the tool-path length decreases as the number of zones in-
creases. In fact, the machining time decreases until an
optimal number of zones is reached; it then increases due
to the time necessary for the tool to withdraw and to
travel from zone to zone.

In [12], the K-means algorithm is used to partition a
free-form surface for 3+2 axis machining. Their feature
vector is composed of the 3D coordinates of S(u,v) and
n(u,v), which gives a six-parameter feature vector (S,
Sy, Sz, Ng, Ny, n;). The choice of 3D coordinates may
however cause problems (see Section 4).

Partitioning surfaces for 5-axis machining has also been
addressed in the literature. A method based on the
Normalized-cut algorithm is proposed in [13]. This al-
gorithm is used in image segmentation and vector field
classification. First, a field of optimal directions is pro-
jected onto a regular grid, which defines the interpolation
points of the tool-path in the parametric space. Then, the



surface is partitioned using the Normalized-cut algorithm,
for which the dissimilarity measure is a convex combina-
tion of proximity parameters (the parametric coordinates
u and v), and the optimal direction of machining. Each
zone is machined using either a “zigzag” iso-scallop strat-
egy or an iso-contour strategy, according to the nature of
the critical points in the zone.

To sum up, the objective of such approaches is to find
an appropriate partitioning of the surface to optimize ma-
chining. Some approaches consider the partitioning as an
optimization problem where the objective function is a
machining criterion (milling time or tool-path length).
Although it is computationally expensive, this kind of
approach has the advantage of considering a partitioning
that is directly related to machining. Other approaches
consider the partitioning as a clustering problem with the
aim of finding a partition of the surface with homogeneous
and distinguished zones.

The common point of most of these approaches is that
they are based on local criteria and properties: local ge-
ometry of the surface, effective radius and step-over dis-
tance at the contact point, etc. Given the complexity
of free-form surfaces, a more global view of the context
may lead to more effective partitions (in terms of ma-
chining criteria). A PCA-based free-form surface analysis
has been presented in [14] for the whole surface. It can
be used in the same way for each single zone to build a
quick approximation of the zone shape and orientation.
The partitioning process can then rely on this approxi-
mation to exploit well-known results about milling pro-
cesses. For example, it is straightforward to understand
that the longer the tool-path in a given direction is, the
more efficient the milling will be, because the slowdowns
due to the kinematic limits at both ends of the path are
less influential. It is worth mentioning that local-only
approaches cannot integrate this kind of results.

3 Preliminary considerations

Let S be a parametric surface defined by S(u,v). A par-
tition of S is a finite family of K subsets (2;)i=1,...,k of S
that are pairwise disjoint and whose union is equal to .S.
In other terms:

z; N z; =, for any pair of integers 1 <4 < j < K, and

K
U,Zj =S
j=1

In machining of free-form surfaces, zones are defined
through a set of predetermined sample points. Any set of
sample points can be used. However, the best results are
obtained when these points are equally spread over the
whole surface. To achieve this condition, a regular mesh
of isoparametric curves is defined onto the surface. This

way, a set of elementary meshes, defined by their para-
metric boundaries, is also defined. For each mesh unit, a
datapoint located at its center is defined. Clustering al-
gorithms operate on these center sample points to define
zones (Figure 1).

« data point S;
,O elementary mesh

Figure 1: Sample point definition.

Classification algorithms are commonly used in data
mining procedures that aims to extract knowledge from
large databases. An extensive review on unsupervised
learning and classification can be found in [15]

A distinction must be done between supervised and
unsupervised classification. Supervised classification al-
gorithms are based on a set of pre-classified data (learning
set) to predict the class of a new data. In this case, the
class number is known and not decided by the algorithm.
Supervised algorithms include: decision trees, artificial
neural networks, naive Bayesian classifiers, and support
vector machines. A literature review on classification and
combining algorithms can be found in [16].

On the other hand, unsupervised classification algo-
rithms are not based on any prior knowledge. At the
opposite of supervised algorithms, the purpose is not to
predict the class of a new point but to classify existing,
but unordered, data into homogeneous classes. Unsuper-
vised classification algorithms are also called clustering
algorithms. Most of the time, the number of classes (clus-
ters) is initially unknown. However, some algorithms al-
low the user to set this value as an input, in regard of
the specific data to be classified. Clustering algorithms
include: K-means, fuzzy C-means, hierarchical classifica-
tion, and competitive learning. A survey of clustering
algorithms can be found in [17].

Any clustering algorithms rely on 3 components:

- the feature vector that represent data

- the metric that defines a method to compute dis-

tances between data

- the algorithm itself

The following study focuses on the analysis of each of
these three components in the particular case of parti-
tioning of free-form surfaces.



4 The feature-vector

For most clustering problems, the data to be processed is
obvious and is part of the definition of the problem itself.
But in the case of partitioning free-form surfaces, it is
necessary to precisely define the most relevant parameters
in order to obtain a convincing result. These parameters
constitute what is called the feature vector. The choice
of this vector has a great impact on the result of the
clustering process.

In free-form surfaces end-milling, two different types of
parameters may be taken into consideration:

- spatial proximity parameters: 3D coordinates of dat-
apoints or their parametric coordinates (u,v) could
be meaningful choices for this type.

- machining related parameters: the normal vector
n(u,v), the curvatures (Gaussian, mean or princi-
pal) could be meaningful choices for this type.

A good analysis of feature vector component is pre-
sented in [11]. Finally, authors of this paper choose to use
the parametric coordinates (u,v) and the normal vector
n(u,v). In [12] the 3D space coordinates (S, Sy, S.) and
the normal vector n(u, v) have been chosen.

In the present study a slightly different choice have
been made. First, remark that the use of 3D coordinates
as parameters in the feature vector may not be completely
suitable for free-form surfaces. Indeed, two 3D points
may be far from each other on a part’ surface while having
a small FEuclidean distance. This case is illustrated in
Figure 2: the points P;, P, and P; are defined such that
Pj3 is closer to P; than P in terms of Euclidean distance
while P, is closer according to geodesic distance.

X P

Figure 2: The problem using 3D coordinates as compo-
nents of the feature vector.

Ideally, the geodesic distance should be considered in-
stead. Yet, it is very expensive to compute and could not
be taken into consideration for real-world application.

Thus, a better alternative is the (u,v) parametric co-
ordinates. It is a convenient and computational-cheap
solution that can be embedded in an Euclidean distance
metric (see Section 5.1).

Besides, instead of the n(u,v) coordinates, parame-
ters directly related to machining process have been cho-
sen in this paper. This choice is based on two well-
known results about machining with a toroidal cutter:
first, toroidal cutter efficiency is better when machining
along the steepest-slope direction; and second, lower is
the steepest slope, greater is the efficiency of the toroidal
cutter. Since using the toroidal cutter involves directly
the steepest slope s and its direction 6, it is more suitable
to use them rather than the normal vector n in the fea-
ture vector. As illustrated in Figure 3, these angles are
defined for each mesh i:

- s;: the value of the steepest slope at the center of

the mesh ¢

- 6;: the angle between the direction of the steepest

slope projected on the plane X, Yy, of the machine
reference and the axis Xy,.

Zm n; = n(u;, v;)

,.<V
=

Si

Figure 3: The four components (u;, v;, s; and 6;) of the
feature vectors.

Furthermore, they are directly employed in the ana-
lytical formula used to calculate the effective radius of a
toroidal cutter [18].

To sum up, like in [11], the parametric coordinates u
and v of the datapoints are used to express the spatial
proximity of datapoints, while s(u,v) and 6(u,v) have
been chosen as machining related parameters.

These choices have been made to reduce the size of the



feature vector, and to be more specific on parameters that
are really influential on the machining process.

From a practical point of view, once the relevant pa-
rameters are selected, feature vectors must be calculated
for each point of the dataset. As described in Section
3, the set of points the algorithms operate on is defined
by discretizing the surface S with a regular isoparamet-
ric curves meshing. Let n be the number of meshes
(or elementary surfaces). For each mesh ¢ € [1,n],
the feature vector is defined at the mesh center point:
x; = (us,vi,5:,0;)7. These points represent our dataset
D. In what follows, the mesh number i is denoted m;,
and the datapoint attached to it is ;. Furthermore, given
a partition of S in K zones, the centroid of the zone zg,
k € [1, K], is denoted c.

5 The metric

For any clustering algorithm, it is necessary to define the
notion of distance or, more precisely, dissimilarity be-
tween points represented be feature vectors. Hereafter,
these distances measurement methods are called metrics.
We present below the most commonly encountered met-
rics.

5.1 FEuclidean distance

In the four-dimensional space of parameters (u,v,s,0),
the Euclidean distance between a mesh m; and the center
of a zone z is defined by:

d* (i, cr) = (us — k) + (v —0k)* + (s — 5k)* + (6; —912)3
1

This distance gives the same importance to all the vari-
ables, which may not be relevant. In addition, several
terms which are not homogeneous (different units and or-
ders of magnitude) are added together, which lacks phys-
ical meaning. The advantage of the Euclidean metric lies
in its simplicity of implementation.

5.2 Mahalanobis distance

This metric is widely used in statistics and signal pro-
cessing [19]. It differs from Euclidean distance because
it takes into account the variance and correlation of the
data set. Thus, unlike the Euclidean distance where all
the components of the vectors are treated independently
and in the same way, this metric gives a lower weight to
the most dispersed variables and takes into account the
correlation between the variables.

Let X be the covariance matrix of the feature vectors
of the whole dataset:

Var(u)  Cov(u,v) Cov(u,s) Cov(u,0)

o Cov(u,v)  Var(v) Cov(v,s) Cov(v,0)

Cov(u,s) Cov(v,s) Var(s) Cov(s,0)
Cov(u,0) Cov(v,0) Cov(s,0)  Var(9)

Then, the distance d between a mesh m; and the center
of the zone zj is defined by:

d2(xi,ck) = (z; — ck)TE_l(a:i — k)

5.3 Standard deviation-based distance

This metric is mostly used in statistics for processing het-
erogeneous data (i.e. with various magnitudes and vari-
ances). It is based on Euclidean distance, but each term is
divided by the corresponding standard deviation. Thus,
the distance between the mesh m; and the center of the
zone zj, is defined by:

(u; —ﬂk)2+(vi —Wk)2+(8z' —gk)2+(9z‘ —01)?

d2(mi,ck) =

Oy Oy Os 09

where o, = 4/Var(u) is the standard deviation of the
variable u over the whole surface S. Using a similar def-
inition of standard deviation for the other variables, this
metric can also be defined as:

o, 0 0 O
0 0 O

d*(xicr) = (o — ck)T 0 %” 5. 0 (i — ck)
0 0 0 oy

= (v —cx)' Do (i — 1)

This distance could be considered as a special case of
the Mahalanobis distance, where the covariance of the
different pairs of variables is not taken into account. Ac-
tually, the distance based on the standard deviation does
not take into account the correlation between the vari-
ables. However, it allows the summation of different
terms since the weight assigned to each term is propor-
tional to its variance, which is not the case for the Eu-
clidean distance.

It is worth to be noted that the three previously pre-
sented distances are derived from the following general
distance form d on R*, d?(z,y) = (x—y)T M (x—y) where
M is a symmetric positive definite matrix.

5.4 Ward distance

Unlike previous metrics, Ward distance is intended to
measure dissimilarity between clusters rather than dis-
similarity between datapoints. This means that among
the algorithms presented in Section 6, the Ward distance
can only be used with the HAC algorithm (Section 6.3).

Let Cj be a cluster containing nj datapoints; its cen-
troid ¢ is defined by:



Let ¢(C%) be the sum of the squared Euclidean distances
calculated from each point of Cj, to its centroid cg; ¢(Cy)
is defined by:

ng
S(Cr) = Nz — el
=1

For any pair of distinguished clusters C; and C;, which
contains respectively n; and n; datapoints, the Ward dis-
tance indicates by how much this sum of squares will
increase when the two clusters are merged:

n;nj

d(Ci, Cj) = ¢(C;iUC;)—¢(Ci)—<(Cy) =

= llei = ¢
n; +TLj J

When two clusters C; and C; are merged, the distance
between C; U C; and any other cluster Cj, (which size is
ny) can be updated using the following relation:

v
ng +n; + ng
+(le + ’Ilk) d(CJ,Ck) — Nk d(CZ,C])) (2)

d(C; UCy,Cy) = ((ni +nk) d(Ci, Cy)

6 The algorithm

Numerous clustering algorithms and variants have been
developed. Unsupervised algorithms can be divided into
three main categories: deterministic centroid-based algo-
rithms (K-means-like algorithms), competitive learning
algorithms and hierarchical algorithms. To be as rep-
resentative as possible of these three categories, one al-
gorithm of each family has been tested. First, the K-
means algorithm represents a large family of algorithms,
including K-medoids and fuzzy C-means algorithms. It is
based on the computation of distances from cluster cen-
troids. Second, we select the Rival Penalized Competitive
Learning [20] (RPCL) algorithm, which is one of the most
common competitive learning algorithms. This algorithm
has randomness features and requires few centroid calcu-
lations. The third algorithm is the Hierarchical Agglom-
erative Clustering [21] (HAC) algorithm which, like any
hierarchical clustering algorithm, breaks free from the no-
tion of cluster centroids by defining directly distances be-
tween clusters.

6.1 The K-means algorithm

The K-means algorithm is one of the most commonly
used clustering algorithm. It was introduced in [22]. Its
theoretical framework and its proof of convergence are
presented in [15]. Various parallelized versions of this
algorithm have also been proposed [23]. The K-means
algorithm is presented in Algorithm 1.

The K-means algorithm generally results in partitions
with smooth borders. The number of clusters is fixed
and specified by the user. Note that in the special case

Algorithm 1: The K-means algorithm.

Data: Dataset (2;)1<ign, number of clusters K
Initialization:
Choose initial centroids (cg)1<k<i
repeat
/* Step 1:
for i=1 to n
j = argmin(flex — 1)

1<k<K
set z; € C}
/* Step 2: centroids calculation */
for k=1 to K

1
Cp = — Z x

e z€CY,
until convergence (no more changes)
return clusters Cy, k=1,2,... . K

class assignment */

of partitioning free-form it may be augmented after the
convergence due to the existence of disconnected clusters
— see Section 8. Most of the time, the Euclidean distance
is used as metric, but a user defined metric can also be
used. It is straightforward to define a stopping criterion
(stationary point with no changes) for K-means algorithm
and convergence is ensured for any Euclidean metric de-
riving from an inner product. However, K-means algo-
rithm may diverge for non-Euclidean metrics, and it is
important for convergence that centers of clusters are ex-
actly the average points (and not the closest mesh center
to average).

6.2 The RPCL algorithm

The Rival Penalized Competitive Learning algorithm
(RPCL — Algorithm 2), introduced by [20], is a non-
deterministic classification algorithm. Initially, a number
of centroids are defined. At each iteration, a point of the
dataset is randomly chosen, and the distance between
each centroid and this point is calculated. The winning
centroid (the closest one) is brought closer to the point in
question, while its rival (the second closest one) is moved
away (i.e. penalized). Unlike K-means algorithm, this
algorithm may result in a partition containing fewer clus-
ters than the initial number. Furthermore, the RPCL
algorithm takes into account the history of the winning
center (i.e. the number of times it won) in order to reduce
the sensitivity of the algorithm to the initial position of
the centroids.

RPCL is known to be faster than other algorithms, but
its non-deterministic nature is likely to generate different
solutions for the same problem. This means, from a prac-
tical point of view, that running the same algorithm again
on the same surface can lead to a better (or worse) result.
In the context of an industrial process, this may be very
inconvenient.



Algorithm 2: The Rival Penalized Competitive
Learning algorithm (RPCL).

Algorithm 3: The Hierarchical Agglomerative
Clustering (HAC).

Data: Dataset (z;)1<ign, number of clusters K,
Q, learning ratio of the winner, «;.
learning ratio of the rival

Initialization:

Choose randomly the K centroids (cx); << x

Set mpy=1fork=1,--- | K

/* wins count */

repeat
Choose randomly a point z;, 1 <i<n
/* Step 1: find winner and rival x/

w = arg min yg||z; — cxl]? /* winner */
k

r = arg minyy ||lz; — cx||? /* rival */
k#w

Wherer:%,Vlgkng
/* Step 2: update centroids x/
for k=1 to K
if k=w then
mr =myg + 1
ek = ¢k + (T — cx)
if k=r then
| e =k — oy (T —cx)
/* adaptatives learning rates x/

Update a,, and
until convergence
return Centroids (cx); ¢ i

6.3 The HAC algorithm

The hierarchical agglomerative clustering (HAC), de-
tailed in algorithm 3, is also widely used in unsupervised
classification. At the beginning, each datapoint of the
dataset is contained in its own individual class, thus the
algorithm is initialized with n classes. The number of
classes is iteratively reduced to n. < n. At each step, the
two closest (most similar) classes are merged. More de-
tails can be found in [21]. Several dissimilarity measures
exist in the literature, the best known is the minimum
Ward variance distance (see Section 5.4).

The advantage of HAC, over K-means and RPCL, is
that it is not necessary to define the number of classes.
Actually, the number of classes commonly used corre-
sponds to the iteration with the maximum distance jump.
However, hierarchical classification takes more computa-
tion time than other algorithms. Indeed, because the
mesh of the surface must be quite fine for sake of pre-
cision, this algorithm operates on a very large number
of classes at the beginning. In addition, the hierarchical
classification does not allow any possibility of going back,
the merger of two classes being indeed irreversible.

Data: Dataset (z;)1<ign

Initialization :

Ci={zi}vV1i<i<n /* clusters */
dij=|lz; —z;|| V1<i<j<n /* distances *x/
Ne=n

repeat
/* Step 1: Merge the closest clusters
*/
(i*,7%) = arg min(dij)
1<J
Ci» = Ci» UG}
Ne ="N¢ — 1
/* Step 2: Update distances */

for k=1 to n,
if £ < i then Calculate dj;«
/* using Ward distance */
if k& > ¢ then Calculate d;«j,
/* using Ward distance */
djp, = dpj= = +00
until convergence
return clusters C;, i = 1,2,...,n,

7 Testing clustering methods for
free-form surfaces partitioning

In this section, the previously presented algorithms are
compared in context of partitioning free-form surfaces.
The main comparison criterion is, of course, the total
time machining the partition they provide leads to. This
machining time is calculated using the machine-tool cin-
ematic model published in [24], that is proven to be very
accurate. Following analysis presented in Section 4, the
best choice concerning the feature vector is (u,v,s,0).
Therefore, only this feature vector is taken into account
in the following analysis. Also, all metrics and algorithms
presented in Sections 5 and 6 respectively, are tested and
analyzed.

7.1 Tests protocol

In order to carry out fair comparisons, clustering methods
are carried out on two surfaces (Figure 4). The first one
is used in [25], while the second one is used in [8]. For this
reason they are thereafter called Choi surface and Rubio
surface respectively. Both surfaces are discretized with a
regular isoparametric meshing sizing 80 x 80.

Additionally, clusters number is fixed to K = 3 and
number of iterations is limited to 300 for K-means and
RPCL algorithms.

For each zone provided by clustering algorithms two
machining directions are taken into account:

- the steepest-slope direction



Choi surface:

Rubio surface:

Figure 4: Tests surfaces.

- the principal direction, i.e. the direction that the
zone is the most extended. This direction is cal-
culated using principal component analysis (PCA)
[14].

These both two directions have been taken into account
because they are typical of machining processes. Indeed,
it is well-known that the toroidal cutter provides bet-
ter results than its ball-end counterpart when machining
along steepest-slope direction. However, the study pub-
lished in [14] highlights that, in some cases, machining
along the principal direction using a ball-end cutter may
lead to better results. This case may arise especially when
the two directions are close to the perpendicular, and the
zone is very extended along its principal direction in re-
gard of the steepest-slope direction. However, to be sure
no case is neglected these two typical directions have been
included into this study. In case of steepest-slope direc-
tion, only the toroidal cutter has been tested, while in
case of principal direction, both toroidal cutter and same
outer radius cylindrical cutter have been tested, despite
only the best result is presented in results below.

7.2 Results

Beside numerical results, the test process provides graph-
ics for both clustering result and machining simulation
(Figure 5). This is useful to check results are suitable for

real world machining.

Figure 5: Surface partition and by-zone machining simu-
lation example.

Numerical results are presented in Table 1 for the Choi
surface, and in Table 2 for the Rubio surface. For each
test case, are considered:

- the clustering algorithm

- the metric

- the machining direction

For each test case, results are:

- the machining simulation duration

- the total toolpath length

Furthermore, despite initial number of clusters is set
to 3, the full process applied to the Choi surface results
in a 4-zones partition, due to the connected components
search presented in Section 8. This post-processing op-
eration has no influence on clustering process itself. Its
sole purpose is to ensure clustering result is composed of
connected zones only.

Numerical results in Table 1 and 2 show that the HAC
algorithm never provide the solution the fastest to ma-
chine. Besides, for K-means and RPCL algorithms re-
sults are often close. Indeed, the average difference be-
tween results is less than 8%. Concerning metrics, results
are also quite close. Euclidean distance provides the best
result for 3 test cases, Mahalanobis distance provides the
best result for 2 test cases, and standard deviation-based
distance provides the best result for 3 test cases.

Given the wide variety of free-form surfaces that can
be encountered in real-world applications, it is difficult
to conclude as to which algorithm and metric might give
the best results in any case.

7.3 Discussion

As said above, the numerical results are not completely
conclusive, except the fact that the HAC algorithm is
not recommended creating a surface partition intended
for machining by zone. At least to get the final parti-
tioning. Indeed, the HAC algorithm has a big advantage
over the other algorithms: it does not need a preliminary



Table 1: Tests results for the Choi surface.

o . K-means RPCL HAC (Ward distance)
direction metric
duration length duration length ‘ duration length
Euclidean — 104.7 4763 4861
steepest-slope Mahalanobis 125.2 6179 105.9 5777 117.1 4454
standard deviation 100.1 4800 101.2 4780
Euclidean 107.8 6230 102.2 6333
principal Mahalanobis 108.0 6593 104.1 6652 136.8 6302
standard deviation 111.1 6426 110.7 6447
durations in seconds; lengths in millimeters
Table 2: Tests results for the Rubio surface.
L . K-means RPCL HAC (Ward distance)
direction metric
duration length duration length ‘ duration length
Euclidean 91.6 4634 97.0 4726
steepest-slope Mahalanobis 4935 99.8 6277 96.2 4630
standard deviation 91.5 4612 94.3 4966
Euclidean 84.3 5881 90.7 5940
principal Mahalanobis 89.0 5519 85.7 5874 85.3 5850
standard deviation 5808 90.1 6009

guess of the number of clusters. Therefore, it can be used
to determine the number of clusters to use as an input
parameter for K-means or RPCL algorithms. From this
point of view, the RPCL algorithm also has an advan-
tage, because it can “push away” some supernumerary
centroids, thereby reducing the number of clusters.

The main drawback of the RPCL algorithm is the part
of randomness it includes. Indeed, at each iteration, the
point with respect to which the whole procedure is car-
ried out is chosen at random. Therefore, for the same
surface, different runs of the same algorithm can lead to
different results. Indeed, according to the tests which
have been carried out, this does not happen very often;
but nevertheless, it does happen, and this is a serious
drawback in the context of an industrial process. In ad-
dition, the RPCL algorithm requires the input of two
parameters (the learning ratios) which can be difficult to
define efficiently. Indeed, the relationship between these
parameters and the quality of the result cannot be an-
ticipated. Therefore, only multiple trials can determine
the best values. On the other hand, the RPCL algorithm
has the advantage of being generally faster than other
algorithms.

durations in seconds; lengths in millimeters

Regarding the K-means algorithm, the number of clus-
ters must be entered beforehand, which can be a disad-
vantage. But several parallel executions of the algorithm,
each with a different initial number of clusters is a good
workaround for this problem. The tests which have been
carried out in this direction show that the additional cost
in terms of computation time is negligible.

Another matter of interest is the various metrics com-
monly used in clustering processes that have been tested.
On this side, no solution emerges clearly. Therefore, since
the Euclidean distance is the easiest to calculate, it may
be the best choice at first sight. Other metrics may pro-
vide better results, but this is very difficult to anticipate.

To summarize, even if other algorithms and other met-
rics can give good results, in the context of industrial
use, it appears that the K-means algorithm used with a
Euclidean metric seems to be the safest choice and the
most versatile. However, given that the clustering algo-
rithms applied to the partitioning of free-form surfaces
are generally very fast in comparison with the rest of the
procedure, it may be beneficial, for some special cases, to
test different algorithms and different metrics.



8 Problem specifically related to
the use of clustering algorithms
for partitioning free-form sur-
faces

An issue that may appear when applying clustering algo-
rithm to free-form surface partitioning is non-connected
zones. A special algorithm, dedicated to deal with this
problem is presented here.

Actually, the clustering algorithms do not guarantee
partitioning with connected clusters only. Indeed, if the
feature vector contains only proximity parameters such
as: u, v or S(u,v), the resulting clusters would rather

be connected. However, using a feature vector contain-
ing other parameters, such as machining-related param-
eters, issues may arise. Indeed, since two geometrically
far points can have similar machining-related parameters
(slope s and steepest-slope direction 6), a classification
using a feature vector containing such parameters can
lead to disconnected clusters (Figure 6). Of course, a dis-

Figure 6: Example of disconnected zone (in green).

connected zone cannot be machined at once and must be
split into as many as needed connected zones.

It is thus necessary to check, before machining, if all
zones are connected and be able to identify, in discon-
nected zones, the connected components and consider
them as independent zones.

This can be achieved using algorithms coming from
graph theory. Actually, this problem could be considered
as a well-known Connected Components Search (CCS)
[26] in a non-oriented graph. However, the computation
time required to identify connected components might be
not negligible when a CCS algorithm is used, especially if
the meshing is fine, which corresponds to numerous ver-
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tices in the graph. In this case, CCS algorithm may take
a lot of time.

A faster algorithm, inspired by Connected Components
Labeling (CCL) [27] algorithms has been developed. Also
called blob extraction or region labeling, the CCL algo-
rithms are originally image processing and analysis tech-
niques, aiming at grouping the pixels of an image into
components using a given heuristic.

The developed algorithm works on the raw result of
the clustering process, i.e. a two-dimensional array zID,
which sizes tessU and tessV are the numbers of elemen-
tary mesh unit in each parametric dimension. Inside this
array, are stored the unique zone identifiers of each el-
ementary mesh unit. At this stage, unconnected zones
have not been detected yet, thus unconnected regions of
the same zone have the same number. To store the re-
sult of the procedure, a same size two-dimensional array,
called labels, is also created. The principle of the devel-
oped algorithm is described in Algorithm 4.

Algorithm 4: CCL-like algorithm for connected
components analysis (principle).

Data: array zID, array labels, tessU, tessV
Function label (s, 5, 1):

labels[i][j] =1
if z]lll)[z - 1][j] = 2ID[i][j] and labelsfi - 1][j] =

| label (i —1, j,1)
if 2ID[i][j - 1] = zID[i][j] and labelsfi]j - 1] =
null
| label (i, j—1,1)
if 2ID[i + 1][j] = zID[i][j] and labels[i + 1][j]
= null
| label (i+1,7,1)
if 2ID[i][j + 1] = zID[i][j] and labelsf[i][j + 1]
= null
| label (i, j+1,1)
Function main:
=0
label (0, 0, 1)
for i = 0 to tessU - 1
for j = 0 to tessV - 1
if labels[i/[j] = null
l=1+1
label (i, 7, 1)

The result of the application of CCL-like algorithm on
the example of Figure 6 is presented in Figure 7. Based
on a recursive function, it is very fast. For example, ap-
plied to the Choi surface discretized with an 80 x 80 mesh,
it took less than 20 milliseconds to achieve the full pro-
cessing of the connected components.



Figure 7: Result of the connected component search.

9 Conclusion

In this paper, an analysis of various clustering algorithms
applied to free-form surface partitioning for by-zones ma-
chining is presented. In this particular context, both fea-
ture vectors, similarity measurement methods and algo-
rithms themselves are studied and their assets and draw-
backs are highlighted. In order to help the reader to make
a choice, a bunch of tests are carried out on two surfaces
found in the literature. Furthermore, an algorithm deal-
ing with the non-connected zones problem that may arise
in this context is provided.

Given the wide variety of free-form surfaces that can be
encountered in industrial applications, a conclusive choice
is difficult to make, but using the K-means algorithm with
a Kuclidean metric and a dedicated vector of features can
be a good first choice. Based on this conclusion, in further
work, other algorithms, such as k-medoids or fuzzy C-
means, may be compared to K-means.
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