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We study the estimation of the conditional tail moment, defined for a non-negative random variable X as θ p,β " EpX β |X ą U p1{pqq, β ą 0, p P p0, 1q, provided EpX β q ă 8, where U denotes the tail quantile function given by U pxq " infty : F pyq ě 1 ´1{xu, x ą 1. The focus will be on situations where p is small, i.e., smaller than 1{n, where n is the number of observations on X that is available for estimation. This situation corresponds to extrapolation outside the data range, and requires extreme value arguments to construct an appropriate estimator. The asymptotic properties of the estimator, properly normalised, are established under suitable conditions. The developed methodology is applied to estimation of the expected payment and the variance of the payment under an excess-of-loss reinsurance contract. We examine the finite sample performance of the estimators by a simulation experiment and illustrate their practical use on the Secura Belgian Re automobile claim data.

Introduction

Quantifying the risk related to extreme events is of crucial importance in insurance and finance. Occasionally insurance companies are faced with extreme claims which can jeopardise the solvency of a portfolio, or even a substantial part of a company, e.g., claims due to flooding, storms, industrial fires or earthquakes. The quantification of the risk of a risk factor X with distribution function F is done by so-called risk measures. A widely used classical risk measure is the Value-at-Risk (VaR) of a random variable X, defined as VaR p pXq " U p1{pq, p P p0, 1q, where U denotes the tail quantile function of X, i.e., U pxq :" infty : F pyq ě 1 ´1{xu, x ą 1. In the financial industry, VaR is used by firms and regulators to determine the amount of assets needed to cover possible losses. We refer to [START_REF] Jorion | Value at risk: the new benchmark for managing financial risk[END_REF] and [START_REF] Choudhry | An introduction to Value-at-Risk[END_REF] for an in-depth discussion of this measure. The main drawbacks of the VaR are that it does not take the loss above this quantile p into consideration and also it is not a coherent risk measure [START_REF] Artzner | Coherent measures of risk[END_REF]. During recent years the conditional tail expectation (CTE) became a popular alternative to the VaR. It is defined as CT E p pXq " EpX|X ą U p1{pqq, provided E|X| ă 8. Obviously CT E p pXq ě V aR p pXq and hence it is more conservative, and it also satisfies the desirable property of being a coherent risk measure. We refer to [START_REF] Artzner | Coherent measures of risk[END_REF], [START_REF] Cai | Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures[END_REF] and [START_REF] Brazaukas | Estimating conditional tail expectation with actuarial applications in view[END_REF].

In the present paper we generalise the CTE to the conditional tail moment (CTM). The conditional tail moment of a non-negative random variable X is defined, for p P p0, 1q and β ą 0, by θ p,β " E ´Xβ ˇˇX ą U p1{pq ¯, provided EpX β q ă 8. Our main interest is in estimating this quantity when p is very small, i.e., p ă 1{n, where n denotes the number of observations that is available for the estimation.

In such a case one cannot just use an empirical estimator for θ p,β since we have no observations to base the estimation upon. To resolve this issue we will make use of extreme value theory, as this will allow us to extrapolate beyond the data range. In particular, we consider the case where X is of Pareto-type, i.e., for some γ ą 0 we have

F pxq :" 1 ´F pxq " x ´1{γ pxq, x ą 0,
where is a slowly varying function at infinity, i.e., lim tÑ8 ptxq ptq " 1, @x ą 0.

Loosely speaking this means that for x large the influence of is small and the ultimate tail behavior of F is essentially determined by a decreasing power function. The parameter γ is known as the extreme value index, and obviously determines the upper tail heaviness, with larger values indicating heavier tails. We refer to [START_REF] Beirlant | Statistics of Extremes, Theory and Applications[END_REF] and [START_REF] De Haan | Extreme Value Theory, An Introduction[END_REF] for extensive reviews of extreme value theory. The class of Pareto-type models is a prototype class of heavy-tailed distributions and as such it is systematically used for modelling claim sizes in non-life insurance (see, e.g., [START_REF] Albrecher | Reinsurance: Actuarial and Statistical Aspects[END_REF][START_REF] Mikosch | Non-Life Insurance Mathematics, An Introduction with the Poisson Process[END_REF]. The developed estimation theory will be applied to the payment by the reinsurer in an excess-of-loss reinsurance contract, i.e., pX ´U p1{pqq `where X denotes the claim size, U p1{pq represents the retention level, and x `:" maxp0, xq. In particular, we will consider the mean and variance of the reinsurance payment when U p1{pq is extreme, and link these to the CTMs of order 1 and 2.

The remainder of the paper is organised as follows. In the next section we study the estimation of the conditional tail moment when p is small. This will be done in two steps. First we consider an intermediate case, allowing an empirical estimation of θ p,β , which will be subsequently extrapolated outside the data range by a Weissman-type construction. In Section 3 we will apply the developed estimation theory for CTM to excess-of-loss reinsurance. The finite sample performance of the proposed estimators is evaluated in Section 4 by a simulation experiment and in Section 5 we illustrate the estimators on the Secura Belgian Re reinsurance claim data. The proofs of our results are given in Section 6.

Conditional tail moment

In this section we discuss the estimation of the conditional tail moment. Let X 1 , . . . , X n be a sample of independent and identically distributed (i.i.d.) random variables, with order statistics X 1,n ď . . . ď X n,n . We first consider estimation in the intermediate case, that is for k, n Ñ 8 and p " k{n Ñ 0. In this case U pn{kq can be estimated by X n´k,n , and hence θ p,β can be estimated by an empirical average of the data above X n´k,n . This leads to the estimator

p θ β,n :" 1 k k ÿ j"1 X β n´j`1,n .
In order to obtain the limiting distribution of p θ β,n we need to introduce a second order condition on U .

Condition (SOC).

For some γ ą 0, ρ ă 0 and some positive or negative function Aptq with lim tÑ8 Aptq " 0, we have

lim tÑ8 U ptxq U ptq ´xγ Aptq " x γ x ρ ´1 ρ , @x ą 0.
This condition is widely used in extreme value statistics. It is satisfied by the common examples of Pareto-type distributions like the F , student t, Burr and generalised Pareto distributions. Note that the second order condition implies that U ptxq{U ptq Ñ x γ as t Ñ 8 (i.e., U is regularly varying with index γ), in particular it determines the speed of this convergence. It can also be shown that Ap.q is regularly varying with index ρ. The second order condition can be stated equivalently in terms of F as

lim tÑ8 F ptxq F ptq ´x´1{γ αptq " x ´1{γ x ρ{γ ´1 γρ , @x ą 0,
where αptq :" A `1{F ptq ˘, see Theorem 2.3.9 in de [START_REF] De Haan | Extreme Value Theory, An Introduction[END_REF].

Under the second order condition we can obtain already the following asymptotic expansion of the CTM. Note that this result holds for any p Ó 0, so it is not restricted to the intermediate case.

Theorem 2.1 X satisfies (SOC) with γ ă 1{β. Then for p Ó 0, we have

θ p,β " " U ˆ1 p ˙β " 1 1 ´γβ `β p1 ´γβqp1 ´γβ ´ρq A ˆ1 p ˙`o ˆA ˆ1 p ˙˙* .
As is clear from Theorem 2.1, the CTM is of order pU p1{pqq β , so it continues to grow even if we push the conditioning event deeper into the tail of the distribution.

We now turn to the derivation of the limiting distribution of p θ β,n , properly normalised. To obtain this we need the following lemma, which contains a useful property of Pareto(1) order statistics.

Lemma 2.1 Let Y 1 , . . . , Y n be independent Pareto(1) random variables with order statistics

Y 1,n ď . . . ď Y n,n . Then, if γ ă minp 1 2β 1 , 1 2β 2 q, we have for k, n Ñ 8 with k n Ñ 0 ¨Pn,β 1 P n,β 2 Q n ':" ? k ¨1 k ř k j"1 ´Yn´j`1,n Y n´k,n ¯γβ 1 ´1 1´γβ 1 1 k ř k j"1 ´Yn´j`1,n Y n´k,n ¯γβ 2 ´1 1´γβ 2 `k n Y n´k,n ˘γ ´1 ‹ ‹ ‹ ' d ÝÑ ¨Pβ 1 P β 2 Q '" N 3 ¨¨0 0 0 ', Σ ',
where Σ :"

¨pγβ 1 q 2 p1´γβ 1 q 2 p1´2γβ 1 q γ 2 β 1 β 2 p1´γβ 1 qp1´γβ 2 qp1´γpβ 1 `β2 qq 0 γ 2 β 1 β 2 p1´γβ 1 qp1´γβ 2 qp1´γpβ 1 `β2 qq pγβ 2 q 2 p1´γβ 2 q 2 p1´2γβ 2 q 0 0 0 γ 2 ‹ '.
The main result for the intermediate estimator of the CTM is given in the following theorem. [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF] or a bias-corrected estimator as, e.g., the one proposed in [START_REF] Beirlant | Tail index estimation and an exponential regression model[END_REF]. The Hill estimator is given by

p γ H k :" 1 k k ÿ i"1 ln X n´i`1,n ´ln X n´k,n ,
for which, under (SOC), and for k, n Ñ 8 with k{n Ñ 0 and ? kApn{kq Ñ λ, the following convergence holds

? k `p γ H k ´γ˘d ÝÑ N ˆλ 1 ´ρ , γ 2 ˙.
The bias-corrected estimator for γ of [START_REF] Beirlant | Tail index estimation and an exponential regression model[END_REF] is based on the following approximate exponential regression model

ipln X n´i`1,n ´ln X n´i,n q " « γ `A ´n k ¯ˆi k `1 ˙´ρ ff E i , i " 1, . . . , k,
where E i , i " 1, . . . , k, are independent standard exponential random variables. Maximising the likelihood function with respect to pγ, Apn{kq, ρq leads to a bias-corrected estimator for γ, which will be denoted as p γ BC k . The asymptotic properties of this estimator are studied in [START_REF] Beirlant | On exponential representations of logspacings of extreme order statistics[END_REF]. Essentially, under the same conditions as for the Hill estimator, and some extra conditions needed to handle the estimation of the second order parameters Apn{kq and ρ, one has that

? k `p γ BC k ´γ˘d ÝÑ N ˜0, γ 2 ˆ1 ´ρ ρ ˙4¸, (1) 
see Theorem 3.3 in [START_REF] Beirlant | On exponential representations of logspacings of extreme order statistics[END_REF]. These estimators for γ will be used later in Sections 4 and 5.

3 Premium calculation: mean and variance of the payment

The CTM can be used for estimating some useful risk measures, such as the premium principle for excess-of-loss reinsurance. In particular, if X denotes the claim size then pX ´U p1{pqq can be interpreted as the payment by the reinsurer and U p1{pq as the retention level, i.e., the threshold above which the reinsurer intervenes. In that case, the expectation of the payment, defined as Π 1 ppq :" E `pX ´U p1{pqq `˘, can be viewed as the minimum price to be charged for a reinsurance contract, and it corresponds to the net premium principle for the excess-of-loss reinsurance. However, due to the potential fluctuations from this expected value, it is more cautious for the reinsurance company to charge a higher value, possibly based for instance on a multiple of the standard deviation added to this expected payment. In other words, interest lies in the quantity

Π β ppq :" E ´pX ´U p1{pqq β `¯,
where the choices β " 1, resp. β " 2, allow to compute the mean, resp. the variance (V ppq :" Π 2 ppq ´Π2 1 ppq), of the payment. We refer to [START_REF] Albrecher | Reinsurance: Actuarial and Statistical Aspects[END_REF] for a comprehensive discussion of premium principles in reinsurance.

First, we start to make a link between Π β ppq and θ p,β , β " 1, 2, in the next theorem.

Theorem 3.1 If X is of Pareto-type with a continuous distribution function, we have

Π 1 ppq " p rθ p,1 ´U p1{pqs , if γ ă 1, Π 2 ppq " p " θ p,2 ´2 U p1{pq θ p,1 `U 2 p1{pq ‰ , if γ ă 1{2.
Similarly to Theorem 2.1, we provide in the next lemma the theoretical expansions for Π β ppq, β " 1, 2, under the second order condition.

Lemma 3.1 If X satisfies (SOC) and has a continuous distribution function, then, for p Ó 0

Π 1 ppq " p U ˆ1 p ˙" γ 1 ´γ `1 p1 ´γqp1 ´γ ´ρq A ˆ1 p ˙`o ˆA ˆ1 p ˙˙* , if γ ă 1, Π 2 ppq " p " U ˆ1 p ˙2 " 2γ 2 p1 ´γqp1 ´2γq `2γp2 ´3γ ´ρq p1 ´γqp1 ´2γqp1 ´γ ´ρqp1 ´2γ ´ρq A ˆ1 p ȯ ˆA ˆ1 p ˙˙* , if γ ă 1{2.
Now, we turn to the estimation of Π β ppq, for β " 1, 2, first in the intermediate case, i.e., when p " k{n Ñ 0. Using the estimators for θ p,β and U p1{pq as defined in the previous section, the following estimators result:

r Π 1 ˆk n ˙:" k n " p θ 1,n ´Xn´k,n ı , if γ ă 1, r Π 2 ˆk n ˙:" k n " p θ 2,n ´2 X n´k,n p θ 1,n `X2 n´k,n ı , if γ ă 1{2,
for which the convergence in distribution is established in the next theorem.

Theorem 3.2 Let X 1 , . . . , X n be i.i.d. random variables with a continuous distribution function satisfying (SOC). Then for k, n Ñ 8 with k{n Ñ 0 and ? k A `n k ˘Ñ λ P R, we have

? k ˜r Π 1 `k n Π1 `k n ˘´1 ¸d ÝÑ 1 ´γ γ P 1 `Q " N ˆ0, p1 ´γqp1 `γ `2γ 2 q 1 ´2γ ˙, if γ ă 1{2, ? k ˜r Π 2 `k n Π2 `k n ˘´1 ¸d ÝÑ p1 ´γqp1 ´2γq 2γ 2 P 2 ´p1 ´γqp1 ´2γq γ 2 P 1 `2Q " N ˆ0, 5 ´11γ `4γ 2 ´28γ 3 `48γ 4 p1 ´3γqp1 ´4γq ˙, if γ ă 1{4.
Now, if the insurance company signs a reinsurance contract to protect itself against claim sizes at an extreme level that has never been seen before, a challenging question for the reinsurance company is to know how to price such contracts when it does not have any data to base the pricing upon. To answer this question, the extrapolated CTM estimator p θ p,β need to be used as a basis to estimate Π β ppq as follows

p Π 1 ppq :" p " p θ p,1 ´p U p1{pq ı , if γ ă 1, p Π 2 ppq :" p " p θ p,2 ´2 p U p1{pq p θ p,1 `p U 2 p1{pq ı , if γ ă 1{2,
where p U p1{pq :" X n´k,n ´k np ¯p γ k is an estimator for U p1{pq motivated by the regular variation property of U p.q. Indeed, since, for t Ñ 8,

U ptxq U ptq " x γ ,
we have

U ˆ1 p ˙" U ´n k ¯ˆk np ˙γ , leading to p U p1{pq.
The next theorem establishes the convergence in distribution of these extrapolated estimators. 

Simulation results

In this section we illustrate the performance of the proposed estimators with a simulation experiment. We simulate from the Burrpη, λ, τ q distribution with distribution function

F pxq " 1 ´ˆη η `xτ ˙λ , x ą 0,
where η, λ, τ ą 0. This distribution function satisfies condition (SOC) with γ " 1{pλτ q, ρ " ´1{λ and Apxq " γx ρ . We fix η " 1 and set pλ, τ q " p2, 2.5q, p1, 5q, p0.5, 10q, so that γ " 0.2 in all cases and ρ " ´0.5, ´1, ´2, respectively.

Estimators for tail quantities exhibit typically a bias, especially when |ρ| is small, which can in some cases hamper their practical applicability. This can also be expected to be the case here, and therefore we implement the estimators p θ p,β , p Π 1 ppq and p V ppq, with both the Hill estimator [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF] as well as with the bias-corrected estimator of [START_REF] Beirlant | Tail index estimation and an exponential regression model[END_REF] for γ. This is motivated by the fact that the estimators proposed in this paper inherit the limiting distribution of the estimator for γ, up to some multiplicative constant, as is clear from Theorem 2.3, Theorem 3.3 and Corollary 3.1.

We simulate 200 datasets of size n " 500 from the Burr distributions mentioned above and consider estimation of CTM with pp, βq " p1{n, 1q, p1{p2nq, 1q, p1{n, 2q, p1{p2nq, 2q. Similarly, we also computed p Π 1 ppq and p V ppq with p " 1{n and p " 1{p2nq. In Figure 1 we show the sample mean (left) and sample mean squared error (MSE) (right) of p θ 1{n,1 computed over the 200 simulation runs as a function of k for the Burrp1, 2, 2.5q (top row), Burrp1, 1, 5q (middle row) and Burrp1, 0.5, 10q (bottom row) distributions. • The estimator for the CTM based on the Hill estimator for γ typically only works well for small values of k compared to n, which is in line with the theoretical results. For increasing values of k the estimators diverge from the true value and hence show a considerable bias, especially when ρ is close to zero. This can be expected as for ρ close to zero the convergence of U ptxq{U ptq to x γ is slow, making estimation difficult in practice.

• On the other hand, the estimator for the CTM based on the bias-corrected estimator of [START_REF] Beirlant | Tail index estimation and an exponential regression model[END_REF] for γ shows an average which is very stable and close to the true value θ p,β for a wide range of values for k. This confirms our theoretical results which give as limiting distribution for p θ p,β , after normalisation, the limiting distribution of the γestimator up to some multiplicative constant, so if one uses a bias-corrected estimator for γ then this bias-correction is carried over to p θ p,β . The bias-corrected estimator for the CTM has a minimum value of the MSE which is typically lower (or at least as good) compared to the minimum value of the MSE for the uncorrected CTM estimator. Moreover, the bias-corrected estimator has the advantage that the MSE values stay close to the value of the minimum MSE and this for a wide range of values for k. For practical use of the estimators, the stable sample paths of the bias-corrected estimator for the CTM make the typical issue of choosing k properly less critical, unlike the situation of the estimator for the CTM based on the Hill estimator, where proper choice of k is quite crucial, especially when ρ is close to zero.

• The conclusions above for the CTM also hold for p Π 1 ppq and p V ppq, though we see that estimation of the latter quantities is more challenging than the estimation of the CTM. The estimators for Π 1 ppq and V ppq based on p γ BC k perform better than those based on p γ H k , though the bias-correction is not as pronounced as in the case of estimation of θ p,β .

Real data application

We apply the proposed methodology to claim data provided by the reinsurance company Secura Belgian Re. This dataset contains 371 automobile claims from 1988 till 2001 gathered from several European insurance companies, and which are at least as large as 1,200,000 Euro. The data, corrected among others for inflation, are displayed in Figure 9, left panel. To evaluate the assumption of an underlying Pareto-type distribution we construct a Pareto quantile-quantile plot, see Figure 9, right panel. Clearly, the Pareto quantile plot becomes approximately linear in the largest observations, which confirms an underlying Pareto-type distribution (we refer to [START_REF] Beirlant | Statistics of Extremes, Theory and Applications[END_REF], for a general discussion of Pareto quantile-quantile plots). In Figure 10 we show p γ H k (black solid line) and p γ BC k (blue dashed line) for γ as a function of k. The Hill estimates show a stable behaviour of about 0.25-0.30 for k values up to approximately 100, whereafter the estimates diverge. On the contrary, the bias-corrected estimate is stable for nearly the whole k-range and confirms a tail index estimate of about 0.25-0.30. In Figure 11 we show p θ p,β for pp, βq " p1{n, 1q, p1{p2nq, 1q, p1{n, 2q and p1{p2nq, 2q, and Figure 12 displays are very stable over nearly the whole range for k which makes it easy to infer about the value of the parameter. On the other hand, estimates based on p γ H k are only stable for the smaller values of k. Note that with the present estimates for γ the condition γ ă 1{p2βq is satisfied for p θ p,1 and p Π 1 ppq, while it is violated for p θ p,2 and p V ppq. This means that for the former two it is possible to infer about the true value of the parameter, e.g., by constructing approximate confidence intervals based on the asymptotic results, while this is not possible for the latter two. It should be noted though that in case interest is only in estimation, then consistency can be obtained under the weaker assumption γ ă 1{β, which is satisfied in our example for both β " 1 and β " 2, so all parameters can be estimated in a consistent way. In order to obtain confidence intervals for θ p,β we reformulate the result of Theorem where Φ ´1 denotes the quantile function of the standard normal distribution and σ γ is the standard deviation of Γ. Remark also that we use here the ln-scale version of Theorem 2.3 as suggested by [START_REF] Drees | Extreme quantile estimation for dependent data, with applications to finance[END_REF] since it improves the coverage probabilities. This can be explained by the fact that the normal approximation of lnp p θ p,β {θ p,β q is more accurate than the one of p θ p,β {θ p,β ´1, since by definition of p θ p,β , the ln-transform leads to a linear function of p γ k , which distribution is well approximated by a normal distribution. Confidence intervals for Π 1 ppq and V ppq can be constructed in a similar way based on Theorem 3.3 and Corollary 3.1, respectively. In Figure 13 we show the 95% confidence intervals for θ 1{n,1 (top row) and Π 1 p1{nq (bottom row) when using are stable for k above 150, while at smaller k values the intervals are sometimes quite wide. This is due to the fact that for the calculation of σ γ for p γ BC k one needs an estimate for the second order parameter ρ, which can be unstable at small k. Indeed, estimation of this second order rate parameter requires in general a larger k than the one used for the estimation of γ, see, e.g., Fraga [START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF] and [START_REF] Goegebeur | Kernel estimators for the second order parameter in extreme value statistics[END_REF]. -":

" U ˆ1 p ˙β " 1 1 ´γβ `β p1 ´γβqp1 ´γβ ´ρq α 0 pU p1{pqq `α0 pU p1{pqqR p * ,
where α 0 p.q is a slightly different but asymptotically equivalent version of αp.q, denoted α 0 " α. Now, according to de Haan and Ferreira (2006, p. 161), we have for ε ą 0, 0 ă δ ă 1´ρ γ ´β and p ă p 0 pε, δq that

|R p | ď β ż 8 1 u β´1 ˇˇˇˇˇF puU p1{pqq F pU p1{pqq ´u´1{γ α 0 pU p1{pqq ´u´1{γ u ρ{γ ´1 γρ ˇˇˇˇˇd u ď ε β ż 8 1 u β´1 u ´1 γ `ρ γ `δ du " ε γβ 1 ´ρ ´γβ ´γδ ,
and hence R p " op1q for p Ó 0. This implies that θ p,β " " U ˆ1 p ˙β " 1 1 ´γβ `β p1 ´γβqp1 ´γβ ´ρq α 0 pU p1{pqq `o pα 0 pU p1{pqqq * .

Finally, using the fact that α 0 " α, F pU p1{pqq{p Ñ 1 as p Ó 0 and the regular variation of A, we obtain that

θ p,β " " U ˆ1 p ˙β " 1 1 ´γβ `β p1 ´γβqp1 ´γβ ´ρq A ˆ1 p ˙`o ˆA ˆ1 p ˙˙* .
Proof of Lemma 2.1. According to Rényi's representation [START_REF] Rényi | On the theory of order statistics[END_REF], we have

Λ n :" ˆPn,β 1 P n,β 2 ˙d " ? k ˜1 k ř k j"1 Y γβ 1 j,k ´1 1´γβ 1 1 k ř k j"1 Y γβ 2 j,k ´1 1´γβ 2 ¸" ? k ˜1 k ř k j"1 Y γβ 1 j ´1 1´γβ 1 1 k ř k j"1 Y γβ 2 j ´1 1´γβ 2 ¸,
where Y 1,k ď . . . ď Y k,k are the order statistics associated to a random sample of size k from the Pareto(1) distribution. Using the multivariate central limit theorem, for γ ă minp 1 2β 1 , 1 2β 2 q we have

Λ n d ÝÑ N ´0, r Σ ¯,
where r Σ is the sub-matrix based on the two first rows and columns of Σ. Finally, the two components of Λ n being independent of Q n by Rényi's representation, and since 

Q n " γ ? k ˆk n Y n´k,n ´1˙p 1 `oP p1qq d ÝÑ N p0, γ 2 q, (2) 
p θ β,n d " X β n´k,n 1 k k ÿ j"1 ˆU pY n´j`1,n q U pY n´k,n q ˙β ,
where

U pY n´j`1,n q U pY n´k,n q " ˆYn´j`1,n Y n´k,n ˙γ $ & % 1 `A0 pY n´k,n q ´Yn´j`1,n Y n´k,n ¯ρ ´1 ρ , .
-

`A0 pY n´k,n q $ & % U pY n´j`1,n q U pY n´k,n q ´´Y n´j`1,n Y n´k,n ¯γ A 0 pY n´k,n q ´ˆY n´j`1,n Y n´k,n ˙γ ´Yn´j`1,n Y n´k,n ¯ρ ´1 ρ , .
-

": ˆYn´j`1,n Y n´k,n ˙γ $ & % 1 `A0 pY n´k,n q ´Yn´j`1,n Y n´k,n ¯ρ ´1 ρ , .
-`A0 pY n´k,n qR j,k , and A 0 ptq " Aptq as t Ñ 8. This implies that

ˆU pY n´j`1,n q U pY n´k,n q ˙β " ˆYn´j`1,n Y n´k,n ˙γβ $ & % 1 `A0 pY n´k,n q ´Yn´j`1,n Y n´k,n ¯ρ ´1 ρ `A0 pY n´k,n q ˆYn´j`1,n Y n´k,n ˙´γ R j,k , . - β .
Now, according to inequality (2.3.23) in de [START_REF] De Haan | Extreme Value Theory, An Introduction[END_REF], and using the fact that Y n´k,n P Ñ 8, we have for ε ą 0, 0 ă δ ă ´ρ and j P t1, . . . , ku, that for n large, with arbitrary large probability

ˆYn´j`1,n Y n´k,n ˙´γ |R j,k | ď ε ˆYn´j`1,n Y n´k,n ˙ρ`δ ď ε,
from which we deduce that

ˆU pY n´j`1,n q U pY n´k,n q ˙β " ˆYn´j`1,n Y n´k,n ˙γβ $ & % 1 `A0 pY n´k,n q ´Yn´j`1,n Y n´k,n ¯ρ ´1 ρ `A0 pY n´k,n qo P p1q
, .

β , with a o P p1q´term uniform in j P t1, . . . , ku. Consequently

1 k k ÿ j"1 ˆU pY n´j`1,n q U pY n´k,n q ˙β " 1 k k ÿ j"1 ˆYn´j`1,n Y n´k,n ˙γβ `βA 0 pY n´k,n q 1 k k ÿ j"1 ˆYn´j`1,n Y n´k,n ˙γβ ´Yn´j`1,n Y n´k,n ¯ρ ´1 ρ `oP pA 0 pY n´k,n qq . (3) Define now r θ k n ,β " 1 1´γβ " U `n k ˘‰β .
We have the decomposition

? k ˜p θ β,n θ k n ,β ´1¸" ? k ¨p θ β,n r θ k n ,β ´1' `p θ β,n r θ k n ,β ? k ¨r θ k n ,β θ k n ,β ´1' 
.

The first term of the decomposition can be rewritten as follows

? k ¨p θ β,n r θ k n ,β ´1' d " p1 ´γβq ? k « 1 k k ÿ j"1 ˆU pY n´j`1,n q U pY n´k,n q ˙β ´1 1 ´γβ ff `β? k ˆXn´k,n U pn{kq ´1˙`o P p1q d " p1 ´γβq ? k « 1 k k ÿ j"1 ˆYn´j`1,n Y n´k,n ˙γβ ´1 1 ´γβ ff `βp1 ´γβq ? kA 0 pY n´k,n q 1 k k ÿ j"1 ˆYn´j`1,n Y n´k,n ˙γβ ´Yn´j`1,n Y n´k,n ¯ρ ´1 ρ `β? k ˆU pY n´k,n q U pn{kq ´1˙`o P p1q, by (3) 
. Now, using Rényi's representation as in the proof of Lemma 2.1, combined with Condition (SOC) and (2), we have

? k ¨p θ β,n r θ k n ,β ´1' d " p1 ´γβqP n,β `β 1 ´γβ ´ρ λ `β? k ˆˆk n Y n´k,n ˙γ ´1β ? kA ´n k ¯ˆk n Y n´k,n ˙γ `k n Y n´k,n ˘ρ ´1 ρ `oP p1q " p1 ´γβqP n,β `βQ n `β 1 ´γβ ´ρ λ `oP p1q. (4) 
Concerning the second term of the decomposition, using Theorem 2.1, we have

? k ¨r θ k n ,β θ k n ,β ´1' " ´β 1 ´γβ ´ρ λ `op1q. (5) 
Combining ( 4) with ( 5) and Lemma 2.1, Theorem 2.2 follows.

Proof of Theorem 2.3. We have the decomposition

? k ln k np ˜p θ p,β θ p,β ´1¸" 1 ln k np ? k ˜p θ β,n θ k n ,β ´1¸ˆk np ˙pp γ k ´γqβ ˆk np ˙γβ θ k n ,β θ p,β `?k ln k np # ˆk np ˙pp γ k ´γqβ ´1+ ˆk np ˙γβ θ k n ,β θ p,β `1 ln k np ? k # ˆk np ˙γβ θ k n ,β θ p,β ´1+ " β ? kpp γ k ´γq `1 ln k np ? k # θ k{n,β {rU pn{kqs β θ p,β {rU p1{pqs β ´1+ ˆU pn{kq U p1{pq ˙β ˆk np ˙γβ `1 ln k np ? k # ˆU pn{kq U p1{pq ˙β ˆk np ˙γβ ´1+ `oP p1q, ": β ? kpp γ k ´γq `1 ln k np T 1,k ˆU pn{kq U p1{pq ˙β ˆk np ˙γβ `1 ln k np T 2,k `oP p1q, (6) 
combining Theorem 2.2 with the facts that k np Ñ 8 and ln k{pnpq ? k Ñ 0. Now, since Ap.q is regularly varying at infinity with index ρ ă 0, by Theorem 2.1, we have

T 1,k " ? k # 1 `β 1´γβ´ρ Ap n k q `opAp n k qq 1 `β 1´γβ´ρ Ap 1 p q `opAp 1 p qq ´1+ " ? k " β 1 ´γβ ´ρ A ´n k ¯´β 1 ´γβ ´ρ A ˆ1 p ˙`o ´A ´n k ¯¯`o ˆA ˆ1 p ˙˙* " β 1 ´γβ ´ρ ? k A ´n k ¯`o ´?k A ´n k ¯" β 1 ´γβ ´ρ λ `op1q. (7) 
Additionally, by Condition (SOC), since k np Ñ 8, we have

T 2,k " ? k $ & % « 1 `A ´n k ¯p k np q ρ ´1 ρ `o ´A ´n k ¯¯ff ´β ´1,
.

-

" ´β? k A ´n k ¯p k np q ρ ´1 ρ `o ´?k A ´n k ¯" β ρ λ `op1q. (8) 
Finally, combining ( 6) with ( 7) and ( 8), the proof of Theorem 2.3 is achieved.

Proof 

by Condition (SOC) combined with Lemma 2.1 and the fact that k{pnpq Ñ 8. Combining ( 9) and ( 10) with ( 11), Theorem 3.3 follows.

Proof of Corollary 3.1. We have the following decomposition

? k ln k np ˜p V ppq V ppq ´1¸" Π 2 ppq Π 2 ppq ´Π2 1 ppq ? k ln k np ˜p Π 2 ppq Π 2 ppq ´1Π 2 1 ppq Π 2 ppq ´Π2 1 ppq ˜p Π 1 ppq Π 1 ppq `1¸? k ln k np ˜p Π 1 ppq Π 1 ppq ´1¸.
Combining Theorem 3.3 with Lemma 3.1, Corollary 3.1 follows.

Figure 1 :

 1 Figure 1: Mean (left) and M SE (right) of p θ 1{n,1 based on p γ H k (black solid line) and on p γ BC k (blue dashed line) as a function of k for Burrp1, 2, 2.5q (top row), Burrp1, 1, 5q (middle row) and Burrp1, 0.5, 10q (bottom row).

Figure 2 :

 2 Figure 2: Mean (left) and M SE (right) of p θ 1{p2nq,1 based on p γ H k (black solid line) and on p γ BC k (blue dashed line) as a function of k for Burrp1, 2, 2.5q (top row), Burrp1, 1, 5q (middle row) and Burrp1, 0.5, 10q (bottom row).

Figure 3 :

 3 Figure 3: Mean (left) and M SE (right) of p θ 1{n,2 based on p γ H k (black solid line) and on p γ BC k (blue dashed line) as a function of k for Burrp1, 2, 2.5q (top row), Burrp1, 1, 5q (middle row) and Burrp1, 0.5, 10q (bottom row).

Figure 4 :

 4 Figure 4: Mean (left) and M SE (right) of p θ 1{p2nq,2 based on p γ H k (black solid line) and on p γ BC k (blue dashed line) as a function of k for Burrp1, 2, 2.5q (top row), Burrp1, 1, 5q (middle row) and Burrp1, 0.5, 10q (bottom row).

Figure 5 :

 5 Figure 5: Mean (left) and M SE (right) of p Π 1 p1{nq based on p γ H k (black solid line) and on p γ BC k (blue dashed line) as a function of k for Burrp1, 2, 2.5q (top row), Burrp1, 1, 5q (middle row) and Burrp1, 0.5, 10q (bottom row).

Figure 6 :

 6 Figure 6: Mean (left) and M SE (right) of p Π 1 p1{p2nqq based on p γ H k (black solid line) and on p γ BC k (blue dashed line) as a function of k for Burrp1, 2, 2.5q (top row), Burrp1, 1, 5q (middle row) and Burrp1, 0.5, 10q (bottom row).

Figure 7 :

 7 Figure 7: Mean (left) and M SE (right) of p V p1{nq based on p γ H k (black solid line) and on p γ BC k (blue dashed line) as a function of k for Burrp1, 2, 2.5q (top row), Burrp1, 1, 5q (middle row) and Burrp1, 0.5, 10q (bottom row).

Figure 8 :

 8 Figure 8: Mean (left) and M SE (right) of p V p1{p2nqq based on p γ H k (black solid line) and on p γ BC k (blue dashed line) as a function of k for Burrp1, 2, 2.5q (top row), Burrp1, 1, 5q (middle row) and Burrp1, 0.5, 10q (bottom row).

  . As before, when the point estimate is based on p γ H k then only smaller values of k can be used, while point estimates based on p γ BC k are stable over the whole k range. The confidence intervals based on p γ BC k

Figure 9 :

 9 Figure 9: Secura Belgian Re data. Time plot of the data set (left) and Pareto quantile-quantile plot (right).

Figure 11 :Figure 12 :Figure 13 :

 111213 Figure 10: Secura Belgian Re data. Plot of p γ H k (black solid line) and p γ BC k (blue dashed line) as a function of k.

  Theorem 3.3 Let X 1 , . . . , X n be i.i.d. random variables with a continuous distribution function satisfying (SOC). Then for k, n Ñ 8 with k{n Ñ 0 and ? k A `n k ˘Ñ λ P R, and p satisfyingAs it is already the case for the extrapolated CTM estimators, the limiting distribution in Theorem 3.3 is fully determined from the one of the γ´estimator. As a corollary of this theorem, we can now deduce the convergence in distribution of the estimator of the variance V ppq of the payment. Let p

	ln k{pnpq ? k	Ñ 0 and k np Ñ 8, we have
		? ln k{pnpq k	˜p Π 1 ppq Π 1 ppq	´1¸d ÝÑ Γ, if γ ă 1{2,
		? ln k{pnpq k	˜p Π 2 ppq Π 2 ppq	´1¸d ÝÑ 2Γ, if γ ă 1{4.
	ln k{pnpq ? k	Ñ 0 and k np Ñ 8, we have
		? ln k{pnpq k	˜p V ppq V ppq	´1¸d ÝÑ 2Γ, if γ ă 1{4.

V ppq denote the estimator for V ppq, i.e., p V ppq :" p Π 2 ppq ´p Π 2 1 ppq.

Corollary 3.1 Let X 1 , . . . , X n be i.i.d. random variables with a continuous distribution function satisfying (SOC). Then for k, n Ñ 8 with k{n Ñ 0 and ? k A `n k ˘Ñ λ P R, and p satisfying

  The horizontal reference line in the plots represents the true value of the parameter. From the simulations we can draw the following conclusions:

	The black solid line represents p θ 1{n,1
	based on the Hill estimator p γ H k and the blue dashed line represents the estimator based on the bias-corrected estimator p γ BC k of Beirlant et al. (1999) for γ. Figures 2 till 4 are constructed
	in a similar way for p θ 1{p2nq,1 , p θ 1{n,2 and p θ 1{p2nq,2 , respectively, while Figures 5 and 6 show the
	corresponding results for p Π 1 ppq, and Figures 7 and 8 concern p V ppq.

  Proof of Theorem 2.2. Note that, again denoting by Y 1,n ď . . . ď Y n,n Pareto(1) order statistics,

	by Corollary 2.2.2 in de Haan and Ferreira (2006), Lemma 2.1 follows.

  of Theorem 3.1. First, recall that Proof of Lemma 3.1. Combining Theorem 2.1 with Theorem 3.1, Lemma 3.1 follows.

	Similarly, concerning the second statement of Theorem 3.2, we have Now, remark that
	? k ln k ˜r Π 2 pk{nq Π 2 pk{nq ? k np ˜p U p1{pq ´1¸" U p1{pq ´1¸" θ k n ,2 ´2U pn{kqθ k θ k n ,2 n ,1 1 ln k np ? k ˆXn´k,n `U 2 pn{kq U pn{kq ´1˙ˆk ? np ˙p γ k ´γ ˆk np k ˜p θ 2,n θ k n ,2 ´12 ˙γ U pn{kq U p1{pq
			p θ 1,n U pn{kq n ,2 ´2U pn{kqθ k θ k n ,1 `U 2 pn{kq `?k ln k np ˜ˆk np ˙p γ k ´γ ´1¸ˆk np	? k ˙γ U pn{kq ˆXn´k,n U pn{kq U p1{pq	´12
			θ k n ,1 U pn{kq n ,2 ´2U pn{kqθ k θ k n ,1 `U 2 pn{kq 2 pn{kq θ k n ,2 ´2U pn{kqθ k n ,1 `U 2 pn{kq ? ? k k ˜ˆX n´k,n ˜p θ 1,n θ k n ,1 ´1U U pn{kq ´1" ˙2 `?k ln k ˆˆk np ˙γ U pn{kq ´1" U p1{pq np ? k pp γ k ´γq `oP p1q,
	θ p,β " if γ ă 1{β and F is continuous. This implies that " U ˆ1 p ˙β `1 p ż 8 U p1{pq 1 2 1 ´γ γ 2 ? k ˜p θ 2,n θ k n ,2 ´1¸´1 βx β´1 F pxqdx, ´2γ γ 2 ? k ˜p θ 1,n θ k n ,1 ´2γ γ ˆXn´k,n ? k U pn{kq ´1˙`o P p1q,	´11
	ż 8 by Theorem 2.1. Now, using Theorem 2.2, we deduce that
		Π 1 ppq "	F pxqdx " p rθ p,1 ´U p1{pqs
	? k	U p1{pq Π 2 ppq " 2 ż 8 ˜r Π 2 pk{nq Π 2 pk{nq ´1¸d ÝÑ 1 2	x F pxqdx ´2U p1{pq p1 ´γqp1 ´2γq γ 2 P 2 ´p1 ´γqp1 ´2γq ż 8 F pxqdx γ 2	P 1 `2Q.
			U p1{pq	U p1{pq
	" p Lemma 2.1 achieves the proof of Theorem 3.2. " θ p,2 ´2U p1{pqθ p,1	`U 2 p1{pq	‰	.
	Proof of Theorem 3.3. It follows the lines of the proof of Theorem 3.2. In particular, using
	(6), we have			
	Proof of Theorem 3.2. We have ? k ˜r Π 1 pk{nq Π 1 pk{nq ´1¸" θ k n ,1 θ k n ,1 ´U pn{kq ? k ln k np ˜p Π 1 ppq Π 1 ppq ´1¸" 1 γ ? k ln k np ˜p θ p,1 ? k ˜p θ 1,n θ k n ,1 θ p,1 ´1¸´1 ´1¸´U θ k n ,1 ´U pn{kq pn{kq ´γ γ ? k ln k np ˜p U p1{pq U p1{pq According to Theorem 2.1, we have " 1 γ ? k pp γ k ´γq ´1 ´γ γ ? k ln k np ˜p U p1{pq U p1{pq ´1¸`o ˆXn´k,n ´1¸`o P p1q ? k U pn{kq ´1˙. P p1q, (9)
	θ k n ,1 n ,1 ´U pn{kq θ k U pn{kq θ k n ,1 ´U pn{kq ´1¸" 1 2 1 ´γ γ 2 ? k ln k np ˜p θ p,2 ÝÑ ÝÑ θ p,2 ´1¸´1 1 γ , 1 ´γ γ , ´2γ γ ? k ln k np ˜p U p1{pq ´1¸`o ´2γ γ 2 P p1q ? ln k k np U p1{pq hence, by Theorem 2.2, we have and ? k ln k np ˜p Π 2 ppq Π 2 ppq ? k ˜r Π 1 pk{nq Π 1 pk{nq ´1¸d ÝÑ 1 ´γ γ P 1 `Q " N ˆ0, p1 ´γqp1 `γ `2γ 2 q ˜p θ p,1 θ p,1 1 ´2γ ˙. ´11 " 1 γ ? k pp γ k ´γq ´1 ´2γ γ ? k ln k np ˜p U p1{pq U p1{pq ´1¸`o P p1q. (10)
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