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We develop a novel a posteriori error estimator for the L 2 error committed by the finite element discretization of the solution of the fractional Laplacian. Our a posteriori error estimator takes advantage of the semi-discretization scheme using a rational approximation which allows to reformulate the fractional problem into a family of non-fractional parametric problems. The estimator involves applying the implicit Bank-Weiser error estimation strategy to each parametric non-fractional problem and reconstructing the fractional error through the same rational approximation used to compute the solution to the original fractional problem. We provide several numerical examples in both two and three-dimensions demonstrating the effectivity of our estimator for varying fractional powers and its ability to drive an adaptive mesh refinement strategy.

Introduction

Fractional partial differential equations (FPDEs) have gained in popularity during the last two decades and are now applied in a wide range of fields [START_REF] Lischke | What is the fractional Laplacian? A comparative review with new results[END_REF] such as anomalous diffusion [START_REF] Bonito | Numerical methods for fractional diffusion[END_REF][START_REF] Carlson | A scalable framework for solving fractional diffusion equations[END_REF][START_REF] Defterli | Fractional Diffusion on Bounded Domains[END_REF][START_REF] Duo | A comparative study on nonlocal diffusion operators related to the fractional Laplacian[END_REF][START_REF] Nochetto | A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis[END_REF], electromagnetism and geophysical electromagnetism [START_REF] Bonito | Electroconvection of thin liquid crystals: Model reduction and numerical simulations[END_REF][START_REF] Christian | Fractional Operators Applied to Geophysical Electromagnetics[END_REF], phase fluids [START_REF] Ainsworth | Analysis and Approximation of a Fractional Cahn-Hilliard Equation[END_REF][START_REF] Akagi | Fractional Cahn-Hilliard, Allen-Cahn and porous medium equations[END_REF][START_REF] Du | Time-Fractional Allen-Cahn Equations: Analysis and Numerical Methods[END_REF], porous media [START_REF] Akagi | Fractional Cahn-Hilliard, Allen-Cahn and porous medium equations[END_REF][START_REF] Caputo | Models of flux in porous media with memory[END_REF][START_REF] Barrera | A unified modelling and simulation for coupled anomalous transport in porous media and its finite element implementation[END_REF][START_REF] Bulle | Hierarchical a posteriori error estimation of Bank-Weiser type in the FEniCS Project[END_REF], quasi-geostrophic flows [START_REF] Bonito | Numerical Simulations of Surface Quasi-Geostrophic Flows on Periodic Domains[END_REF] and spatial statistics [START_REF] Bolin | Numerical solution of fractional elliptic stochastic PDEs with spatial white noise[END_REF][START_REF] Lindgren | An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach[END_REF].

The main interest in fractional models lies in their ability to reproduce nonlocal behavior with a relatively small number of parameters [START_REF] Atangana | Fractional Operators and Their Applications[END_REF][START_REF] Caputo | Linear Models of Dissipation whose Q is almost Frequency Independent-II[END_REF]. While this nonlocality can be interesting from a modeling perspective, it also constitutes an ongoing challenge for numerical methods since applying standard approaches naturally leads to large dense linear systems that are computationally intractable.

In the last decade various numerical methods have been derived in order to circumvent the main issues associated with the application of standard numerical methods to FPDEs, the two main ones being the non-locality leading to dense linear systems and, for some particular definitions of the fractional operator, the evaluation of singular integrals [START_REF] Ainsworth | Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver[END_REF][START_REF] Ainsworth | Towards an Efficient Finite Element Method for the Integral Fractional Laplacian on Polygonal Domains[END_REF].

We focus on discretization schemes based on finite element methods, other methods can be found e.g. in [START_REF] Aceto | Rational Krylov methods for functions of matrices with applications to fractional partial differential equations[END_REF][START_REF] Higham | An Improved Schur-Padé Algorithm for Fractional Powers of a Matrix and Their Fréchet Derivatives[END_REF][START_REF] Podlubny | Matrix approach to discrete fractional calculus II: Partial fractional differential equations[END_REF]. Among the methods addressing the above numerical issues, we can cite: methods to efficiently solve eigenvalue problems [START_REF] Carlson | A scalable framework for solving fractional diffusion equations[END_REF], multigrid methods for performing efficient dense matrixvector products [START_REF] Ainsworth | Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver[END_REF][START_REF] Ainsworth | Towards an Efficient Finite Element Method for the Integral Fractional Laplacian on Polygonal Domains[END_REF], hybrid finite element-spectral schemes [START_REF] Ainsworth | Hybrid Finite Element-Spectral Method for the Fractional Laplacian: Approximation Theory and Efficient Solver[END_REF], Dirichlet-to-Neumann maps (such as the Caffarelli-Silvestre extension) [START_REF] Antil | A FEM for an Optimal Control Problem of Fractional Powers of Elliptic Operators[END_REF][START_REF] Caffarelli | An Extension Problem Related to the Fractional Laplacian[END_REF][START_REF] Chen | A PDE approach to fractional diffusion: A posteriori error analysis[END_REF][START_REF] Faustmann | Local convergence of the FEM for the integral fractional Laplacian[END_REF][START_REF] Nochetto | A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis[END_REF][START_REF] Raúl | Extension Problem and Harnack's Inequality for Some Fractional Operators[END_REF], semigroups methods [START_REF] Cusimano | Numerical approximations for fractional elliptic equations via the method of semigroups[END_REF][START_REF] Cusimano | Discretizations of the Spectral Fractional Laplacian on General Domains with Dirichlet, Neumann, and Robin Boundary Conditions[END_REF][START_REF] Raúl | User's guide to the fractional Laplacian and the method of semigroups[END_REF], rational approximation methods [START_REF] Aceto | Rational Approximation to the Fractional Laplacian Operator in Reaction-Diffusion Problems[END_REF][START_REF] Harizanov | Spectral Fractional Laplacian with Inhomogeneous Dirichlet Data: Questions[END_REF][START_REF] Hofreither | A unified view of some numerical methods for fractional diffusion[END_REF], Dunford-Taylor integrals [START_REF] Bolin | Numerical solution of fractional elliptic stochastic PDEs with spatial white noise[END_REF][START_REF] Bonito | Numerical Approximation of Space-Time Fractional Parabolic Equations[END_REF][START_REF] Bonito | The approximation of parabolic equations involving fractional powers of elliptic operators[END_REF][START_REF] Bonito | On sinc quadrature approximations of fractional powers of regularly accretive operators[END_REF][START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF][START_REF] Borthagaray | Linear and nonlinear fractional elliptic problems[END_REF][START_REF] Ivan P Gavrilyuk | Data-sparse approximation to a class of operator-valued functions[END_REF][START_REF] Hofreither | A unified view of some numerical methods for fractional diffusion[END_REF] (which can be considered as particular examples of rational approximation methods) and reduced basis methods [START_REF] Danczul | A Reduced Basis Method For Fractional Diffusion Operators I[END_REF][START_REF] Danczul | A reduced basis method for fractional diffusion operators II[END_REF][START_REF] Dinh | Model reduction for fractional elliptic problems using Kato's formula[END_REF].

Although we focus exclusively on the spectral definition of the fractional Laplacian, there is no unique definition of the fractional power of the Laplacian operator. The three most frequently found definitions of the fractional Laplacian are: the integral fractional Laplacian, defined from the principal value of a singular integral over the whole space R d [START_REF] Ainsworth | Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver[END_REF][START_REF] Ainsworth | Towards an Efficient Finite Element Method for the Integral Fractional Laplacian on Polygonal Domains[END_REF][START_REF] Bonito | Numerical approximation of the integral fractional Laplacian[END_REF][START_REF] Caffarelli | An Extension Problem Related to the Fractional Laplacian[END_REF][START_REF] Elia | The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator[END_REF]], the regional fractional Laplacian, defined by the same singular integral but over a bounded domain only [START_REF] Chen | The Dirichlet elliptic problem involving regional fractional Laplacian[END_REF][START_REF] Duo | A comparative study on nonlocal diffusion operators related to the fractional Laplacian[END_REF][START_REF] Mouhamed | Regional fractional Laplacians: Boundary regularity[END_REF][START_REF] Mou | Interior Regularity for Regional Fractional Laplacian[END_REF] and the spectral fractional Laplacian, defined from the spectrum of the standard Laplacian over a bounded domain [START_REF] Ainsworth | Hybrid Finite Element-Spectral Method for the Fractional Laplacian: Approximation Theory and Efficient Solver[END_REF][START_REF] Antil | Fractional operators with inhomogeneous boundary conditions: analysis, control, and discretization[END_REF][START_REF] Banjai | Tensor FEM for Spectral Fractional Diffusion[END_REF][START_REF] Cusimano | Numerical approximations for fractional elliptic equations via the method of semigroups[END_REF][START_REF] Harizanov | Spectral Fractional Laplacian with Inhomogeneous Dirichlet Data: Questions[END_REF][START_REF] Meidner | hp-Finite Elements for Fractional Diffusion[END_REF]. The different definitions are equivalent in the entire space R d , but this is no longer the case on a bounded domain [START_REF] Bonito | Numerical methods for fractional diffusion[END_REF][START_REF] Duo | A comparative study on nonlocal diffusion operators related to the fractional Laplacian[END_REF][START_REF] Kwaśnicki | Ten equivalent definitions of the fractional laplace operator[END_REF][START_REF] Lischke | What is the fractional Laplacian? A comparative review with new results[END_REF]. These definitions lead to significantly different mathematical problems associated with infinitesimal generators of different stochastic processes [START_REF] Lischke | What is the fractional Laplacian? A comparative review with new results[END_REF][START_REF] Duo | A comparative study on nonlocal diffusion operators related to the fractional Laplacian[END_REF].

Efficient methods for solving fractional problems typically rely on a combination of different discretization methods. For example, [START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF], which is also the foundation of this work, combines a quadrature scheme for the Dunford-Taylor integral representation of the spectral fractional Laplacian with a standard finite element method in space. Both the quadrature scheme and the finite element method induce discretization errors. Each of these schemes is associated with its own discretization error. In order to achieve a solution to a given accuracy while avoiding wasted computational time, these errors need to be balanced.

A priori error estimation has been tackled for some definitions of the fractional Laplacian, such as the integral Laplacian [START_REF] Acosta | A Fractional Laplace Equation: Regularity of Solutions and Finite Element Approximations[END_REF][START_REF] Ainsworth | Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver[END_REF][START_REF] Ainsworth | Hybrid Finite Element-Spectral Method for the Fractional Laplacian: Approximation Theory and Efficient Solver[END_REF][START_REF] Bonito | Numerical methods for fractional diffusion[END_REF][START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF][START_REF] Gimperlein | Space-time adaptive finite elements for nonlocal parabolic variational inequalities[END_REF] and the spectral fractional Laplacian [START_REF] Antil | A FEM for an Optimal Control Problem of Fractional Powers of Elliptic Operators[END_REF][START_REF] Antil | Fractional operators with inhomogeneous boundary conditions: analysis, control, and discretization[END_REF][START_REF] Banjai | Tensor FEM for Spectral Fractional Diffusion[END_REF][START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF][START_REF] Meidner | hp-Finite Elements for Fractional Diffusion[END_REF][START_REF] Nochetto | A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis[END_REF]. Unlike the standard Laplacian equation, solutions to the fractional Laplacian problems often exhibit strong boundary layers even for smooth data, particularly when the fractional power is low [START_REF] Grubb | Fractional Laplacians on domains, a development of Hörmander's theory of µtransmission pseudodifferential operators[END_REF]. These singularities lead to computational difficulties and have to be taken into account using, for example a priori geometric mesh refinement towards the boundary of the domain [START_REF] Acosta | A Fractional Laplace Equation: Regularity of Solutions and Finite Element Approximations[END_REF][START_REF] Banjai | Exponential convergence of hp FEM for spectral fractional diffusion in polygons[END_REF][START_REF] Bonito | Numerical approximation of the integral fractional Laplacian[END_REF][START_REF] Borthagaray | Linear and nonlinear fractional elliptic problems[END_REF][START_REF] Faustmann | Local convergence of the FEM for the integral fractional Laplacian[END_REF], or partition of unity enrichments [START_REF] Stéphane | Partition of unity methods[END_REF]. We emphasize that [START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF] contains already an a priori error analysis in the L 2 norm for the combined rational sum finite element method that we use in this work.

A posteriori error estimation has also been considered in the literature on fractional equations. A simple residual based estimator is proposed for the integral fractional Laplacian in [START_REF] Ainsworth | Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver[END_REF]. A similar idea is used in the context of nonlocal variational inequalities in [START_REF] Gimperlein | Space-time adaptive finite elements for nonlocal parabolic variational inequalities[END_REF][START_REF] Nochetto | A posteriori error analysis for a class of integral equations and variational inequalities[END_REF]. Gradient-recovery based a posteriori error estimation has been developed in the context of fractional differential equations in [START_REF] Zhao | Adaptive finite element method for fractional differential equations using hierarchical matrices[END_REF]. In [START_REF] Bonito | Numerical methods for fractional diffusion[END_REF][START_REF] Chen | A PDE approach to fractional diffusion: A posteriori error analysis[END_REF] the authors present another estimator, based on the solution to local problems on cylindrical stars, for the integral fractional Laplacian discretized using the Caffarelli-Silvestre extension. A weighted residual estimator is derived in [START_REF] Faustmann | Quasi-optimal convergence rate for an adaptive method for the integral fractional Laplacian[END_REF] in the same context.

To our knowledge, no a posteriori error estimation method has been derived for the spectral fractional Laplacian, discretized using the rational approximation approach of [START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF].

Contribution

The main contribution of this work is the derivation of a novel a posteriori error estimator for the combined rational finite element approximation of the spectral fractional Laplacian. It is a natural a posteriori counterpart to the a priori results developed in [START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF].

Our work starts with the quadrature rule for the Dunford-Taylor integral proposed in the seminal work [START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF]. This method, and other rational approximation-based discretization methods, decompose the original fractional problem into a set of independent parametric non-fractional problems. From this point we develop an associated set of independent non-fractional a posteriori error estimation problems. We compute the Bank-Weiser hierarchical estimators [START_REF] Randolph | Some A Posteriori Error Estimators for Elliptic Partial Differential Equations[END_REF] of the error between each nonfractional parametric problem solution and its finite element discretization, then the fractional problem discretization error is estimated by the sum of the parametric contributions via the rational approximation.

Our method leads to a fully local and parallelizable solution technique for the spectral fractional Laplacian with computable L 2 error. Our method is valid for any finite element degree (however, for the sake of brevity we do not show results with higher degree finite elements) and for one, two and three dimensional problems [START_REF] Bulle | Hierarchical a posteriori error estimation of Bank-Weiser type in the FEniCS Project[END_REF].

We implement our method in DOLFINx [START_REF] Habera | FEniCSX: A sustainable future for the FEniCS Project[END_REF], the new problem solving environment of the FEniCS Project [START_REF] Martin S Alnaes | The FEniCS Project Version 1.5[END_REF]. A simple demonstration implementation is included in the supplementary material. We show numerical results demonstrating that the estimator can correctly reproduce the a priori convergence rates derived in [START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF].

Our newly developed error estimator is then used to steer an adaptive mesh refinement algorithm, resulting in improved convergence rates for small fractional powers and strong boundary layers.

Motivation

Given a fractional power s in (0, 1) and a rational approximation Q κ s (λ) of the function λ -s , it is possible to construct a semi-discrete approximation u κ of the solution u to a fractional Laplace equation as a weighted sum of solutions (u l ) l to non-fractional parametric problems. Then, a fully discrete approximation of u is obtained by discretizing the parametric solutions (u l ) l using a finite element method.

An a posteriori error estimator is then computed as the weighted sum of the Bank-Weiser estimators of the error between each u l and its finite element discretization. As we will see in the following, the resulting numerical scheme is simple and its implementation in code is straightforward. Furthermore it maintains the appealing embarrassingly parallel nature of rational approximation schemes [START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF][START_REF] Ivan P Gavrilyuk | Data-sparse approximation to a class of operator-valued functions[END_REF][START_REF] Harizanov | Spectral Fractional Laplacian with Inhomogeneous Dirichlet Data: Questions[END_REF].

We remark on why we have chosen to use the Bank-Weiser type error estimator, as opposed to one of the many other error estimation strategies, e.g. explicit residual, equilibrated fluxes, or recoverytype estimators (see [START_REF] Ainsworth | A Posteriori Error Estimation in Finite Element Analysis[END_REF][START_REF] Carstensen | Estimator Competition for poisson Problems[END_REF] and references therein). In the case of fractional powers of the Laplacian operator, the resulting set of parametric problems consists of singularly-perturbed reaction-diffusion equations. It has been proven in [START_REF] Verfürth | Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation[END_REF] that the Bank-Weiser estimator is robust with respect to the coefficients appearing in these parametric problems when the error is measured in the natural norm. To our knowledge, no such robustness, which our numerical experiments do indicate, has been established for the L 2 -norm for the Bank-Weiser estimator. Nevertheless, our numerical experiments indicate that this does appear to be the case. Moreover, the Bank-Weiser estimator can be straightforwardly applied to higher-order finite element methods and higher-dimension problems. In addition, its computational stencil is highly local which is particularly appealing for three-dimensional problems see e.g. [START_REF] Bulle | Hierarchical a posteriori error estimation of Bank-Weiser type in the FEniCS Project[END_REF].

In this work we focus on error estimation in the L 2 norm, the estimation of the error in the 'natural' fractional norm is the topic of ongoing work. For simplicity, we only consider fractional powers of the Laplacian with homogeneous Dirichlet boundary conditions.

Problem statement

For any subset ω of Ω we denote L 2 (ω) the space of square integrable functions on ω and (•, •) ω its usual inner product. Let H 1 (ω) be the Sobolev space of functions with first order weak derivatives in L 2 (ω). The space H 1 (ω) is endowed with the usual inner product

(∇•, ∇•) L 2 (ω) + (•, •) L 2 (ω)
. We will omit the dependence in ω in the subscripts when ω = Ω. We will make use of the notation ∂v/∂n := ∇v • n for the normal derivative of a smooth enough function v. We denote H 1 0 (Ω) the subspace of functions in H 1 (Ω) with a zero trace on Γ.

We consider the family of eigenfunctions {ψ i } ∞ i=1 ⊂ H 1 0 (Ω) of the standard Laplacian operator with uniform zero Dirichlet boundary condition on Ω as well as the corresponding family of eigenvalues {λ i } ∞ i=1 . We assume the Laplacian eigenvalues are sorted in increasing order and we assume λ 0 ∈ R is a lower bound of the spectrum

λ 0 λ 1 • • • λ i λ i+1 • • • (1) 
The family {ψ i } ∞ i=1 is an orthonormal basis of L 2 (Ω). For s in (0, 1) we introduce the spectral fractional Sobolev space H s and its natural norm

H s := v ∈ L 2 (Ω), ∞ i=1 λ s i (v, ψ i ) 2 < ∞ , v 2 H s := ∞ i=1 λ s i (v, ψ i ) 2 . (2) 
Especially, for 0 s 1 we have

H 1 0 (Ω) = H 1 (Ω) ⊆ H s (Ω) ⊆ L 2 (Ω) =: H 0 (Ω) and the norm • H s coincide with • L 2 when s = 0 and with |•| H 1 when s = 1.

The spectral fractional Laplacian

Let s be a real number in (0, 1) and f be a given function in L 2 (Ω). We consider the following fractional Laplacian problem: we look for a function u such that

(-∆) s u = f in Ω, u = 0 on Γ. (3) 
The solution u of eq. ( 3) is defined using the spectrum of the standard Laplacian [START_REF] Antil | Fractional operators with inhomogeneous boundary conditions: analysis, control, and discretization[END_REF] u

:= ∞ i=1 λ -s i (f, ψ i ) ψ i . (4) 
If we notice that (u,

ψ i ) = λ -s i (f, ψ i ) , ∀i 1, (5) 
then, for f in L 2 (Ω) we can show that

u H 2s = f L 2 . (6) 
Moreover, we can derive an equivalent formulation of eq. ( 3). If we multiply eq. ( 3) by test functions v in H s (Ω) and integrate over Ω, we obtain

Ω (-∆) s uv = Ω f v, ∀v ∈ H s (Ω). (7) 
Now, using the decompositions of u, v and f in the basis (ψ i ) +∞ i=1 we have

((-∆) s u, v) = ∞ i=1 λ s i u i v i = ∞ i,j=1 λ s/2 i u i λ s/2 j v j (ψ i , ψ j ) = (-∆) s/2 u, (-∆) s/2 v .
Then, the solution u to eq. ( 7) satisfies

(-∆) s/2 u, (-∆) s/2 v = (f, v) , ∀v ∈ H s (Ω). (8) 
Conversely, if u is solution to eq. ( 8), we can show eq. ( 5) which leads to eq. ( 4) and eq. ( 3).

Rational approximation

Our method relies on rational approximations of the real function λ → λ -s for s in (0, 1) and λ λ 0 for some fixed λ 0 > 0. We are particularly interested in an example provided in [START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF]. This example is based on the following expression derived from Euler's reflection formula

λ -s = 2 sin(πs) π +∞ -∞ e 2sy 1 + e 2y λ -1 dy. (9) 
Then, the rational approximation is obtained from eq. ( 9) by discretizing the integral on the right-hand side with a trapezoidal quadrature rule,

λ -s Q κ s (λ) := 2 sin(πs) πκ N (κ) l=-M (κ) e 2slκ 1 + e 2lκ λ -1 , (10) 
where κ > 0 is the fineness parameter and

M (κ) := π 2 4sκ 2 , and N (κ) := π 2 4(1 -s)κ 2 , ( 11 
)
where • is the ceiling function.

This particular scheme has some advantages compared to other rational methods. The coefficients (e 2slκ ) N l=-M and (e 2lκ ) N l=-M are very easy to compute in comparison with methods based on e.g. best uniform rational approximations (BURA) (see [START_REF] Aceto | Rational Approximation to the Fractional Laplacian Operator in Reaction-Diffusion Problems[END_REF][START_REF] Harizanov | Spectral Fractional Laplacian with Inhomogeneous Dirichlet Data: Questions[END_REF][START_REF] Hofreither | A unified view of some numerical methods for fractional diffusion[END_REF][START_REF] Hofreither | An algorithm for best rational approximation based on barycentric rational interpolation[END_REF]). This scheme is also among the most efficient as shown in recent comparison studies (see [START_REF] Hofreither | A unified view of some numerical methods for fractional diffusion[END_REF][START_REF] Vabishchevich | Approximation of a fractional power of an elliptic operator[END_REF]). Various other examples of rational approximations can be found e.g. in [START_REF] Aceto | Rational Approximation to the Fractional Laplacian Operator in Reaction-Diffusion Problems[END_REF][START_REF] Aceto | Rational approximations to fractional powers of self-adjoint positive operators[END_REF][START_REF] Ivan P Gavrilyuk | Data-sparse approximation to the operator-valued functions of elliptic operator[END_REF][START_REF] Harizanov | Spectral Fractional Laplacian with Inhomogeneous Dirichlet Data: Questions[END_REF][START_REF] Vabishchevich | Approximation of a fractional power of an elliptic operator[END_REF]. We want to highlight again that the error estimation scheme developed later can be derived in the same manner regardless of the choice of the rational approximation, as long as it leads to a set of well-posed non-fractional parametric problems.

It has been shown in [START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF] that Q κ s converges uniformly to λ -s at an exponential rate as κ → 0. Especially, the approximation error is bounded by

λ -s -Q κ s (λ) ε s (κ), ∀λ λ 0 , ∀κ > 0, (12) 
with

ε s (κ) = 2 sin(πs) π 1 2s + 1 2(1 -s)λ 0 1 1 -e -π 2 /(2κ) + 1 e -π 2 /(2κ) . (13) 
Asymptotically, ε s (κ) behaves like e -π 2 /(2κ) as κ → 0.

Discretization

We combine the rational approximation eq. ( 10) with a finite element method to derive a fully discrete approximation of the solution u to eq. ( 8).

Rational semi-discrete approximation

From eq. ( 10) we can derive semi-discrete approximations of the solution u to eq. ( 8) by considering

u κ := 2 sin(πs) πκ N (κ) l=-M (κ) e 2slκ u l , (14) 
where the functions {u l } N l=1 are solutions to the parametric problems: for each l in -M, N , find

u l in H 1 0 such that (u l , w) + e 2slκ (∇u l , ∇w) = (f, w) ∀w ∈ H 1 0 . (15) 
It has been proved in [START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF] that the semi-discrete approximation u κ converges to u in L 2 (Ω) at the same speed as

Q κ s (λ) converges to λ -s . More precisely, u -u κ L 2 ε s (κ) f L 2 , ∀κ > 0. ( 16 
)
where ε s (κ) is defined in eq. ( 13). We can deduce from eq. ( 16) the following two important points. Firstly, the rational approximation u κ converges to u exponentially fast in κ. Therefore, it does not constitute a bottleneck in the rate of convergence when combined with a finite element method to obtain a fully discrete approximation. Secondly, the right-hand side of eq. ( 16) is technically an a posteriori estimation of the rational discretization error since ε s (κ) and f L 2 can be calculated almost entirely using a priori known data. The only parameter that is not so easily computable in ε s is λ 0 , a lower bound of the spectrum of the Laplacian on Ω. The bound ε s (κ) can be optimized by taking λ 0 = λ 1 but given its exponential convergence rate, ε s (κ) will not drastically deteriorates if λ 0 < λ 1 . Moreover, precise guaranteed lower bounds for λ 1 could be obtained following e.g. [START_REF] Cancès | Guaranteed and Robust a Posteriori Bounds for Laplace Eigenvalues and Eigenvectors: Conforming Approximations[END_REF][START_REF] Carstensen | Guaranteed lower bounds for eigenvalues[END_REF].

Finite element discretization

In order to get a fully discrete approximation of u, we use a finite element method to discretize the parametric problems eq. ( 15). Although it is not mandatory, we use the same mesh and same finite element space for all the parametric problems. We discuss this choice, and possible alternative strategies, in section 7.

Let T be a mesh on the domain Ω, composed of cells T = {T }, facets E = {E} (we call facets the edges in dimension two and the faces in dimension three), and vertices. The mesh T is supposed to be regular, in Ciarlet's sense: h T /ρ T γ, ∀T ∈ T , where h T is the diameter of a cell T , ρ T the diameter of its inscribed ball, and γ is a positive constant fixed once and for all. The subset of facets that are not coincident with the boundary Γ (called interior facets) is denoted E I . Let n + and n -in R d be the outward unit normals to a given edge as seen by two cells T + and T -incident to a common edge E. The space of polynomials of order p on a cell T is denoted P p (T ) and the continuous Lagrange finite element space of order p on the mesh T is defined by

V p := v p ∈ H 1 (Ω), v p|T ∈ P p (T ) ∀T ∈ T . ( 17 
)
We denote V p 0 the finite element space composed by functions of V p vanishing on the boundary Γ. For a given index l, the finite element discretization of eq. ( 15) reads: for each l in -M, N , find u l,p in

V p 0 such that (u l,p , v p ) + e 2lκ (∇u l,p , ∇v p ) = (f, v p ) , ∀v p ∈ V p 0 . (18) 
Then, combining eq. ( 14) with eq. ( 18) we can give a fully discrete approximation of the solution to eq. ( 8)

u ≈ u κ,p := 2 sin(πs) πκ N (κ) l=-M (κ) e 2slκ u l,p . (19) 
The computation of u κ,p is summarized in the top part of fig. 1.

Finite element discretization error analysis

According to what we have seen in section 4.2, the rational approximation error, characterized by u -u κ L 2 converges exponentially fast. Consequently, we will consider this error to be negligible and assume that the rational scheme Q κ s is precise enough (i.e. κ is small enough) so that

u u κ . ( 20 
)
Our goal is to bound the discretization error in the

L 2 norm u -u κ,p L 2 u κ -u κ,p L 2 . ( 21 
)
Since for any s ∈ (0, 1), the discrepancy u -u κ,p belongs to H s (Ω) ⊂ L 2 (Ω), the error can be measured in the L 2 norm for any value of the fractional power s.

Heuristics

Let us start with some heuristics motivating the derivation of our a posteriori error estimator. The main idea is to derive a function e bw κ,T that locally represents the discretization error in the solution to the fractional problem (u κ -u κ,p ) |T on a cell T of the mesh. Thanks to the rational approximation we notice that

(u κ -u κ,p ) |T = 2 sin(πs) πκ N l=-M e 2slκ (u l -u l,p ) |T . (22) 
So we can use the framework proposed by Bank and Weiser in [START_REF] Randolph | Some A Posteriori Error Estimators for Elliptic Partial Differential Equations[END_REF] to derive solutions e bw l,T such that

e bw l,T (u l -u l,p ) |T , ∀l ∈ -M, N , ∀T ∈ T . (23) 
We obtain e bw κ,T using the rational approximation sum 

Finally, we can estimate the L 2 error on the cell T by taking the norm of the function e bw κ,T

e bw κ,T L 2 ≈ u κ -u κ,p |T . ( 25 
)
These heuristics are summarized in fig. 1.

We would like to emphasize that the Bank-Weiser estimator is not the only possible choice. In fact, the Bank-Weiser estimator could be replaced with another estimator based on the solves of local problems, such as e.g. the one used in [START_REF] Nochetto | A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis[END_REF].

A posteriori error estimation

Let us now derive our a posteriori error estimation method more precisely. As mentioned in the last subsection, this estimator is based on a hierarchical estimator computed from the solves of local Neumann problems on the cells and introduced for the first time by Bank and Weiser in [START_REF] Randolph | Some A Posteriori Error Estimators for Elliptic Partial Differential Equations[END_REF].

Let T be a cell of the mesh. We make use of the following local finite element spaces

V p T := v p,T ∈ P p (T ), v p,T = 0 in (Ω \ T ) ∪ (T ∩ ∂Ω) . (26) 
Let us now consider two non-negative integers p + and p -such that p + > p -0 and L T :

V p+ T -→ V p- T
the local Lagrange interpolation operator. We introduce the local Bank-Weiser space, defined by

V bw T := ker(L T ) = v p+,T ∈ V p+ T , L T (v p+,T ) = 0 . (27) 
The local parametric Bank-Weiser problem associated to the parametric problems eq. ( 15) and eq. ( 18) reads

T e bw l,T v bw T + e 2slκ T ∇e bw l,T • ∇v bw T = T r l,T v bw T + 1 2 E∈∂T E J l,E v bw T , ∀v bw T ∈ V bw T ( 28 
)
where r l,T and J l,T are defined as follow:

r l,T := f |T -u l,p |T + e 2lκ ∆u l,p |T , and J l,T := e 2lκ ∂u l,p ∂n E .

The solution e bw l,T in V bw T is the local parametric Bank-Weiser solution. More details about the computation and implementation of the Bank-Weiser solutions can be found in [START_REF] Randolph | Some A Posteriori Error Estimators for Elliptic Partial Differential Equations[END_REF][START_REF] Bulle | Hierarchical a posteriori error estimation of Bank-Weiser type in the FEniCS Project[END_REF].

Then, we derive the local fractional Bank-Weiser solution by summing the local parametric Bank-Weiser solutions into the rational approximation sum 

The local fractional Bank-Weiser estimator is then defined as the L 2 norm of this local solution

η bw κ,T := e bw κ,T L 2 (T ) . (31) 
The global fractional Bank-Weiser estimator is then defined by 

η bw κ 2 := T ∈T η bw κ,T 2 . ( 32 
) u -M u -M +1 u 0 u N -1 u N Rational sum u κ u -M,p u -M +1,p u 0,p u N -1,p u N,p u κ,p

Adaptive refinement

One of the main applications of a posteriori error estimation is to drive adaptive mesh refinement algorithms. When the error is unevenly spread across the mesh, refining uniformly is a waste of computational resources leading to suboptimal convergence rates in the number of degrees of freedom. This problem is compounded for computationally expensive problems like fractional problems. Moreover, it is known that fractional problems often show a boundary layer behavior, the discretization error is consequently large in a localized region near the boundary [START_REF] Acosta | A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian[END_REF][START_REF] Pablo Borthagaray | Local Energy Estimates for the Fractional Laplacian[END_REF][START_REF] Vabishchevich | Approximation of a fractional power of an elliptic operator[END_REF]. This problem has been tackled using graded meshes that are refined near the boundary based on a priori or a posteriori considerations [START_REF] Bonito | Numerical methods for fractional diffusion[END_REF][START_REF] Chen | A PDE approach to fractional diffusion: A posteriori error analysis[END_REF][START_REF] Gimperlein | Space-time adaptive finite elements for nonlocal parabolic variational inequalities[END_REF][START_REF] Meidner | hp-Finite Elements for Fractional Diffusion[END_REF]. As expected, the use of graded meshes improves the convergence of the methods. Adaptive refinement algorithms are based on the loop

• • • -→ Solve -→ Estimate -→ Mark -→ Refine -→ • • •
In this work we are concerned with developments in the modules solve and estimate. We are using totally standard approaches, namely the Dörfler algorithm [START_REF] Dörfler | A Convergent Adaptive Algorithm for Poisson's Equation[END_REF] for the mark module and the Plaza-Carey algorithm [START_REF] Plaza | Local refinement of simplicial grids based on the skeleton[END_REF] for the refine module. Rational approximation methods have the advantage of being fully parallelizable due to the independence of the parametric problems from each other. Similarly, the local a posteriori error estimation method we have presented earlier is also parallelizable since the computation of the local Bank-Weiser solutions on the cells are independent from each other. Our error estimation strategy combines these advantages and is fully parallelizable both with respect to the parametric problems and local estimators computation. An example of error estimation and adaptive refinement algorithm based on our method is shown in fig. 2.

The algorithm presented in fig. 2 is based on three loops: one While loop and two For loops. The While loop is due to the adaptive refinement procedure and can not be parallelized. However, the two For loops are fully parallelizable and this parallelization can be highly advantageous for large three-dimensional problems.

Note that there is no guarantee that the mesh we obtain at the end of the main While loop in fig. 2 is optimal for all the parametric problems. For some of the parametric solutions without boundary layers the mesh is certainly over-refined. An alternative approach could be to compute the L 2 norms of the parametric Bank-Weiser solutions e bw l,T in order to derive parametric Bank-Weiser estimators and refine the meshes independently for each parametric problem. This would require the storage of a possibly different mesh for each parametric problem at each iteration. More importantly, this would mean summing parametric finite element solutions coming from different and possibly nonnested meshes. Properly addressing this question is beyond the scope of this study. Nonetheless, we give some hints the numerical section section 9.1.

Choose a tolerance ε > 0 Choose an initial mesh T n=0 Choose κ such that ε s (κ) f L 2 < ε Generate the rational approximation Q κ s coefficients Initialize the estimator η bw κ = ε + 1 While η bw κ > ε: Initialize the local Bank-Weiser solutions {e bw κ,T } T to zero Initialize the solution u κ,p to zero For each parametric problem l ∈ -M, N : Solve eq. ( 18) on T n to obtain u l,p Add (2 sin(πs)/πs) e 2slκ u l,p to u κ,p

For each cell T of T n :

Solve eq. ( 28) to obtain e bw 

Implementation

We have implemented our method using the DOLFINX finite element solver of the FEniCS Project [START_REF] Martin S Alnaes | The FEniCS Project Version 1.5[END_REF]. Each parametric subproblem is submitted to a batch job queue. A distinct MPI communicator is used for each job. We use a standard first-order Lagrange finite element method and the resulting linear system is solved using the conjugate gradient method preconditioned using BoomerAMG from HYPRE [START_REF] Robert | hypre: A Library of High Performance Preconditioners[END_REF] via the interface in PETSc [START_REF] Balay | PETSc Users Manual[END_REF]. To compute the Bank-Weiser error estimator for each subproblem we use the methodology outlined in [START_REF] Bulle | Hierarchical a posteriori error estimation of Bank-Weiser type in the FEniCS Project[END_REF] and implemented in the FEniCSx-EE package [START_REF] Bulle | FEniCS Error Estimation (FEniCS-EE)[END_REF]. For every subproblem the computed solution and error estimate is written to disk in HDF5 format. A final step, running on a single MPI communicator, reads the solutions and error estimates for all subproblems, computes the quadrature sums using axpy operations, defines the marked set of cells to be refined using the Dörfler algorithm [START_REF] Dörfler | A Convergent Adaptive Algorithm for Poisson's Equation[END_REF], and finally refines the mesh using the Plaza-Carey algorithm [START_REF] Plaza | Local refinement of simplicial grids based on the skeleton[END_REF].

A more complex implementation using a single MPI communicator split into sub-communicators would remove the necessity of reading and writing the solution and error estimate for each subproblem to and from disk. However, in practice the cost of computing the parametric solutions massively dominates all other costs.

Numerical results

First, we need to choose the value of κ in order to guarantee that the rational approximation error is negligible. From eq. ( 16), we know a bound that depends on s, λ 0 and f L 2 . However, in all our test cases we know that λ 0 = λ 1 = 1 is a lower bound for the spectrum of the Laplacian and the data f is always chosen such that f L 2 = 1. It turns out that taking κ = 0.26 ensures that u -u κ L 2 10 -8 , no matter the choice of s ∈ (0, 1). This choice leads to a different number of parametric problems to solve for each fractional power, these numbers are detailed in table 1.

When analytical solutions are known, we provide the efficiency indices of the Bank-Weiser estimator, defined by η bw κ / u κ -u κ,1 L 2 .

Two-dimensional product of sines test case

We solve eq. ( 3) on the square Ω = (0, π) 2 with data f (x, y) = (2/π) sin(x) sin(y). The analytical solution to this problem is given by u(x, y) = 2 -s (2/π) sin(x) sin(y). Moreover, the analytical solutions to the parametric problems eq. ( 15) are also known u l (x, y) = (1 + 2 e 2lκ ) -1 (2/π) sin(x) sin(y). The problem is solved on a hierarchy of structured (triangular) meshes. For this test case the solution u shows no boundary layer behavior, therefore adaptive refinement cannot improve the convergence rate. Consequently we only perform uniform refinement on this case. As we can see on fig. 3, the Bank-Weiser estimator tends to be very accurate when the mesh is fine enough when s = 0.3 and s = 0.7. In fact, its accuracy is robust with respect to the fractional power. The efficiency indices are computed by taking the average of the ratios for the five last meshes of the hierarchy and are shown for various fractional powers in table 3. Theorem 4.3 from [START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF] gives a convergence rate for the finite element scheme depending on the elliptic regularity index α of the Laplacian over Ω, on the fractional power and on the regularity index δ of the data f . Since Ω is convex the elliptic "pick-up" regularity index α can be taken to be 1 [START_REF] Bonito | Numerical methods for fractional diffusion[END_REF] and since f is infinitely smooth the coefficient δ can be taken as large as wanted. Consequently, Theorem 4.3 in [START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF] predicts a convergence rate of dof -1 for this test case. The convergence rates we measure in practice, shown in table 2, are coherent with this prediction. These rates are computed from a linear regression fit on the values obtained on the five last meshes of the hierarchy. 

Parametric problems discretization error

Since we know the analytical solutions to the parametric problems in this case, it is possible to compute the exact parametric discretization errors u l -u l,1 L 2 , for each l ∈ -M, N . It is possible then to investigate the consequences of using the same mesh for all the parametric problems. In fig. 4 we have plotted the exact parametric errors after five steps of (uniform) refinement. As we can notice, the same mesh leads to a wide range of parametric errors values, especially for fractional powers s close to 1. These errors are particularly low for high values of the index l, when the diffusion part of the operator is dominant. However, when l becomes less than zero, i.e. when the reaction part is dominant the mesh seems to have an equal effect on the parametric errors. As expected these results suggest that the method can be optimized by using different meshes depending on l. In particular, coarser meshes would be sufficient for high values of l. These results are obtained for uniform refinement, further investigations deserve to be carried out for adaptive refinement.

As we explained earlier, using a different hierarchy of meshes for each parametric problem may be computationally advantageous, at the expense of ease of implementation. Several hierarchies of meshes would need to be stored and, in the case of adaptive mesh refinement, interpolation between possibly non-nested meshes would be required in order to compute the fractional solution u. To avoid these complications when adaptive refinement is used, we propose the following:

1. use the same hierarchy of meshes for all the parametric problems but not the same mesh. Some parametric problems might be solved on coarser meshes from the hierarchy and others on finer ones. This would allow to keep only one hierarchy of meshes stored in memory. Moreover, it would avoid the interpolation between non-nested meshes, since meshes from the same hierarchy being always nested.

2. selectively refine the mesh hierarchy: estimate the error globally for each parametric problem (this can be done using the local parametric Bank-Weiser solutions) and mark the parametric problems for which a finer mesh is required, using e.g. a marking algorithm similar to Dörfler's marking strategy.

Three-dimensional product of sines test case

This test case is the three-dimensional equivalent of the last test case. We solve eq. ( 3) on the cube Ω = (0, π) 3 with data f (x, y, z) = (2/π) 3/2 sin(x) sin(y) sin(z). The analytical solution to this problem is given by u(x, y, z) = 3 -s (2/π) 3/2 sin(x) sin(y) sin(z). The problem is solved on a hierarchy of uniformly refined Cartesian (tetrahedral) meshes. As for the two-dimensional case, the solution u shows no boundary layer behavior and adaptive refinement is not required. For the same reasons as for Frac. power 0.1 0.3 0.5 0.7 0.9 Estimator -0.92 -0.97 -0.99 -1.00 -1.00 Exact error -1.00 -1.00 -1.00 -1.00 -0.94 the two-dimensional case, Theorem 4.3 from [START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF] predicts a convergence rate of dof -2/3 for the finite element scheme. fig. 5 shows the values of the Bank-Weiser estimator and of the exact error (computed from the knowledge of the analytical solution) for s = 0.3 and s = 0.7. As in the two-dimensional case, the efficiency indices are relatively robust with respect to the fractional powers. They are shown for various fractional powers in table 5 and are computed by taking the average of the indices from the three last meshes of the hierarchy. As we can see, the Bank-Weiser estimator efficiency indices for this three-dimensional case are not as good as in the two-dimensional case. We have already observed this behavior for non-fractional problems [START_REF] Bulle | Removing the saturation assumption in Bank-Weiser error estimator analysis in dimension three[END_REF]. We can notice that the convergence rates, given in table 4, are coherent with the predictions of Theorem 4.3 from [START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF]. The convergence rates are computed from a linear regression on the values computed from the three last meshes of the hierarchy.

Two-dimensional checkerboard test case

We solve the problem introduced in the numerical results of [START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF]. We consider a unit square Ω = (0, 1) 2 with data f : Ω → R given for all (x 1 , x 2 ) ∈ Ω by

f (x 1 , x 2 ) = 1, if (x 1 -0.5)(x 2 -0.5) > 0, 0, otherwise. (33) 
The data f ∈ H 1/2-ε (Ω) for all ε > 0. So in Theorem 4.3 of [START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF] the index δ < 1/2 and since Ω is convex again α can be chosen equal to 1. Then, the predicted convergence rate (for uniform refinement) is ln( 6: Two-dimensional checkerboard test case: for each fractional power we compare the values of the Bank-Weiser estimator η bw κ when uniform refinement is performed (dashed light lines) and when adaptive refinement is performed (solid lines). 6: Two-dimensional checkerboard test case: convergence slopes of the Bank-Weiser estimator for uniform refinement and for adaptive refinement compared to the values predicted by [START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF] for various fractional powers.

√ dof)dof -β with β = 1, if s > 3 4 , s + 1 4 , otherwise. (34 
The predicted (if we omit the logarithmic term) and calculated convergence rates for different choices of s are given in table 6. As we can see on this table, the convergence rates for the Bank-Weiser estimator is globally coherent with the predictions. fig. 6 shows that adaptive refinement improves the convergence rate for small fractional powers. This is expected, the deterioration in the convergence rate is due to the boundary layer behavior of the solution that is getting stronger as the fractional power decreases. When the fractional power is close to 1, the solution behaves like the solution to a non-fractional problem for which adaptive refinement is no longer needed. This can be seen on fig. 7, after 10 steps of adaptive refinement, the mesh associated to fractional power s = 0.9 is almost uniformly refined while the meshes associated to s = 0.5 and s = 0.1 show strongly localized refinement. This explains why in fig. 6 we barely see any improvement in the convergence rate when the mesh is adaptively refined compared to uniformly refined when s 0.7. 7: Three-dimensional checkerboard test case: convergence slopes of the Bank-Weiser estimator for uniform refinement and for adaptive refinement compared to the values predicted by [START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF] for various fractional powers.

Three-dimensional checkerboard test case

This test case is the three-dimensional version of the above checkerboard problem. We solve eq. ( 3) on the unit cube Ω = (0, 1) 3 , with data f such that

f (x 1 , x 2 , x 3 ) =      1,
if (x 1 -0.5)(x 2 -0.5) > 0 and (x 3 -0.5) < 0, 1, if (x 1 -0.5)(x 2 -0.5) < 0 and (x 3 -0.5) > 0, -1, otherwise. [START_REF] Bulle | FEniCS Error Estimation (FEniCS-EE)[END_REF] The finite element solution u 1 and the corresponding mesh after six steps of adaptive refinement are shown in 8 for the fractional power s = 0.5. As for the two-dimensional case, f ∈ H 1/2-ε (Ω) for all ε > 0. Consequently, once again Theorem 4.3 of [START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF] predicts a convergence rate (for uniform refinement) equal to ln dof 1/3 dof -2β/3 with β given by eq. [START_REF] Bulle | Removing the saturation assumption in Bank-Weiser error estimator analysis in dimension three[END_REF].

Once again, if we omit the logarithmic term, the predicted and calculated convergence rates are given in table 7. As in the two-dimensional case, the convergence rates of the Bank-Weiser estimator are globally coherent with the predictions and the boundary layer behavior becomes stronger as the fractional power decreases leading to poorer convergence rates. section 9.4 shows the values of the Bank-Weiser estimator for uniform and adaptive refinement and for several fractional powers.

Concluding remarks

In this work we presented a novel a posteriori error estimation method for the spectral fractional Laplacian. This method benefits from the embarrassingly parallel character of both the Bank-Weiser error estimator and the rational approximation methods, thus keeping the appealing computational aspects of the underlying methodology in [START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF]. Here are two important points we want to make to conclude this paper. First, the Bank-Weiser estimator seems to be equivalent to the L 2 exact error at least when structured meshes are used and when the solution u is smooth. Second, adaptive κ when uniform refinement is performed (dashed light lines) and when adaptive refinement is performed (solid lines). refinement methods drastically improves the convergence rate compared to uniform refinement for fractional powers close to 0.

Finally, we give some future directions that we think are worth considering. More numerical tests could be performed, especially for higher order elements and/or using variants of the Bank-Weiser error estimator as considered in [START_REF] Bulle | Hierarchical a posteriori error estimation of Bank-Weiser type in the FEniCS Project[END_REF].

We would like also to study the derivation of an algorithm that allows to use different meshes to discretize the parametric problems in order to save computational time, as explained in section 9.1.1. The a posteriori error estimation of the error in the "natural" norm of the problem i.e. the spectral fractional norm defined in eq. ( 2) is another extension of this work that is worth to consider. The replacement of the Bank-Weiser estimator by an anisotropic a posteriori error estimator would improve the convergence rate even further in case of boundary layers, see e.g. [START_REF] Banjai | Tensor FEM for Spectral Fractional Diffusion[END_REF][START_REF] Faustmann | Local convergence of the FEM for the integral fractional Laplacian[END_REF], Another interesting extension would be to test our method on fractional powers of other kinds of elliptic operators, following [START_REF] Bonito | Numerical approximation of fractional powers of elliptic operators[END_REF], on another definition of the fractional Laplacian operator [START_REF] Bonito | Numerical approximation of the integral fractional Laplacian[END_REF] and/or other boundary conditions, following [START_REF] Antil | Fractional operators with inhomogeneous boundary conditions: analysis, control, and discretization[END_REF].
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 1 Figure 1: Summary of the computation of the fractional solution approximation and of the fractional Bank-Weiser solution.
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 2 Figure 2: Error estimation and adaptive refinement algorithm outline in pseudo-code.
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 3 Figure 3: Two-dimensional product of sines test case: the Bank-Weiser estimator η bw κ in solid blue line is compared to the exact error in dashed light blue line for s = 0.3 and s = 0.7.
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 4 Figure 4: Two-dimensional product of sines text case: variation of the exact parametric errors with respect to the index l ∈ -M, N for three different fractional powers.
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 5 Figure 5: Three-dimensional product of sines test case: the Bank-Weiser estimator η bw κ in solid blue line is compared to the exact error in dashed light blue line for various fractional powers.

  ] -0.35 -0.55 -0.75 -0.95 -1.00 Est. (unif.) -0.35 -0.55 -0.76 -0.95 -1.00 Est. (adapt.) -0.65 -0.84 -0.93 -0.97 -1.01 Table

Figure 7 :

 7 Figure 7: Two-dimensional checkerboard test case: meshes obtained after 10 steps of adaptive refinement steered by the Bank-Weiser estimator for s = 0.1, s = 0.5 and s = 0.9 from left to right. Frac. power 0.1 0.3 0.5 0.7 0.9 Theory [28] -0.23 -0.37 -0.50 -0.63 -0.67 Est. (unif.) -0.24 -0.38 -0.52 -0.62 -0.67 Est. (adapt.) -0.33 -0.46 -0.55 -0.65 -0.68

Figure 8 :

 8 Figure8: Three-dimensional checkerboard test case: finite element solution and mesh after six steps of adaptive refinement when s = 0.5. The unit cube domain (0, 1) 3 is truncated by the three planes passing through the point (0.25, 0.25, 0.25) and orthogonal to the vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively.
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 9 Figure9: Three-dimensional checkerboard test case: for each fractional power we compare the values of the Bank-Weiser estimator η bw κ when uniform refinement is performed (dashed light lines) and when adaptive refinement is performed (solid lines).

Table 1 :

 1 Number of parametric problems solved for each fractional power.

Table 2 :

 2 Two-dimensional product of sines test case: convergence rates of the Bank-Weiser estimator and of the exact error for various fractional powers.

	Frac. power	0.1	0.3	0.5	0.7	0.9
	Est. eff. index 0.86 1.16 1.08 0.96 0.78

Table 3 :

 3 Two-dimensional product of sines test case: efficiency indices of the Bank-Weiser estimator for various fractional powers.

Table 4 :

 4 Three-dimensional product of sines test case: convergence rates of the Bank-Weiser estimator and of the exact error for various fractional powers.

	Frac. power	0.1	0.3	0.5	0.7	0.9
	Est. eff. index 2.12 3.20 3.08 2.77 2.45

Table 5 :

 5 Three-dimensional product of sines test case: efficiency indices of the Bank-Weiser estimator for various fractional powers.
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Supplementary material

A minimal example of adaptive finite element method for the two-dimensional spectral fractional Laplacian can be found in the following FEniCSx-Error-Estimation repository https://github.com/ jhale/fenicsx-error-estimation. This minimal example code (LGPLv3) is also archived at https: //doi.org/10.6084/m9.figshare.19086695.v3. A Docker image [START_REF] Hale | Containers for Portable, Productive, and Performant Scientific Computing[END_REF] is provided in which this code can be executed.