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2 J. Cassaigne, J. Karhumäki, S. Puzynina, and M. Whiteland / k-Abelian Equivalence and Rationality

1. Introduction

k-abelian equivalence has attracted quite a lot of interest recently, see, e.g., [1, 2, 3, 4, 5, 6]. It is an
equivalence relation extending abelian equivalence and allowing an infinitary approximation of the
equality of words defined as follows: for an integer k, two words u and v are k-abelian equivalent,
denoted by u ∼k v, if, for each word w of length at most k, w occurs in u and v equally often.

k-abelian equivalence, originally introduced in [7], has been studied, e.g., in the following direc-
tions: avoiding k-abelian powers [8, 6], estimating the number of k-abelian equivalence classes, that
is, k-abelian complexity [9], analyzing the growth and the fluctuation of the k-abelian complexity of
infinite words [1], analyzing k-abelian palindromicity [3], and studying k-abelian singletons [10]. We
continue the approach of analyzing the structure of k-abelian equivalence classes. We also study some
numerical properties of the equivalence classes.

Our starting point is a k-switching lemma, proved in [10], which allows a characterization of
k-abelian equivalence in terms of rewriting. This is quite different from the other existing character-
izations, so it is no surprise that it opens new perspectives of k-abelian equivalence. This is what we
intend to explore here.

A fundamental observation from the characterization of k-abelian equivalence using k-switching
is that certain languages related to k-abelian equivalence classes are regular (or rational). More pre-
cisely, the union of all singleton classes forms a regular language, for any parameter k, and any size m
of the alphabet. Similarly, the set of lexicographically least (or greatest) representatives of k-abelian
equivalence classes forms a regular language. Summing up all minimal elements of a fixed length we
obtain the number of equivalence classes of words of this length. As a consequence, we conclude that
the complexity function of k-abelian equivalence, that is, the function computing the number of the
equivalence classes of all lengths, is a rational function.

Everything above is algorithmic. So, given the parameter k and the size m of the alphabet, we
can algorithmically compute a rational generating function giving the numbers of all equivalence
classes of words of length n. However, the automata involved are – due to the non-determinism and
the complementation – so huge that in practice this can be done only for very small values of the
parameters. We give explicitly the above automata for values m = 2 and k = 2, 3, and 4 and m = 3
and k = 2. We see that the automaton for m = 2 and k = 4 is too large for any reasonable analysis.
Using other means we are able to compute a candidate for the complexity function.

Inspired by the connection to automata theory, we study k-switching in connection with regular
languages. We show that regular languages are closed under the k-switching operation. On the other
hand, we show that regular languages are not closed under the transitive closure of this operation.
Using the former result, we conclude that the union of k-abelian equivalence classes of size two is
regular. On the other hand, it remains open whether this extends, instead of classes of size two, to
larger classes.

Finally, using the automata-theoretic characterization of the complexity function, we solve the
open problem of the original conference version, by showing that for each m and k the complexity
function Pk,m giving the number of equivalence classes of words of length n, is not only of order

Θ
(
nm

k−1(m−1)
)

, but actually asymptotic to Cnm
k−1(m−1) for some rational constant C.

This paper is an extended full version of the conference presentation [11].
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Figure 1. Illustration of a k-switching. Here v = Sk,u(i, j, l,m); the white rectangles symbolize x and the
black rectangles symbolize y.

2. Preliminaries and Notation

We recall some notation and basic terminology from the literature of combinatorics on words. We
refer the reader to [12] for more on the subject.

The set of finite words over an alphabet Σ is denoted by Σ∗ and the set of non-empty words is
denoted by Σ+. The empty word is denoted by ε. A set L ⊆ Σ∗ is called a language. We let |w|
denote the length of a word w ∈ Σ∗. By convention, we set |ε| = 0. The language of words of length
n over the alphabet Σ is denoted by Σn.

For a word w = a1a2 · · · an ∈ Σ∗ and indices 1 6 i 6 j 6 n, we let w[i, j] denote the factor
ai · · · aj . For i > j we set w[i, j] = ε. Similarly, for i < j we let w[i, j) denote the factor ai · · · aj−1,
and we set w[i, j) = ε when i > j. We say that a word x ∈ Σ∗ has position i in w if the word w[i, |w|]
has x as a prefix. For u ∈ Σ+ we let |w|u denote the number of occurrences of u as a factor of w.

Two words u, v ∈ Σ∗ are k-abelian equivalent, denoted by u ∼k v, if |u|x = |v|x for all x ∈ Σ+

with |x| 6 k. The relation ∼k is clearly an equivalence relation; we let [u]k denote the k-abelian
equivalence class defined by u. A word u is called a k-abelian singleton if |[u]k| = 1.

In [10], k-abelian equivalence is characterized in terms of rewriting, namely by k-switching. For
this we define the following. Let k > 1 and let u ∈ Σ∗. Suppose that there exist x, y ∈ Σk−1, not
necessarily distinct, and indices i, j, l and m, with i < j 6 l < m, such that x has positions i and l in
u and y has positions j and m in u. In other words, we have

u = u[1, i) · u[i, j) · u[j, l) · u[l,m) · u[m, |u|],

where both u[i, |u|] and u[l, |u|] begin with x and both u[j, |u|] and u[m, |u|] begin with y. Further-
more, u[i, j), u[l,m) 6= ε but we allow l = j, in which case y = x and u[j, l) = ε. We define a
k-switching on u, denoted by Su,k(i, j, l,m), as

Su,k(i, j, l,m) = u[1, i) · u[l,m) · u[j, l) · u[i, j) · u[m, |u|]. (1)

A k-switching operation is illustrated in Figure 1.

Example 2.1. Let u = aabababaaabab and k = 4. Let then x = aba, y = bab, i = 2, j = 3, l = 4
and m = 11. We then have

u = a · a · b · ababaaa · bab
Su,4(i, j, l,m) = a · ababaaa · b · a · bab.
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Note here that the occurrences of x are overlapping. With i = 2, j = l = 4, and m = 10 we obtain
the same word as above:

u = a · ab · ababaa · abab
Su,4(i, j, j,m) = a · ababaa · ab · abab.

In this example we have j = l, whence x = y = aba and u[j, l) = ε.

Let us define a relation Rk of Σ∗ by uRkv if and only if v is obtained from u by a k-switching.
Now Rk is clearly symmetric, so that the reflexive and transitive closure R∗k of Rk is an equivalence
relation on Σ∗. In [10], k-abelian equivalence is characterized using R∗k:

Lemma 2.2. For u, v ∈ Σ∗, we have u ∼k v if and only if uR∗kv.

We need a few basic properties of regular (or rational) languages, such as equivalent definitions
of regular languages with various models of finite automata, e.g., non-deterministic finite automata
which can read the empty word (ε-NFA), and some basic closure properties of regular languages. We
refer to [13] for this knowledge. In addition to classical language theoretical properties, we use the
theory of languages with multiplicities. This counts how many times a word occurs in a language.
This leads to the theory of N-rational sets. Using the terminology of [14], a multiset over Σ∗ is called
N-rational if it is obtained from finite multisets by applying finitely many times the rational operations
product, union, and taking quasi-inverses, i.e., iteration restricted to ε-free languages. Further, a unary
N-rational subset is referred to as an N-rational sequence. We refer to [14] for more on this topic. The
basic result we need is (see [14]):

Proposition 2.3. Let A be a non-deterministic finite automaton over the alphabet Σ. The function
fA : Σ∗ → N defined as

fA(w) = #of accepting paths of w in A

is N-rational. In particular, the function `A : N→ N,

`A(n) = #of accepting paths of length n in A (2)

is an N-rational sequence. Consequently, the generating function for `A is a rational function.

3. Properties of k-Switchings

Our starting point for the study of structural properties of k-abelian equivalence classes is the char-
acterization of k-abelian equivalence in terms of k-switchings. We proceed to describe a k-switching
operation on languages. We show that this operation preserves regularity. That is, given a regular
language L, the language obtained by this operation is also regular. This result will be used later on.

We now describe k-switchings on languages. For a language L ⊂ Σ∗, we define the k-switching
of L, denoted by Rk(L), as the language

Rk(L) = {w ∈ Σ∗ | wRkv for some v ∈ L}.
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Figure 2. The computation of automaton A on an accepted word u (in continuous lines) and a computation of
A′ on Sk,u(i, j, l,m) (in dotted lines). The automatonA′ non-deterministically guesses the positions i, j, l, and
m and jumps to the corresponding states non-deterministically. Verification is then easy: the factors of length
k − 1 starting at the first and third guess have to be equal, and so do the factors occurring at the second and
fourth guesses.

Similarly, we define R∗k(L) =
⋃
n∈NR

n
k (L) =

⋃
w∈L[w]k.

Note that, from a regular language L, it is straightforward to identify all words that admit a k-
switching (i.e., the words on the top row of Figure 1). It is not so clear that, by performing all possible
k-switchings on all words of L (i.e., taking the union of all words on the bottom row of Figure 1), the
obtained language is also regular. We give a proof sketch here. For a full proof, see [11].

Theorem 3.1. Let L be a regular language. Then Rk(L) is also regular.

Proof:
We start with a DFA A recognizing the language L and construct an NFA A′ with ε-transitions.
The automaton A′ basically guesses at which states the switchings occur at. Afterwards, it verifies
the guesses. The verification requires only finite memory, since all is needed to verify is the states
the switching has occurred at, and that the factors of length k − 1 occurring at the positions of the
switchings are valid. The idea of the computation of A′ is depicted in Figure 2.

ut

Remark 3.2. It is worth noticing that, in a k-switching, the word v is obtained from u by changing the
order of the factors u[i, j) and u[l,m). They are of unbounded length and hence cannot be remembered
by a finite automaton. Instead, in the proof, we just remember the corresponding states at positions
of i, j, l, and m in the automaton A recognizing u, and do simultaneously all the switchings where
the automaton A performs these state transitions. We shall return to these considerations in our later
discussions.
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Remark 3.3. This result may also be proved using MSO logic for words, as suggested by one of the
anonymous referees of the conference version.

The following example shows that the family of regular languages is not closed under the language
operation R∗k.

Example 3.4. Fix k > 1 and let L = (abk)+. It is straightforward to verify by, e.g., comparing the
number of occurrences of factors of length k that

R∗k(L) =
{
abr1abr2 · · · abrn | n > 1, ri > k − 1,

∑n
i=1 ri = nk

}
.

Let now h be a morphism defined by h(a) = abk−1 and h(b) = b. It is again straightforward to show
that h−1(R∗k(L)) = {w ∈ a{a, b}∗ | |w|a = |w|b}, which is clearly not regular. It follows that R∗k(L)
is not regular.

4. On the Number of k-Abelian Equivalence Classes

In this section we focus on the number Pk,m(n) of k-abelian equivalence classes of words of length n
over Σ, |Σ| = m, where k and an m are fixed. We first recall a result from [9]:

Theorem 4.1. We have, for k and m fixed, Pk,m(n) = Θ(nm
k−1(m−1)), where the constants implied

by Θ depend on k and m.

We are also interested in the number Sk,m(n) of k-abelian singletons of length n over Σ, |Σ| = m,
where k and an m are fixed. We recall a result proved in [10].

Theorem 4.2. For k and m fixed, we have Sk,m(n) = O(nNm(k−1)−1), where the constant implied
by O depends on k and m. Here Nm(l) = 1

l

∑
d|l ϕ(d)ml/d is the number of conjugacy classes (or

necklaces) of words of length l over an m-letter alphabet.

The main results of this section are the following:

Theorem 4.3. The sequences Pk,m(n) and Sk,m(n) are N-rational.

In order to prove these, we define the following languages. Here C6 denotes a lexicographic order-
ing of Σ∗ and m denotes the size of the alphabet |Σ|.

Lk,Σ,min = {w ∈ Σ∗ | w C6 u for all u ∈ [w]k};
Lk,Σ,max = {w ∈ Σ∗ | w B> u for all u ∈ [w]k}; and

Lk,Σ,sing = {w ∈ Σ∗ | |[w]k| = 1}.

In other words, Lk,Σ,min (resp., Lk,Σ,max) is the language of lexicographically minimal (resp., max-
imal) representatives of k-abelian equivalence classes over Σ, while Lk,Σ,sing is the language of k-
abelian singletons over Σ. We shall often omit the subscripts k and Σ when they are clear from
context.

We also recall a technical lemma from [10], a refinement of our Lemma 2.2.
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Lemma 4.4. Let u ∼k v with u 6= v. Let p be the longest common prefix of u and v. Then there
exists z ∈ Σ∗ such that zRku and the longest common prefix of z and v has length at least |p|+ 1.

We are now ready for our main technical tool.

Lemma 4.5. The languages Lk,Σ,min, Lk,Σ,max, and Lk,Σ,sing are regular for any k > 1 and Σ.

Proof:
Let u be the minimal element in [u]k. If there exists a k-switching on u which yields a new element, it
has to be lexicographically greater than u. In particular, u does not contain factors from the language(

(xbΣ∗ ∩ Σ∗y) Σ∗ ∩ Σ∗x
)
aΣ∗ ∩ Σ∗y,

where x, y ∈ Σk−1, a, b ∈ Σ, a < b. On the other hand, by the above lemma, any word u avoiding
such factors is lexicographically least in [u]k. We thus have

Lk,Σ,min =
⋂

x,y∈Σk−1

a,b∈Σ, aCb

Σ∗
((

(xbΣ∗ ∩ Σ∗y) Σ∗ ∩ Σ∗x
)
aΣ∗ ∩ Σ∗y

)
Σ∗, (3)

where, for a regular expression R, R denotes the complement language Σ∗ \ L(R).
Similarly, for Lmax, by reversing aC b to aB b in (3), we obtain the claim.
Finally, Lsing = Lmin ∩ Lmax so that Lsing is regular. Another, perhaps more informative, way to

see this is as follows: for k-abelian singletons, we are avoiding all possible k-switchings that give a
different word. By requiring a 6= b, instead of aC b, in (3), we obtain the expression for Lsing. ut

Remark 4.6. Observe that the languages Lmin, Lmax, and Lsing are factorial (a language L is said to
be factorial if, for every u ∈ L, any factor w of u is in L). Indeed, they are languages obtained by
avoiding certain patterns. Another simple way to see this is as follows. Suppose that u = u1u2u3 ∈
Lmin and u2 /∈ Lmin. We may take u′2 for which u′2 ∼k u2 and u′2 C u2. By replacing u2 by u′2 we
obtain u′ = u1u

′
2u3 C u and u′ ∼k u, a contradiction.

We are now ready to prove Theorem 4.3.

Proof:
Consider first the language Lmin and a DFA A recognizing it. We transform the automaton to a unary
NFA A′ by identifying all input letters. Since A is deterministic, the transformation is faithful, that is,
for each word w accepted by A, there exists a unique corresponding accepting path in A′, and vice
versa. By the construction of A′, `A′(n) = Pk,m(n) for all n ∈ N. The claim follows for Pk,m. The
case of Sk,m is identical. ut

4.1. Automata and Complexities for Small Values of k and m

We now give some examples illustrating the results obtained above for small values of k and m. We
also compute closed formulas for Pk,m and Sk,m for some small values of k and m.
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Figure 3. DFAs recognizing the minimal representatives of 2-abelian equivalence classes (left) and 2-abelian
singletons (right) over the alphabet {a, b} with ordering aC b.

Example 4.7. In figure Figure 3, we have two minimal DFAs, one recognizing the minimal rep-
resentatives of 2-abelian equivalence classes and the other recognizing 2-abelian singletons over
Σ = {a, b}. In Figures 4 and 5 we illustrate the minimal DFA recognizing Lmin for m = 3, k = 2
and m = 2, k = 3, respectively. In Figures 6 and 7 we illustrate the minimal DFA recognizing Lsing
for m = 2, k = 3 and m = 3, k = 2, respectively. The sink states are not included in the figures. We
also note that all other states are accepting, since the languages are factorial by Remark 4.6.

Proposition 4.8.

For all n > 1, P2,2(n) = n2 − n+ 2;

for all n > 2, P3,2(n) = 1
18n

4 − 5
18n

3 + 65
36n

2 − 23
6 n−

1
8(−1)n+

+ 2
27e
−πi3 (e

2πi
3 )n + 2

27e
πi
3 (e−

2πi
3 )n + 1307

216 ; and

for all n > 4, P2,3(n) = 1
960n

6 + 7
320n

5 + 67
384n

4 − 19
32n

3 + 1457
480 n

2−
− (1569

640 + 3
128(−1)n)n+ 741

256 + 27
256(−1)n.

Proposition 4.9.

For all n > 4, S2,2(n) = 2n+ 4;

for all n > 6, S3,2(n) = 3n2 + 27n− 63; and

for all n > 9, S2,3(n) =
1

2
n2 + 16n+

2

3
(e

2πi
3 n + (e−

2πi
3 )n)− 535

12
− 3

4
(−1)n.

We give only a proof sketch of Propositions 4.8 and 4.9.
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Figure 4. A DFA recognizing the minimal representatives of 3-abelian equivalence classes over Σ = {a, b}
with ordering aC b.
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Figure 5. The minimal DFA recognizing Lmin for m = 3 and k = 2 with ordering aC bC c.
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Figure 6. The minimal DFA recognizing 3-abelian singletons over {a, b}.
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Figure 7. A DFA recognizing 2-abelian singletons over {a, b, c}.



J. Cassaigne, J. Karhumäki, S. Puzynina, and M. Whiteland / k-Abelian Equivalence and Rationality 13

Proof:
Using the idea of the proof of Theorem 4.3, we first construct deterministic automata for Lmin and
Lsing for small k and m. We then construct the the unary automaton A′ and use these automata to
compute the function `: Let A be the adjacency matrix of A′. It is known that, for all large enough n,

`A′(n) =
∑

λ∈Eig(A)

pλ(n)λn, (4)

where the summation is taken over all distinct eigenvalues of A, and pλ is a complex polynomial of
degree at most µλ − 1 for each eigenvalue λ. Here µλ is the multiplicity of λ as a root of the minimal
polynomial of A. (See, for instance, [13, 15, 16].)

We give a brief sketch of the methods used to compute the closed forms of the complexities. For
details see [16]. Let M be the adjacency matrix of the transformed unary NFA of the DFA of our
language L. We identify the vector einit corresponding to the initial state. We also construct the vector
eF corresponding to all accepting states. We then have that Pk,m(n) = einitM

neTF .
To calculate Pk,m explicitly, the Jordan decomposition M = SJS−1 of M is computed. A closed

form for Jn, n > 4, can be easily computed, from which we obtain a closed form forMn = SJnS−1.
It is then a simple task to compute einitM

neTF .
We also use the idea of curve fitting. This is done by first computing the eigenvalues λ, the minimal

polynomial m(x) of M , and the multiplicities µλ of the roots λ of m(x). For each λ we compute the
coefficients of the polynomials pλ(x) in (4) by fitting a curve to data points which are small values of
the function Pk,m(n). We note the data point corresponding to the smallest length n0 should be large
enough. The number n0 is bounded by the largest Jordan block in the Jordan decomposition. This, in
turn, is bounded by the maximal multiplicity among the roots of m(x). ut

The formulae for P2,2 and S2,2 have previously been proved, using different methods, in [17]
and [10], respectively. The formulae obtained coincide with values previously computed by Eero
Harmaala (P2,3 and P3,2 for n = 2, . . . , 18 and n = 4, . . . , 21, respectively) (private communication).
We also computed the first few values of S2,3(n) and S3,2(n) and checked that they coincide with the
formulae obtained. We note that the On-Line Encyclopedia of Integer Sequences (http://oeis.org,
accessed June 10, 2016) doesn’t contain any of the above sequences.

The methods used here are far from being practical for computing closed formulae for larger values
of k and m, as is illustrated by the following example.

Example 4.10. Consider the binary alphabet: the minimal DFA recognizing Lk,min for k = 2 and
k = 3 have 10 and 49 states in their minimal DFA, respectively. While these automata are easily
handled, the task becomes a computationally challenging problem already for k = 4: L4,min has a
minimal DFA with 936 states. Here we give a candidate function for P4,2. We computed the values
P4,2(n) for n = 4, . . . , 49 and then fit a curve f using these points to obtain the closed form below.
We note that f agrees with P4,2 for the value n = 50 as well. We have not verified whether f = P4,2

identically, that is, whether n0 = 4 is “large enough”. In the following 〈a0, . . . , aq−1〉n denotes the
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Figure 8. A DFA recognizing the minimal representatives of 4-abelian classes over {a, b}.

q-periodic function taking the value qi when n = i (mod q).

P4,2(n) = 283
(512·243·25·49)n

8 + 223
(32·243·25·49)n

7 + 2 657
(256·243·25·7)n

6

− 731
(8·243·25·7)n

5 + 14 111
(32·243·25)n

4 − 1 609
(4·27·25)n

3

+ 1 850 177 503
(512·729·25·49)n

2 − 3 779 893
(64·729·7)n+ 81 883 529 107

1 024·729·125·49)

+ 1
512〈1,−1〉n · n2 − 5

64〈1,−1〉n · n+ 489
1 024〈1,−1〉n

+ 1
(2·729)〈−7, 5, 2〉n · n2 + 2

729〈38,−7,−31〉n · n+ 1
(4·729)〈−1 853, 571, 1 282〉n

+ 1
16〈−2, 1, 2,−1〉n + 2

125〈21, 6,−4,−14,−9〉n + 1
8〈−1, 1, 1, 1,−1,−1〉n

+ 4
49〈2, 1,−1,−4,−1, 1, 2〉n.

Remark 4.11. The exponential blow-up of the computation time is due to complementation and non-
determinism of the automata obtained from the regular expressions (3). Also, by Theorem 4.1, the
automaton obtained from (3) has to grow necessarily exponentially with respect to k when the alphabet
is fixed; some of the polynomials pλ in (4) have degree mk−1(m − 1). For the case of k-abelian
singletons, Theorem 4.2 does not give a large blow-up immediately, though in [10] it is conjectured
that Sk,m(n) = Θ(nNm(k−1)−1). If true, a large blow-up in the number of states would be guaranteed.
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5. On the Asymptotics of Pk,m(n)

In Propositions 4.8 and 4.9 we notice that the functions Pk,m and Sk,m are asymptotic to certain
polynomials, at least for small values for k andm. In other words, the constants mentioned in Theorem
4.1 are equal. In the case of Sk,m, a closer inspection of the proof of Theorem 4.2 in [10] reveals that
Sk,m(n) = Θ(nr) for some r ∈ N, r 6 Nm(k−1)−1 (recall Theorem 4.2 for notation). This section
is devoted to proving the following result:

Theorem 5.1. The sequence Pk,m(n) is asymptotic to Cnm
k−1(m−1) for some rational constant C

depending on k and m.

We consider the values k > 1 andm > 2 fixed constants for the remainder of this section. Further,
we let Lmin = Lk,m,min unless otherwise stated.

We set some terminology and notation for directed graphs. For a directed graph G = (V,E), the
set V of vertices is denoted by V (G), while the set E of its edges is denoted by E(G). Here we allow
multiple edges from one vertex to another, but in this case the edges should be labeled. A sequence
(xi)

t
i=0 of vertices xi ∈ V (G) such that (xi, xi+1) ∈ E(G) for each i ∈ [0, t− 1] is called a walk (in

G). If xi 6= xj for each i 6= j, we say that W is a path. If the walk (xi)
t−1
i=0 is a path and xt = x0,

we call the walk (xi)
t
i=0 a cycle. Note that in the case of multigraphs (here we consider underlying

graphs of finite automata), a walk W = (xi)
t
i=0 is uniquely defined by the sequence of edges used,

not only the sequence of vertices.
In addition to underlying graphs of finite automata, we shall be considering de Bruijn graphs. For

any k > 1 and alphabet Σ, the de Bruijn graph dBΣ(k) of order k over Σ is defined as a directed
graph for which V (dBΣ(k)) = Σk−1. There is an edge (x, y) ∈ E(dBΣ(k)) if there exists a letter
a ∈ Σ such that xa ∈ Σk ends with y. In this case (x, y) is denoted by (x, a). We shall omit Σ from
the subscript when there is no danger of confusion. We note that any word u ∈ Σ∗ of length at least
k − 1 defines a walk Wu in dB(k) and vice versa. Thus a (long enough) word u ∈ Σ∗ should be
considered as a walk in dB(k) and vice versa.

For a given walk W = (xi)
t
i=0 we define V (W ) as the set of vertices along W and E(W ) =

{(xi, xi+1) | 0 6 i < t}. We then call the (connected) graph (V (W ), E(W )) the restriction ofG with
respect to W . We say that a cycle C = (yj)

s
j=0 occurs along W if, for some i ∈ [0, t], xi+r = yr for

all r ∈ [0, s]. The walk W is then said to enter C at position i if xi+r = yr for all r ∈ [0, s] and either
i = 0 or xi−1 6= ys−1. Similarly, W is said to leave C at position i if W enters C at some position j,
xj+r = yr (mod s) for all r ≤ i− j, and xi+1 6= yi−j+1 (mod s).

Definition 5.2. LetG be a graph andW a walk inG. We say thatW is cycle-deterministic if, for each
cycle C occurring along W , W does not enter C at two distinct positions. The set of cycles along a
cycle-deterministic walk W is denoted by C(W ).

Let thenB ⊆ V (G) be fixed and letW a cycle-deterministic walk inG starting from some v ∈ B.
We callW B-saturated if |C(W )| is maximal among all such walks. We omit the prefixB and simply
call W saturated whenever B is clear from context.

Note that for a cycle-deterministic walk W and a cycle C ∈ C(W ), some of the vertices and the
edges occurring in C may be traversed by W after leaving C. We are going to use the notion of cycle-
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deterministic walks in two ways. In what follows, we use the notion to describe certain sub-automata
of deterministic finite automata. In the cases we discuss, such walks have an even stronger property
(see the next subsection). Later on, we are going to map walks in deterministic automata to walks in
de Bruijn graphs and vice versa.

Example 5.3. Consider the de Bruijn graph dB(3). The walkW = (xi)
12
i=0 defined by u = aaaabaabaabaa

is cycle-deterministic. Indeed, u enters the cycle (or loop) (aa, aa) at position 0 and leaves the cycle
at position 2. It does not enter the loop (aa, aa) after that. Further, the cycle (aa, ab, ba, aa) is entered
at postion 2 and W does not leave this cycle. On the other hand, the walk W ′ defined by the word
ua is not cycle-deterministic, as W ′ enters the cycle (aa, aa) at position 0 and position 11. The cycle
(aa, ab, ba, aa) is now left at position 11.

Any walk W in the underlying graph G of a deterministic finite automaton A defines a sub-
automaton of A: the initial and final states being the state W starts from and the state W ends in,
respectively. We denote this automaton byAW . Note that distinct walks may define the same automa-
ton. We shall only be interested in walks starting from the unique initial state A. In what follows,
for an automaton A and initial state set I , we call the automaton AW saturated if the walk W is
I-saturated. The set of all saturated automata AW of A is denoted byW(A).

5.1. On the Asymptotic Complexity of Regular Languages

For a language L ⊆ Σ∗, the complexity function CL : N → N of L is defined as CL(n) = |Σn ∩ L|.
Let us now turn to the theory of regular languages L having polynomially bounded complexity, that
is, CL(n) = O(nk) for some k ∈ N. By Theorems 4.1 and 4.2, our languages Lmin and Lsing fall into
this category. We recall the following result from [18] (see also [16]):

Theorem 5.4. For a regular language L, we have CL(n) = O(nk) for some k > 0 if and only if L can
be represented as a finite union of regular expressions of the form z0y

∗
1z1 · · · y∗t zt with a non-negative

integer t 6 k + 1, where z0, yi, zi ∈ Σ∗ for all i = 1, . . . , t.

This fact can be seen from a DFAA accepting such a language. Indeed, all walks in the underlying
graph ofA are necessarily cycle-deterministic and, furthermore, once a cycle C has been exited, none
of the vertices V (C) are visited later on. To get an idea of the notion, see, e.g., the automata in Figures
3 – 7.

Consider then a sub-automatonAW such that the defining walkW starts from the initial state ofA
and ends in an accepting state ofA. ThenAW recognizes the language z0y

∗
1z1 · · · y∗t zt, where zi ∈ Σ∗

(resp., yi ∈ Σ+) are the labels of the paths connecting the initial vertices of the cycles along W (resp.,
the labels of the cycles along W ). Moreover, by the determinism of A, the longest common prefix
pi of yi and zi is proper, that is, |pi| < |yi| and |pi| < |zi| for each i = 1, . . . , t − 1. In particular,
zi ∈ Σ+ for each i = 1, . . . , t − 1. It is worth noting that the majority of the elements of L(A) is
recognized by the saturated sub-automataW(A).

We now turn to the generating functions of the automata described above. For a general treatment
on the topic of generating functions, see [19]. We shall briefly recall results concerning formal lan-
guages. To this end, let L ⊆ Σ∗ be a language. The (ordinary) generating function GL of L is defined
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as the formal power series

GL(x) =

∞∑
k=0

akx
k,

where ak = CL(k) for each k ∈ N. To avoid cluttering the text we shall often omit the summation
bounds. For two generating functions G1(x) =

∑
akx

k and G2(x) =
∑
bkx

k, the product G1(x) ·
G2(x) is defined as

G1(x) ·G2(x) =
∞∑
k=0

( ∑
i+j=k

akbn−k

)
xk.

Let then L,K ⊆ Σ∗ be languages such that for each v ∈ L ·K = {uw | u ∈ L,w ∈ K}, there is a
unique decomposition v = v1v2 such that v1 ∈ L and v2 ∈ K. Then GL(x) · GK(x) = GLK(x) as
can be readily verified.

Example 5.5. Let L = y∗ for some y ∈ Σ+. It is readily verified that

GL(x) =
∞∑
k=0

x|y|k = 1
1−x|y| .

Let then L haveCL(n) = Θ(n). By Theorem 5.4 and the discussion following it, L can be represented
as a union of regular expressions of the form z0y

∗
1z1y

∗
2z2, where the longest common prefix of y1

and z1 is shorter than either of the words. Consider the languages L and K defined by the regular
expressions z0y

∗
1 and z1y

∗
2z2, respectively. It is readily verified that

GL(x) =
∞∑
k=0

xk|y1|+|z0| = x|z0|
∞∑
k=0

xk|y1| =
x|z0|

1− x|y1|

and, similarly

GK(x) =
x|z1|+|z2|

1− x|y2|
.

Now the language L ·K has the property that each of its elements u has a unique factorization of form
u = v1v2, where v1 ∈ L and v2 ∈ K. Indeed, this follows easily from the property of the longest
common prefix of y1 and z1 (see the proof of the following lemma). Thus

GL·K(x) = GL(x) ·GK(x) =
x|z0z1z2|

(1− x|y1|)(1− x|y2|)
.

We shall now generalize the above example.

Lemma 5.6. Let L be a regular language defined by the regular expression z0y
∗
1z1 · · · y∗t zt, where the

longest common prefix of yi and zi is shorter than either of yi and zi for each i = 1, . . . , t− 1. Then

GL(x) =
pL(x)

qL(x)
= xz

t∏
i=1

1

1− x|yi|
, where z =

t∑
i=0

|zi|. (5)
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Proof:
We prove the claim by induction on t, the case of t = 1 was handled in the above example. Suppose
the claim is true for all expressions with the parameter value t and consider the case of t + 1. Let L
be the language defined by the expression z0y

∗
1z1 · · · y∗t and K the language defined by the expression

ztyt+1zt+1. Thus the generating function we are looking for is L ·K. We claim that

GL·K = GL(x) ·GK(x),

that is, each element of L ·K has a unique factorization into a word of L concatenated with a word of
K. Suppose the contrary:

z0y
i1
1 z1 · · · yit+1

t+1 zt+1 = z0y
j1
1 z1 · · · yjt+1

t+1 zt+1

for some ir, jr ∈ N, r = 1, . . . , t + 1. Let l be the minimum index where il 6= jl. We may assume
that il > jl, from which it follows that

yil−jll zl · · · y
it+1

t+1 zt+1 = zl · · · y
jt+1

t+1 zt+1,

which is impossible. The claim then follows by the induction hypothesis, since

GL·K = GL(x) ·GK(x) = xz
t∏
i=1

1

1− x|yi|
· x|zt|+|zt+1| 1

1− x|yt+1|
.

ut

Let L be a regular language with generating function GL(x) =
∑
akx

k which can be expressed
as in (5). We shall analyze the asymptotic behaviour of the coefficients ak by performing certain
manpipulations to the rational expression of the generating function.

We recall the following property of rational expressions r(x) = p(x)
q(x) , where p and q are some

polynomials over C (or any algebraically closed field). Let q(x) have d distinct roots: Let q(x) have
the decomposition q(x) =

∏d
i=1(x − λi)mi , where λi 6= λj for i 6= j, for some d ≥ 1 and mi ≥ 1,

i = 1, . . . , d. Then r(x) may be expressed as

r(x) = C0 +

d∑
i=1

mi∑
j=1

Cij
(λi − x)j

, (6)

where C0, Cij are constants for each i = 1, . . . d, j = 1, . . . ,mi. This is called the partial fraction
decomposition or the partial fraction expansion of r(x). We may now express the generating function
GL(x) as a sum of generating functions using the partial fraction decomposition:

GL(x) =

∞∑
k=0

akx
k =

d∑
i=1

mi∑
j=1

Cij

∞∑
k=0

(
k + j − 1

j − 1

)
λ−ki xk (7)

In the following, we call λ a dominating root of a polynomial q(x) if the multiplicity of λ as a root
of q(x) is maximal.
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Lemma 5.7. Let GL(x) have an expression as in (5). Then 1 is a dominating root of qL(x) and has
multiplicity t. Furthermore, for GL(x) =

∑
akx

k, we have that

ak =

d∑
i=1

Cit
(t−1)!λ

−k
i kt−1 +O(kt−2),

where Cit = 0 if λi is not dominating.

Proof:
First of all, 1 has multiplicity t. Furthermore, each of the polynomials 1−x|yi| have |yi| distinct roots.
It follows that the the maximum possible multiplicity of a root of qL(x) is t, whence 1 is a dominating
root.

All the roots of qL(x) are roots of unity. Therefore the values λki , k ∈ N, are uniformly bounded
for each i. We then note that(

k + j − 1

j − 1

)
= 1

(j−1)!(k + 1)(k + 2) · · · (k + j − 1) = 1
(j−1)!k

j−1 +O(kj−2).

It follows that the coefficient ak is of the claimed order. ut

Lemma 5.8. Let GL(x) be as in (5), and let C1t be the coefficient of the term 1
(1−x)t of the partial

fraction decomposition of GL(x). Then C1t =
∏t
i=1 1/|yi|.

Proof:
Let C = C1t for short. We may express GL(x) = xz

q(x) as

GL(x) = C
(1−x)t + P (x)

(1−x)t−1R(x)
,

where R(x) = q(x)
(1−x)t =

∏t
i=1(

∑|yi|−1
i=0 xi) and P (x) is some polynomial. Combining the terms

yields

GL(x) =
C

(1− x)t
+

P (x)

(1− x)t−1R(x)
=
CR(x) + (1− x)P (x)

q(x)

implying that CR(x) + (1 − x)P (x) = xz . Evaluating both sides at x = 1 we obtain C = 1/R(1).
The claim follows. ut

Proposition 5.9. Let GL(x) be as in (5). If gcd(|y1|, |y2|, . . . , |yt|) = 1 then 1 is the unique dominat-
ing root of qL(x). In particular, GL(x) =

∑
akx

k, where ak = C1t
(t−1)!k

t−1 + O(kt−2), where C1t is
as in the above lemma.

Proof:
Let λ 6= 1 be a root of qL(x). Assume to the contrary that λ is a root of each of the polynomials
1 − x|yi|, i = 1, . . . , t. Let m be the order of λ as a root of unity (note that m > 2). If λ is a root of
the polynomial 1 − xr for some r, then necessarily m | r. Since we are assuming that λ is a root of
1− x|yi| for i, we have gcd(|y1|, |y2|, . . . , |yt|) ≥ m > 1, a contradiction. ut
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Corollary 5.10. Let L be a regular language with complexity CL(n) = Θ(nk) for some k. Let A
be a DFA recognizing L. If each automaton AW ∈ W(A) has 1 as a unique dominating root in the
corresponding generating function, then CL(n) ∼ Dnk where

D =
1

k!

∑
W∈W (A)

∏
C∈C(W )

1

|C|
.

We shall be using the above corollary in our future considerations. Before moving towards the
analysis of Lmin we give a clarifying example concerning the notions discussed above.

Example 5.11. Let us consider the automaton A recognizing L3,2,min in Figure 4. The number of
cycles in C(W ) for a saturated walk W ∈ W (A) is 5. There are several such walks but, considering
cycles and the order they appear in, there are only two. For example, the walk defined by the com-
putation of A on abaaabaabababbabbba is considered as an automaton A1 recognizing the language
abaa(a∗)b(aab)∗b(ab)∗b(abb)∗bb∗a. Since A is deterministic, automata obtained from two distinct
saturated walks (in the sense they don’t define the same automaton) define disjoint languages. In our
example, taking the union of all these languages yields the expression

{ε, b, ab, bb}aaa∗b(aab)∗
(
b(aabb)∗ab+ ab(ab)∗

)
b(abb)∗bb∗{ε, a, aa, ab}.

We obtain the following generating function for the union.

(1 + x+ 2x2)x2· 1
1−x · x ·

1
1−x3

(
x 1

1−x4x
2 + x2 1

1−x2
)
· x 1

1−x3 · x
1

1−x · (1 + x+ 2x2)2

= x7(1+x+2x2)2(1+x+x2)
(1−x)5(1+x)(1+x2)(1+x+x2)2

= 4
3

1
(1−x)5

− 12x10+O(x9)
3(1−x)4(1+x)(1+x2)(1+x+x2)

.

Considering the power series
∑∞

n=0 anx
n obtained, the dominating term of the coefficient an comes

from the corresponding coefficient in the series 1
(1−x)5

= 1
4!

∑∞
n=0(n+ 4)(n+ 3)(n+ 2)(n+ 1)xn.

Thus an = 4
3(n

4

4! +O(n3)) = 1
18n

4 +O(n3). This is the correct coefficient by Proposition 4.8.

5.2. The Asymptotic Complexity of Lmin

We aim to show that, for Lmin recognized by automaton A, the root 1 is the unique dominating root
of the generating function for each AW ∈ W(A). Theorem 5.1 then follows from Corollary 5.10. In
order to accomplish this, we need a few definitions and a series of lemmata. From this point onwards,
we reserve the symbol Amin for the minimal DFA recognizing Lmin.

Our aim is to characterize the saturated automata of Amin in terms of certain V (dB(k))-saturated
walks of dB(k). To this end we observe the following.

Lemma 5.12. Let u ∈ Lmin with |u| > k − 1. Then the walk Wu in dB(k) is cycle-deterministic.

Proof:
Suppose the contrary, Wu returns to a cycle C. There exists vertices x and y such that Wu exits C
via x and re-enters C via y: let (x, a) be the edge of C and let (x, b) be the edge used by W to



J. Cassaigne, J. Karhumäki, S. Puzynina, and M. Whiteland / k-Abelian Equivalence and Rationality 21

exit C. Note that the path from x to y along C is traversed through twice by definition. There is
also walk from x to y using different edges. In other words we obtain six indices i1, . . . , i6 with
i1 < i2 6 i3 < i4 6 i5 < i6 such that xa occurs at positions i1 and i5, xb at position i3 and y at
positions i2, i4, and i6. If aB b (resp., aC b) then Sk,u(i1, i2, i3, i4) (resp., Sk,u(i3, i4, i5, i6)) gives a
lexicographically smaller word, which contradicts the minimality of u. ut

Definition 5.13. Let u ∈ Σ∗ with |u| > k − 1 and Wu = (xi)
t
i=0 be the corresponding walk in

dB(k), that is, xi ∈ Σk−1 for each i = 0, . . . , t. For each i ∈ [0, t− 1] we define the extension history
∆i
u ⊆ Σk−1 × Σ of u at position i recursively as follows. For i = 0 we have, for each x ∈ Σk−1,

(x, a) ∈ ∆0
u if and only if the first occurrence of x in u is followed by a, where a ∈ Σ.

Let then i ≥ 1 and suppose that ∆i−1
u is defined. Now xi occurs (by definition) at position i of

u, and suppose it is followed by b. Suppose further (xi, a) ∈ ∆i−1
u . If b = a we let ∆i

u = ∆i−1
u ,

otherwise we set ∆i
u = (∆i−1

u \ (xi, a)) ∪ (xi, b). In the case of a 6= b we call (xi, b) an update and
we say that the position i defines the update (xi, b).

A sequence of extension histories (∆i
u)ti=0 is called increasing if it satisfies the following property:

for each x ∈ Σk−1, if (x, a) ∈ ∆i
u, (x, b) ∈ ∆j

u, and x occurs at position l for some indices i, j, l,
where i < j < l, then it follows that a C6 b. Otherwise it is called nonincreasing.

Example 5.14. Let u = aababba and k = 2. The extension history thus consists of two elements
at each time. For i = 0, the first occurrence of a is followed by a, the first occurrence of b by a,
so that ∆0

u = {(a, a), (b, a)}. At position 1 we have a followed by b, so we get an update (a, b);
∆1
u = {(a, b), (b, a)}. At position 2 we have b followed by a, so that ∆2

u = ∆1
u. At position 3 we

have a followed by b, whence ∆3
u = ∆1

u. At position 4 we have b followed by b, so an update occurs:
∆4
u = {(a, b), (b, b)}. Finally, at position 5 we have b followed by a, so that ∆5

u = {(a, b), (b, a)}.
The sequence of extension histories is increasing, since, even though position 5 defines the update

(b, a) where the extension of b decreases, b does not occur afterwards.

We obtain a characterization of words u ∈ Lmin using extension histories.

Lemma 5.15. Let u ∈ Σ∗ with |u| > k − 1 and let Wu = (xi)
t
i=0 be the corresponding walk in

dB(k). Then u ∈ Lmin if and only if (∆i
u)ti=0 is increasing.

Proof:
We note that, if (x, a) ∈ ∆i

u and (x, b) ∈ ∆j
u for some i < j and a 6= b, then there exist indices

i′ 6 i < j′ 6 j such that xa occurs at position i′ and xb occurs at position j′. If x still occurs at
position l with l > j, then a possibility for a switching arises. If u ∈ Lmin then necessarily a C6 b.
If, on the other hand, a C6 b whenever this kind of a situation happens, then u avoids switchings that
increase lexicographically. Thus u ∈ Lmin by the proof of Lemma 4.5. ut

We make a further observation of the cycles along a walk defined by u ∈ Lmin.

Lemma 5.16. Let W = (xi)
t
i=0 be a walk in dB(k) defined by u ∈ Lmin and let C = (yj)

s
j=0 be

a cycle along W such that W traverses C at least twice, that is, W enters C at some position g and
leaves C at some position h with h ≥ g + 2s. Then, for any p ∈ N, the word corresponding to the
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walk (xi)
g−1
i=0 · (yj (mod s))

ps
j=0 · (xj)

j+(h (mod s))
j=g · (xi)ti=h+1 is in Lmin. In other words, the cycle C

may be repeated arbitrarily many times, and the corresponding words are in Lmin.

Proof:
Suppose this is not the case, for some p the corresponding word u′ is not in Lmin. It follows that
the sequence of extension histories of u′ is nonincreasing. There thus exist a word x ∈ Σk−1, letters
a, b ∈ Σ, and indices i, j, l, where a C6 b and i < j < l, such that the update (x, b) occurs at position
i, the update (x, a) at position j, and x occurs in u at position l. By removing repetitions of C no new
updates or new occurrences of x are created. We thus assume that repetitions of C are added.

Now one of these indices must occur in the newly added part, as otherwise u /∈ Lmin. By adding
repetitions of the cycleC to the original walkW , no new updates are created. Thus these updates must
have occurred in u already, and hence the occurrence of x at position l must be created. Let l be the
minimal index where such an occurrence is created. Since the cycle C is traversed at least twice inW ,
x occurs at index l − s as well. This occurrence is after the previous update, which is a contradiction
with the minimality of l. ut

Note that the elements of the extension histories can be seen as edges in dB(k). We make the
following observation.

Lemma 5.17. Let then Wu = (xi)
t
i=0 be a walk in dB(k) and let j ∈ [1, t] be fixed. Consider the

graph G consisting of the vertices xi of Wu and the edges of ∆j−1
u . Then, for any i 6 j, there is a

unique path from xi to xj in G.

Proof:
We prove this by induction starting from i = j for which the trivial path (xj) is admitted. Suppose
the claim is true for all l ∈ [i, j] for some i ∈ [1, j]. Consider the vertex xi−1. If xi−1 = xl for some
l > i, then there is nothing to prove. Otherwise, since we are dealing with the last occurrence of xi−1

in the walk (xr)
j
r=1, by definition we have (xi−1, a) ∈ ∆i−1

u ∩∆j−1
u unique for some a ∈ Σ. Thus,

there is a unique simple path from xi−1 to xi in G. By the induction hypothesis, we may extend this
path uniquely all the way to xj . ut

Proposition 5.18. Let u ∈ Lmin and let Wu = (xi)
t
i=0 be the corresponding walk in dB(k). Then

|C(W )| ≤ 1 +
∣∣∪t−1
i=1∆i

u \∆i−1
u

∣∣. Here ∪t−1
i=1∆i

u \∆i−1
u is the set of distinct updates in the sequence

of extension histories of u.

Proof:
First of all, we observe that between two consecutive cycles along W there must occur an update to
the extension histories when W exits the first cycle to reach the second.

Suppose then that the indices j and l with j < l define the same update (x, b). Note that there
exists a position r, j < r < l, defining the update (x, a) for some a 6= b. By Lemma 5.15 we have
a B b. We claim that there cannot occur a cycle after position l before another update occurs. Note
that the endpoint (x, b) is the vertex xj+1. By Lemma 5.17, there is a unique simple path using the
edges of ∆l

u that starts from xj+1 and ends in x. By Lemma 5.15, (∆i
u)i is increasing, so an update

must occur before completing the cycle by reaching x. The claim now follows. ut
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We are now ready to complete the proof of Theorem 5.1.

Proof:
Let AW be a sub-automaton of Amin defined by the walk W . For any word u ∈ L(AW ) the walk Wu

in dB(k) contains some cycles that correspond to cycles alongW (if the cycles are iterated sufficiently
many times), and some of the walks contain all such cycles. The maximum number of such cycles is
mk−1(m − 1) + 1. Indeed, by Theorem 4.1 we have CLmin(n) = Θ

(
nm

k−1(m−1)
)

and by Theorem

5.4 the number of cycles in a saturated sub-automaton AW equals mk−1(m− 1) + 1.
Let then u be a word such that the walk Wu in dB(k) has all maximum possible number of cycles

along it. By Proposition 5.18, the number of distinct updates in (∆i
u)i, for a word u for which the walk

Wu in dB(k) has maximal number of cycles, is at leastmk−1(m−1). But this value is maximal: each
word x ∈ Σk−1 can have at most (m− 1) updates. This sums up to mk−1(m− 1) possible updates.

This implies that the saturated automaton AW corresponding to the walk Wu in dB(k) has the
cycle (or more precisely, the loop) (ak−1, a) along it. This is because the edge (ak−1, a) must be used
at some point. By Lemma 5.18, we must then enter a cycle before updating the extension history
again in order to obtain the maximal number of cycles. But the extension history tells us that the edge
(ak−1, a) is repeated for some number of times until an update occurs. By Lemma ??, the cycle can
be repeated arbitrarily many times, each word corresponding to a word in Lmin. This cycle has length
1 so that 1 is a dominating root of the generating function of AW by Proposition 5.9. Since W was
arbitrary, the claim follows by Corollary 5.10. ut

6. On the Structure of Fixed Sized Equivalence Classes

The regularity of the languages Lmin and Lsing raises questions for the structure of larger equivalence
classes. We are thus interested in the k-abelian equivalence classes of fixed cardinality. We employ
the result of Theorem 3.1 to obtain a first step in this direction. In the following, we say that y ∈ [x]k
is extremal if y ∈ Lext = Lmin ∪ Lmax.

Theorem 6.1. The language L2 = {w ∈ Σ∗ | |[w]k| = 2} is a regular language.

Proof:
Consider the regular language L = Σ∗ \ Lext: we have

L = {w ∈ Σ∗ | |[w]k| > 3 and w is not extremal},

since all classes containing at most two elements are removed. We shall then use the language opera-
tion Rk defined previously. Now L′ = Rk(L) ∪ L = {w ∈ Σ∗ | |[w]k| > 3}. Note that one operation
of Rk is sufficient to fill the equivalence classes: by Lemma 4.4, each word x ∈ L admits at least
two switchings: one decreasing and the other increasing in lexicographic order. By Lemma 2.2 L′ is
regular. Finally, the complement of L′ is the language {w ∈ Σ∗ | |[w]k| 6 2}. We thus have that
L2 = L′ \ Lsing is a regular language. ut
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For values larger than 2, the regularity of the union of equivalence classes of a fixed size is left
open. We only note that the above approach does not extend at least immediately. The example below
gives some evidence that already for the value 3 the problem becomes involved.

Note that the language operation Rk can be modified, e.g., to the operation Rk,6= defined as
Rk,6=(L) = {u ∈ Σ∗ | ∃v ∈ L : u ∈ Rk({v}) \ {v}}. This operation performs switchings that
actually give another word. A straightforward modification of the proof of Theorem 3.1 shows that
regular languages are closed under this operation as well.

Example 6.2. We show that the language

K = {x ∈ Σ∗ | Rk,6=([x]k \ Lext) ⊆ Lext}

is regular. This is the language of words x for which any y ∈ [x]k, y not extremal, admits exactly two
switchings: the other giving the least element of [x]k, the other giving the maximal element of [x]k.
Indeed, let again L = Σ∗ \ Lext = {w ∈ Σ∗ | w not extremal}. We may then perform

Rk,6=(L) \ Lext = {w ∈ Σ∗ | ∃x ∈ Rk,6=({w}) \ Lext}.

Taking the complement of this language gives our claim.

Note that the language {w ∈ Σ∗ | |[w]k| = 3} is included in K, but that there exist other
classes in K also (for example u = akbak−1ckdck−1 for which [u]k = 4). Further, Remark 3.2 hints
that minimal elements with respect to a given regular language (instead of Σ∗) is more difficult to
characterize. On the other hand, an old result gives a positive answer to this question when k = 0:

Theorem 6.3. (Theorem 4.1. in [20])
For every regular language L, the language min(L) = {w ∈ L | w C6 u for every u ∈ L, |u| = |w|}
is regular, and a regular grammar for it can be effectively constructed.

7. Open Problems and Future Research

The topic of this paper opens up new aspects of k-abelian equivalence, and presents a series of ques-
tions. Though explicit formulas for the functions Pk,m and Sk,m were obtained for small values of
k and m, it remains to compute the corresponding generating functions (which, by our results, are
rational functions).

To conclude, we suggest the following open problem.

• Is the language of words w having |[w]k| = l, where l is a fixed constant, a regular language?
For l = 2, this is settled in the positive by Theorem 6.1.
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