Umberto D'ortona 
email: umberto.d-ortona@univ-amu.fr
  
Denis Martinand 
  
Nathalie Thomas 
  
  
  
Rayleigh-Taylor instability in two-layer granular flows

Two layers of dry granular matter are initially superimposed in an unstable configuration, the layer of denser particles above. The flow is started, either by tilting the gravity in DEM simulations with periodic boundary conditions or by opening a confinement gate at the bottom of a channel in experiments. In both cases, a Rayleigh-Taylor instability rapidly appears, with plumes of the lower layer emerging in surface. The flow organises in a pattern of alternated bands of dense and light particles because of the flow shear. When the dense particles are larger than the light ones, the rolls in the bands are sustained during the flow because the size segregation renews continuously a thin layer of dense particles at the free surface. For the granular Rayleigh-Taylor instability, the mean displacement is shown to play the role of the time in fluids instability. Wavelength and growth rate of the instability are measured using this displacement, and their variations with flow thickness and Atwood number are in accordance with Rayleigh-Taylor type instability. As in granular flow the two layers are miscible and granular segregation acts as an anti-diffusion process. But for large density ratios or large size ratios, the reverse segregation favors diffusion and decreases the growth rate of the Rayleigh Taylor instability.

I. INTRODUCTION

The Rayleigh-Taylor instability (RTI) occurs when a dense fluid is put above a less dense fluid [START_REF] Chandrasekhar | Hydrodynamic and hydromagnetic stability[END_REF][START_REF] Charru | Hydrodynamic Instabilities[END_REF]. This instability also exists in dry granular flows: if a layer of dense granular material is put above a layer of a less dense material a destabilization of Rayleigh-Taylor type will develop while the whole system is flowing [START_REF] Ortona | [END_REF]. When put into motion, granular material have behaviors very analogous to fluids. Nevertheless, granular flows may have features that are uncommon in fluids like jamming, intermittency, etc. One of the most striking phenomena is granular segregation, also called Brazil Nut Effect [4][5][6][7]. When a mixture of large and small particles is flowing, large particles may migrate toward the free surface. Another segregation occurs in granular flow. When a mixture of dense and light particles is flowing, dense particles migrate toward the bottom [8][9][10][11]. Depending on size and density ratios, a self-induced RTI may arise: when a homogeneous mixture of small-light and largedense particles is put into motion, segregation induces the formation of a layer of large-dense particle at the surface that will subsequently destabilize in a Rayleigh-Taylor instability [START_REF] Ortona | [END_REF]. Finally, for both the granular RTI and the self-induced RTI, the flow organises to a system of counter-rotative cells very analogous to Rayleigh-Bénard convection cells [START_REF] Ortona | [END_REF].

The objective of this article is to gain a better understanding of RTI occurring in granular flows. To our knowledge, RTI involving granular material has only been studied while interacting with a fluid, liquid or air [12][13][14]. The destabilization of the flow of two dry granular materials having different densities and initially organized in two layers has never been studied. Here, the Rayleigh-Taylor Instability is put into evidence by both experiments and distinct element method (DEM) simulations of a granular flow down an incline, then a parametric study of the phenomena follows. Particles having two different densities are initially organized in two layers, dense particles above. The effect of angle of the incline, particle size ratio, density ratio, thickness of the flow and species volume fractions is studied by looking at the growth rate and the wavelength of the instability.

The article is organized as follow: in Part II, the experimental protocol and the DEM method are presented. Part III reports evidence of the RTI by both numerical simulations and experiments. Part IV is an extensive DEM study with variation of parameters. Article ends with conclusions.

II. METHODS

A. Device and experimental method

Experiments have been conducted on a 6.85 cm wide and 110 cm long rough incline (Fig. 1). A mono-layer of 530 µm particles is glued at the bottom of the incline. Several particle sizes and density ratios have been tested during the study of the self-induced Rayleigh-Taylor Instability [START_REF] Ortona | [END_REF], and the chosen values are such that the instability develops in about half the length of our channel. Flowing particles are ceramic beads: white Zirshot (diameter d = 250-280 µm and density ρ = 3850 kg m -3 ) and black Cerabeads (diameter d l = 500-560 µm and density ρ l = 6200kg m -3 ) inducing a particle size ratio d l /d = 2 and a density ratio ρ l /ρ = 1.61. Laboratory room humidity is held between 42 and 45%RH. The bottom layer with a thickness around H/2 is obtained using the deposit left by a pure small particles flow, made at a low angle (22 to 23 • depending on the wanted thickness). Then, the incline is set horizontally and a second layer with approximately the same thickness is placed by sprinkling large dense particles at the shortest possible distance above the first layer. Volume fraction of large particle is around 50% (46-55), except for one case made with 38%. The bottom layer thickness is constant along the channel, but the total thickness (and so the upper layer) varies little along the channel. We estimate its variations by measuring the flow thickness at a given place during the stationary regime or during the flow beginning, respectively for each protocol. In the case of too strong fluctuations (typically around 1 mm), velocity fluctuation creates an internal front which propagates faster than the flow, and the experiment is rejected. After the two layers being set, the incline is slowly tilted at θ = 23.7 • , the gate at the bottom end of the incline serves as containment. At t = 0, the gate is removed and the flow triggering rapidly rises the slope. The flow starts along the channel with a small time delay (see Video 1 in Supplemental Material at [15]). At the trigger place, the layer starts flowing and its thickness reduces suddenly. A second experimental protocol has also been used: less than 1/3 s after the gate opening, a little shock is given under the incline such that the flow starts everywhere at the same time (see Video 2 in Supplemental Material at [15]). Measurements are made using 50 Hz and 60 Hz video cameras and a photo camera. The deflection of a laser sheet is used to measure the thickness of the flow at a given place located in the lower part of the incline (Fig. 1). For the measurement of the flow thickness, a picture with an empty channel is required, giving an accuracy of 0.2 mm. For the measurement of the difference of height of two neighboring bands, as the measurements are made on the same picture, an accuracy of 0.05mm is reached. The wavelength is estimated counting the number of bands, excluding the two bands near the side walls.

B. DEM Simulations method

For the DEM simulations, a standard linear-spring and viscous damper force model [16][17][START_REF] Ristow | Pattern Formation in Granular Materials[END_REF][START_REF] Chen | [END_REF] is used to calculate the normal force between two contacting particles:

F ij n = [k n δ -2γ n m eff (V ij • rij )]r ij
, where δ and V ij are the particle overlap and the relative velocity (V i -V j ) of contacting particles i and j respectively; rij is the unit vector in the direction between particles i and j; m eff = m i m j /(m i + m j ) is the reduced mass of the two particles;

k n = m eff [(π/∆t) 2 + γ 2
n ] is the normal stiffness and γ n = ln e/∆t is the normal damping, where ∆t is the collision time and e is the restitution coefficient [START_REF] Ristow | Pattern Formation in Granular Materials[END_REF][START_REF] Chen | [END_REF]. A standard tangential force model [16,17] with elasticity is implemented:

F t ij = -min(|µF n ij |, |k s ζ|)sgn(V s ij ) ŝ, where V s ij is the relative tangential velocity of two parti- cles, k s is the tangential stiffness, µ the Coulomb friction coefficient, ζ(t) = t t0 V s ij (t )
dt is the net tangential displacement after the contact is first established at time t = t 0 , and ŝ is the unit vector in the tangential direction. The velocity-Verlet algorithm [START_REF] Ristow | Pattern Formation in Granular Materials[END_REF][START_REF] Allen | Computer Simulation of Liquids[END_REF] is used to update the position, orientation, and linear and angular velocity of each particle. The friction coefficient between particles is set to µ = 0.7. Gravitational acceleration is g = 9.81 m s -2 and is tilted by an angle θ = 23 • unless otherwise stated to simulate the incline slope. The small particles properties correspond to cellulose acetate: density ρ = 1308 kg m -3 , restitution coefficient e = 0.87 and friction coefficient µ = 0.7 [16,[START_REF] Drake | [END_REF][22][23]. The small particles have a diameter of d = 6 mm. Large particles have the same friction and restitution coefficient, but the size d l and density ρ l are adjusted depending on the needs. To prevent crystallization, each species presents a uniform size distribution ranging from 0.95 to 1.05d. The collision time is ∆t =10 -4 s, consistent with previous simulations [6,24,25] and sufficient for modeling hard spheres [START_REF] Ristow | Pattern Formation in Granular Materials[END_REF]26,27]. These parameters correspond to a stiffness coefficient k n = 7.32 × 10 4 (N m -1 ) [16] and a damping coefficient γ n = 0.206 kg s -1 . The integration time step is ∆t/50 = 2 × 10 -6 s to meet the requirement of numerical stability [START_REF] Ristow | Pattern Formation in Granular Materials[END_REF].

Rough inclines are modeled using a monolayer of bounded particles placed randomly leading to a compacity of 0.57. These particles have infinite mass for calculation of the collision force between the flowing particles and the wall. All measurements (velocity field, concentration map...) do not take into account the layer of small particles making the rough incline. Periodic boundary conditions are applied in the two directions parallel to the incline (x, y). The usual simulation domain has a width W = 200d and a length L = 60d with d the mean size of the small particles. In some simulations, W is increased to 400d to measure more accurately the wavelength. In one case, a domain of L = 400d and W = 200d is used to facilitate comparison with experiments. Position and velocity of all particles are stored every 0.1 s for post-processing purpose.

The vertical concentration maps are obtained by averaging the volume concentration of each species in the flowing direction y (for an example see Fig. 3). Spacetime diagrams are obtained by averaging the volume concentration of each species in the direction z perpendicular to the rough incline and by extracting a line along the width of the simulation domain and perpendicular to the flowing direction y. This produces one colored line every 0.1 s (unless otherwise stated) that are assembled to produce the diagram. For an experimental comparison, space-time diagrams are also made using the surface of the flow and are colored in white and black for small and large particles respectively [see examples in Figs. 5(a In bidisperse granular flows, a segregation index SI quantifies the evolution of the segregation:

SI = 2 CM l -CM H (1)
with CM l and CM the vertical positions of the center of mass of large and small particles respectively, and H the thickness of the flow. Independently of the particle volume fraction, the segregation index varies from 1 (perfectly segregated: large particles above), to -1 (reversed segregation: small particles above); and 0 corresponds to an homogeneous layer. This index is used to quantify the destabilization of the two layers. Indeed, a strong decrease of SI is associated to the beginning of the instability (for example, see Fig. 4). In hydrodynamical instability, the amplitude B of a growing sinusoidal wavy interface is usually measured, and a growth rate is deduced [START_REF] Chandrasekhar | Hydrodynamic and hydromagnetic stability[END_REF][START_REF] Charru | Hydrodynamic Instabilities[END_REF]. The link between this amplitude and the segregation index is made in Appendix A. For an equal volume fraction of small and large particles, it reads:

B H = 1 -SI 2 (2)
with H the thickness of the flow. It is interesting to note that a plume in the lower layer reaches the free surface when B/H = 1/2, which corresponds to SI = 1/2. For unequal volume fractions, a small correction term appears (see Appendix A).

It is useful to compare the time evolution of SI to space-time diagrams or to concentration maps time evolution. But in granular flow, the Rayleigh-Taylor instability develops in the (y, z) plane while the granular material is flowing in the x direction. If the flow stops, the instability stops as well. As a consequence, we will see that the mean displacement D computed by integrating the flow mean velocity, is a better parameter than the time to follow the instability evolution. In most of the cases, drawing SI versus time t or versus displacement D gives very analogous curves since flows rapidly reach a stationary velocity. In these cases, the use of D is preferred and the curves versus time are available in Supplemental Material [15]. When the considered parameter modifies the flow velocity as the flow thickness and the incline slope do, both graphs are presented and discussed. Furthermore, for a comparison with experiments, the mean displacement of the flow D should be used since in experiments, the evolution of the instability is measured along the incline.

In a Rayleigh-Taylor instability occurring in fluids, the amplitude of the perturbed interface growths exponentially with time. In granular flows, the evolution of the perturbation with mean displacement D is also considered:

B = B 0 exp(γ t t) = B 0 exp(γ x D) (3) 
where B 0 is the initial perturbation, γ t and γ x are the temporal and spatial growth rate respectively. Both are linked by a typical flow velocity.

III. RAYLEIGH-TAYLOR INSTABILITY

A. DEM simulations

Figure 2 shows a simulation of the granular RTI for conditions close to those of the experiments. Intially, the flowing particles are placed randomly, just above the rough incline for the small particles and above them for the large ones. The two-layer pattern is built unstable, with large-dense particles (red) above (see t=1 s in Fig. 2). At time zero, gravity is set with a tilt angle θ = 23 H = 36d, the length in the flowing direction (arrow) is L = 100d, and the width is W = 200d. Flowing particles have a size ratio d l /d = 2, a density ratio ρ l /ρ = 1.5 and an equal volume fraction. After the granular material has started to flow, the interface between the two species destabilizes (t = 15 s) and forms a plume pattern (t = 20s) (See Video 3 in Supplemental Material at [15]). As the flow stretches the interface in the y direction, the plumes take the shape of parallel stripes aligned with y [Fig. 2(c,d)] [28]. The plume pattern is clearly visible in vertical concentration fields (xz plane)obtained by averaging particle volume fraction in the flowing direction y (Fig. 3(a-d whole thickness, and spreading heads at top and bottom boundaries typical of a Rayleigh-Taylor instability obtained with viscous liquids having a viscosity ratio close to 1 [29]. The transverse velocity field (Fig. 4) is also typical of a RTI with a vertical flow inside plumes and contra-rotative rolls between plumes.

FIG. 4. Transverse velocity field (x-z plane) corresponding to t = 15 s in Figs. 2 and3.

The time evolution of the granular RTI is more easy to apprehend while looking at space-time diagrams [Fig. 5(a-b)]. This two-layer system is initially homogeneous (after an averaging along z, 0 < ∼ t < ∼ 10 s), then the destabilization occurs (10 s < ∼ t < ∼ 20 s) and bands appear. Both space-time diagram and vertical concen- tration maps can be used to extract an estimate of the wavelength. For an accurate measurement of the destabilization wavelength, an initial positioning of particles with a sinusoidal waving interface is used. This procedure is the matter of another article [START_REF] Ortona | A stability analysis of the Rayleigh-Taylor instability in granular[END_REF] whose results lead to the fit used in Figs. 11 and30. In fluids, the RT instability relaxes into two superimposed stable layers. A similar long term evolution is obtained in granular flow if both types of particles have the same size. With a size ratio d l /d >1, the pattern of alternated bands does not disappear (t > ∼ 20 s). These bands correspond to recirculation cells analogous to Rayleigh-Bénard convection cells where the driver of the instability is not temperature but segregation [START_REF] Ortona | [END_REF]. A detailed study on this regime is ongoing and will be presented soon.

Figure 5 shows the time evolution of the segregation index and the corresponding space-time diagrams. The segregation index starts from 1 for a fully segregated state and strongly decreases to reach a value around -0.2. Comparing both graphs, we notice that the apparition of the stripe pattern corresponds to the SI strong decrease (between 15 and 20 s). In Fig. 5(c), the segregation index is plotted versus time. This allows a direct comparison with space-time diagrams and concentration maps time evolution. Comparing the space time diagram obtained by averaging over the whole thickness [Fig. 5(a)] to the one measured at the free surface [Fig. 5(b)], we notice that there is a small delay between the apparition of the wavy pattern in the bulk and its emergence at the free surface. This has to be noticed since in our experiments, only the free surface is visible. As expected, the plumes of small-light-white particles appear at the free surface for a segregation index close to SI = 1/2. The rising part of the SI curve (t > ∼ 25 s) corresponds to the segregation process responsible for the self-induced RTI and for the sustained recirculation rolls [START_REF] Ortona | [END_REF].

B. Experiments

As the initially bi-layer granular material is flowing, we observe the emergence of a pattern of white dots, evolving into elongated aligned dots which merge, making portions of stripes themselves merging into longer parallel stripes that remain till the flow ends (Figs. 7 and9, and Videos 1 and 2 in Supplemental Material at [15]). Stripes are made of narrow black bands of large particles and wide white bands are made of a mixture composed mainly of small particles and a few large particles. The fraction of large particles in white bands seems to increase with time, and to be larger for thin flows. The deflection of the laser sheet shows that the free-surface of the flow is not flat, but small modulations are visible in the crossflow direction (Fig. 6). Dark bands correspond to depressions while white bands are bumpy. The difference of heigth is typically around 0.5 mm. This corresponds to less than two small particle diameters 2d. This is very similar to what is observed in simulations (Figs. 2 and 3 at t = 20 s) where a difference of heigth of 2.6d is measured. For numerical flows closer to the experiments (H = 20d), a height difference of 1.6d is measured. While the instability evolves, the difference of height between bands almost vanishes (Fig. 3 at t = 70 s). In white bands, material seems to laterally spread out from the middle of each band. This is compatible with ascending material in white bands and descending material in dark bands. In the first instants, the converging surface motion toward the dark bands focuses the B&W pattern: the black stripes become thinner and thinner and get well defined borders. Dark stripes do not disappear despite their down motion because they are continuously fed by few new black particles coming from the mixture of the white bands.

Even though the initial destabilization is 3D, evident through the apparition of dot-shape plumes of smalllight particles in surface, the instability reorganizes at the same time that it develops into a 2D pattern due to the shear of the flow. This phenomenon is difficult to observe in the numerical simulation as the plumes can be as large as the numerical domain in the flowing direction, but has been observed in the few numerical simulations made with a longer domain (Fig. 32). For thin flows, plumes rapidly reach the surface and they first appear as a 3D pattern in surface. For thick flows, the pattern reaches the surface as portions of stripes. The instability is already more evolved toward stripes when the white pattern reaches the free surface (the limit is for a flow thickness around H = 4.5 mm in our set-up). The distance to travel before the white pattern appears in surface seems to increase with flow thickness, even though it is only roughly estimated. At first, elongation, reorganization and merging of dots and portions of bands during the formation of the long stripes leads to a decrease of the number of bands. Then, the wavelength is rather constant with only fluctuations of the number of bands (plus or minus one) due to the pattern formation. Fluctuations are localized in short parts of the flow in between larger parts where the number of stripes is constant. The wavelength value stabilizes if the flow thickness remains constant. The pattern converges towards very long parallel stripes. It evolves slowly with any H evolution, through a one by one stripe formation or loss.

At the end of the experiment, before the flow stops, the flow thickness decreases and the number of stripes increases, but only a little. The stripes become convectively inactive: we see that the B&W pattern is getting progressively blurred, the surface topography disappears, and the few dark particles in white stripes do not spread to reach the dark stripes anymore [Fig. 7

(f)]. The convection has vanished probably because the flow is too thin.

There is no reason for the 'inactive system' wavelength to be linked to the thickness anymore, so the measurements are reported in figures for completeness, but are not taken into account. Finally, the flow stops and there is a deposit left close to 1 mm thick.

The channel length plays a role analogous to the duration of the simulations (and should not be confused with the numerical domain length L). To compare experiments and simulations quantitatively, we integrate the mean flow velocity of the simulation to compute the mean displacement D and measure the time required to reach a mean displacement D 4100d that is similar to the experimental channel length. For a simulation with H = 20d (close to experimental thicknesses), particles of the surface reach the channel end in about 50 s (see Fig. 29). In fact, avoiding the emptying of the channel [Fig. 7(d)], particles that pass on the laser line have usually travelled less than 2/3 of the channel length, cor-responding to travel times less than 33 s. We deduce that the last stage of the thick experimental flows still corresponds to stage (c) in Fig. 2 associated with the SI strong decrease. The thinnest flows which evolve more rapidly can reach the stage (d).

No-shock protocol

We have used two different protocols to start the flow in order to see the influence of the initial conditions on the development of the instability. Figure 7 shows a typical experiment of the granular RTI using the so-called 'no-shock' protocol (the containment gate is removed at the bottom, and NO shock is given under the channel). The triggering of the flow starts from the removed gate, and moves up the slope (from right to left in Fig. 7(a-c Due to the trigger front which is close to a transverse line, the velocity flow field is rather uniform over the width W where measurements are done. The flow has only little fluctuations of thickness (less than 0.25 mm) before the emptying stage during which the thickness decreases suddenly (Fig. 8). These facts are the main advantages of this protocol. The time during which the flow thickness H is constant and the bands are established is short but presents a constant wavelength that is used in Figs. 11 and30.

Three experiments with total thicknesses of the initial deposit of 5.6, 6 and 12.3 mm have been performed, leading to a flow thicknesses in the stationary stage of H = 3, 3.7 and 4.9 mm respectively. Using this no-shock protocol, the initial thickness of the material decreases by a factor nearly 2 at the place where the trigger passes through (for example in Fig. 8, the trigger passes on the laser line location at t = 1.9 s and H decreases abruptly). At the trigger place the upper layer is more stretched and its thickness decreases more than that of the lower layer. The volume fraction of large particles in the flow is less than that set in the initial deposit. In simulations, due to the periodic boundary conditions, the thickness of each layer is constant from the start of the flow to the destabilization. These experiments compare then better to simulations having a smaller volume fraction of large-dense particles than F l = 50% (discussed in Sec. IV 5).

Shock protocol

The second experimental protocol is called 'shock protocol' because the containment gate is removed AND a little shock is given under the channel with a rod. In this case, the flow starts everywhere at the time of the shock. A bit latter, the instability also develops everywhere in the channel: dots more or less elongated evolve into a pattern of parallel stripes (Fig. 9 and Video 2 in Supplemental Material at [15]). Small delays in dots pattern apparition are probably indicating initial spatial thickness fluctuations. Figure 9(f) shows the corresponding space time diagram. Compared to the case of thin flow [Fig. 7(g)], the transition from a fully black upper layer to a band pattern is sharper. This transition is similar to that observed in simulations because the flow is thicker and white pattern appears as of portions of bands (Fig. 5).
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The shock protocol has the advantage to keep the initial flow thickness close to the initially set thickness. Thickness is almost constant at the beginning, when the flow starts. As a consequence, there is no strong stretching of the layers and we assume that the proportion of large-dense and small-light particles remains close to its initial value. We are more confident in the interface state and its vertical location with this shock protocol. The main drawback is that the period of constant flow thickness is not larger than 2 s in our set-up and plumes have usually not yet reached the surface during this time. Sometimes one wavelength measurement can been done during the constant thickness stage, but never concerning a developed band pattern. During the pattern formation the flowing thickness H decreases. Even though measurements have not been done in a stationary state with this protocol, they are perfectly compatible with those of the no-shock protocol.

Experiments with three initial thicknesses (6.5, 5, 4.4 mm) have been prepared, leading to a range of flow thicknesses between H = 4.7 mm and 3.3 mm at the times of wavelength measurements. As with the first protocol, the distance to travel before the pattern appears in surface increases with the initial thickness. For the 6.5 mm flow, the instability only appears at the channel end when H is around 5.3 mm, and only one measurement could be done for H near 5 mm (Fig. 11). As will be shown in simulation, this distance is linked to the instability growth rate and depends on the flow thickness. Nevertheless, plumes reaches the surface more rapidly in time with the shock protocol because the flow propagates much faster than in the first protocol (see Figs. 8 and10). The flow gets also rapidly a transverse velocity profile, faster in the middle; it is less uniform than without shock. Consequently the surface layer slightly regroups toward the channel middle in the first instants of the flow. Two white bands appear at the side walls and the width in where the pattern forms W decreases. This focusing thickens the large particle layer, increasing locally their volume fraction. Using 38% of large particle initial fraction (for the initial 5 mm experiment) reduces this effect, and does not influence much the instability.

With the shock protocol, the main part of the instability develops during the stage of the flow thickness H decrease. Nevertheless, H varies slowly enough such that the pattern adapts its wavelength λ during the flow. This is visible in Fig. 10 where the ratio λ/H is rather constant between t = 2.5 s and t = 6 s while the flow thickness decreases from H = 4.7 mm to 3.6 mm.

Later in the experiment, H still decreases and the flow reaches the stage of inactive rolls. As previously described, in this stage, the cells present a blurred B&W pattern and the wavelength remains almost constant, leading to a λ/H strong increase. We do not take into account the λ measurements during this inactive stage. To determine the start of the inactive stage, we pay attention to the focused character of the black stripes, and to the expanding motion of black particles in white stripes. The focused-blurred transition is measured near the laser line. It is not uniform along the channel width, some stripes are still focusing while others are no longer convecting. We choose to place the transition between the time of the first apparition of a blurred black stripe on the laser line to the time at which all black stripes are blurred. For example, the transition lasts from t 6 s to t 9 s (light grey region of the horizontal axis in Fig. 10). Using the same criterion in the no-shock protocol experiments places this transition after the sudden H decrease of the emptying stage, from t 17 s to 20 s (Fig. 8). The sudden H decrease in the no-shock protocol induces the stop of convection probably because H becomes too low. We simply note that the stop of convection happens in our experiments for H around 3 mm.

With these two protocols, instability has been observed with H ranging from 11d to 19d, giving associated wavelengths between 1.62H and 1.96H and presenting a correlation λ=1.82H (see Fig. 11 and Fig. 30 for an experiment-simulation comparison). This result is in very good accordance with the correlation λ=1.9H coming from simulations of sinusoidal interface destabilization [START_REF] Ortona | A stability analysis of the Rayleigh-Taylor instability in granular[END_REF]. For the shock protocol, as the thickness slowly decreases, several wavelengths are reported for each experiment. The measurements are linked by dotted lines following the time evolution (H decreases). The sawtooth evolution of the wavelength is interesting to note. The thickness H decreases while the number of bands is constant, which corresponds to points aligned horizontally, and there are rapid apparitions of a new band, which corresponds to a sudden vertical gap. The only exception is the two first blue-solid-circle points where the expansion of the two sidewall bands induces a width W decrease at the same time than the H decrease. The apparition of a new band seems related to λ/H exceeding about 1.9. The increase and discontinuous decrease of λ keeps λ/H close to 1.9 (Fig. 11). For the no-shock protocol (diamonds), as the flow rapidly converges to a constant thickness, only one measurement is reported for each experiment, obtained by averaging values that are close. For the thickest flow (green diamond) the insta- bility may not be fully developed, since it appears when reaching the end of the channel, and only one measurement was possible. It is interesting to observe that the correlations linking λ and H obtained using experiments with different but constant with time flow thickness H, and one single experiment with decreasing H are compatible.

The slight disagreement for the first wavelength measurements of the shock protocol (black triangle and red square) is smaller than those obtained in simulations (Fig. 30). The fact that W is free to adapt compared to the simulations in a periodic box explains probably the better accordance of experimental data than simulations. The greater number of bands (near 7) also gives mathematically smaller deviations from the fit during the addition of a band than using only 3 to 4 bands in some simulations. The remarkable fact here is that no major difference is observed between the protocols in this correlation, even though experiments start in a different way, and they both modify the initial species fraction. 

IV. PARAMETRIC STUDY

In this part, an extensive parametric study is performed using DEM. The effect of incline angle, flow thickness, particle size ratio, density ratio and volume fraction are considered. All the space-time diagrams and the vertical velocity fields are not included for brevity. They can be found in Supplemental Material [15].

Slope angle

In a granular flow, the slope angle is a crucial parameter. Changing the incline angle from θ = 21.5 • to 26 • increases the flow velocity by a factor of 8. Indeed, while looking at the space-time diagrams of the instability for several angles (Fig. 12), one can see that the destabilization is more rapid for higher angles. Nevertheless, the number of bands, and thus the wavelength, is not affected by the incline slope. Comparing all the cases (See tion index for various slope angles. Higher is the slope, faster is the destabilization. This behavior is directly linked to the granular flow velocity. Indeed, when the slope is low, the granular flow is slow, as is the evolution of the Rayleigh-Taylor instability. In the extreme case of a too low angle, the flow stops and no instability occurs. As explained in the introduction, using the mean flow displacement D is a better choice in the case of a granular flow. Nevertheless, if the segregation index is plotted versus D (Fig. 13(b)), the curves do not overlap.

A longer mean displacement is required for the full development of the instability when the slope angle increases. This point is important when considering experiments since the maximal displacement is fixed by the length of the incline. Using eq. 2, the amplitude of the perturbation B is computed and fitted with an exponential law B = B 0 exp(γ t t) where γ t is the temporal growth rate and B 0 is the initial perturbation that is not controlled and should be estimated. Figure 14 is a semi-log plot of B versus time and the linear part of each curve shows that an exponential growth of the perturbation amplitude is observed until a saturation is reached which corresponds to B H/2 = 16d (horizontal dashed line in Fig. 14). Figure 15 shows four consecutive vertical concentration maps. Each picture is obtained by averaging the two species concentration along the flowing direction and for a period of 1 s. The instability can be followed from a nearly horizontal interface (t = 3 s) to a plume pattern where light and dense plumes have reached the opposite boundary (t = 9 s) that corresponds to the saturation of perturbation amplitude B 16d observed in Fig. 14. A temporal growth rate γ t is obtained from the exponential fit in Fig. 14. The same procedure is applied to the instability amplitude with mean displacement (see Fig. S4 in Supplemental Material [15]) to obtain the spatial growth rate γ x . Both growth rates are plotted in Fig. 16. The temporal growth rate γ t rises with the slope angle. Indeed, faster is the flow, faster will be the instability. Contrarily, the spatial growth rate γ x is nearly constant with the slope angle. This confirms that the mean displacement D is more adequate to follow the RTI in granular flows. This results may seems contradictory with the evolution of the segregation index with mean displacement (see Fig. 14(b)) since the curves do not overlap. This comes from the initial perturbation B 0 that can not be controlled. The initial perturbation is due to the granular nature of the material and seems to decrease when slope angle and flow velocity increase. Both the growth rate and the segregation index are of interest since they give different information on the granular RTI.

The temporal and spatial growth rates should be linked with a characteristic velocity of the granular flow γ t = v cha γ x . It is not clear which velocity should be used. Figure 16 shows a temporal growth rate built using v max γ x where v max is the higher value reached during the instability of the granular flow velocity (see Fig. S5 in Supplemental material for the flow velocities [15]). These values nearly match with γ t . We simply note that an almost perfect match is obtained when using γ t 0.95v max γ x . This is due to the fact that while the granular material is initially at rest, the majority of the instability occurs when the velocity is around v max .

Particle size

The particle size ratio is a crucial parameter in granular flows since it controls segregation. Figure 17 shows space-time diagrams of the RTI for various particle size ratios (see Fig. S6 in Supplemental Material for all size ratios [15]). Even though the number of bands varies of plus or minus one, there is no systematical variation with the size ratio. Furthermore, if simulations are reproduced with different initial random positions of the particles, the number of bands may differ from one. The destabilization time is only slightly affected by the size ratio. This is more visible when the segregation indexes are reported versus the mean displacement D (Fig. 18) or versus time (see Fig. S7 in Supplemental Material [15]). For all size ratios, the destabilization occurs around D = 2000d, but with a slight shift toward larger D for higher particle size ratios d l /d. Curve shapes are also different. Higher is the size ratio, smaller and slower is the decrease of the segregation index during the destabilization. The same tendency is observed for the spatial growth rate. For example, it decreases nearly linearly from γ x = 0.8 m -1 to 0.2 m -1 for a size ratio increasing from d l /d = 1 to 3.5 (Fig. S8 in Supplemental Material [15]). The same evolution is observed for the time growth rate γ t . To understand why RTI develops slower when the size ratio increases, Fig. 19 shows the vertical concentration maps obtained when the segregation index slope is the steepest. At high size ratios diffusion is strong at the interface. The large and dense particles penetrate individually the lower layer of small particle, reducing the vertical density gradient and reducing the growth rate of the instability. For all size ratios except d t /d = 1, the segregation index rises after destabilization and in some cases oscillations are obtained (Fig. 18 and Fig. S10 in Supplemental Material [15]). By analogy with RTI in fluids, one might think to inertial effect and internal waves. But in the granular RTI, the rising part of the segregation index corresponds to granular size segregation. Indeed, the steepest rise of the segregation index is obtained for size ratios around d l /d = 2 for which the size segregation is the most efficient [6,[START_REF] Félix | [END_REF]. Moreover, for the case d l /d = 1, the curve does not rise since there is no size segregation. This has been checked for mean displacement as high as D = 40000d (Fig. S10 in Supplemental Material [15]). Oscillations occur because the system does not organise directly in a regime of convection cells [START_REF] Ortona | [END_REF], but first goes through a sequence of several segregation-destabilisation. While changing the size ratio, the size of the large particles increases. It is not clear if the evolution of the segregation and the decrease of the growth rate with size ratio is due to the increase of size ratio or to the presence of large particles in the upper layer. To get a better insight, the granular Rayleigh-Taylor instability is now studied for particles having the same size, named common size d c (size ratio equal 1) and a density ratio 2. The size of the particles d c is varied to study its influon the instability. The common particle size varies from d c = 0.7d to 3d, with H= 36d, W = 400d and L= 30d where d=6 mm is still the size of small particles used in previous simulations. We choose to measure the common particle size in term of the small particle size in previous simulations to facilitate comparison. The rough incline is also composed of particle of size d c to prevent any slip. The thickness of the flow varies from H = 51d c to H = 12d c and W from 571d c to 133d c . Changing the size of the flowing particle while keeping the flow thickness constant is equivalent to vary the flow thickness without changing the particle size. This point will be further discuss in section IV 4. The SI evolution shows the same instability at the beginning (D < ∼ 2000d), but a different evolution at long time and displacement compared to flows having a particle size ratio (Fig. 20). All curves converge to a negative value of the segregation index corresponding to a stratified fluid with dense particles at the bottom, light particle above The pattern of bands is not sustained by the size segregation since the size ratio is equal to 1. (see Fig. S17 in Supplemental Material for the spacetime diagrams [15]). The destabilization occurs for mean displacements around D 1500 d, independently of the particle size d c . Nevertheless, SI curves do not superimpose. The evolution is more abrupt for small particle d c , i.e. large relative flow thickness. This is due to the fact that interface is less diffuse for small d c . Figure 21 shows vertical concentration fields for increasing particle size d c . For small particle sizes, the interface remains sharp during the destabilization, while it diffuses for high particle sizes. In granular flow, the diffusivity scales like D ∼ d 2 c [32] The increasing diffusive layer shows the importance of diffusion compared to the flow thickness. Each layer being only 6-particle thick for d c = 3, the mixing induced by the flow is not negligible compared to the layer thickness. This is confirmed by the measurement of the growth rate γ x (Fig. 22). Larger is the size of the flowing particles, smaller is the growth rate. When dense and light particles are mixed near the interface, the density ratio between the two phases is lower. As a consequence, the growth rate decreases. Analogous results were obtained when the particle size ratio was increased above 2. This shows that the reduction of the RTI growth rate is linked to the presence of large particles in the flow. When looking at the space-time diagrams and the evolution of SI versus time (respectively Figs. S17 and S18 in Supplemental Material [15]), we notice that the instability is more rapid to occur for small particle sizes, but does show this tendency for the spatial evolution (Fig. 20). This is due to the fact that a granular material of a given thickness flows more rapidly for small particles.

For the wavelength, the number of bands varies by plus or minus one with no systematical tendency with the particle size (Fig. 21 and Fig. S17 in Supplemental Material [15]). The particle size, either by changing the size ratio or by increasing both species sizes, has no effect on the wavelength.

The size ratio is a crucial parameter in granular flows. In rotating tumblers or in flows down incline, segregation is the most efficient for a size ratio around d l /d = 2. But in granular RTI, while changing from d l /d = 1 (no segregation) to 2 (strong segregation) and to 3.5 (weak segregation), the instability growth rate monotonically decreases (see Fig. S8 in Supplemental Material [15]). In the present study, the parameters, and especially the density ratio, have been chosen such that the RTI occurs in a not too long channel for experiments and in a reasonable computing time for simulations. But if the density ratio is reduced, the time for the RTI to develop increases and may become comparable to the diffusion time. In a strongly diffusing regime, the growth rate may became negative and the RTI would not appear. Close to this regime, the particle size ratio and the resulting size segregation, could favor the Rayleigh Taylor instability by reducing the diffusion, and increasing the growth rate.

The study of such a regime is ongoing [START_REF] Ortona | A stability analysis of the Rayleigh-Taylor instability in granular[END_REF].

Density ratio

The effect of the particle density ratio is studied in the range ρ l /ρ=1.1 to 3.25 and for a size ratio 2. For a simulation domain with W = 200d, L = 60d and a flow thickness H = 36d, the number of bands varies be- tween 3 and 4, for all the density ratios, without any systematical effect of the density ratio (See Fig. 23 and Fig. S19 in Supplemental Material [15]). On the other hand, there is a clear effect of the particle density ratio on the growth rate. Higher is ρ l /ρ, sooner appears the destabilization. This is also visible in Fig. 24 where the segregation index is plotted versus the displacement D. The destabilization requires a mean displacement about D = 10000d for a density ratio ρ l /ρ = 1.1 while less than D = 2000d is necessary for the highest density ratio. These two results are expected. Indeed for the RTI in fluids, the density ratio affects the growth rate, but not the wavelength. Figure 25 shows the space and time growth rate versus Atwood number: At= (ρ -ρ)/(ρ l + ρ). For now, we simply note that both growth rates increase with density ratio and Atwood Number. To determine exactly the relation between growth rate, density ratio and Atwood number, a more accurate procedure will be proposed using an initially perturbated interface [START_REF] Ortona | A stability analysis of the Rayleigh-Taylor instability in granular[END_REF]. Figure 26 shows vertical concentration fields (x-z plane) for particle density ratios ranging from ρ l /ρ = 1.1 to 3.25. Fields are obtained when the segregation index slope is the steepest. For low density ratios, the interface between species is more diffuse. Indeed, as the destabilization is slower, particles have more time to mix at the interface while flowing, even though the sedimentation at the interface is more efficient for high density ratio. It is interesting to note that during the destabilization, the upper free surface is deformed. Highest is the density ratio, highest is the deformation. This deformation is also visible in experiments (See Fig. 9). The same study has been performed for a different flow thickness H = 20d and the observations are unchanged (see Supplemental Material Figs. S21 to S23 [15]).

Flowing layer thickness

The effect of the granular flow thickness is studied. thickness of the flow. Consequently, the instability wavelength λ increases with H. This is also visible in Fig. 28 that shows the vertical concentration fields for growing flow thicknesses. Pictures are made when the slope of the segregation index is the steepest which is not far from the value SI = 0.5. To have a more accurate estimation of the wavelength, larger systems W = 400 d, but for a short time of simulation, have been studied for thicknesses ranging from H = 12 d to 60 d (See Fig. S26 in Supplemental Material [15]). By simply counting the number of bands, a wavelength correlation λ 1.6H is obtained. This is close to experimental measurements, but we will sea that it slightly underestimates the wavelength. A more accurate measurement is performed in [START_REF] Ortona | A stability analysis of the Rayleigh-Taylor instability in granular[END_REF] which gives a correlation λ=1.9H that is reported in Figs. 30 and Figure 29(a) shows the time evolution of the segregation index for flowing thicknesses ranging from H=16 to 56d. As observed in the space-time diagrams, the destabilization occurs approximatively after the same time, here about 12 s. Though, one should note that like the slope angle, the flow thickness modifies the flowing velocity. Passing from H = 16d to 56d, the mean velocity has increased by a factor around 5. When the segregation index is considered versus flow displacement D (Fig. 29(b)), the displacement required for the destabilization increases with the thickness of the flow. This is also observed in experiments. For higher thicknesses, the length of the incline should be increased to be able to observe the RTI before the channel end. A typical destabilization distance D * may be computed, for example the distance required to reach a segregation index of SI = 0.5. D * growth linearly with the thickness of the flow (See Fig. S27 in Supplemental Material [15]) to reach around D * 2500d for H = 56d. In an analogous way, the spatial growth rate γ x is observed to be nearly constant with H while the time growth rate γ t growth with the flowing thinkness (see Fig. S28 in Supplemental Material [15]). That is expected since growth rates are linked by the flow velocity.

H = 24d H = 36d H = 16d H = 52d
In section IV 2, the size of the particles where changed keeping a constant flow thickness H. This is somehow equivalent of changing the flow thickness keeping particle sizes unchanged. Comparing vertical concentration fields, the interface is very diffuse for a low flow thickness (see H = 16 d in Fig. 28) and large flowing particles (see d c = 3 d in Fig. 21). For the evolution of the segregation index, the flowing distance D of Fig. 20 should be rescaled by the particle sizes d c to give a SI evolution similar to that of Fig. 29(b). For the spatial growth rate γ x , we simply need to multiply it by the particle sizes d c in Fig. 22 to obtain a nearly constant spatial growth rate like the evolution observed for constant particle size and growing flow thicknesses (Fig. S28 in Supplemental Material [15]). A linear plot λ = 1.9 H is reported for comparison (coming from [START_REF] Ortona | A stability analysis of the Rayleigh-Taylor instability in granular[END_REF].

The wavelengths obtained by simply counting the number of bands in the simulations having a width of W = 400 d (see Fig. S26 in Supplemental Material [15]) give values that are underestimated (blue dots) because of geometrical constraints and a low number of bands. Experimental wavelengths are also reported (cyan squares) for constant thickness flow (no-shock protocol), and (orange diamonds) for time decreasing thickness (shock protocol, data from Fig. 11). These wavelengths are in good accordance with a linear fit obtained by numerical simu-lations following the development of a sinusoidal perturbation of the interface between layers [START_REF] Ortona | A stability analysis of the Rayleigh-Taylor instability in granular[END_REF]. The excellent accordance between experimental data and the fit can be surprising compared to the underestimated numerical data. It may comes from the fact that the two side areas in the experimental channel serve spontaneously to optimize the width W of the central part in which the pattern of bands develops.

Species volume fraction

The effect of the species volume fraction is considered for large particle volume fractions ranging from F l = 10% to 90 %. Figure 31 shows space-time diagrams corresponding to four large particle volume fractions. A larger width W = 400d is used to better see the effect of F l . The number of bands varies from 12 bands for 10% to 6 bands for F l = 80%. For F l above 80% the exact number of bands is difficult to extract. Accordingly, the wavelength growths from λ 30 d to 60 d with F l (see Fig. S32 in Supplemental Material [15]). The main variation is taking place between F l = 10% and 30%. For larger F l , the number of bands only decreases from 7 to 6, inducing a small wavelength increase. This explains why experiments with F l slightly modified by the flow start and simulations with a constant F l =50% give the same wavelength for equivalent flow thicknesses.

When comparing experiments (Fig. 7) and simulations (Fig. 5(b)), we noticed differences in the apparition of the plumes at the free surface. In several experiments, white dots corresponding to the summit of light-small particle plumes first appear, then the dots elongate and end up merged in bands. In 50-50% species simulations and in experiments with a thick flow, when small-light particles reach the free surface, they are already organized in elongated structures, which appear as bands in the short simulation domain in the x direction (L = 60d). As already explained, the no-shock experimental protocol often induces a thin flow and always a greater stretch of the upper layer compared to the lower layer, equivalent of using a volume fraction of large particles F l smaller than 50%.

Simulations made in a larger domain (W = 200d and L = 400d) present features that are close to those obtained in experiments. Figure 32 show the case of F l = 30% and H = 16d. After the flow has started, white dots appear at the free surface (t = 4 s), elongate (t = 6 s), reorganize in bands (t = 10 s) and end up in a pattern of well established bands (t = 30 s). Volume fractions of F l = 20% and F l = 40% have also been tested and give similar successive patterns. For small fractions the plumes have to cross a smaller upper thickness to appear at the surface and are not elongated yet.

In the opposite, when the upper layer is thick, the time to cross over is larger, plumes appearing in surface are more stretched and eventually merged into bands.

Figure 33 shows the evolution of the segregation index with the displacement D. Up to a volume fraction of F l = 50%, the destabilization occurs for similar destabilisation distances, that are around D * = 1800d. But for higher F l , the distance, required for destabilization strongly increases. The same study has been performed for a different flow thickness H = 20d leading to equivalent conclusions (See Figs. S33 and S34 in Supplemental Material).

When F l is large, the instability happens later. To understand if this delay is due to a thick layer and a thin lower layer, or to the fact that the fraction of larger particle has increased, the reverse system (small, dense parti- cles above) is studied. Simulations start with this initial configuration: a layer of small dense particles above a layer of large light ones. The size ratio is again d l /d = 2 but the density ratio is reversed ρ l /ρ = 0.5. shows the evolution of the segregation index. Like in the usual case (large dense particles above), there are large variations of the destabilization distance with the particle volume fraction. But here, the case F l = 20% evolves the most slowly. We deduced that in both cases, a thin lower layer (and a thick upper layer) induces the slowest destabilization rate. Analoguous phenomena occur in fluids. When a thin film of fluid undergoes a RTI, the typical destabilisation time t * scales like t * ∼ h -3 where h is the thickness of the film [33,34]. This scaling induces a strong increase of the destabilisation time and the regime is called saturated [START_REF] Charru | Hydrodynamic Instabilities[END_REF]. Of course, due to the granular nature of the studied system, a thin film is difficult to obtained. Nevertheless, when a typical destabliisation distance D * , or an equivalent destabilisation time t * , is obtained by measuring the distance, or the time, required to reach a segregation index SI = 0.5 (see Fig. Figure 35 shows the vertical concentration fields for the two cases when the slope of the segregation index are the steepest in Figs. 33 and34. Several things are noticeable when comparing vertical fields. When thin [Fig. 35(a, f)], the upper layer fragments while destabilizing and the free surface strongly deforms. Contrarily, when the lower layer is thin [Fig. 35(c,d)], it does not fragment and the destabilization is delayed. This is likely related to the fact that the rough incline induces a non slip boundary condition, and that emptying the lower layer is difficult (saturated RTI regime). In the case of the thinnest lower layer of large particles [Fig. 35(d)], the destabilization rate is so low that the plumes diffuse while rising. The diffusion drives the segregation index evolution. The cases of equal volume fraction F l = 50% show different patterns. When small particles are below [Fig. 35(b)], the pattern is rather up-down symmetrical. In the reverse situation [Fig. 35(e)], the lower layer of large particles destabilizes in forming thin ascending plumes while de-scending plumes of small-dense particles do not succeed in moving through the whole lower layer. Finally, when the large particle layer is above, the interface is sharper than when the layer of small particles is above. This results from the action of granular segregation. When large dense particles form the upper layer, their larger density favors their diffusion downwards, towards small particles, but size segregation prevents it and the interface remains sharp. When small particles are above, density difference and size segregation both push large light particles to rise individually through the small ones. The interface becomes diffuse.

V. CONCLUSIONS

In this paper, we have presented an experimental and numerical study of the Rayleigh Taylor instability occurring in a dry granular medium flowing along an incline. Two types of particles having different densities are used, the layer of dense particles is put above. Overall, this system behaves like the RTI in confined fluids, but with some differences. Like in fluids, the instability wavelength is proportional to the flow thickness. The instability amplitude growth like an exponential and a growth rate may be derived. Increasing the density ratio increases the instability growth rate without affecting the wavelength. When a thin layer is in contact with a wall, the destabilisation time strongly increases, typical of a saturated RTI regime. Furthermore, the granular RTI presents analogy with the RTI in miscible fluids. When the growth rate is high, diffusion does not play a significant role, but in some situations, for example when using large particles, the diffusion becomes important reducing the effective density gradient and reducing the growth rate. Unlike in fluids, the granular RTI can only develop when the granular material is flowing. If the flow stops, the instability stops as well. Surprisingly, the particle size ratio does not play an important role in the granular RTI. The wavelength is not modified and as already stated, when large particles are present, the diffusion is important and the instability growth rate is low. But this is also true when there is no size ratio. It is the presence of large particles that reduces the growth rate.

To our knowledge, this article is the first extensive study of a dry granular Rayleigh Taylor instability. Even though the main features of the granular RTI have been revealed, a more accurate study is necessary to obtain the exact relation linking the density ratio and the growth rate, to show how the link between the wavelength and the flow thickness λ = 1.9 H has been derived. This work is ongoing and will be published soon [START_REF] Ortona | A stability analysis of the Rayleigh-Taylor instability in granular[END_REF].

FIG. 1 .

 1 FIG.1. Sketch of the experimental device. The two granular layers are placed when the incline is horizontal. Then the inclined is tilted. The confinement gate at the bottom is removed to start the flow (side walls are not transparent).

  ) and (b)].

FIG. 2 .

 2 Figure2shows a simulation of the granular RTI for conditions close to those of the experiments. Intially, the flowing particles are placed randomly, just above the rough incline for the small particles and above them for the large ones. The two-layer pattern is built unstable, with large-dense particles (red) above (see t=1 s in Fig.2). At time zero, gravity is set with a tilt angle θ = 23 • and the flow starts. The thickness of the flow is

FIG. 3 .

 3 FIG. 3. Volume concentration maps of particles species (large dense particles are red) corresponding to the pictures of Fig. 2 (See Video 4 in Supplemental Material).

FIG. 5 .

 5 FIG. 5. Space-time diagrams of the (a) volume concentration profile and (b) concentration seen at the surface (large particles are black or red) (c) corresponding time evolution of the segregation index. Parameters corresponding to Fig. 2

FIG. 6 .

 6 FIG.6. The deflection of a laser sheet shows that dark bands of large particles correspond to depressions and white bands are bumpy. This experiment corresponds to Figs. 9 and 10.

  ), corresponding roughly to the white line propagation near the down side wall of the photos). Particles flow in the opposite direction (see Video 1 in Supplemental Material at [15].) Figure 7(c) is taken when the flow triggering almost reaches the top of the channel. Figures 7(e) and 7(f) are magnification of the lower part of the incline at times close to Figs. 7(b) and 7(d) respectively. In a typical experiment, we observe first a continuous upper black layer, then emerging white dots which are the upper visible part of plumes, the elongation and merging of these white plumes, and the reorganization of the system toward a B&W stripes pattern. All these successive stages of the Rayleigh-Taylor instability can be seen either from left to right on Figs. 7(c) and 7(e), or successively at a given location of the channel while time evolves from Fig. 7(a) to Fig. 7(d).

Figure 7 (

 7 g) is a space time diagram made by extracting a line perpendicular to the flow direction close to the laser line. The time spans horizontally for 26.7 s. The numerical space-time diagram obtained in Fig 5(b) is clearly different because in this simulation the small-white particles reach the surface already organized in bands. This is due to a thinner flow and a thinner upper layer in the experiment, and a shorter distance to travel for the plumes to reach the surface.

FIG. 7 .

 7 FIG. 7. Successive pictures of the Rayleigh-Taylor instability, using the no-shock protocol for initial H = 6 mm: (a) t = 2 s the trigger front is moving from right to left (white line at the bottom of the channel reaching the laser line) while the flow is in the opposite direction (arrow). White dots start to appear at the right end. (b) t = 6.3 s dots appear in the centre, pattern evolves into bands at the right end, (c) t = 10.3 s the trigger reaches the top of the incline, (d) t = 13.3 s bands are everywhere (left-half is emptying). Magnified pictures of the lower part of the incline (black marks every 10 cm) at: (e) t = 6 s and (f) t = 13.3 s, where thickness is constant, except on the left eighth of (f). (g) Space time diagram made extracting a line perpendicular to the flow, near the laser line. Time spans horizontally for 26.7s. The left 17 s corresponds to trigger arrival, instability development, and start of emptying. The right part shows all black stripes getting out of focus between 17 and 20 s, then constant blurred stripes up to 26.7 s.

FIG. 9 .

 9 FIG. 9. Successive pictures of the Rayleigh-Taylor instability using the shock protocol for initial H = 5 mm. The arrow indicates the direction of the flow. (a) t = 1.18 s white portions of band appear. (b) t = 1.82 s portions are elongating (left third is emptying), and (c) organizing at t = 2.5 s. (d) t = 3.74 s long stripes appears (left half is emptying). (e) t = 7.64 s stripes are parallel (2/3 left-part is emptying). (f) Space time diagram made by extracting a line perpendicular to the flow, near the laser line: time evolves horizontally during 6 s, corresponding to the beginning in Fig. 10. Note the early focusing of the dark layer with side white bands.

6 FIG. 10 .

 610 FIG. 10. Shock protocol experiment for initial H=5 mm: time evolutions of flow thickness H, pattern wavelength λ, ratio λ/H, and pattern width W all measured on the laser line location. At t = 0 s, open and bilayered squares are bottom and total initial thicknesses. The vertical dashed line corresponds to the plume emergence. The two dotted lines correspond to the progressive lost of focus of the black stripes (vanishing rolls). The number of bands is indicated on the λ/H curve, and the open circle data is obtained with an extrapolated H value.

FIG. 11 .

 11 FIG. 11. Wavelength λ for: 3 'non-shock' protocol experiments with initial H=5.6 mm (purple diamond), 6 mm (orange diamond), 12.3 mm (green diamond) and 3 'shock' protocol experiments with initial H= 6.5 mm (black triangle), 5 mm (blue circle), 4.4 mm (red square). A 1.9H slope is reported for comparison with simulations. Inset: ratio λ/H showing a sudden decrease when a new band appears. W is smaller for the shock protocol explaining the difference in band number for the same H. Open symbols are obtained with extrapolated H data.

  Fig. S1 in Supplemental Material [15]), 3 to 4 bands are formed without any systematic variation with the slope.

Figure 13 (

 13 FIG. 12. Space-time diagrams of the Rayleigh-Taylor instability for slope angle ranging from θ = 21.5 • to 26.5 • . The size ratio is d l /d = 2, the width is W = 200d and, the thickness of the flow is H = 36d. (See Fig. S1 in Supplemental Material [15] for the missing slope angles between 21.5 • and 26 • ).

FIG. 13 .

 13 FIG. 13. Evolutions of the segregation index for slope angles ranging from θ = 21.5 • to 26 • versus (a) time and (b) mean displacement. The size ratio is d l /d = 2, the width is W = 200d and, the thickness of the flow is H = 36d. Arrows indicate growing slope angles (See Fig. S2 in Supplemental Material [15] for longer displacements and Fig. S3 for longer time evolutions).

26 •

 26 FIG. 14. Time evolution of the amplitude of the instability for slope angles ranging from θ = 21.5 • to 26 • in a semi-log plot. The size ratio is d l /d = 2, the width is W = 200d and, the thickness of the flow is H = 36d. The horizontal dashed line indicates B = 16d and the tilted dashed line shows the fit with a exponential law for θ = 24 • . The arrow indicates growing slope angles.

FIG. 16 .

 16 FIG.16. Time and space growth rates, γt (red square) and γx (green circle) respectively, versus angle of the incline θ. Blue triangles show the product of the space growth rate γx and the maximal value reached during the flow of the mean flow velocity vmax.

  FIG. 17. Space-time diagrams of the Rayleigh-Taylor instability for several particle size ratios d l /d = 1,. . . , 2.5. The density ratio is ρ l /ρ = 2, the width, length and thickness of the flow are W = 200d, L = 30d and H = 36d respectively. Only the first 50 s are presented (see Fig. S6 in Supplemental Material for all size ratios).

FIG. 18 .

 18 FIG.[START_REF] Ristow | Pattern Formation in Granular Materials[END_REF]. Evolution of the segregation index with mean displacement in the flowing direction for particle size ratio ranging from d l /d = 1 to 3.5. The density ratio is ρ l /ρ = 2, the width is W = 200d and, the thickness of the flow is H = 36d. The arrow indicates increasing size ratios (see Fig.S7in SupplementalMaterial [15] for SI versus time and Fig.S10for longer evolutions).

5 FIG. 19 .

 519 FIG. 19. Vertical concentration fields for size ratio ranging from d l /d = 1 to 3.5. Large dense particles are red. The particle density ratio is ρ l /ρ = 2, the width is W = 200d and, the thickness of the flow is H = 36d. Pictures are made during the destabilization, when the slope of the segregation index curve is the steepest.

FIG. 20 .

 20 FIG. 20. Evolution of the segregation index with mean displacement in the flowing direction for particle size ranging from dc=0.7 to 3d. The density ratio is ρ l /ρ = 2, the width is W = 400d and, the thickness of the flow is H = 36d. The arrow indicates growing dc (see Fig. S18 in Supplemental Material for segregation index versus time [15]).

FIG. 21 .

 21 FIG. 21. Vertical concentration fields for several particle sizes dc=0.7,. . . , 3d. The density ratio is ρ l /ρ = 2, the width and thickness of the flow are W = 400d and H = 36d. The maps are made when SI curves are the steepest.ndeed, as the

  FIG. 23. Space-time evolution of the Rayleigh-Taylor instability for several density ratio ρ l /ρ = 1.25,. . . , 3. The size ratio is d l /d = 2, the domain size are W = 200d and L = 60d and the thickness of the flow is H = 36d. Only the first 50s are presented (see Fig. S19 in Supplemental Material for all density ratios [15]).

5 FIG. 24 .

 524 FIG. 24. Evolution of the segregation index with displacement in the flowing direction for particle density ratios ranging from ρ l /ρ = 1.1 to 3.25. The size ratio is d l /d = 2, the width is W = 200d and, the thickness of the flow is H = 36d. The arrow indicates growing density ratio (see Fig. S20 in Supplemental Materials for segregation index versus time [15]).

FIG. 25 .

 25 FIG.25. Time and space growth rates, γt (red square) and γx (green circle) respectively, versus the particle density ratio ρ l /ρ, or Atwood number.

  FIG. 26. Vertical concentration fields for density ratios ranging from ρ l /ρ = 1.1 to 3. Large dense particles are red. The size ratio is d l /d = 2, the width is W = 200d and, the thickness of the flow is H = 36d.

Figure 27

 27 FIG. 27. Space-time evolution of the Rayleigh-Taylor instability for thickness of the flow H=16, 24, 36 and 52d. The size ratio is d l /d = 2, the density ratio is ρ l /ρ = 2, the slope angle is θ = 23 • and, the width is W = 200d (See Fig. S24 in Supplemental Material for all thicknesses [15]).

FIG. 28 .

 28 FIG. 28. Vertical concentration fields for four flow thicknesses. Large dense particles are red. The particle density ratio is ρ l /ρ = 2, size ratio is d l /d = 2 and the width is W = 200d. Pictures are made during the destabilization, when the slope of the segregation index is the steepest. See Fig. S25 in Supplemental Material for all flow thicknesses in the range H = 16d to 56d.

FIG. 29 .

 29 FIG. 29. Time and space evolutions of the segregation index for thickness of the flow ranging from H=16 to 56d. The slope angle is 23 • , the width is W = 200d, the density ratio ρ l /ρ = 2 and, the size ratio d l /d = 2.

2 W 2 FIG. 30 .

 2230 FIG. 30. Pattern wavelength (λ) in bead diameter d as a function of the flow thickness H. Simulation with W=400d (blue dots), experiments with constant H (no-shock protocol, cyan squares) or decreasing H (shock protocol, orange diamonds).A linear plot λ = 1.9 H is reported for comparison (coming from[START_REF] Ortona | A stability analysis of the Rayleigh-Taylor instability in granular[END_REF].

FIG. 31 .

 31 FIG. 31. Space-time evolution of the Rayleigh-Taylor instability for volume fraction of the large particles F l = 15%, 30%, 50% and 70%. The size ratio is d l /d = 2, the density ratio is ρ l /ρ = 2, the slope angle is θ = 23 • , the flow thickness is H = 36d and, the width is W = 400d (see Fig. S30 in Supplemental Materials [15] for all volume fractions).

FIG. 32 .

 32 FIG. 32. Numerical consecutive pictures of the surface of the granular Rayleigh-Taylor instability. The size ratio is d l /d = 2, the density ratio is ρ l /ρ = 1.5, the volume fraction of large particles is F l = 30%, the slope angle is θ = 23 • , the flow thickness is H=16d, the width is W = 200d, and the length is increased to L = 400d. Large particles are colored in black to facilitate comparison with experiments. The arrow indicates the flowing direction.

FIG. 33 .

 33 FIG. 33. Evolution of the segregation index with the flow displacement for large particles volume fractions ranging from F l = 10% to 90%. The size ratio is d l /d = 2, the density ratio is ρ l /ρ = 2, the slope angle is θ = 23 • , the flow thickness is H=36d and, the width is W = 400d (See Fig. S29 in Supplemental Material for the time evolution [15]).

FIG. 34 .

 34 FIG.34. Reverse case: evolution of the segregation index with the flow displacement for volume fraction of the large particles ranging from F l = 20% to 80%. The size ratio is d l /d = 2, the density ratio is ρ l /ρ = 0.5, the slope angle is θ = 23 • , the flow thickness is H=36d and, the width is W = 400d. As large particles are initially in the lower layer, the segregation index starts from -1.

  33 and Fig.S29in Supplemental Material [15]), scalings close to t * ∼ h -2 and D * ∼ h -2 are obtained (see Fig.S35).

  FIG. 35. Vertical concentration fields for volume fractions of large particles (in red) F l = 20%, 50% and 80%. The size ratio is d l /d = 2, the slope angle is θ = 23 • , the flow thickness is H=36d, and the width is W = 400d. (a-c) The density ratio is ρ l /ρ = 2 and large-dense particles are placed above (See Fig. S31 in Supplemental Material [15] for all volume fractions). (d-f) The density ratio is ρ l /ρ = 0.5 and largelight particles are placed below.
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Appendix A: Link between the segregation index and the destabilization amplitude

We derive in this appendix the link between the segregation index and the instability amplitude. Assuming that the instability growths exponentially, the segregation index can be used to compute the instability growth rate γ. A simplified system is considered: a two-layer system with an initial sinusoidal perturbation of amplitude B 0 , growing exponentially while flowing. The equation of the interface between the two layers reads (Fig. 36):

with λ the wavelength, γ the growth rate, H the flow thickness and D the flowing distance of the granular material. The center of mass of the lower layer of small light particles is:

and for the upper layer made of large dense particles

which respectively simplify in

The integral in the flowing direction y has been omited. Using the definition of the segregation index SI, we obtain the link between SI and the amplitude of the sinusoidal perturbation

) and reversing the relation

Finally, let us note that eq. (A5) has been derived for an equal volume fraction of large and small particles F l = 0.5. For different volume fractions, the mean location of the interface is (1 -F l ) H where F l is the volume fraction of large particles, and eq. (A5) generalizes to:

Equation (A6) is used to compute the spatial growth rate γ x . For the time growth rate, we simply replace γ x D by γ t t.