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ABSTRACT

With increasing amounts of music being digitally trans-
ferred from production to distribution, automatic means of
determining media quality are needed. Protection mech-
anisms in digital audio processing tools have not elimi-
nated the need of production entities located downstream
the distribution chain to assess audio quality and detect de-
fects inserted further upstream. Such analysis often relies
on the received audio and scarce meta-data alone. Delib-
erate use of artefacts such as clicks in popular music as
well as more recent defects stemming from corruption in
modern audio encodings call for data-centric and context-
sensitive solutions for detection. We present a convolu-
tional network architecture following end-to-end encoder-
decoder configuration to develop detectors for two exem-
plary audio defects. A click detector is trained and com-
pared to a traditional signal processing method, with a dis-
cussion on context sensitivity. Additional post-processing
is used for data augmentation and workflow simulation.
The ability of our models to capture variance is explored
in a detector for artefacts from decompression of corrupted
MP3 compressed audio. For both tasks we describe the
synthetic generation of artefacts for controlled detector
training and evaluation. We evaluate our detectors on the
large open-source Free Music Archive (FMA) and genre-
specific datasets.

1. INTRODUCTION

In recent decades, digital means of media delivery have
become increasingly popular, not least with the advent of
high-speed internet and the ubiquity of digital playback
and recording devices ranging from studio digital signal
processing hardware to MP3 players and mobile phones.
The greater availability of technology required to produce
digital media now allows for small-scale studios to create
high quality content and instantly transfer it to distributors
such as music labels.

Digital media files can suffer from various degradations
that occur during transport and processing of the media.
Automatic means exist for detection and correction of cer-
tain data errors in uncompressed audio, but many complex
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defects remain untackled. In this paper, we explore the effi-
cacy of applying a data-driven machine learning approach
using Deep Neural Networks to two audio defects, which
music labels are confronted with in quality assurance of
incoming media.

For our first scenario, we define clicks as discontinu-
ities affecting a few signal samples, resulting in very short
broadband impulses. A prominent source of similar arte-
facts are buffer under-runs, where, due to synchronisation
issues during digital audio processing, a few samples of
an old or zeroed signal are transmitted instead of the cur-
rent signal. Although existing mastering software offers
methods to remedy similar artefacts such as clicks, crackle
and clipping, restoration often requires manual selection of
noise profile, target segments or thresholds. This is due to
ambiguities introduced by e.g. signal quality or, depend-
ing on the genre, degradations voluntarily applied to audio
as effects, rendering current methods costly in large-scale
application.

Our hypothesis is that, using a data-driven approach,
our network can distinguish deliberate clicks (such as elec-
tronic snare drums) from defects, and thereby enable auto-
matic processing of large electronic music corpora. This
is an essential challenge in our scenario, where manual in-
spection may not be feasible because of operational con-
straints.

In our second scenario, we aim to detect corruption of
binary MP3 1 data via the artefacts audible after decod-
ing such files. The MP3 audio encoding family uses a
psychoacoustic model to guide data reduction. Due to the
transformations applied to data during MP3 decoding, a
large variation of effects is possible, ranging from added
whistling noise over various missing frequency bands to
broadband noise. In contrast to noise normally added dur-
ing the process of lossy encoding itself, the artefacts stem-
ming from unnoticed corruption have not been approached
for detection yet.

Such MP3 corruption may happen within a production
chain where manual transcoding is performed by differ-
ent production agents, as illustrated with the following use
case: A distributor receives a sound file in lossless for-
mat (e.g. pulse-code modulation format .wav) as a studio
quality delivery from a production entity. A degradation
is detected at this point by listening to the audio. During
discussion of this defect, it is found that the production en-
tity sent a transcoded file they prepared for checking an

1 See standards https://www.iso.org/standard/19180.
html and https://www.iso.org/standard/31537.html
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earlier, defect MP3 delivery. The decoded MP3 was trans-
mitted rather than the original .wav file intended for the
delivery. Having no dependable meta-data on intermediary
processing, the distributor can only rely on the audio itself
for quality assurance. We found the above case to have
practical relevance in the music industry, and designed our
method to aid error detection in similar circumstances.

Our two detection scenarios are chosen to benefit from
our data-driven approach: while the click detection may
make use of signal context to determine the “musicality”
of a click candidate, the MP3 glitch detector can bene-
fit from the network’s ability to capture the variation of
artefacts during training. In contrast to the click artefacts,
the artistic use of the MP3 glitch artefacts is currently lim-
ited, reducing the chance to confuse such intentional use as
degradation. The resulting models are designed for robust
scanning of large media libraries in an unsupervised batch
processing scenario.

In the following we present: an adaptation of the Wave-
U-Net deep architecture to the detection and localisation
of audio defects, two separate detectors built upon this to
respectively detect clicks and MP3 glitches, methods for
simulation of these artefacts assuring significance of in-
serted defects, and a large-scale evaluation against several
music datasets.

2. RELATED WORK

Traditional methods for detecting clicks and similar non-
stationary noise in audio aim at detecting discontinuities,
using autoregressive modelling in the raw audio or sparse
optimisation in the spectral domain [1, 2]. For restoration
of analog media, where issues like clicks, overload and
high frequency noise are common, wavelet-based imple-
mentations are used in commercial noise removal software
[3,4]. Recently, Deep Neural Networks have been used for
noise and obstruction removal mostly in images but also
for audio and other time-based signals [5–7]. Removal of
obstructions from images is a task particularly close to our
task as it deals with less stationary noise [8, 9]. Matsui et
al. [10] use a convolutional neural network similar to our
architecture to remove fences from images. Restoration
methods differ from our detection task in that explicit de-
tection reporting and evaluation of false positives are not
needed when applied as an audio de-noising effect.

For lossy audio encodings such as MP3, the artefacts
arising during encoding, mainly as a trade-off between
quality and bitrate, vary with methods and encoders and
have been extensively discussed for the MP3 format [11].
Nevertheless, corruption of files introduces new, different
artefacts that may remain unnoticed during decoding and
thus are the subject of our detector.

Research in the related field of Computational Auditory
Scene Analysis (CASA) concerns itself with the detection
and labelling of events in an audio stream. Deep Neural
Networks are now being increasingly used in this field, of-
ten with a spectral feature extraction pre-processing step.
Mesaros et al. [12] report the detection of “clicks” as one
of 61 classes in a detection task on their private dataset,

with a recognition rate of around 65 percent. It is not
clear how these clicks compare to the clicks stemming
from digitally signal failures which we tackle in this pa-
per. The focus in CASA is to detect recorded sounds while
being robust to noise in the recording, thus clicks to be de-
tected would relate to physical events (see "mouse click"
in the CASA dataset [13]). From a CASA perspective, in-
tentional clicks, as frequently found in electronic music,
would not necessarily be distinguished from those stem-
ming from defects.

This difficulty of ambiguity in audio defect annotation
is noted by Alonso-Jiménez et al. [14] who describe their
implementation and evaluation of established audio-defect
detection algorithms. Their optimised algorithms detect a
significant number of audio defects in a database from a
commercial streaming service, noting that there may be a
long tail of likely, but undetected degradations. In our ex-
periments (Section 6.1) we evaluate their click detector im-
plementation after Vaseghi [15], complementing their re-
sults with accuracy metrics on a large dataset containing
synthesized defects.

Research on error concealing scenarios, where defects
are already identified, e.g. due to missing packets at the
network layer during transport of an audio stream [16], can
inform us of the complexity and artefacts resulting from
such failures. Deep convolutional networks have been re-
cently introduced into the field of audio inpainting - fill-
ing a gap in audio in such a way that the error is con-
cealed - to great effect [17,18]. Their ability to encode and
model variation in large datasets results in more intelligi-
ble speech reconstruction, when compared to conventional
concealment approaches.

We aim to exploit gains from training with large
datasets for our detectors. Although large datasets of mu-
sic, such as the FMA dataset, are available, we are not
aware of any open datasets with audio defect labels. This
may be due to the fact that defects are mainly corrected in
production, and are - in terms of playback time - very rare.
The task of audio anomaly detection deals with this issue
using unsupervised learning to model usual/common sig-
nals on unlabeled data. Autoregressive networks [19] and
autoencoders [20] have recently been used to detect un-
usual acoustic events via their high reconstruction loss af-
ter such training. Our architecture is similar to the above,
in that it shares an information bottleneck to learn repre-
sentations, but we use a supervised learning approach with
synthetic examples similar to the work in [21] to better
control the type of artefacts detected, avoiding the detec-
tion of e.g. new instruments or audio samples as anoma-
lies.

Ronneberger et al. [22] originally presented the U-Net
as a deep convolutional neural network for the task of seg-
menting biomedical images. The network structure allows
for efficient learning of spatial, or - in the case of audio -
temporal and frequency patterns. It has since been used for
various end-to-end audio transformation tasks [23]. Stoller
et al. [24] modified this structure to work directly on the
one-dimensional audio signal as input, resulting in the
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Wave-U-Net. In their source-separation task, they employ
the network on overlapping excerpts of the original signal
at a low 8kHz sample rate.

3. MODEL ARCHITECTURE

In this paper we introduce the Hook-Net as a novel adap-
tation of the Wave-U-Net for the task of detecting artefacts
in audio signals. We apply this model as an end-to-end ap-
proach, feeding raw waveform segments into the network
to receive a time series of classification results. After ini-
tial experiments with a U-Net on spectrogram features, we
found training to be more effective when using raw audio
input, which may be due to the extreme brevity of our de-
fects. The time-aligning horizontal connections of input
and output promise to help capture the context of distor-
tions in the input waveform.

Our network takes as input segments 16384 samples of
audio (at 44100Hz sample rate) and outputs a time series
of 128 output samples that are individually quantised to
the binary decision on original vs. degraded. The original
Wave-U-Net implies that input and output share the same
sampling rate. To reduce computational cost while operat-
ing at source input sample rates, the Hook-Net introduces
an imbalance: the output time resolution is reduced by a
factor of 128 with regards to the input sample rate, result-
ing in a classification sample rate of 344.5Hz. 2

Figure 1. Architecture of the Hook-Net

This is reflected in the network structure as displayed in
Figure 1. Our contracting (left side) path consists in blocks
comprising two sequences of (zero-padded convolution –
batch-norm – activation) layers followed by max-pooling.
Here, the temporal resolution is halved every block, while
the number of filters increases. An expanding block con-
sists of an upscaling operation, followed by concatenation
of the skip connection from the contracting path and a reg-
ular convolution layer. In our model, resolution of the axis
mapped to time in our output is only doubled every second
block - resulting in a reduced temporal resolution at the
network output.

For the upscaling operation we follow the original U-
Net [22], but employ transposed convolution of stride 2
only every second layer, and stride 1 otherwise. Thereby
some steadiness remains in the growth of resolution across

2 This also allows comparisons with spectrogram-based models, which
did not perform as well and are omitted for brevity.

the expanding path, despite the reduced final output res-
olution. For the horizontal skip-connections, connecting
the contracting and expansive path, we use max-pooling to
adapt the time resolutions between the corresponding lay-
ers. We furthermore add vertical skip connections on the
contracting path, bridging every block of two convolutions.
This strategy is motivated by the training benefits reported
in residual networks [25].

In the following we describe the generation of click and
MP3 glitch artefacts.

4. CLICK ARTEFACT GENERATION

Within the scope of this paper, a click degradation corre-
sponds to a fault in the already digitised signal: we de-
fine a click as a discontinuity, where the signal changes
sharply to a random value for 1-3 samples but then contin-
ues unchanged. With this definition we aim to cover and
simulate defects from digital signal transport, commonly
resulting from buffer under-run during playback or mix-
ing in a DAW or timing errors during digital transport over
wire.

Clicks are inserted on-the-fly into the network input au-
dio segments for training, validation and test scenarios.
The position of the click is randomised, and one click is
inserted with a probability of 0.1 per audio segment, with a
small variation in length. The amplitude value of the click
is calculated as a random offset of the current signal, from
a uniform distribution within [0.3, 1). Each initial offset
sign is chosen randomly, then signs that would create clip-
ping are inverted.

The minimum amplitude offset (0.3) of the inserted
clicks’ amplitudes is introduced to assure that the signal
change and resulting degradation is significant. In absence
of perceptual data on the acoustic salience of inserted arte-
facts, this heuristic should create clicks that are likely to be
audible, where they are not perceptually masked by close
preceding transients or loud broad-band noise.

4.1 Audio post-processing via SoX

In order to simulate potential post-processing effects that
may have occurred on audio signals with previously un-
detected clicks, we use the SoX 3 sound processor to
slightly alter the audio segments after the click-insertion
steps. Segments are post-processed regardless of whether
a click has actually been inserted. A random combination
of reverb, two-band EQ and compression is applied, and
strength and filter parameters are chosen randomly within
ranges that apply only mild changes to the signal. In Sec-
tion 6.1 we report results for click detector training and
detection with and without post-processing.

4.2 Click target vector

The target vector for training and testing of the detector is
a 128-component floating point vector that is set to 1 on
the (resampled) position corresponding to the location of

3 http://sox.sourceforge.net/
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an inserted click, and 0 otherwise. In our experiments we
simulate the problem of rare clicks that may be overlooked
during production. There is at most 1 click per input seg-
ment.

5. MP3 GLITCH ARTEFACT GENERATION

This use-case tackles degradations that result from data
corruption in the commonly used MPEG-1/2 Audio Layer
III (MP3) lossy audio compression format. We will refer
to these as glitch defects. This degradation is interesting as
it can easily be “overlooked” in quality assurance. More-
over, the generation approach described below can be gen-
eralised to other audio codecs.0 2500 5000 7500 10000 12500 15000
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Figure 2. Typical example of glitch degradation. Top:
linear frequency spectrogram of original signal. Bottom:
same for signal with two degradations at frame 0 (inter-
mittent) and frame 80 with binary ground truth annotations
from spectrogram comparison.

The acoustic shape of the degradation varies strongly
and often depends on the content and amplitude of the sur-
rounding audio data. Fig.2 displays a typical glitch arte-
fact: the degradation consists in added high-frequency con-
tent. This effect appears when comparing the original (top)
and degraded (bottom) spectrogram contents between 80-
100 frames. The same example features another glitch
effect at the start of the frame, affecting a lower part of
the spectrum. Acoustically, the effect is similar to a short
whistle. An audio example demonstrating glitch artefacts
is available online 4 . Note that the overall signal energy
does not always change. The often well-embedded and
adaptive nature of these glitches render automatic detec-
tion difficult.

5.1 Simulation of data corruption

Unlike the click degradations, which can be inserted on-
the-fly as in Section 4, MP3 glitch degradations are calcu-
lated on a per-piece basis before training due to the less
easily indexable file format of MP3 which hinders exact
seeking.

4 https://osf.io/uqner/?view_only=
042774933537440299dd48a4083305b1

In order to simulate data corruption in the compressed
format, we modify MP3 encoded data during a decoding
process which we survey on a frame by frame basis: the
MP3 format encodes an audio stream into a series of MP3
frames. Each of these frames contains a header, containing
format information and parameters of the MP3 encoding
process itself. An optional integrity check for the header
is often omitted to save bitrate. The lame 5 encoder used
in the present study does not include CRC checking. The
header is followed by the encoded audio data, the size of
this block being determined by the bitrate used for the
frame during encoding. If a corrupted file remains unde-
tected before and during decoding, introduced errors may
be audible as glitches in playback, but become (from a data
integrity point of view) undistinguishable from the original
signal. This may easily happen if a command-line decod-
ing tool only issues a warning in case of a data corruption
which the decoding process can recover from in successive
frames.

We generate glitches as follows: First, the input audio
is transcoded to 128kbps mono MP3 files. During the fol-
lowing decoding, frames are randomly selected for glitch
insertion given a probability of Pglitch = 0.05. In contrast
to click generation we control glitch likelihood per MP3
frame. The data in these frames is then partially overwrit-
ten with random data of a randomised length. We found an
average overwritten range of 120 bytes (an average frame
contains 418 bytes) with a standard deviation of 60 bytes
to give realistic results. No distinction was made between
the header and data sections of the MP3 frame. In the
rare case that the decoding of the degraded frame is not
possible, the original MP3 frame is decoded and treated
as non-degenerated. The same method is used where the
decoded data is of a different length than the original un-
degraded signal. Frames not selected for glitch insertion
are decoded inbetween such that the degraded decoding of
the MP3 data results in a file with the same length as the
original.

5.2 MP3 glitch target vector

MP3 glitches are inserted during pre-processing. To iden-
tify the actual parts of the decoded wave signal affected by
the glitch artefact after decoding and segmentation, we em-
ploy a spectral distance measure comparing the degradedly
decoded audio to a clean decoding of the audio. Using a
frame wise thresholded difference of a power spectrogram
at the frame rate of the network output (128 spectrogram
frames), we determine whether significant degradation has
taken place for each of the 128 output values. Fig. 2 (bot-
tom) shows a resulting glitch classification target.

6. EXPERIMENTS

We compare our detectors on the Creative-Commons
licensed FMA-Large 6 dataset, containing roughly 30-
second snippets of 106,574 tracks from 16341 artists

5 https://linux.die.net/man/1/lame
6 Online at https://github.com/mdeff/fma/.
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within 161 genres, the most frequent being "Experimen-
tal", "Electronic", and "Rock" [26]. The music is stored in
320kbps stereo MP3 format.

Depending on the scenario, the data is either decom-
pressed and degraded on-the-fly, or, as in the MP3 glitch
scenario, data is already pre-processed with degradations
added, and loaded as raw waveform alongside correspond-
ing ground truth data. The Hook-Net models take as in-
put audio segments of 16384 samples at a sampling rate of
44.1kHz, corresponding to 0.37 seconds.

Degraded (as well as non-degraded) audio and target
data are then used for network training, using a batch
size of 200 segments. During configuration of the Hook-
Net, we tested variations on general parameters such as
numbers of filters and found the models with 13 contract-
ing/expanding blocks (see Section 3), 15 filters per con-
traction and 5 filters per expansion, totalling at 27,307,633
trainable parameters, performing well for our tasks at hand.
Initial experiments consistently showed reduced precision
in smaller models. Training is performed in Tensorflow,
using the ADAM [27] optimiser, on single Nvidia V100
GPU.

6.1 Click detection

We selected a subset of 57,928 pieces from FMA-Large
for training and evaluation of our click detector Hook-
Net. Pieces were separated into non-overlapping training
(40,000 pieces), validation (8964 pieces), and test (8964
pieces) sets. For each piece, 50 consecutive audio seg-
ments (18.6s in total) were extracted with no overlap, re-
sulting in 2,000,000 training segments and 448,200 vali-
dation and 448,200 test segments. In the above datasets,
0.078% of the individual target values is set to 1 (on av-
erage, in every 10th segment, one value in the target vec-
tor is marked as containing a click), which is reflected in
the initial setting of the network outputs’ activation biases.
Evaluation is performed on the target values as smallest
units, not summarised at the segment level. The model was
trained using a root mean square loss weighted towards the
“click” class with a learning rate of 0.001. We report re-
sults from models of the epoch with best validation set ac-
curacy.

As a baseline for the click detection task we apply a
generic click detector (SigClick) as implemented 7 in the
open source Essentia library [28] to the data segments. To
apply this to our segments of 16384 samples, we add an
additional sub-segmentation step, using sub-segments of
4096 samples length, with an overlap of 2048 samples.
Click positions returned by SigClick are transformed into
a binary output vector of 128 samples.

Table 1 compares the test set performance of the Hook-
Net to that of the best performing (by highest validation
set accuracy) configuration (threshold 35) of the SigClick
detector between tested thresholds of 30(default), 33, 35,
40, and 50. The Hook-Net models were selected by high-
est validation set accuracy, which was achieved after 13

7 https://essentia.upf.edu/reference/std_
ClickDetector.html

test data acc_t pr_t rec_t f1_t
Hook-Net FMA 99.9993 99.77 99.24 99.47
SigClick FMA 99.95 84.39 90.52 84.60
Hook-Net FMApost 99.9991 99.70 99.02 99.32

Hook-Netpost FMApost 99.9995 99.86 99.11 99.46
SigClick FMApost 99.97 85.52 81.04 80.62

Table 1. Click detector performances for plain (top) and
post-processed (bottom) click-degraded data (higher is bet-
ter, best per dataset in bold): test-set accuracy (acc_t), test
precision(pr_t), recall(rec_t) and f-measure (f1_t) for click
detection. In percent.

epochs (36 total) for the click data (Hook-Net) and 10
epochs (14 total) for training with post-processed click
data (Hook-Netpost).

Due to the bias of the dataset and target vectors towards
0 (no click), we concentrate on precision and recall which
is reported for the click class. For the application of find-
ing defects in large commercial databases, the precision
of click detection is of great importance. Top of Table 1
shows the Hook-Net achieves significantly better precision
and recall of clicks. The bottom of the table confirms this
using post-processed click data as test set. Added vari-
ation from post-processing results in lower recall values,
particularly with SigClick. The difference in training with
(Hook-Net post) and without (Hook-Net) post-processing
shows good generalisation from the generated click arte-
facts to the diverse post-processed artefacts.

These results highlight a critical difference in the data-
driven paradigm applied in network training versus the
more generalistic detection in SigClick: while the assump-
tion for a general click detector is to detect any existing
click (given other preconditions e.g. sufficient distance to
the preceding one), the Hook-Net has been trained to de-
tect our inserted clicks while ignoring other click instances
in the music. Note that we do only compare the perfor-
mances on our clicks simulating digital defects such as
buffer under-run and timing errors. The SigClick detec-
tor may detect a wider range of clicks, but for this initial
experiment we refrained from training more generic mod-
els due to the lack of datasets with clicks stemming from
defects in music production, as we aim to minimise false
positives.

Manual verification showed that the FMA dataset does
feature many examples of electronic “glitch” music with
intentional or expected clicks. The goal of our detector
is to differentiate such clicks from the ones added due to
signal failures.

We validate this relation to musical genre in Table 2 by
applying the above model and SigClick on three smaller
genre-consistent datasets of 11400 (electronic), 10000
(pop rock) and 31600 (classical) segments not included in
the former training. Following the hypothesis that the elec-
tronic genre features more intentional click samples than
the classical genre, we see the precision of SigClick very
high for the classical data but significantly dropping in the
rock/pop and electronic genres, while the Hook-Net main-
tains high precision with only little difference. The values
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dataset acc_t pr_t rec_t f1_t
Hook-Net electronic 99.9997 99.91 99.74 99.82
SigClick electronic 99.94 80.34 98.06 84.94
Hook-Net rock pop 99.99992 100.0 99.90 99.95
SigClick rock pop 99.99 92.08 94.37 92.05
Hook-Net classical 100.0 100.0 100.0 100.0
SigClick classical 99.992 92.47 99.11 95.34

Table 2. Click performance in control datasets. Test-set
accuracy (acc_t), test precision(pr_t), recall(rec_t) and f-
measure (f1_t).

ep. acc_v acc_t pr_t rec_t f1_t
Hook-Net 31 98.52 98.46 92.83 88.04 90.37

Table 3. Glitch detection performance. Epoch with great-
est validation-set accuracy, validation accuracy (acc_v),
test-set accuracy (acc_t), test precision(pr_t), recall(rec_t)
and f-measure (f1_t) for glitch detection. In percent.

for post-processed data not reported here due to space lim-
itations confirm this effect.

6.2 MP3 glitch detection

For this task, pre-caching of degraded audio allows us to
use larger subsets of FMA for training (66476 pieces), val-
idation (14244 pieces) and test (14244 pieces).

For each piece, 50 consecutive audio segments were ex-
tracted as above, resulting in 3,323,800 training segments
and 712,200 validation and test segments. Segments were
randomised within each of the above datasets. While a
click only results in 1 target value to be set to 1, glitches af-
fect multiple target values per segment due to whole MP3
frames being affected by each corruption. This results in
train and validation datasets containing 8.04% of the target
values marked as glitched (test set: 8.19%).

Training is performed using root mean square loss, with
initial learning rate of 0.001 and reduction-on-plateau (fac-
tor 0.1, patience 10 epochs) of the learning rate. Across
40 training epochs, the best model was selected based on
its validation accuracy (acc_v) measure. Table 3 shows the
performance of this best model. Given the bias towards the
non-degraded class we report f-measure and precision re-
garding the glitched class due to their relevance for our ap-
plication scenario. The Hook-Net glitch model generalises
well from the validation to the test set, with an f1-measure
of 0.9037.

7. CONCLUSIONS AND FUTURE WORK

We presented the Hook-Net convolutional neural network
architecture with two novel applications to detect click and
data corruption errors in digital audio recordings. The de-
sign goal of the architecture is to capture the typical shape
and variation of artefacts in the direct audio signal, with
respect to their acoustic context. The detectors localise er-
rors with a time resolution of less than 10 milliseconds.

For click detection, we demonstrated an end-to-end
simulation, post-processing and detector training method.
Our evaluation shows the resulting detector outperforms a

state-of-the-art baseline on the large FMA popular music
dataset, using synthetically generated defects. A genre-
specific evaluation experiment shows the practical rele-
vance of inclusion of context and the capability of our
model to capture this: discontinuities resembling clicks in
audio may represent intentional music content depending
on their context. The achieved precision (> 99.77%) ren-
ders the detector suitable for the testing of large commer-
cial music databases.

Our second proposed application is aimed to filter
degradations in modern compressed audio from persisting
unnoticed in subsequent use of the defect audio. We de-
scribe the MP3 decoding glitch as a relatively novel type
of audio degradation for which detection is difficult due to
its variation. Our evaluation shows that our detector gen-
eralises well on common glitch artefacts. The proposed
training tasks come with a bias towards non-defective au-
dio, which we assume to be strong in real-world applica-
tions. This is tackled using large training and validation
datasets with synthesised artefact insertion. The simula-
tion of data corruption with subsequential MP3 decoding
promises a stronger realism of the artefacts synthesized in
this task. This process is applicable to other audio codecs,
depending on decoder robustness and consistency checks.

In future work we plan to extend the range of lossy com-
pression defects simulated and apply our architecture to
further and more generalised local audio degradations. We
also aim to reduce model complexity without negatively
affecting performance.
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