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SIMULATION OF AN HOMOGENEOUS RELAXATION MODEL

FOR A THREE-PHASE MIXTURE WITH MISCIBLE PHASES

J. BUSSAC AND H. MATHIS

Abstract. This paper addresses the numerical approximation of a compress-

ible three-phase flow. The mixture is composed of a liquid, its vapor and an
inert gas, with realistic equations of state. Since the liquid is immiscible and

the gaseous phases are miscible, it yields constrictive volume and mass con-

straints. The fluid dynamics is depicted by a one-velocity hyperbolic system
with relaxation terms toward the thermodynamical equilibrium of the mixture.

The core of the paper is the comparison and the analysis of two possible choices

of relaxation terms, accounting for a detailed analysis of mixture entropy and
the associated thermodynamical equilibrium. As numerics are concerned, a

fractional step approach is proposed, based on a finite volume approximation

of the convective part. The complexity of the source term requires an implicit
Broyden resolution. Numerical results allow to compare both the performance

of the chosen numerical schemes and the impact of the source term choices.
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1. Introduction

The modelling of compressible multiphase flows is of major importance for many
industrial applications, notably in the context of safety of nuclear power plants.
Loss of coolant accident in pressurized water reactors and vapor explosions are two
typical examples of compressible multiphase flows in this framework [11, 12]. The
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literature about immiscible multiphase configurations is huge; the reader may re-
fer to recent publications [16, 13] for the modelling and analysis and to [27, 30]
for numerical approximations of such immiscible models. Recently models of com-
pressible flows with miscible phases have been proposed [26, 22, 28, 18, 17], see also
[1]. They depict the dynamical and thermodynamical behaviour of a mixture com-
posed of a liquid, its vapor and an inert gas ([17] considers in addition another liquid
phase). As the fluid dynamics is concerned, two distinct approaches are available.
In [18, 17] the phases evolve with their own velocities, leading to a system of non-
conservative evolution equations with so-called interfacial quantities (velocity and
pressure terms) with relaxation source terms towards equilibrium. In [26, 22, 28]
all the phases evolve with a common velocity, leading to a so-called Homogeneous
Relaxation Model (HRM) similar to an Euler system. It is endowed with additional
evolution equations on fractions of volume, mass and energy of the phases which
contain relaxation source terms towards the thermodynamical equilibrium. The
derivation of this model is proposed in [26], based on the preliminar study [1]. The
HRM model corresponds to a relaxation of an Homogeneous Equilibrium Model
(HEM), namely an Euler system with a complex pressure law which depicts the
thermodynamical behaviour of the three-phase mixture. When considering realis-
tic equations of state for each phase, the exact computation of this mixture pressure
is out of reach and precludes the use of the HEM model. The relaxation method,
used for instance in [9, 23, 15], provides a HRM model with a simpler Euler-type
structure with an explicit pressure law, which inherits from the hyperbolic and
entropic properties of the HEM model. However it remains to provide relaxation
source terms to close the system. These source terms have not only to comply with
the second law but also to capture the correct thermodynamical equilibrium of the
mixture. Among all possible choices, two sets of source terms have been proposed
in [26], namely BGK-like source terms, corresponding to a linearization around the
equilibrium state, and source term corresponding to the gradient of the entropy.
When considering realistic equations of state for each phase, Quibel and Hurisse
propose in [22, 28] numerical simulations of the HRM model with BGK-like source
term. The aim of the present paper is, among other things, to compare with the
gradient of entropy source term.

The paper is organised as follows.
In a first part, the thermodynamics of the mixture is investigated, when con-

sidering that the three phases are depicted by complete equations of state (EoS),
focusing on Stiffened Gas (SG) and Noble-Able-Stiffened-Gas-Chemkin (NASG-
CK) laws. The mixture entropy is presented in its intensive form (see [26] for an
extensive formulation) and its concavity is investigated. The main difficulties of the
model are, first, that the gaseous phases are miscible while the liquid is immiscible
with them, and second, that the gas is inert, that is it cannot exchange mass with
the two remaining phases. This results in constrictive constraints on the volume
and mass fractions. Proposition 1 describes the thermodynamical equilibrium as
a maximization of the mixture entropy under these constraints and addresses the
question of disappearance of phases.

In a second part, the derivation of the evolution equations is proposed, leading
to the expected HRM model. Note that this derivation differs from the relaxation
method proposed in [26]. A brief study of the hyperbolic structure is given.
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Section 2 ends with a comparison of the BGK-like source term and the gradient
of entropy one. Properties of the associated dynamical systems are given. If the
BGK-like source term can be solved explicitly, it requires the knowledge of the
thermodynamical equilibrium for any given state. For realistic EoS, namely NASG-
CK or tabulated laws, this is merely out of reach. On the other hand, the gradient
of entropy source term cannot be solved explicitly but it enjoys nice properties
as well: maximum principle, existence of solutions, asymptotic state in agreement
with the expected thermodynamical equilibrium.

Section 3 addresses the numerical approximation of the HRM model by means
of a fractional step method. The approximation of the convective part is performed
by a finite volume scheme with different numerical schemes. Due to the considered
phasic EoS, the computations of internal energy or temperature can be really te-
dious. For the sake of transparency, we provide in this section detailed algorithms
of the computation of internal energy when dealing with either mixture of three SG
or with a NASG-CK liquid phase. As the source terms are concerned, their nonlin-
earity (due to the use of complex phasic EoS) require to use an implicit Broyden
algorithm, presented in Section 3.3.

Finally Section 4 contains the numerical results. First validation test cases of the
convective part are presented, corresponding to infinitely slow relaxation. Exact
Riemann problems are computed for a mixture of three SG and a mixture of a
NASG-CK liquid with two SG. In both configurations a low and high pressure test
cases are proposed. Convergence results are given which assess the good behaviour
of the relaxation and the VFRoe-ncv schemes. However the VFRoe-ncv scheme is
shown to be much more CPU time consuming than the relaxation scheme, and has a
lack of robustness due to numerous internal energy computations, see Section 4.1.3.
To finish a global simulation is proposed, accounting for the relaxation source terms,
corresponding to a non-equilibrium test case. Numerical illustrations highlight the
impact of the choice of the source terms.

2. The model

This Section presents the modelling of the three-phase mixture. First its ther-
modynamics is investigated. Compared to [26], complementary results about the
mixture entropy concavity and the thermodynamical equilibrium are given. No-
tably the question of disappearance of phases is addressed. The dynamics of the
fluid is depicted by an hyperbolic system with relaxation terms, whose derivation is
detailed. The core of the section is the comparison and the analysis of two possible
choices of source terms proposed in [26].

2.1. Thermodynamics of the mixture. The mixture is composed of three pha-
ses: a liquid (labelled l), its vapor (labelled v) and an inert gas (labelled g). The
gas is assumed to be inert in the sense that it cannot exchange mass with the two
other phases (hence it is not stricto sensu a phase but the terminology is conserved
in the sequel). We assume that no vacuum can occur. The main feature of this
model relies in the fact that the two gaseous phases are miscible, while the liquid
phase is immiscible with them.

In order to describe the thermodynamical behavior of the mixture, we consider
a given state (τ, e), with τ the specific volume of the mixture and e its internal
energy. The question addressed in the section 2.1.2 is the proper definition of the
mixture entropy function which entirely depicts the thermodynamical behaviour of
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the mixture. To do so, Section 2.1.1 presents first the complete equation of state
for each phase k ∈ {l, g, v}. Section 2.1.2 starts by the constraints of mass and
energy conservation as well as a volumic constraint which traduces the miscibility
of the gaseous phases. It allows to express the mixture entropy as a function
of fraction of mass, volume and energy of the phases. According to the second
principle of thermodynamics, the thermodynamical equilibrium is reached at the
maximum of the mixture entropy. This maximization process is realized under the
abovementioned constraints. We present in Section 2.1.3 the associated optimality
conditions, that give several constraints on phase disappearance.

2.1.1. Phasic setting. Each phase k = l, g, v is depicted by its phasic specific volume
τk > 0 and its specific energy ek > 0. The thermodynamical behaviour of each phase
k is fully described by its intensive entropy function (τk, ek) 7→ sk(τk, ek) defined on
Ωk ⊂ (R+

∗ )
2, that is a complete equation of state. By adopting the Gibbs formalism,

each entropy function sk complies with the following differential form:

(1) Tkdsk = dek + pkdτk,

where the phasic temperature Tk and pressure pk are defined by:

(2)
1

Tk
=

∂sk
∂ek

∣∣∣∣
τk

, pk = Tk
∂sk
∂τk

∣∣∣∣
ek

,

and the phasic chemical potential by the relation:

(3) µk = −Tksk + pkτk + ek.

Following hypotheses that are usually made on the extensive entropies [24], the
phasic entropy fonctions are supposed to be:

• strictly concave functions on Ωk,
• of class C2 on Ωk, such that ∀(τk, ek) ∈ Ωk, Tk(τk, ek) > 0.

In practical applications, we focus on two equations of state, namely the Stiffened
Gas (SG) and the Noble-Able Chemkin Stiffened Gas (NASG-CK) equations of
state (EoS), whose accuracy on a large domain have been studied in [28, chap. 2].
We remind here their definitions.

For a given phasic state (τk, ek) ∈ Ωk, the complete SG reads

(4) sk(τk, ek) = Cv,k ln
(
(ek −Qk −Πkτk)τ

γk−1
k

)
+ s0k,

where Cv,k > 0 is the calorific capacity at constant volume, −Πk is the minimal
pressure, Qk is a reference enthalpy, γk > 1 is the adiabatic coefficient and s0k > 0
is a reference specific entropy. The case Πk = Qk = 0 corresponds to a perfect gas
law [25]. The associated phasic pressure and temperature are

(5) pk(τk, ek) = (γk − 1)
ek −Qk

τk
− γkΠk, Tk =

ek −Qk −Πkτk
Cv,k

.

In [28, chap. 2] are given sets of parameters for the vapor and liquid phases,
which have been fitted with respect to experimental data around a reference point
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(pref = 80bar, Tref = 425K):

(6)

γl = 1.39864082368510, Cv,l = 3.19641035947920× 103,

Ql = −1.24606074764184× 106, Πl = 4.79690712132593× 108,

s0l = −34597.52986978335,

γv = 1.15442237458290, Cv,v = 2.91668522329726× 103,

Qv = 1.25942536895827× 106, Πv = −3.24993579473092× 102,

s0v = −33792.18353359583.

For further simulations, we will consider a perfect gas law for the inert gas, which
corresponds to :

(7) γg = 1.4, Cv,g = 719, Qg = Πg = 0.

The Noble-Able Stiffened Gas Chemkin (NASG-CK) EoS is an extension of the
SG where the heat capacity now depends on the temperature. According to [28,
chap. 2], the NASG-CK EoS provides a more accurate description of the liquid
thermodynamical behaviour on a larger domain than the SG EoS. This accuracy
has a cost since its requires nonlinear computations, the NASG-CK law being semi-
implicit. Indeed the chemical potential (which is a complete EoS) is classically given
in the pressure-temperature plane as follows

(8) µl(pl, Tl) = µ0
l (Tl) + blpl + Cl(Tl) ln(pl +Πl),

where

(9)
µ0
l (Tl) = RTl

(
Al(1− ln(Tl))−

Bl

2
Tl −

Cl

6
T 2
l − Dl

12
T 3
l − El

20
T 4
l +

Rl

Tl
−Gl

)
,

Cl(Tl) = Cv,l(γl − 1)Tl,

withR = 0.4615228083134561 the perfect gas constant for water and bl a translation
of the specific volume coming from the NASG law, see [4]. For further numerical
experiments, we focus on parameters given in [28] for the liquid water:

(10)

γl = 3.27113568773712, Cv,l = 7.24509640448929× 102,

Πl = 1.24425779880749× 109, bl = 5.66559849022606× 10−4,

Al = 4.69738865636393× 101, Bl = −4.19269571479452× 10−1,

Cl = 1.70702143968620× 10−3, Dl = −3.04805662517983× 10−6,

El = 2.02814588067819× 10−9, Fl = −2.519604765× 106/R,

Gl = −5.573536947× 104/R.

The computation difficulties come from the implicit calculus of the pressure pl
and the temperature Tl in the (τl, el) plane. It holds

pl(τl, Tl) =
Cv,l(γl − 1)Tl

τl − bl
−Πl,(11)

el(τl, Tl) = RTl

(
Al +

Bl

2
Tl +

Cl

3
T 2
l +

Dl

4
T 3
l +

El

5
T 4
l +

Fl

Tl

)
(12)

− Cv,l(γl − 1)Tl +Πl(τl − bl).
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Hence for a given state (τl, el), first the temperature is computed by solving (12)
in a implicit way, and then, the pressure is deduced using (11).

2.1.2. Intensive constraints and mixture entropy. We now turn to the description
of the thermodynamical behaviour of the mixture. Let w = (τ, e) be a state vector
of the fluid mixture, which is composed of a liquid l, its vapor v and an inert gas
g. We denote yk ∈ [0, 1] the mass fraction of the phase k, αk ∈ [0, 1] the volume
fraction and zk ∈ [0, 1] the energy fraction. The conservation of total mass and
energy provides that

(13)

{
yl + yv = 1− yg,

zl + zv + zg = 1,

while the miscibility of the gaseous phases and the immiscible behaviour of the
liquid impose that

(14)

{
αg = αv,

αl + αg = 1.

Note that the mass fraction yg of the gas is fixed, since the gas cannot exchange mass
with the two remaining phases. The knowledge of the fractions and the mixture
state (τ, e) allows to recover the phasic state (τk, ek) since

(15) τk =
αk

yk
τ, ek =

zk
yk

e.

For a given mixture state (τ, e), the mixture entropy is defined as a convex combi-
nation of the phasic entropies with weights yk ∈ [0, 1]. Denoting Y = (yl, αl, zl, zg),
it reads

(16) σ(τ, e, Y, yg) =
∑

k=l,g,v

yksk

(
αk

yk
τ,

zk
yk

e

)
.

The definition domain Ω of the mixture entropy is a convex subset of (R+)
2×]0; 1[5

[24].

Remark 1. We can show that (τ, e) 7→ σ(τ, e, Y, yg) and Y 7→ σ(τ, e, Y, yg) are
concave functions [21, 26]. Some comments concerning this strict concavity of the
mixture entropy have been provided for instance in [21], in the case of an immiscible
mixture. They rely on the study of the concavity of the extensive mixture.

The idea is to show, for a given extensive state X = (M,V,E) of mass M ,
volume V and energy E, that the extensive mixture entropy S is a strictly concave
function when restricted on the set H(M) of the states whose total mass is equal to
M . If this property is true, then the intensive mixture entropy is strictly concave.

In order to prove the strict concavity of S on H(M), the idea is to show that the
degeneracy manifold of S, that is ker∇2

XS(X), coincides with Vect(X) [24]:

∀X, ker∇2
XS(X) = Vect(X).

If so, then the restriction of S on H(M) is strictly concave since

H(M) ∩ ker∇2
XS(X) = {X}.

However, only the inclusion Vect(X) ⊂ ker∇2
XS(X) is shown [24]. One remarks

that ker∇2
XS(X) is a vectorial subset in the 9-dimensional space in the case of a

three-phase flow.
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Accounting for the phasic Gibbs relations (1), identities (15) and the definition
(3) of the phasic chemical potential µk, the differential of the mixture entropy is

dσ =
∑

k=l,g,v

µkdyk+τ
∑

k=l,g,v

pk
Tk

dαk+e
∑

k=l,g,v

1

Tk
dzk+

∑
k=l,g,v

zk
1

Tk
de+

∑
k=l,g,v

αk
pk
Tk

dτ.

Now using the intensive constraints (13) and (14), it holds

(17)

dσ = (µl − µv)dyl + τ

(
pl
Tl

−
(
pv
Tv

+
pg
Tg

))
dαl

+ e

(
1

Tl
− 1

Tg

)
dzl + e

(
1

Tv
− 1

Tg

)
dzv

+

(
zl
Tl

+
zv
Tv

+
zg
Tg

)
de+

(
αl

pl
Tl

+ (1− αl)

(
pv
Tv

+
pg
Tg

))
dτ.

Hence it follows that the mixture pressure and temperature are defined by:

(18)

1

T
(τ, e, Y, yg) =

zl
Tl

+
zv
Tv

+
zg
Tg

,

p(τ, e, Y, yg) =
αl

pl

Tl
+ (1− αl)

pv

Tv
+ (1− αl)

pg

Tg

zl
Tl

+ zv
Tv

+
zg
Tg

,

where the notations pk (resp. Tk) stands for pk(τk, ek) (resp. Tk(τk, ek)) with
relations (15).

2.1.3. Thermodynamical equilibrium and optimality conditions. As thermodynam-
ical equilibrium is reached, the mixture entropy achieves its maximum. This max-
imization process is performed under the constraints (13)-(14). The question ad-
dressed here is to characterize the thermodynamical equilibrium and to investigate
the possible disappearance of phases. The maximization process can be rewritten
in term of the function

(19) Σ(τ, e, yl, yv, (τk)k, (ek)k) = ylsl(τl, el) + yvsv(τv, ev) + ygsg(τg, eg),

where the fraction of mass yg ∈]0, 1[ is fixed and the partial quantities τk and ek
satisfy the constraints

(20)


yl + yv = 1− yg,

ylτl + yvτv = τ,

yvτv = ygτg,

ylel + yvev + ygeg = e,

which are equivalent to the initial constraints (13)-(14). The second and third
relations are consequences of the immiscibility of the liquid and the miscibility of
the gaseous phases, coupled with the mass conservation constraint.

The function Σ is C1 on the space R+
∗ ×R+

∗ ×[0, 1]2×(R+
∗ ×R+

∗ )
3. The constraints

(20) are affine, and thus C1. We are thus in position to use the Lagrange multipliers
characterization of the maximum. Let λy, λτ , λm and λe, four reals, corresponding
to the four constraints (20).
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Using the definitions of the phasic potentials (2), one deduces the following
system of optimality conditions

(21)



sl(τl, el) + λy + λττl + λeel = 0,

sv(τv, ev) + λy + (λτ + λm)τv + λeev = 0,

yl

(
pl
Tl

+ λτ

)
= 0,

yv

(
pv
Tv

+ λτ + λm

)
= 0,

yg

(
pg
Tg

− λm

)
= 0,

yl

(
1

Tl
+ λe

)
= 0,

yv

(
1

Tv
+ λe

)
= 0,

yg

(
1

Tg
+ λe

)
= 0.

Proposition 1. Consider a mixture state (τ, e). Let yg ∈]0, 1[.The equilibrium
states are

(1) Saturation states: yl, yv belong to ]0, 1[ and (τk, ek)k comply with

(22)


pl = pv + pg,

Tl = Tv = Tg,

µl = µv.

(2) Absence of the liquid phase yl = 0. The vapor mass fraction is yv =
1− yg ∈]0, 1[, the gaseous specific volumes are fixed according to

(23) τv = τ/(1− yg), τg = yg/(1− yg)τ,

while the gaseous internal energies are fixed with respect to

(24) e = yvev + ygeg, Tv = Tg.

The liquid pair (τl, el) complies with

(25) Tvsl − (pv + pg) τl − el = −µv,

but remains unfixed.
(3) The case yv = 0, corresponding to the absence of the vapor phase, is

not reachable.

If yg = 0, then only the liquid phase is present with yl = 1, τl = τ and el = e. The
gaseous pairs (τk, ek), k = l, g, are undefined as well as the Lagrange multiplier λm.

Proof. Since yg ∈]0, 1[, the Lagrange multipliers λe and λm are given by

λe = − 1

Tg
, λm =

pg
Tg

.

(1) Saturation case: assume that yv and yl belong to ]0, 1[. Thus thermal
equilibrium is reached in the sense that

1

Tl
=

1

Tv
=

1

Tg
.
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It follows that the mechanical equilibrium corresponds to the equality of
the liquid pressure with the Dalton’s law on the gaseous phases

−λτ = pl = pv + pg.

Using now the definitions (3) of the phasic chemical potentials, it holds

−λy = µl = µv.

(2) Assume that yl = 0, that is the liquid phase has no mass. The constraint
on the mass fractions imposes that yv = 1 − yg ∈]0, 1[. By the mass
conservation, it holds

τv = τ/(1− yg), τg = yg/(1− yg)τ.

Considering the optimality conditions on the temperature, one deduces the
thermal equilibrium of the gaseous phases

1/Tv = 1/Tg = −λe.

The mechanical conditions fixes the Lagrange multipliers λτ

−λτ = pv/Tv + pg/Tg.

Finally the second optimality condition, using the definition (3) of the chem-
ical potential µv, fixes the Lagrange multiplier λy = µv/Tv. Note that from
the conservation of energy e = yvev + ygeg and the thermal equilibrium,
one deduces the vapor and gaseous energies ev and eg. It remains to fix the
liquid quantities, which are a priori undefined. Using the first optimality
condition, and the gazeous temperatures equality, the pair (τl, el) has to
satisfy

Tvsl − (pv + pg) τl − el = −µv.

However an additional constraint is needed to fix the pair.
(3) Assume yv = 0. Hence yl = 1− yg ∈]0, 1[, such that τl = τ/(1− yg). Note

that the miscibility constraint imposes that τg = 0, that is the the gaseous
phase has a mass but no volume. In particular, the gaseous potential are
not defined for τg = 0. Hence this case is not reachable.

(4) Assume yg = 0. Then the miscibility condition imposes that yv = 0 since
τv > 0 and no vacuum is considered. In that case, yl = 1. Observe that the
Lagrange multiplier λm is not defined, as well as the gaseous pairs (τk, ek),
k = v, g.

□

The absence of the liquid phase, corresponding to yl = 0, is characterized by
Equation (25). Its left hand side is homogeneous to the liquid chemical potential.
Hence Equation (25) traduces the deviation from the chemical equilibrium between
the vapor and the absent liquid phase.

For a given state characterized by relations (22), its counterpart in terms of
equilibrium fraction Yeq = (yl,eq, αl,eq, zl,eq, zg,eq) maximizes the entropy σ under
the constraints (13)-(14). We emphasize that Yeq only depends of (τ, e, yg), and
that its definition requires the strict concavity of Y 7→ σ(τ, e, Y, yg), that we
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2.2. Mixture dynamics. In this section are introduced the evolution equations
of the mixture, assuming that each phase evolves with a common velocity field u.
Their derivation consists in studying the evolution of an isolated fluid element along
a streamline. Note that the resulting set of equations has already been obtained in
[26] as a relaxed version of a three-phase equilibrium model.

2.2.1. Derivation of the evolution equations of the mixture. The purpose of this sec-
tion is to derive a simple system of evolution equations of the observable quantities
of the mixture in time t and space x, considering that each phase evolves with a
common velocity field u. The derivation is performed for x ∈ Rd, even if we focus
in the sequel on the one-dimensional setting. To do so, one considers an isolated
fluid element, composed of the three phases, along a streamline. Some standard
assumptions have to be stated to perform the derivation, following the formalism
depicted in [21]. First, the total mass of the element is conserved along time, as
well as the mass fraction of gas yg. Moreover we assume that the volume variation
of the element is solely due to the velocity field divergence. Hence one obtains that

dτ = τdiv(u)dt,

where the derivative notation dφ corresponds to the derivative along a streamline
of the flow

dφ = ∂tφ+ u∇xφ.

Considering now that the only force acting on the fluid element is due to the pressure
gradient, the fundamental principle of mechanics states that

du = −τ∇xpdt,

where the mixture pressure p corresponds to the mixture pressure (18). The first
law of thermodynamics then relates the internal energy to the pressure assuming
that the fluid element is not submitted to other heat sources

de = −pdτ.

Following [9, 3, 21], we assume that the time-evolution of the phasic quantities are
of the form

dY = λΓ(τ, e, Y, yg)dt,

where the vector λ corresponds to the time relaxation parameters.
Combining the above equations with the definition of the fluid density ρ = 1/τ ,

one ends up with a compressible Euler-type system with five additional equations
on the fractions with possible relaxation terms. The conservative one-dimensional
set of equations reads

(26)



∂t(ρY ) + ∂x(ρY u) = ρλΓ(τ, e, Y, yg),

∂t(ρyg) + ∂x(ρyg) = 0,

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + p) = 0,

∂t(ρE) + ∂x ((ρE + p)u) = 0,

where E = u2/2 + e denotes the total energy of the system and p is the mixture
pressure (18).
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2.2.2. Properties of the homogeneous model. Focusing on the homogeneous part of
the model, its hyperbolicity and entropic structure have been studied in [26]. The
concavity of σ with respect to (τ, e, Y, yg) is equivalent to the convexity of H = −ρσ
with respect to the conservative variables W = (ρY, ρ, ρu, ρE). Thus H = −ρσ is
a Lax entropy for the system (26) and weak solutions satisfy

∂tH + ∂x(Hu) ≤ 0.

Again hyperbolicity is ensured as soon as the three phases are present and depicted
by phasic concave entropies leading to a strictly positive sound speed c defined by

(27)
c2

τ2
= p∂ep− ∂τp = −T (p2∂eeσ − 2p∂τeσ + ∂ττσ).

The eigenstructure of the system (26) is composed of one linearly degenerate
wave, associated to the eigenvalue u, and two genuinely non-linear waves associated
to the eigenvalues u± c, where c is the mixture sound speed defined by (27)

Figure 1. Structure: ghost-wave, contact, shock.

Figure 1 represents the wave structure in the (x, t) plane. As the contact wave
is conserved (see Figure 1- dashed line), mixture pressure p and velocity u are
preserved across it contrary to the fractions Y . For two given states WL and
WR separated by a genuinely nonlinear wave (plain lines of Figure 1), the jump
conditions read

(28)


[Y ] = 0,

J = − [p]
[u] ,

J2 = − [p]
[τ ] ,

[e] + [τ ]pL+pR

2 = 0,

.

where J = ρu − σ. It means in particular that the fractions are constant through
nonlinear waves. In numerical validations, we provide analytical solutions of Rie-
mann problems when the system (26) is endowed with an initial conditionW (0, x) =
WL1x<0 +WR1x≥0, see Section 4.1. To do so we make use of the jump relations
(28) to compute solutions composed of four constant states separated by a ghost
wave, a contact and a shock wave (see also [28] for detailed exact computations).
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2.3. Source terms. The thermodynamical behaviour of the mixture is not only
driven by the mixture pressure p involved in the momentum and total energy con-
servation laws, but mostly depicted by the relaxation terms acting on the advection
equations on the fraction vector Y . Indeed all the thermodynamical disequilibrium
is depicted by the dynamical system

(29)
dY

dt
= λΓ(τ, e, Y, yg).

Even if there is no consensus on the choice of relaxation source terms, they have
to fullfil some physical requirements. First a thermodynamic evolution of the sys-
tem must lead to an entropy growth and the equilibrium state corresponds to its
maximum. It turns out that the mixture entropy σ verifies the following transport
equation:

(30) ∂tσ + u∂xσ = λΓ(Y, τ, e)∇Y σ.

Hence eligible source terms Γ are such that

(31) λΓ(Y, τ, e)∇Y σ ≥ 0.

Moreover the relaxation terms have to preserve the asymptotic states. For a given
state (τ, e) of the mixture, the source terms have to capture the correct thermody-
namical equilibrium, that is

lim
t→+∞

Y (t) = Yeq.

The core of this section is to analyze two possible choices of source terms. The first
one, referred in [20] as BGK source term, corresponds to a linearization around the
equilibrium vector Yeq. Introduced in [9, 15, 3], it is used in multiphase configura-
tions with complex phasic equations of state [28, 22]. The alternative source terms,
proposed in [26], corresponds to the gradient of the mixture entropy which directly
satisfies (30).

A similar analysis of these two choices in the immiscible (resp. miscible) dipha-
sic framework is performed in [7]. The advantage of the two-phase case is that
the dynamical system admits three (resp. two) equations leading to a convenient
vizualisation of the trajectories in the phase plane. For the present problem, the
dimension 4 of the system prevents such nice vizualisation.

Remark 2. Source terms Γ contain time scales λ = (λ1, λ2, λ3, λ4) ∈ (R+)
4 that

model the relaxation speed of the system. We will not consider any time dependence
for λ in this paper.

More precisely, each λi is a factor contained by Γi, and concerns a specific frac-
tion in system (26). On a physical point of view, λ1 correspond to the mass transfer,
λ2 to the mechanical, λ3 and λ4 to thermal relaxation times.

2.3.1. BGK-like source terms. For a given state (τ, e, Y, yg) ∈ Ω, assuming that
Y 7→ σ(τ, e, Y ) is strictly concave, there exists a unique equilibrium fraction state
Yeq which maximises the entropy σ, where Yeq only depends of (τ, e), see Proposition
1.

Definition 1. For any state (τ, e, Y, yg) ∈ Ω, we define:

(32) Γ1(τ, e, Y, yg) = λ(Yeq(τ, e, yg)− Y ),

where λ ∈ (R+
∗ )

4 is the time scale vector.
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Proposition 2. (Eligibility) Assume that the time scale vector λ > 0 is such
that λ1 = λ2 = λ3 = λ4 = λ, possibly time dependent. For any given state
(τ, e) ∈ (R+

∗ )
2, assume that the entropy function (τ, e, Y, yg) 7→ σ(τ, e, Y ) is strictly

concave with respect to Y . Then, the source terms Γ1 complies with the entropy
growth criterion (31). Moreover, the stationary states of the dynamical system
(29)-(32) coincide with the possible thermodynamical equilibria of Proposition 1.

Proof. It is obvious that the stationary states of the source term Γ1 are vector Yeq

of Proposition 1. It remains to check the entropy growth. Let (τ, e, Y, yg) ∈ Ω be a
given state. It holds:

Γ1(τ, e, Y, yg)∇Y σ(τ, e, Y, yg) = (λ(Yeq − Y ))∇Y σ(τ, e, Y, yg)

= λ((Yeq − Y )∇Y σ(τ, e, Y, yg))

≥ λ(σ(τ, e, Yeq, yg)− σ(τ, e, Y, yg))

≥ 0,

thanks to the concavity of Y 7→ σ(τ, e, Y, yg). □

Note that invoking the concavity argument requires to consider a unique relax-
ation parameter λ. Recently a modification of BGK-like source terms which allows
distinct time scales has been introduced in [20].

Proposition 3. Let (τ, e, Y0, yg) ∈ Ω be an initial state. The Cauchy problem{
dY
dt (t) = Γ1(τ, e, Y (t), yg), t > 0,

Y (0) = Y0,

admits a global solution Y given by

(33) ∀t ≥ 0, Y (t) = e−Λ(t)(eΛ(0)Y0 + Yeq

∫ t

0

λ(s)eΛ(s)ds),

where Λ is a primitive of λ. In the case of a constant in time relaxation parameter
λ, it holds

(34) ∀t ≥ 0, Y (t) = e−λtY (0) + (1− e−λt)Yeq.

The proof is direct and this last expression can be interpreted as a barycenter
of the initial state Y (0) and the equilibrium state Yeq. Hence it guarantees that
Y (t) ∈ [0, 1]4 for all t ≥ 0.

One major advantage of the BGK-like source term is that it can be explic-
itly integrated, since trajectories are exponential towards equilibrium fractions Yeq.
However it requires to compute the equilibrium state Yeq for every considered state
(τ, e, Y, yg) ∈ Ω, that is to say maximize the mixture entropy (16) under the con-
straints (13)-(14).

For two-phase mixtures, the maximization can be done explicitly when classical
EoS are considered [19]. In our three-phase context, the computations are much
more complicated, especially when complex EoS are considered. For sake of illus-
tration, the detailed computation of the equilibrium state Yeq for a mixture of three
Stiffened Gases is given in Appendix A.

Figure 2 presents the evolution in time of the fractions Y (t) for a mixture of
three SG with parameters (6). One observes the evolution in time of the fractions
Y (t) for an initial state Y (0) = (0.1, 0.1, 0.1, 0.05), yg = 0.05, with specific volume
τ = 5.10−3 and internal energy e = 108. The time scale is constant in time and
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Figure 2. BGK-like source term Γ1. Trajectories toward a three
SG mixture equilibrium.

set to λ = 1. The equilibrium fractions, that can be computed following Appendix
A, represented by the dotted lines, are reached at time t = 5s. Another important
point is that the time when the asymptotic state is reached does not depend on the
initial state of the fluid.

When considering a NASG-CK EoS for the liquid, the computation of the equi-
librium state vector Yeq requires an implicit solver, for instance using a Broyden
algorithm, see [28] for a hint of the method.

2.3.2. Entropy gradient source terms. This second type of source terms corresponds
to the gradient of the mixture entropy.

Definition 2. For all (τ, e, Y, yg) ∈ Ω, let Γ2 be the source terms function defined
by

Γ2(Y ) = Y (1− Y )∇Y σ(τ, e, Y, yg) =


yl(1− yl)∂yl

σ
α(1− α)∂ασ
zl(1− zl)∂zlσ
zg(1− zg)∂zgσ

 .

Using intensive potentials (2)-(3), Γ2 rewrites:

(35) Γ2 =


yl(1− yl)

(
µv

Tv
− µl

Tl

)
αl(1− αl)τ

(
Pl

Tl
− Pv

Tv
− Pg

Tg

)
zl(1− zl)

(
1
Tl

− 1
Tv

)
zg(1− zg)

(
1
Tg

− 1
Tv

)
 .

This function corresponds to the entropy gradient times Y (1 − Y ) understood
as a term by term product. Indeed the set of definition of the mixture entropy
Y 7→ σ(τ, e, Y, yg) is Ω which is included in ]0; 1[4. Thus a solution Y of the dynam-
ical system Y ′(t) = ∇Y σ(τ, e, Y, yg) is such that Y (t) ∈]0; 1[4, for all t > 0. However
in numerical applications, this maximum principle is not guaranteed, as illustrated
in Figure 3. Trajectories of the fraction vector in time are represented for a mix-
ture of three SG with parameters (6), with initial state Y (0) = (0.1, 0.1, 0.1, 0.05),
yg = 0.05, with specific volume τ = 5.5.10−3 and internal energy e = 108 and
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Figure 3. Gradient of entropy source term for a three SG mix-
ture. Trajectories of the fractions in time without the correction
(dashed lines) and with the correction (plain lines).

λ = (1, 1, 1, 1)T . Dashed lines correspond to trajectories when no correction is
considered. One observes that the volume fraction becomes nonpositive at time
t < 0.0005s. The correction term Y (1−Y ) ensures the maximum principle as illus-
trated by the plain lines. Of course, this correction term modifies the trajectories,
in particular the return to equilibrium seems to be reached at a longer time. We
emphasize that it directly depends on the initial state.

Remark 3. The source term Γ2 involves the difference of phasic pressures which
acts on the volume fraction equation. Such an expression is rather classical. It can
be found in the two-fluid literature, for instance in Baer-Nunziato like model [2]
and the derivation of such mechanical transfer term is now well understood [10].

Proposition 4. (Eligibility) Let λ0 = minλi such as λ0 > 0. Then, for any state
(τ, e, Y, yg) ∈ Ω, the source term Γ2 satisfies the eligibility criterion (31) for all
t > 0.

Proof. Let (τ, e, Y, yg) ∈ Ω a given state. It holds

Γ2(τ, e, Y, yg)∇Y σ(τ, e, Y, yg) = λY (1− Y )∇Y σ(τ, e, Y, yg)∇Y σ(τ, e, Y, yg)

=
∑

k=l,g,v

λkyk(1− yk)(∂yk
σ)2(τ, e, Y, yg)

≥ λ0

∑
k=l,g,v

yk(1− yk)(∂yk
σ)2(τ, e, Y, yg)

≥ λ0 inf
k=l,g,v

yk(1− yk)
∑

k=l,g,v

(∂yk
σ)2(τ, e, Y, yg)

≥ λ0 inf
k=l,g,v

yk(1− yk)||∇Y σ||2

≥ 0.

□

Contrary to the BGK-like source term, the source term Γ2 does not require
conditions on different time scales, thus we can choose distinct ones.
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Unlike the Γ1 source term, solving exactly the ODE system is out of reach.
However existence en uniqueness of local solution to Cauchy problem is guaranteed
by the Cauchy-Lipschitz theorem.

Proposition 5. Consider (τ, e) ∈ (R+
∗ )

2. For all Y0 ∈ (R+
∗ )

4 such that (τ, e, Y0, yg) ∈
Ω, there exists an unique maximal solution (I, Y ) ∈ R+×]0; 1[4, with Y : I →]0; 1[4,
of the Cauchy problem

(36)

{
dY
dt (t) = Γ2(τ, e, Y (t), yg), t > 0,

Y (0) = Y0.

The following purpose is to ensure that the stationary states of the Cauchy
problem (36), namely vector Ȳ such that Γ2(Ȳ ) = 0, correspond to physically
relevant thermodynamical equilibria of the three-phase mixture, in the sense of
Proposition 1.

For a given state (τ, e) ∈ (R+
∗ )

2, if Ȳ ∈]0; 1[4, then Γ2(Ȳ ) = 0 implies that
∇Y σ(τ, e, Ȳ , yg) = 0. Hence Ȳ is such that (22) holds and the thermodynamical
equilibrium is a stationary state.

On the other hand, since Γ2 is not defined on the border of the cube [0, 1]4, one
cannot determine if single phase states Ȳ = 0R4 or Ȳ = 1R4 are stationary states of
the dynamical system and if these states are attractive (using standard arguments
like the jacobian linearization). In a similar way, a state Y = (1 − yg, 0, 0, 0) such
that yv = 0 could be a stationary state of the dynamical system. The following
result rejects this possibility in the case of a mixture of three Stiffened Gases with
parameters (6) and complies with Proposition 1.

Proposition 6 (Exclusion of the border). Let (τ, e) ∈ (R+
∗ )

2) be a given state. For
any initial data Y (0) ∈]0, 1[3, a solution Y (t) of the system (36) cannot converge
towards the asymptotic state Y0 = (1− yg, 0, 0, 0).

Proof. The study of the vector field around Y0 = (1 − yg, 0, 0, 0) allows to ex-
clude any possibility of convergence toward this point. Indeed, one can show that
lim

Y→Y0

Γ2,1(Y ) = −∞, where Γ2,1 is the first component of Γ2. We refer to [7] for a

detailed proof in the case of a two-phase mixture. □

The high nonlinearity of the source term Γ2 requires a robust numerical approx-
imation, especially when considering complex EoS such as NASG-CK EoS. The
numerical method we consider is depicted in Section 3.3.

3. Numerical approximation by a fractional step method

The fractional step method [31, 3] consists in approximating the convective part
and the source terms in two distincts steps. The approximation of the convective
part of the model (26) is performed by a Finite Volume method set on regular
meshes of size ∆x = xi+1/2 − xi−1/2, i ∈ Z. Time steps are calculated under

CFL condition, with the notation ∆tn = tn+1 − tn. Denoting W = (ρY, ρ, ρu, ρE)
the vector of conserved quantities, the first step of the method corresponds to the
approximation of {

∂tW + ∂xF(W ) = 0,

W (0, x) = W0(x),
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where F(W ) = uW + pD, with D = (0, 0, 1, u)T and W0(x) is a given initial state.
Let W (tn, w) be approximated by

(37) Wn
i =

∫ xi+1/2

xi−1/2

W (tn, x)dx.

Integrating the convective part over the space-time domain [xi−1/2, xi+1/2]×[tn, tn+1,∗)
gives∫ xi+1/2

xi−1/2

W (tn+1,∗, x)−W (tn, x)dx+

∫ tn+1,∗

tn
F(W (t, xi+1/2))−F(W (t, xi−1/2))dt = 0.

Using the notation (37), the Finite Volume formulation reads

(38) Wn+1,∗
i = Wn

i − ∆t

∆x
(Fn

i+1/2 − Fn
i−1/2),

where the notation Fn
i+1/2 stands for the two-point approximation of the flux

through the interface xi+1/2, namely Fn
i+1/2 = F (Wn

i ,W
n
i+1). As the second step

of the splitting method is concerned, it remains to provide a discretization of the
source term with

(39)


d

dt
Y (t) = Γ(τ, e, Y, yg),

d

dt
W̃ (t) = 0,

where W̃ = (ρyg, ρ, ρu, ρE). Finally the numerical approximation Wn+1
i is an

approximated solution of (39) at time t = ∆t with the initial condition Wn+1,∗,
deduced from the convection step.

3.1. Convective part. Several two-point numerical fluxes have been considered
and will be compared in the following section. We focus on standard numerical
schemes which are recalled hereafter for the sake of completness.

3.1.1. Rusanov scheme. Considering two neighbouring states WL and WR, the Ru-
sanov [29] flux reads

F (WL,WR) =
1

2
(F(WL) + F(WR))−

max(ΛR,ΛL)

2
(WR −WL),

where Λk = Λk(Wk) is the spectral radius of the convection matrix ∇WF(Wk),
that is

max(ΛR,ΛL) = max
k=L,R

(| uk ± ck |),

where the sound speed ck is given by (27). Every time step tn is computed according
to the CFL constraint: ∆tn = C ∆x

max(ΛR,ΛL) , with C such as 0 < C < 1
2 .

3.1.2. VFRoe-ncv scheme. The VFRoe-ncv scheme [6] is an approximation of the
Godunov scheme. It consists in considering a linearization of the model. Consider-
ing a change of variable for regular solutions

W 7→ V = Ψ−1(W ),

with Ψ a C1-diffeomorphism, the system is rewritten under a nonconservative form

(40) ∂tV +A(V )∂xV = 0,
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with A(V ) = (∇V Ψ)−1∇WF(∇V Ψ) the new convection matrix. For two given
states VL and VR, the linearization is performed around the arithmetic mean V̄ =
VL+VR

2 .
Thus the numerical flux is defined with the exact solution of the Riemann prob-

lem associated to the following linear system

∂tV +A(V̄ )∂xV = 0.

Let V(xt = 0;VL, VR) be this solution. We get the numerical flux:

F (WL,WR) = F(Ψ(V(x/t = 0, VL;VR))),

and the linear problem solution is given by

V(x/t = 0, VL;VR) = VL +
∑
β̄i≤0

γ̄ir̄i,

where (β̄i)i are the eigenvalues of A(V̄ ), (r̄i)i its eigenvectors and (γ̄i)i the coeffi-
cients which are solutions of the system ∆V =

∑
i γ̄ir̄i, with ∆V = VR − VL. To

avoid the appearance of any non-physical shock, the numerical flux is corrected by
an additional diffusive term [14], leading to

(41) F (WL,WR) = F(Ψ(V(x/t = 0, VL;VR)))−
δ

2
(WR −WL),

where

(42) δ =

 min(−(u+ c)L, (u+ c)R), if (u+ c)L < 0 and (u+ c)R > 0,
min(−(u− c)L, (u− c)R), if (u− c)L < 0 and (u− c)R > 0,
0, else.

3.1.3. Relaxation scheme. The principle of relaxation schemes is to enlarge the
system and to relax the nonlinearities (coming from the complex pressure and
energy terms), in a way such as all the characteristic fields are linearly degenerate.
Doing so, the computations of the solution are explicit and a proper relaxation term
allows to recover the initial system solutions. Following for instance [8, Theorem
6], the enlarged system reads

(43)



∂t(ρY ) + ∂x(ρY u) = 0,
∂t(ρyg) + ∂x(ρygu) = 0,
∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu

2 +Π) = 0,
∂t(ρΣ) + ∂x(ρuΣ+ uΠ) = 0,
∂t(ρT ) + ∂x(ρT u) = 1

ϵρ(τ − T ).

Here the quantity T is such that for all x, T (0, x) = τ(0, x) and ϵ is a relaxation
parameter. The pressure term is relaxed in the following sense

(44) Π = p(T , e, Y, yg) + a2(T − τ),

while the relaxed energy reads

(45) Σ = e+
u2

2
+

Π2 − (p(T , e, Y, yg))
2

2a2
,

with a a parameter chosen such that

(46) a > max

(
cl(τl, el, Yl, yg)

τl
,
cr(τr, er, Yr, yg)

τr

)
.
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This above condition, referred as Whitham condition, ensures the hyperbolicity of
the relaxed system and well-ordered waves. Finally, considering two states WL and
WR at a given interface, the two-point numerical flux is

(47) F (WL,WR) =

(
Y u

τ
,
u

τ
,
u2

τ
+Π,

uΣ

τ
+ uΠ

)
,

where Y, τ, u,Σ are the components of the solution of the enlarged Riemann problem
at the considered interface.

3.2. Computation of the internal energy. The implementation of the above
numerical fluxes requires to handle transits from conservative variables W to ob-
servable quantities e.g. pressure and temperature fields and vice versa. Depending
on the considered phasic equations of state, these changes of variables can be non
explicit and require most of the time an implicit solver. The aim of this section
is to provide detailed algorithms for the computation of the internal energy e of
the mixture, starting from a mixture state with specific volume τ̄ , fraction vector
Ȳ and pressure p̄. Similar algorithms can be adapted when considering an initial
temperature T̄ .

Depending on the phasic equations of state, the algorithms differ. We focus on
two configurations: first, all the phases are depicted by Stiffened Gas laws, second,
the gaseous phases follow SG laws while the liquid is modeled by a NASG-CK law.

3.2.1. Computation for a 3 SG mixture. Let (τ̄ , p̄, Ȳ ) be a given state. The question
is to compute the associated internal energy e, which is the root of the function P,
defined by

(48) P(e) = p(τ̄ , e, Ȳ , yg)− p̄.

Using the mixture pressure definition (18) and and the expressions of the Stiff-
ened Gas pressure and temperature, this function can be written as a third-degree
polynomial

(49) P(e) = Āe3 + B̄e2 + C̄e+ D̄.
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We precise here the exact coefficients, for k, k′, k′′ ∈ {l, g, v} pairwise distinct (note
that they sligthly differ from those of [19]):

(50)

Ā =
∑

k,k′,k′′

zkyk(γk − 1)
zk′

Ck′

zk′′

Ck′′

1

τ
,

B̄ =
∑

k,k′,k′′

−αkyk
1

Ck′Ck′′

(
zk′zk′′

(
Πkγk +

ykQk(γk − 1)

αkτ

)

+
zk(γk − 1)

αk

1

τ
(zk′ωk′′ + zk′′ωk′)

)
− zkyk

zk′zk′′

Ck′Ck′′
,

C̄ =
∑

k,k′,k′′

αkyk
1

Ck′Ck′′

(
zk(γk − 1)

yk

1

τ
ωk′ωk′′

+
(ykQk(γk − 1)

αk

1

τ
+Πkγk

)(
zk′ωk′′ + zk′′ωk′

))

+
(
zkyk

1

Ck′Ck′′
(zk′ωk′′ + zk′′ωk′)

)
,

D̄ =
∑

k,k′,k′′

−αkyk
1

Ck′Ck′′

(ykQk(γk − 1)

αk

1

τ
+Πkγk

)
ωk′ωk′′

− ykzk
1

Ck′Ck′′
ωk′ωk′′ ,

where ωk = ykQk + αkΠkτ . Remark that the coefficients Ā to D̄ are explicitly
defined by the data (τ̄ , p̄, Ȳ ), the notation x̄ being omitted for sake of readability.
The algorithm reads as follows.

• For a given state (τ̄ , p̄, Ȳ ), compute the coefficients (50) of P.
• Compute the discrimimant ∆ of the derivative of P.

I) If ∆ ≤ 0, the equation (49) admits an unique solution, which is computed
with a Newton’s method.

II) If ∆ > 0, let X1, X2 be the ordered roots of P ′, such as X1 < X2. They
correspond to the local extrema of P, see Figure 4.

Let δ = 109 and γ = 100 two parameters.
i) If P(X2)P(X2+γ) ≤ 0, there exists a unique root e0 such as e0 > X2,

see Figure 4-right. We make use of a Newton method with initial
condition X2 + δ and verify that the solution is greater than X2. In
case of non convergence or if the solution is lower than X2, a bisection
method is launched in the range [X2, X2 + γ] to ensure to find the
correct root.

ii) If P(X2)P(X2 + γ) > 0, P admits only one root e0 such as e0 < X1,
see Figure 4-left. Indeed, we can’t have X1 < e0 < X2 because it
wouldn’t be a unique root. Then we proceed like previously with a
Newton method starting from X2 − δ.

The parameters δ and γ are set arbitrarily and may be modified to optimize the
algorithm. Note that the case II)-ii) excludes the possibility of P(Xi) = 0, i = 1 or
2. Indeed this situation would correspond to the existence of two roots which have
not been encountered in practical simulations.
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(a) P admits one root. (b) P admits three roots.

Figure 4. Computation of the internal energy for a mixture of
three SG. Typical graph of P in the two cases where ∆ > 0.

Figure 5. Computation of the internal energy for a mixture of
two SG and a NASGK-CK liquid. Typical graph of P.

3.2.2. Computation for a mixture of 2 SG and a NASG-CK liquid phase. In this
configuration, the expression P(e) = P (τ̄ , e, Ȳ ) − p̄ is no more explicit due to the
NASG-CK EoS. Computing the root of P(e) is tedious because the graph of P is
basically an hyperbola, see Figure 5. To handle this difficulty, a bisection method
is preferred (compared to a secant or a Newton method to ensure to find the root
in the desired range). The algorithm reads as follows.

• Consider a range of internal energy [emin, emax].
• Provide a discretization of [emin, emax] with ej = emin+ j∆e, ∆e = (emax−
emin)/N .

• Set δj =
ej−ej−1

d .
• For j = N,N − 1, ..., 2, find the first index j0 such as P(ej0−1)P(ej0) < 0.
• Launch a bisection algorithm on [ej0−1, ej0 ].
• If the bisection fails, there must exist a real ẽ ∈ [ej0−1, ej0 ] where P is
undefined. Hence two cases must be considered.
(1) If the previous iterations indicate that the root ē is in the neigh-

bourhood of ej0−1 (resp. ej0), relaunch the bisection on the ranges
[ej0−1, ej0−1+δj ], [ej0−1+δj , ej0−1+2δj ],... until convergence is reached
(resp. [ej0 , ej0 − δj ], [ej0 − δj , ej0 − 2δj ],... ).

(2) Else the last iteration e∞ provides an approximation of ē. If e∞ < ē
(resp. e∞ > ē), relaunch the bisection on the range [ej0−1, e∞] (resp.
on [e∞, ej0 ]).

In practice we choose d = 10 and N = 103. Higher values of N can be necessary
on simulations at high pressure, see Section 4, Figure 4.
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Remark 4. In order to reduce costs of this algorithm, a reminder can be imple-
mented to launch first a bisection method around the solution found on the previous
cell if it detects two similar consecutive states. Let eold and enew be the values of
the internal energies on consecutive cells. At the beginning of the next computation
of the energy, if |eold− enew| < 1, we first launch a bisection method on the interval
[enew − 10; enew + 10]. If the solution is negative or if the bisection algorithm does
not converge, it goes back to previous algorithm.

3.3. Source term approximation. The second step of the splitting strategy cor-
responds to the source term approximation.

As BGK-like source term is concerned, trajectories can be explicitly defined, see
Proposition 3, as soon as the equilibrium vector Yeq is determined. Two difficulties
arise. First, the uniqueness of this equilibrium is unclear due to Remark 1. More-
over when complex EoS are considered, the maximization process of the mixture
entropy (16) under the constraints (13)-(14) has to be performed with an appropri-
ate optimization algorithm. We refer to [28] which proposes a Broyden method to
compute the equilibrium for a mixture of two stiffened gases and a NASG-Chemkin
law for the liquid phase.

We focus in this section on the the gradient of entropy source term Γ2.
In order to capture the long-time asymptotic equilibria, an implicit approxima-

tion is considered. However the complexity of the source term Γ2 makes a full
implicit discretization out of reach, especially when considering NASG-CK EoS.
We propose hereafter a semi-implicit Euler algorithm, based on a Broyden method
[5] to evaluate the implicit part.

On the time range [tn+1,∗, tn+1], one considers the Cauchy problem (39) with
initial condition Wn+1,∗ computed from the convective step. The implicit Euler
method boils down to find the root of the nonlinear functional G : [0, 1]4 → R

(51) G(Y ) = Y −∆tY (1− Y )∇Y σ(τn+1;∗, en+1;∗, Y, yg)− Yn+1;∗,

To do so, we make use of an iterative Broyden algorithm, which requires to compute
the Jacobian matrix J(Y ) of G(Y ) with coefficients
(52)(
J(Y )

)
i,j

= ∂Yj
Yi −∆tλi∂Yj

[Yi(1− Yi)∂Yi
σ(τn+1;∗, en+1;∗, Y, yg)] , 1 ≤ i, j ≤ 4,

where Yi (resp. λi) stands for the i−th coefficient of Y (resp. λ). One remarks
that only the initialization step requires a jacobian computation. The algorithm
consists in computing the sequence (Yk)k∈N given by

(53)


Yk = Yk−1 − J−1

k−1G(Yk−1),

J−1
k = J−1

k−1 +
∆Yk−J−1

k−1∆Gk

∆Y T
k Jk−1∆Gk

(∆Yk)
TJ−1

k−1,

∆Yk = Yk − Yk−1,

∆Gk = G(Yk)−G(Yk−1),

until ∥Yk − Yk−1∥ < η, where η is a tolerance (η = 10−10 in practice). The initial-
ization requires to choose Y0 to Yn given by the previous time step computation.

4. Numerical results

This Section provides two types of numerical experiments. First validation test
cases assess the good approximation of the convective part of the model (26). They
consist the in approximation of exact Riemann problem solutions at low and high
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pressure for three-phase mixture with either SG or NASG-CK EoS (for the liquid
phase).

A comparison of CPU costs is presented in Section 4.1.3, highlighting the per-
formances of the relaxation scheme compared to the VFRoe-ncv scheme.

Finally a global simulation, accounting for the contribution of the gradient of
entropy source term, is presented.

4.1. Infinitely slow relaxation. These test cases correspond to the validation of
the approximation of the convective part (when the source terms are inactive). For
two different sets of phasic EoS, we compare the numerical results of the different
numerical fluxes presented in Section 3.1 on Riemann problems at low and high
pressure. In both cases, the Riemann problem solutions are built according to
Section 2.2.2. Considering a left state WL, the state W1 is computed considering
that the first nonlinear wave is a ghost wave. Then the contact wave allows to
deduce the state W2, the pressure and velocity being preserved through the contact
contrary to Y . Finally a shock wave of velocity ξ separates the state W2 and WR

while the fractions Y are preserved.

4.1.1. Mixture of three Stiffened Gases. Tables 1 and 2 present the exact Riemann
data in the low and high pressure case respectively when considering that the
three phases are depicted by Stiffened Gas laws with parameters (6). The four
constant states are depicted in terms of their primitive variables, namely Z =
(yl, yg, αl, zl, zg, τ, u, p)

T .

Table 1. Mixture of three SG. Data for the low-pressure Riemann
problem.

The three numerical fluxes are compared with the same CFL parameter set to
0.45, on several test cases that are set on the domain [0, 1]. Figures 8-9-12-13
were obtained with 500 cells. The convergence results, obtained for a final time
t = 10−3s., see Figures 6 and 7, show that the VFRoe-ncv and the relaxation
schemes achieve similar convergence rates (of about 1/2).

Figure 8 presents the profiles of density, velocity, pressure and fractions obtained
by the relaxation scheme in the low-pressure configuration. One observes the good
approximations of the fractions. Some oscillations are present in the pressure and
velocity profiles. These spurious oscillations are probably due to the approximation
of the ghost wave and mainly due to the nonlinear EoS. These oscillations also
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Table 2. Mixture of three SG. Data for the high-pressure Rie-
mann problem.

Figure 6. Mixture of three Stiffened Gases. L1-convergence for
the low-pressure Riemann problem.

appear in the high-pressure configuration, see Figure 9, while the fraction profiles
are still well captured.

4.1.2. Mixture of two Stiffened Gases with a NASG-CK liquid phase. Tables 3 and 4
present the exact Riemann data in the low and high pressure cases respectively when
considering that the liquid phase is depicted by a NASG-CK law with parameters
(10).

The convergence results in Figures 10 and 11 are obtained with the same dis-
cretization parameters and CFL condition as in paragraph 4.1.1. One observes that
the VFRoe-ncv and the relaxation schemes achieve similar convergence rates.



SIMULATION OF AN HOMOGENEOUS RELAXATION MODEL FOR A THREE-PHASE MIXTURE WITH MISCIBLE PHASES25

Figure 7. Mixture of three Stiffened Gases. L1-convergence for
the high-pressure Riemann problem.

Table 3. Mixture of two Stiffened Gases with a NASG-CK liquid
phase. Data for the low-pressure Riemann problem.

The profiles of density, velocity, pressure, temperature and fractions are given
in Figure 12 (resp. Figure 13) for the low-pressure (resp. high) configuration with
the relaxation scheme. Similar observations can be done. The fractions are well
captured whereas oscillations, due to the nonlinearity of the pressure law (with
respect to the internal energy), arise. Note that considering the implicit NASG-CK
EoS increases the amplitude of the oscillations, at least for the low-pressure test
cases.

4.1.3. Comparison between VFRoe-ncv and the relaxation scheme. Although the
previous section shows that the convergence for the VFRoe-ncv and relaxation
schemes are similar, some remarks can be made on their performances.
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Figure 8. Mixture of three Stiffened Gases. Low-pressure test
case and comparison with the exact solution. From top left to
bottom right, profiles of density, velocity, pressure, temperature,
yl, αl, zl and zg.

As CPU time cost is concerned, a comparison of the two scheme performances
is provided in Figures 14 and 15 for the mixture of three SG and a mixture of two
SG and a NASG-CK liquid respectively. Obviously the VFRoe-ncv scheme is much
more CPU time consuming. This is due to the fact that it requires more internal
energy computations. These are done using the algorithms provided in Sections
3.2.1 and 3.2.2. A contrario the relaxation scheme only requires two internal energy
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Figure 9. Mixture of three Stiffened Gases. High-pressure test
case and comparison with the exact solution. From top left to
bottom right, profiles of density, velocity, pressure, temperature,
yl, αl, zl and zg.

computations: one at the beginning of each time step to go from conservative to
primitive variables, the second at the end, for the inverse change of variables.

Of course, the comparison is even worth when considering a NASG-CK EoS for
the liquid phase, since it is not explicit, see Section 3.2.2.
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Table 4. Mixture of two Stiffened Gases with a NASG-CK liquid
phase. Data for the high-pressure Riemann problem.

Figure 10. Mixture of two Stiffened Gases with a NASG-CK liq-
uid phase. L1-convergence for the low-pressure Riemann problem.

4.2. Global out-of-equilibrium simulation. This final section provides numer-
ical results of the fractional step method, using the relaxation scheme for the con-
vective part and the Broyden algorithm for the source terms. The two source terms
of Section 2.3 are compared and several (constant) relaxation time λ as well. We
focus on a mixture of three SG in the low-pressure configuration. The initial con-
dition is Z(0, x) = ZL1x<0.5 + ZR1x>0.5 with ZL and ZR given in Table 1. The
computational domain [0, 1] contains 1000 cells and the CFL is again 0.45. The
final time is t = 10−4. The source term Γ1 requires relaxation time λ between
2.103 and 5.103 to avoid the appearance of non admissible states. One observes
on Figures 16 the impact of the relaxation parameter on the profiles of velocity
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Figure 11. Mixture of two Stiffened Gases with a NASG-CK liq-
uid phase. L1-convergence for the high-pressure Riemann problem.

and pressure mainly. Observe also that the fraction yl is far from the associated
equilibrium Yeq, contrary to the volume fraction αl. Hence the simulation is clearly
out-of-equilibrium.

The source term Γ2 modifies the density and velocity profiles with a higher
sensitivity for larger values of λ. Some intermediate states seem to be well captured,
notably in the profiles of the fractions yl and αl.

5. Conclusion

This study is focused on the numerical simulation of the so-called homogeneous
relaxation model for a three-phase flow with miscible constraints. As the numerical
approximation is concerned, the work on the convective part leads to a preference for
the relaxation scheme for CPU time and robustness reasons, although convergence
results are similar for the relaxation and the VFRoe-ncv schemes. The computation
of the internal energy plays a major role in the CPU time cost and robustness, that is
why algorithms are detailed since they invlove tricky computations. Secondly, as the
thermodynamical modelling is concerned, both the thermodynamical equilibrium of
the three-phase mixture and the relaxation towards this equilibrium are analyzed.
The good definition of the equilibrium fractions and its constraints are fundamental
features. We notably have address the question of disappearance of phases and
provide characterizations of the phasic states when one of the phase is absent.
When considering the time relaxation towards the thermodynamical equilibrium,
two types of source terms have been compared. The BGK type one provides an
efficient simulation, as soon as the computation of the equilibrium is reachable,
which is a strong constraint. Moreover, it requires that relaxation time scales must
be equal, which is again a strong assumption. On the other hand, the gradient type
source term is more versatile, despite a far more complex analysis, that leads to
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Figure 12. Mixture of two Stiffened Gases and a NASG-CK liq-
uid. low-pressure test case and comparison with the exact solution.
From top left to bottom right, profiles of density, velocity, pressure,
temperature, yl, αl, zl and zg.

numerical difficulties. These pros and cons are highlighted on a global simulation
in the last part.
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Figure 13. Mixture of two Stiffened Gases and a NASG-CK liq-
uid. high-pressure test case and comparison with the exact solu-
tion. From top left to bottom right, profiles of density, velocity,
pressure, temperature, yl, αl, zl and zg.
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Figure 14. Mixture of three Stiffened Gases. Comparison of CPU
time costs with respect to the number of cells for the VFRoe-ncv
and the relaxation schemes.

Figure 15. Mixture of two Stiffened Gases with a NASG-CK liq-
uid phase. Comparison of CPU time costs with respect to the
number of cells for the VFRoe-ncv and the relaxation schemes.

Appendix A. Equilibrium computation for 3 Stiffened Gas

Let (τ, e, yg) be a given state. We assume that the equilibrium Yeq is reached
in the interior of [0, 1]4, such that it is characterized by (22). Following [1], one
characterizes the equilibrium considering first the thermal equilibrium, then the
mechanical one and, to finish, the chemical potential equalities. According to the
definition (5) of the Stiffened Gas temperature, the sum of the phasic temperatures,
weighted by the mass fractions yk, reads

(54)
∑

k=l,g,v

ykCkTk = e−
∑
k

ykQk −
∑
k

αkΠkτ,
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Figure 16. Global simulation for a mixture of three SG in the
low-pressure configuration with the BGK-like source term Γ1.
Comparison of the impact of the relaxation time. From top left to
bottom right, profiles of density, velocity, pressure, yl, αl.

where the constraints (20) have been used. The thermal equilibrium Tl = Tg =
Tv = T̄ gives then

(55) T̄ (yv, αv) =
e−Q(yv)−Π(αv)τ

C(yv)
,

where C(yv) =
∑

k ykCk, Q(yv) =
∑

k ykQk and Π(αv) =
∑

k αkΠk. Using the
intensive constraints (13)-(14), one observes that the coefficients C(yv) and Q(yv)
are solely functions of the vapor mass fraction yv, while Π(αv) depends only on the
volume fraction αv. Hence the equilibrium temperature T̄ (yv, αv) does not depend
on the energy fractions. This allows to split the computations in two steps: first
determine the pair (yv, αv) and then, determine the energy fractions (zl, zg).

We now turn to the mechanical equilibrium to express αv as a function of yv.
Indeed the mechanical equilibrium corresponds to pl− (pg+pv) = 0 or equivalently
to αv(1−αv)[pl−(pg+pv)] = 0. It turns out that Fyv

(αv) = αv(1−αv)[pl−(pg+pv)]
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Figure 17. Global simulation for a mixture of three SG in the
low-pressure configuration with the gradient entropy source term
Γ2. Comparison of the impact of the relaxation time. From top
left to bottom right, profiles of density, velocity, pressure, yl, αl.

is a second order polynomial is αv which reads

(56) Fyv
(αv) = AFα

2
v +BFαv + CF ,

with coefficients

(57)

AF = (β + 1)Π0,

BF = −Π0(βv + βg + 1)− β(ρ(e−Q)−Πl),

CF = (βv + βg)(ρ(e−Q)−Πl),

Π0 = Πg +Πv −Πl,

βk = (γk − 1)Ckyk,

β =
∑
k

βk.

It remains to determine a root αv of Fyv , which only depends on yv, according to the
coefficient definitions (57). In order to assess the nonnegativity of the mixture tem-
perature T̄ (yv, αv), this volume fraction αv should comply with some constraints.
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Considering that Πg = 0, Πv < 0 and Πv −Πl < 0 (which is the case for considered
data (6)), the temperature positivity is equivalent to ρ(e−Q(yv)−Π(yv)) ≥ 0, that
is

αv ≥ ρ(e−Q)−Πl

Πv −Πl
=: δ(yv).

Hence one must seek for αv ∈ [αv,inf ; 1], with αv,inf = max(0,min(1, δ(yv)) ∈ [0; 1].
Generally, the equation Fyv (x) = 0 does not necessarily admit a solution on this

interval. If this happens, we must determine which limit case αv = αv,inf or αv = 1
maximises the entropy.

Thanks to the concavity of αv 7→ σ, one only has to study the sign of ∂σ
∂αv

on
the border, and that sign is the same than the sign of ∆p = pv + pg − pl. Thus we
have:

• If lim
αv→αv,inf

∆p(αv) < 0, αv = αv,inf corresponds to a stable state,

• If lim
αv→1

∆p(αv) > 0, αv = 1 corresponds to a stable state with only gases.

In practical simulations, we choose to solve first Fyv
(x) = 0, then verify if we

have an unique solution αv in [0; 1] such as T̄ (yv, αv) ≥ 0, and if not we consider
the limit cases.

At last, the chemical equilibrium µl = µv allows us to determine (ȳv, ᾱv) in an
implicit way, thanks to Fyv . We can already define yv,max ∈ [0; 1 − yg] as the the
greatest mass fraction of vapor such as the temperature is positive.

Then we must solve the following equation on [0; yv,max]:

(58) ∆µ(yv) = ∆µ(yv, αv(yv)) = µl(yv, αv(yv))− µv(yv, αv(yv)) = 0,

where µl(yv, αv(yv)) = Ql + Cl + T̄ (yv, αv)
(
γl − ln(ClT )− s0l

Cl
− (γl − 1) ln

( (1−αv)τ
1−yv−yg

))
µv(yv, αv(yv)) = Qv + Cv + T̄ (yv, αv)

(
γv − ln(CvT )− s0v

Cv
− (γv − 1) ln

(
αvτ
yv

)) ,

and αv(yv) is the solution of Fyv (x) = 0. As previously, it is possible not to find
yv ∈]0; yv,max[ and αv solutions of this equation. This time we use the concavity

of yv → σ and the fact that the sign of ∂σ
∂yv

is the same one as the sign of ∆µ to

study the limit cases:

• If lim
yv→0

∆µ(yv) < 0, yv = 0 corresponds to a stable state, with only liquid

and inert gas, i.e. yl = 1− yg.
• If lim

yv→yv,max

∆µ(yv) > 0, yv = yv,max corresponds to a stable state with

only gases, i.e. yl = 0.

Finally, once (ȳv, ᾱv) is determined, we can compute (z̄v, z̄g) with the following
relations:

(59) z̄k =
(T̄ (ȳv, ᾱv)Ck +Qk)ȳk +Πkᾱkτ

e
.
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[15] P. Helluy and N. Seguin. Relaxation models of phase transition flows. M2AN Math. Model.

Numer. Anal., 40(2):331–352, 2006. URL: http://dx.doi.org/10.1051/m2an:2006015, doi:
10.1051/m2an:2006015.

[16] J.-M. Hérard. A class of compressible multiphase flow models. C. R. Math. Acad. Sci.

Paris, 354(9):954–959, 2016. URL: http://dx.doi.org/10.1016/j.crma.2016.07.004, doi:
10.1016/j.crma.2016.07.004.

[17] J.-M. Hérard, O. Hurisse, and L. Quibel. A four-field three-phase flow model with both
miscible and immiscible components. ESAIM Math. Model. Numer. Anal., 55(suppl.):S251–

S278, 2021. doi:10.1051/m2an/2020037.

[18] J.-M. Hérard and H. Mathis. A three-phase flow model with two miscible phases. ESAIM
Math. Model. Numer. Anal., 53(4):1373–1389, 2019. doi:10.1051/m2an/2019028.

[19] O. Hurisse. Application of an homogeneous model to simulate the heating of two-phase flows.
International Journal on Finite Volumes, 11:http–www, 2014.

[20] O. Hurisse. BGK source terms for out-of-equilibrium two-phase flow models. Research report,
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