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ABSTRACT

The performance of most direction of arrival (DoA) estima-
tion algorithms is driven by two different kinds of errors:
small, local errors in the main lobe and possibly large errors
due to sidelobe peaks ambiguities. Reducing these two kinds
of errors simultaneously is not possible and therefore a com-
promise has to be made. Motivated by automotive applica-
tions with small arrays, we consider solving this tradeoff by
modifying the positions of the sensors of the array. In this
letter, two new criteria are proposed to solve the above men-
tioned tradeoff. Optimal solutions are derived and illustra-
tions are provided with a 3-element non-uniform linear array.

Index Terms— Non Uniform Linear Array, Ambiguities,
Radar

1. INTRODUCTION

DoA estimation is a crucial issue for many radar applications.
This is especially the case for automotive systems designed
to early detect and avoid pedestrians, cyclists or other cars.
The system needs the best DoA estimation accuracy in or-
der to precisely estimate the targets trajectories and decide
whether there is a collision risk or not. Most often, uni-
form linear arrays (ULA) are employed, which consists of
equidistant sensors, usually spaced a half-wavelength apart
in order to avoid wavefront under sampling. In order to im-
prove the antenna resolution while keeping a low system cost
and hardware complexity, non-uniform linear arrays (NULA)
have been investigated, see [1] and references therein. In-
deed, increasing the antenna size while keeping the number
of sensors constant results in a sharpener main beam and a
possible better DoA precision, but also a sidelobe raising and
potential ambiguities. Most of the time, the so-called mini-
mum redundancy linear array (MRLA) geometry is consid-
ered when dealing with NULA because this kind of array al-
lows to measure all correlation lags as the same size ULA, yet

with a minimum of sensors. However, the MRLA geometry
does not guarantee any optimality with respect to resolution
or sidelobe level.
The best achievable DoA estimation variance is given by the
Cramér-Rao Bound (CRB). In [2] Chambers et al. showed
that the Cramér-Rao Bound (CRB) is inversely proportional
to the spatial variance of the sensors. This dependence is also
confirmed in [3] where the positions of the sensors are op-
timized with respect to array resolution using genetic algo-
rithms. Briefly speaking, the larger the spatial variance of the
sensors of the linear array, the better the resolution. Unfor-
tunately the CRB only considers errors around the true DoA
while considering only the main beam shape independently of
any sidelobe level. Possible larger errors due to ambiguities
are not taken into account. Improving the antenna resolution
is incompatible with reducing the ambiguities and a compro-
mise has to be found when one wants to optimize the antenna
geometry to achieve the best DoA precision. Observe that
such a compromise depends on signal to noise ratio (SNR).
Indeed, at high SNR, it is unlikely that a sidelobe peak be
mistaken for a true DoA and therefore focus will be on opti-
mizing the main lobe width. In contrast, with low SNR, the
probability to make a large error due to high sidelobe levels
increases, and optimization should be carried out with this po-
tential problem in mind. In practice though, it is impossible
to adapt in real time the antenna geometry to the source SNR.
Moreover, SNR is a-priori unknown in many array antenna
applications. A compromise independent from any SNR has
to be found, this is the main objective of this letter.
More precisely we focus on the case of collision avoidance
radars. In the most advanced automotive applications, arrays
with a small number of elements are used, typically 3 or 4.
Moreover, these systems usually use a large bandwidth, re-
sulting in a very high range resolution and hence the number
of targets belonging to the same range-Doppler bin is typi-
cally one. In this letter, we focus on the simplest case of a
three-element NULA where the two first elements are placed
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Fig. 1. Three-sensors non uniform linear array

a half-wavelength apart to prevent DoA aliasing, as illustrated
on figure 1. Spatial resolution is improved when the distance
xλ2 between the last two sensors increases, i.e. the spatial
variance maximized, while keeping the array unambiguous.
Obviously as x increases, resolution improves but the increase
of sidelobes level could result in large DoA estimation errors.
In this paper, we try to define the best antenna size ((x+1)λ2 )
that satisfies the compromise between high resolution and low
sidelobes level. Towards this end, two different criteria are
proposed and optimized with respect to x. Accordingly, we
propose to find the value of x that maximizes the directivity
of the array or, equivalently, that minimizes the integral of
the beam pattern over all DoA. Indeed, this integral is propor-
tional to the main lobe width and inversely proportional to the
sidelobes levels. Hence, maximizing the directivity amounts
to minimize both the main beam and the sidelobes levels. Ad-
ditionally, we also consider a variance-type criterion of the
array beampattern and compare it to the first criterion.

This paper is organized as follows. We first introduce the
framework at hand. Then, we present the criterion to be min-
imized in order to satisfy the resolution/sidelobe levels com-
promise and solve it with respect to x. We also introduce
another possible optimization criterion which leads to a size
close to the standard ULA. To asses the validity of the analy-
sis, we compare the RMSE for different antenna sizes and for
a classical DoA estimation algorithm, namely MUSIC.

2. DATA MODEL AND ANTENNA SIZE
OPTIMIZATION

As stated in the introduction, we consider the three-sensors
array represented in figure 1. Considering spatial frequencies,
the steering vector model is as follows :

a(f) = [1 e2iπf e2iπf(1+x)]T (1)

where .T stands for the vector transpose operator. The beam
pattern for a given spatial frequency f0 is defined as gf0(f) =∣∣a(f0)Ha(f)

∣∣2, where .H stands for transpose and conjugate.
We do not consider here any specific DoA estimation al-

gorithm and our analysis is based on the beam pattern char-
acteristics. In fact, evaluating the maximum of the latter cor-
responds to maximum likelihood (ML) estimation under the
single source hypothesis and, as stated in the introduction, this
will be the case in the majority of the situations encounter
with an automotive radar. Furthermore, gf0(f) corresponds
to the square modulus of the cross-correlation between any

steering vector and the steering vector of interest. Hence,
its shape will impact the performance of any DoA estimation
method: ambiguities in case of high sidelobes and a good pre-
cision in case of sharp main lobe.

As displayed in figure 2, it is well known that increasing
x results in a main lobe width reduction but a sidelobes level
increase, two effects that have opposite consequences on the
final DoA estimation performance.

The first criterion that comes in mind to manage this com-
promise is to maximize the directivity. The directivity repre-
sents the maximum radiation intensity divided by the average
radiation intensity (averaged over the whole sphere) and can
be interpreted as the array gain against isotropic noise. The
directivity is defined as [1]

D =

(
1

2

∫ 1
2

− 1
2

gf0(f)df

)−1

. (2)

Hence maximizing the directivity consists in minimizing the
area under the beam pattern diagram and consequently both
minimizing the main lobe width and the sidelobes levels. The
best directivity would be obtained for a dirac-like beam pat-
tern but is impossible due to cross-correlations between DoA.
Notice that this technique has been widely used to derive
weights that minimize the sidelobe levels in case of NULA,
see [4], [5], [6], [7] for example.

If we consider f0 = 0 as the source position, we are sim-
ply looking for xD that minimizes

C1(x) =

∫ 1
2

− 1
2

∣∣a(0)Ha(f)
∣∣2 df = a(0)HΓ1a(0) (3)

with

Γ1 =
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2
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∫ 1

2
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2

e−2iπf(1+x)df∫ 1
2
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e2iπfdf 1
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e−2iπfxdf∫ 1
2
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e2iπf(1+x)df
∫ 1
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− 1
2

e2iπfxdf 1


=

 1 0 sin(π(1+x))
π(1+x)

0 1 sin(πx)
πx

sin(π(1+x))
π(1+x)

sin(πx)
πx 1

 (4)

so that

xD = argmin
x

[
sin(π(1 + x))

π(1 + x)
+

sin(πx)

πx

]
. (5)

This function is plotted on figure 3 together with the direc-
tivity. The global minimum is obtained for xD ' 1.39 so that
the global NULA antenna size is 1.195.λ (to be compared
with the λ width of the three-sensors ULA equivalent array).

A second approach can be considered in minimizing the
following variance-like criterion:

C2(x) =

∫ 1
2

− 1
2

∣∣a(0)Ha(f)
∣∣2 f2df = a(0)HΓ2a(0) (6)
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Fig. 2. Examples of beam pattern for x = 1, x = 2, x =
3, x = 4
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Fig. 3. C1(x) and the corresponding directivity vs. x

The difference compared with the previous criterion is a non
homogeneous weighting on the frequencies. Indeed, con-
sidering that possible ambiguities errors due to sidelobes far
from the main beam are more damageable because of a larger
DoA errors, we choose to penalize the sidelobes levels with
respect to their potential effects on the global DoA error. The
above criterion can be viewed as the variance of the error
(f − f0) considering a distribution for f proportional to the
beampattern. In this case, we have

Γ2 =


∫ 1

2

− 1
2

f2df
∫ 1

2

− 1
2

f2e−2iπfdf h(1 + x)∫ 1
2

− 1
2

f2e2iπfdf
∫ 1

2

− 1
2

f2df h(x)

h(1 + x)∗ h(x)∗
∫ 1

2

− 1
2

f2df


(7)

and

h(x) =

∫ 1
2

− 1
2

f2e−2iπfxdf

=
1

4

sin(πx)

πx
+

1

2π2x2

(
cos(πx)− sin(πx)

πx

)
so that minimizing (6) is equivalent to

min
x

[h(x) + h(1 + x)] (8)

whose global minimum is obtained for xD ' 0.96, a value
very close to the standard ULA size composed of sensors
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Fig. 4. Music and Capon performance analysis for 4 antenna
geometries

placed a half-wavelength apart. The standard ULA config-
uration is close to optimal when considering this variance cri-
terion, and hence, in the sequel, we compare the ULA config-
uration with the one obtained by maximizing directivity.

3. NUMERICAL ILLUSTRATIONS

In this section, we compare the performance of a very popu-
lar DoA estimation algorithm, namely spectral MUSIC, for 4
different antenna geometries. We consider the case of a single
source impinging on the array with spatial frequency f0 = 0,
so that the snapshot received at time t = 0, .., (N − 1) can be
written as

xt = a(f0)st + nt (9)

where nt is assumed to be a white Gaussian noise. The sam-
ple covariance matrix (SCM) (R̂ = 1

N

∑N−1
t=0 xtx

H
t ) is cal-

culated from N = 15 snapshots. Its eigenvalue decomposi-
tion is as follows:

R̂ = λ1usu
H
s +UnΛnU

H
n . (10)

MUSIC estimates the DoA as

f̂MUSIC = argmax
f

[
1

a(f)HUnU
H
n a(f)

]
. (11)

We only consider here MUSIC algorithm as the majority of
the other procedures result approximately in the same perfor-
mance for this single source case. Figure 4 represents the cor-
responding RMSE as well as the Cramér-Rao Bound (CRB)
for each array configuration. As expected, the larger x, i.e.,
the larger the array aperture, the smaller the CRB. Also, as
it is well known, MUSIC is efficient at high SNR where its
RMSE is equal to the CRB. At very high SNR, it is thus



preferable to increase the antenna size in order to favor the
main lobe width reduction against the sidelobes level. How-
ever, the SNR required for MUSIC to achieve the CRB is
also increased. In fact, in most applications where a mod-
erate SNR is encountered, the main objective is to decrease
the SNR threshold at which most methods depart from the
CRB. With this respect, the solution which optimizes the an-
tenna directivity (xD = 1.39) offers a very good compromise
as it allows a 2dB gain in the asymptotic zone compared with
the non-ambiguous ULA and departs from the CRB approx-
imately at the same SNR. Hence, the RMSE will always be
better with this antenna size excepted in the no-information
zone, where unfortunately none of the solutions is valid.

4. CONCLUSIONS

In this letter, we proposed an analysis of the geometry of a
3-sensors NULA, the two first sensors position being fixed
so as to fulfill the non-aliasing constraint. This kind of an-
tenna is extremely interesting for automotive collision avoid-
ance radars or for any low-cost application. We propose to
maximize the directivity of such an antenna to achieve the
compromise between precision (thin mainlobe) and ambigui-
ties (low sidelobes). This size optimization led to a distance
between the last 2 sensors of 1.39λ2 . Numerical simulations
show that this configuration could be a good choice compared
to the standard ULA.
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