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AUDIO DEFECT DETECTION IN MUSIC WITH DEEP NETWORKS

With increasing amounts of music being digitally transferred from production to distribution, automatic means of determining media quality are needed. Protection mechanisms in digital audio processing tools have not eliminated the need of production entities located downstream the distribution chain to assess audio quality and detect defects inserted further upstream. Such analysis often relies on the received audio and scarce meta-data alone. Deliberate use of artefacts such as clicks in popular music as well as more recent defects stemming from corruption in modern audio encodings call for data-centric and contextsensitive solutions for detection. We present a convolutional network architecture following end-to-end encoderdecoder configuration to develop detectors for two exemplary audio defects. A click detector is trained and compared to a traditional signal processing method, with a discussion on context sensitivity. Additional post-processing is used for data augmentation and workflow simulation. The ability of our models to capture variance is explored in a detector for artefacts from decompression of corrupted MP3 compressed audio. For both tasks we describe the synthetic generation of artefacts for controlled detector training and evaluation. We evaluate our detectors on the large open-source Free Music Archive (FMA) and genrespecific datasets.

INTRODUCTION

In recent decades, digital means of media delivery have become increasingly popular, not least with the advent of high-speed internet and the ubiquity of digital playback and recording devices ranging from studio digital signal processing hardware to MP3 players and mobile phones. The greater availability of technology required to produce digital media now allows for small-scale studios to create high quality content and instantly transfer it to distributors such as music labels.

Digital media files can suffer from various degradations that occur during transport and processing of the media. Automatic means exist for detection and correction of certain data errors in uncompressed audio, but many complex © Daniel Wolff, Rémi Mignot and Axel Roebel. Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Attribution: Daniel Wolff, Rémi Mignot and Axel Roebel, "Audio Defect Detection in Music with Deep Networks", in Proc. of the 22nd Int. Society for Music Information Retrieval Conf., Online, 2021. defects remain untackled. In this paper, we explore the efficacy of applying a data-driven machine learning approach using Deep Neural Networks to two audio defects, which music labels are confronted with in quality assurance of incoming media.

For our first scenario, we define clicks as discontinuities affecting a few signal samples, resulting in very short broadband impulses. A prominent source of similar artefacts are buffer under-runs, where, due to synchronisation issues during digital audio processing, a few samples of an old or zeroed signal are transmitted instead of the current signal. Although existing mastering software offers methods to remedy similar artefacts such as clicks, crackle and clipping, restoration often requires manual selection of noise profile, target segments or thresholds. This is due to ambiguities introduced by e.g. signal quality or, depending on the genre, degradations voluntarily applied to audio as effects, rendering current methods costly in large-scale application.

Our hypothesis is that, using a data-driven approach, our network can distinguish deliberate clicks (such as electronic snare drums) from defects, and thereby enable automatic processing of large electronic music corpora. This is an essential challenge in our scenario, where manual inspection may not be feasible because of operational constraints.

In our second scenario, we aim to detect corruption of binary MP31 data via the artefacts audible after decoding such files. The MP3 audio encoding family uses a psychoacoustic model to guide data reduction. Due to the transformations applied to data during MP3 decoding, a large variation of effects is possible, ranging from added whistling noise over various missing frequency bands to broadband noise. In contrast to noise normally added during the process of lossy encoding itself, the artefacts stemming from unnoticed corruption have not been approached for detection yet.

Such MP3 corruption may happen within a production chain where manual transcoding is performed by different production agents, as illustrated with the following use case: A distributor receives a sound file in lossless format (e.g. pulse-code modulation format .wav) as a studio quality delivery from a production entity. A degradation is detected at this point by listening to the audio. During discussion of this defect, it is found that the production entity sent a transcoded file they prepared for checking an earlier, defect MP3 delivery. The decoded MP3 was transmitted rather than the original .wav file intended for the delivery. Having no dependable meta-data on intermediary processing, the distributor can only rely on the audio itself for quality assurance. We found the above case to have practical relevance in the music industry, and designed our method to aid error detection in similar circumstances.

Our two detection scenarios are chosen to benefit from our data-driven approach: while the click detection may make use of signal context to determine the "musicality" of a click candidate, the MP3 glitch detector can benefit from the network's ability to capture the variation of artefacts during training. In contrast to the click artefacts, the artistic use of the MP3 glitch artefacts is currently limited, reducing the chance to confuse such intentional use as degradation. The resulting models are designed for robust scanning of large media libraries in an unsupervised batch processing scenario.

In the following we present: an adaptation of the Wave-U-Net deep architecture to the detection and localisation of audio defects, two separate detectors built upon this to respectively detect clicks and MP3 glitches, methods for simulation of these artefacts assuring significance of inserted defects, and a large-scale evaluation against several music datasets.

RELATED WORK

Traditional methods for detecting clicks and similar nonstationary noise in audio aim at detecting discontinuities, using autoregressive modelling in the raw audio or sparse optimisation in the spectral domain [START_REF] Godsill | Digital Audio Restoration[END_REF][START_REF] Adler | A constrained matching pursuit approach to audio declipping[END_REF]. For restoration of analog media, where issues like clicks, overload and high frequency noise are common, wavelet-based implementations are used in commercial noise removal software [START_REF] Berger | Removing noise from music using local trigonometric bases and wavelet packets[END_REF][START_REF] Laney | Automatic detection of flaws in recorded music using wavelet fingerprinting[END_REF]. Recently, Deep Neural Networks have been used for noise and obstruction removal mostly in images but also for audio and other time-based signals [START_REF] Valin | A hybrid dsp/deep learning approach to real-time full-band speech enhancement[END_REF][START_REF] Maas | Recurrent neural networks for noise reduction in robust ASR[END_REF][START_REF] Chiang | Noise reduction in ecg signals using fully convolutional denoising autoencoders[END_REF]. Removal of obstructions from images is a task particularly close to our task as it deals with less stationary noise [START_REF] Xiang | Single-image de-raining with feature-supervised generative adversarial network[END_REF][START_REF] Wang | Perceptual adversarial networks for image-to-image transformation[END_REF]. Matsui et al. [START_REF] Matsui | Single-image fence removal using deep convolutional neural network[END_REF] use a convolutional neural network similar to our architecture to remove fences from images. Restoration methods differ from our detection task in that explicit detection reporting and evaluation of false positives are not needed when applied as an audio de-noising effect.

For lossy audio encodings such as MP3, the artefacts arising during encoding, mainly as a trade-off between quality and bitrate, vary with methods and encoders and have been extensively discussed for the MP3 format [START_REF] Brandenburg | MP3 and AAC explained[END_REF]. Nevertheless, corruption of files introduces new, different artefacts that may remain unnoticed during decoding and thus are the subject of our detector.

Research in the related field of Computational Auditory Scene Analysis (CASA) concerns itself with the detection and labelling of events in an audio stream. Deep Neural Networks are now being increasingly used in this field, often with a spectral feature extraction pre-processing step. Mesaros et al. [START_REF] Mesaros | Acoustic event detection in real-life recordings[END_REF] report the detection of "clicks" as one of 61 classes in a detection task on their private dataset, with a recognition rate of around 65 percent. It is not clear how these clicks compare to the clicks stemming from digitally signal failures which we tackle in this paper. The focus in CASA is to detect recorded sounds while being robust to noise in the recording, thus clicks to be detected would relate to physical events (see "mouse click" in the CASA dataset [START_REF] Giannoulis | A database and challenge for acoustic scene classification and event detection[END_REF]). From a CASA perspective, intentional clicks, as frequently found in electronic music, would not necessarily be distinguished from those stemming from defects. This difficulty of ambiguity in audio defect annotation is noted by Alonso-Jiménez et al. [START_REF] Alonso-Jiménez | Automatic detection of audio problems for quality control in digital music distribution[END_REF] who describe their implementation and evaluation of established audio-defect detection algorithms. Their optimised algorithms detect a significant number of audio defects in a database from a commercial streaming service, noting that there may be a long tail of likely, but undetected degradations. In our experiments (Section 6.1) we evaluate their click detector implementation after Vaseghi [START_REF] Vaseghi | Impulsive Noise: Modelling, Detection and Removal[END_REF], complementing their results with accuracy metrics on a large dataset containing synthesized defects.

Research on error concealing scenarios, where defects are already identified, e.g. due to missing packets at the network layer during transport of an audio stream [START_REF] Perkins | A survey of packet loss recovery techniques for streaming audio[END_REF], can inform us of the complexity and artefacts resulting from such failures. Deep convolutional networks have been recently introduced into the field of audio inpainting -filling a gap in audio in such a way that the error is concealed -to great effect [START_REF] Lee | Packet loss concealment based on deep neural networks for digital speech transmission[END_REF][START_REF] Marafioti | A context encoder for audio inpainting[END_REF]. Their ability to encode and model variation in large datasets results in more intelligible speech reconstruction, when compared to conventional concealment approaches.

We aim to exploit gains from training with large datasets for our detectors. Although large datasets of music, such as the FMA dataset, are available, we are not aware of any open datasets with audio defect labels. This may be due to the fact that defects are mainly corrected in production, and are -in terms of playback time -very rare. The task of audio anomaly detection deals with this issue using unsupervised learning to model usual/common signals on unlabeled data. Autoregressive networks [START_REF] Rushe | Anomaly detection in raw audio using deep autoregressive networks[END_REF] and autoencoders [START_REF] Marchi | Deep recurrent neural network-based autoencoders for acoustic novelty detection[END_REF] have recently been used to detect unusual acoustic events via their high reconstruction loss after such training. Our architecture is similar to the above, in that it shares an information bottleneck to learn representations, but we use a supervised learning approach with synthetic examples similar to the work in [START_REF] Mühlbauer | Automatic audio defect detection[END_REF] to better control the type of artefacts detected, avoiding the detection of e.g. new instruments or audio samples as anomalies.

Ronneberger et al. [START_REF] Ronneberger | U-Net: Convolutional networks for biomedical image segmentation[END_REF] originally presented the U-Net as a deep convolutional neural network for the task of segmenting biomedical images. The network structure allows for efficient learning of spatial, or -in the case of audiotemporal and frequency patterns. It has since been used for various end-to-end audio transformation tasks [START_REF] Jansson | Singing voice separation with deep U-Net convolutional networks[END_REF]. Stoller et al. [START_REF] Stoller | Wave-U-Net: A multi-scale neural network for end-to-end audio source separation[END_REF] modified this structure to work directly on the one-dimensional audio signal as input, resulting in the Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

Wave-U-Net. In their source-separation task, they employ the network on overlapping excerpts of the original signal at a low 8kHz sample rate.

MODEL ARCHITECTURE

In this paper we introduce the Hook-Net as a novel adaptation of the Wave-U-Net for the task of detecting artefacts in audio signals. We apply this model as an end-to-end approach, feeding raw waveform segments into the network to receive a time series of classification results. After initial experiments with a U-Net on spectrogram features, we found training to be more effective when using raw audio input, which may be due to the extreme brevity of our defects. The time-aligning horizontal connections of input and output promise to help capture the context of distortions in the input waveform.

Our network takes as input segments 16384 samples of audio (at 44100Hz sample rate) and outputs a time series of 128 output samples that are individually quantised to the binary decision on original vs. degraded. The original Wave-U-Net implies that input and output share the same sampling rate. To reduce computational cost while operating at source input sample rates, the Hook-Net introduces an imbalance: the output time resolution is reduced by a factor of 128 with regards to the input sample rate, resulting in a classification sample rate of 344.5Hz. 2Figure 1. Architecture of the Hook-Net This is reflected in the network structure as displayed in Figure 1. Our contracting (left side) path consists in blocks comprising two sequences of (zero-padded convolutionbatch-norm -activation) layers followed by max-pooling. Here, the temporal resolution is halved every block, while the number of filters increases. An expanding block consists of an upscaling operation, followed by concatenation of the skip connection from the contracting path and a regular convolution layer. In our model, resolution of the axis mapped to time in our output is only doubled every second block -resulting in a reduced temporal resolution at the network output.

For the upscaling operation we follow the original U-Net [START_REF] Ronneberger | U-Net: Convolutional networks for biomedical image segmentation[END_REF], but employ transposed convolution of stride 2 only every second layer, and stride 1 otherwise. Thereby some steadiness remains in the growth of resolution across the expanding path, despite the reduced final output resolution. For the horizontal skip-connections, connecting the contracting and expansive path, we use max-pooling to adapt the time resolutions between the corresponding layers. We furthermore add vertical skip connections on the contracting path, bridging every block of two convolutions. This strategy is motivated by the training benefits reported in residual networks [START_REF] He | Deep residual learning for image recognition[END_REF].

In the following we describe the generation of click and MP3 glitch artefacts.

CLICK ARTEFACT GENERATION

Within the scope of this paper, a click degradation corresponds to a fault in the already digitised signal: we define a click as a discontinuity, where the signal changes sharply to a random value for 1-3 samples but then continues unchanged. With this definition we aim to cover and simulate defects from digital signal transport, commonly resulting from buffer under-run during playback or mixing in a DAW or timing errors during digital transport over wire.

Clicks are inserted on-the-fly into the network input audio segments for training, validation and test scenarios. The position of the click is randomised, and one click is inserted with a probability of 0.1 per audio segment, with a small variation in length. The amplitude value of the click is calculated as a random offset of the current signal, from a uniform distribution within [0.3, 1). Each initial offset sign is chosen randomly, then signs that would create clipping are inverted.

The minimum amplitude offset (0.3) of the inserted clicks' amplitudes is introduced to assure that the signal change and resulting degradation is significant. In absence of perceptual data on the acoustic salience of inserted artefacts, this heuristic should create clicks that are likely to be audible, where they are not perceptually masked by close preceding transients or loud broad-band noise.

Audio post-processing via SoX

In order to simulate potential post-processing effects that may have occurred on audio signals with previously undetected clicks, we use the SoX3 sound processor to slightly alter the audio segments after the click-insertion steps. Segments are post-processed regardless of whether a click has actually been inserted. A random combination of reverb, two-band EQ and compression is applied, and strength and filter parameters are chosen randomly within ranges that apply only mild changes to the signal. In Section 6.1 we report results for click detector training and detection with and without post-processing.

Click target vector

The target vector for training and testing of the detector is a 128-component floating point vector that is set to 1 on the (resampled) position corresponding to the location of an inserted click, and 0 otherwise. In our experiments we simulate the problem of rare clicks that may be overlooked during production. There is at most 1 click per input segment.

MP3 GLITCH ARTEFACT GENERATION

This use-case tackles degradations that result from data corruption in the commonly used MPEG-1/2 Audio Layer III (MP3) lossy audio compression format. We will refer to these as glitch defects. This degradation is interesting as it can easily be "overlooked" in quality assurance. Moreover, the generation approach described below can be generalised to other audio codecs. The acoustic shape of the degradation varies strongly and often depends on the content and amplitude of the surrounding audio data. Fig. 2 displays a typical glitch artefact: the degradation consists in added high-frequency content. This effect appears when comparing the original (top) and degraded (bottom) spectrogram contents between 80-100 frames. The same example features another glitch effect at the start of the frame, affecting a lower part of the spectrum. Acoustically, the effect is similar to a short whistle. An audio example demonstrating glitch artefacts is available online 4 . Note that the overall signal energy does not always change. The often well-embedded and adaptive nature of these glitches render automatic detection difficult.

Simulation of data corruption

Unlike the click degradations, which can be inserted onthe-fly as in Section 4, MP3 glitch degradations are calculated on a per-piece basis before training due to the less easily indexable file format of MP3 which hinders exact seeking.

In order to simulate data corruption in the compressed format, we modify MP3 encoded data during a decoding process which we survey on a frame by frame basis: the MP3 format encodes an audio stream into a series of MP3 frames. Each of these frames contains a header, containing format information and parameters of the MP3 encoding process itself. An optional integrity check for the header is often omitted to save bitrate. The lame5 encoder used in the present study does not include CRC checking. The header is followed by the encoded audio data, the size of this block being determined by the bitrate used for the frame during encoding. If a corrupted file remains undetected before and during decoding, introduced errors may be audible as glitches in playback, but become (from a data integrity point of view) undistinguishable from the original signal. This may easily happen if a command-line decoding tool only issues a warning in case of a data corruption which the decoding process can recover from in successive frames.

We generate glitches as follows: First, the input audio is transcoded to 128kbps mono MP3 files. During the following decoding, frames are randomly selected for glitch insertion given a probability of P glitch = 0.05. In contrast to click generation we control glitch likelihood per MP3 frame. The data in these frames is then partially overwritten with random data of a randomised length. We found an average overwritten range of 120 bytes (an average frame contains 418 bytes) with a standard deviation of 60 bytes to give realistic results. No distinction was made between the header and data sections of the MP3 frame. In the rare case that the decoding of the degraded frame is not possible, the original MP3 frame is decoded and treated as non-degenerated. The same method is used where the decoded data is of a different length than the original undegraded signal. Frames not selected for glitch insertion are decoded inbetween such that the degraded decoding of the MP3 data results in a file with the same length as the original.

MP3 glitch target vector

MP3 glitches are inserted during pre-processing. To identify the actual parts of the decoded wave signal affected by the glitch artefact after decoding and segmentation, we employ a spectral distance measure comparing the degradedly decoded audio to a clean decoding of the audio. Using a frame wise thresholded difference of a power spectrogram at the frame rate of the network output (128 spectrogram frames), we determine whether significant degradation has taken place for each of the 128 output values. Fig. 2 (bottom) shows a resulting glitch classification target.

EXPERIMENTS

We compare our detectors on the Creative-Commons licensed FMA-Large 6 dataset, containing roughly 30second snippets of 106,574 tracks from 16341 artists within 161 genres, the most frequent being "Experimental", "Electronic", and "Rock" [START_REF] Defferrard | FMA: A dataset for music analysis[END_REF]. The music is stored in 320kbps stereo MP3 format.

Depending on the scenario, the data is either decompressed and degraded on-the-fly, or, as in the MP3 glitch scenario, data is already pre-processed with degradations added, and loaded as raw waveform alongside corresponding ground truth data. The Hook-Net models take as input audio segments of 16384 samples at a sampling rate of 44.1kHz, corresponding to 0.37 seconds.

Degraded (as well as non-degraded) audio and target data are then used for network training, using a batch size of 200 segments. During configuration of the Hook-Net, we tested variations on general parameters such as numbers of filters and found the models with 13 contracting/expanding blocks (see Section 3), 15 filters per contraction and 5 filters per expansion, totalling at 27,307,633 trainable parameters, performing well for our tasks at hand. Initial experiments consistently showed reduced precision in smaller models. Training is performed in Tensorflow, using the ADAM [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] optimiser, on single Nvidia V100 GPU.

Click detection

We selected a subset of 57,928 pieces from FMA-Large for training and evaluation of our click detector Hook-Net. Pieces were separated into non-overlapping training (40,000 pieces), validation (8964 pieces), and test (8964 pieces) sets. For each piece, 50 consecutive audio segments (18.6s in total) were extracted with no overlap, resulting in 2,000,000 training segments and 448,200 validation and 448,200 test segments. In the above datasets, 0.078% of the individual target values is set to 1 (on average, in every 10th segment, one value in the target vector is marked as containing a click), which is reflected in the initial setting of the network outputs' activation biases. Evaluation is performed on the target values as smallest units, not summarised at the segment level. The model was trained using a root mean square loss weighted towards the "click" class with a learning rate of 0.001. We report results from models of the epoch with best validation set accuracy.

As a baseline for the click detection task we apply a generic click detector (SigClick) as implemented 7 in the open source Essentia library [START_REF] Bogdanov | Essentia: an open-source library for sound and music analysis[END_REF] to the data segments. To apply this to our segments of 16384 samples, we add an additional sub-segmentation step, using sub-segments of 4096 samples length, with an overlap of 2048 samples. Click positions returned by SigClick are transformed into a binary output vector of 128 samples.

Table 1 compares the test set performance of the Hook-Net to that of the best performing (by highest validation set accuracy) configuration (threshold 35) of the SigClick detector between tested thresholds of 30(default), 33, 35, 40, and 50. The Hook-Net models were selected by highest validation set accuracy, which was achieved after 13 Due to the bias of the dataset and target vectors towards 0 (no click), we concentrate on precision and recall which is reported for the click class. For the application of finding defects in large commercial databases, the precision of click detection is of great importance. Top of Table 1 shows the Hook-Net achieves significantly better precision and recall of clicks. The bottom of the table confirms this using post-processed click data as test set. Added variation from post-processing results in lower recall values, particularly with SigClick. The difference in training with (Hook-Net post ) and without (Hook-Net) post-processing shows good generalisation from the generated click artefacts to the diverse post-processed artefacts.

These results highlight a critical difference in the datadriven paradigm applied in network training versus the more generalistic detection in SigClick: while the assumption for a general click detector is to detect any existing click (given other preconditions e.g. sufficient distance to the preceding one), the Hook-Net has been trained to detect our inserted clicks while ignoring other click instances in the music. Note that we do only compare the performances on our clicks simulating digital defects such as buffer under-run and timing errors. The SigClick detector may detect a wider range of clicks, but for this initial experiment we refrained from training more generic models due to the lack of datasets with clicks stemming from defects in music production, as we aim to minimise false positives.

Manual verification showed that the FMA dataset does feature many examples of electronic "glitch" music with intentional or expected clicks. The goal of our detector is to differentiate such clicks from the ones added due to signal failures.

We validate this relation to musical genre in Table 2 by applying the above model and SigClick on three smaller genre-consistent datasets of 11400 (electronic), 10000 (pop rock) and 31600 (classical) segments not included in the former training. Following the hypothesis that the electronic genre features more intentional click samples than the classical genre, we see the precision of SigClick very high for the classical data but significantly dropping in the rock/pop and electronic genres, while the Hook-Net maintains high precision with only little difference. The values for post-processed data not reported here due to space limitations confirm this effect.

MP3 glitch detection

For this task, pre-caching of degraded audio allows us to use larger subsets of FMA for training (66476 pieces), validation (14244 pieces) and test (14244 pieces).

For each piece, 50 consecutive audio segments were extracted as above, resulting 3,323,800 training segments and 712,200 validation and test segments. Segments were randomised within each of the above datasets. While a click only results in 1 target value to be set to 1, glitches affect multiple target values per segment due to whole MP3 frames being affected by each corruption. This results in train and validation datasets containing 8.04% of the target values marked as glitched (test set: 8.19%).

Training is performed using root mean square loss, with initial learning rate of 0.001 and reduction-on-plateau (factor 0.1, patience 10 epochs) of the learning rate. Across 40 training epochs, the best model was selected based on its validation accuracy (acc_v) measure. Table 3 shows the performance of this best model. Given the bias towards the non-degraded class we report f-measure and precision regarding the glitched class due to their relevance for our application scenario. The Hook-Net glitch model generalises well from the validation to the test set, with an f1-measure of 0.9037.

CONCLUSIONS AND FUTURE WORK

We presented the Hook-Net convolutional neural network architecture with two novel applications to detect click and data corruption errors in digital audio recordings. The design goal of the architecture is to capture the typical shape and variation of artefacts in the direct audio signal, with respect to their acoustic context. The detectors localise errors with a time resolution of less than 10 milliseconds.

For click detection, we demonstrated an end-to-end simulation, post-processing and detector training method. Our evaluation shows the resulting detector outperforms a state-of-the-art baseline on the large FMA popular music dataset, using synthetically generated defects. A genrespecific evaluation experiment shows the practical relevance of inclusion of context and the capability of our model to capture this: discontinuities resembling clicks in audio may represent intentional music content depending on their context. The achieved precision (> 99.77%) renders the detector suitable for the testing of large commercial music databases.

Our second proposed application is aimed to filter degradations in modern compressed audio from persisting unnoticed in subsequent use of the defect audio. We describe the MP3 decoding glitch as a relatively novel type of audio degradation for which detection is difficult due to its variation. Our evaluation shows that our detector generalises well on common glitch artefacts. The proposed training tasks come with a bias towards non-defective audio, which we assume to be strong in real-world applications. This is tackled using large training and validation datasets with synthesised artefact insertion. The simulation of data corruption with subsequential MP3 decoding promises a stronger realism of the artefacts synthesized in this task. This process is applicable to other audio codecs, depending on decoder robustness and consistency checks.

In future work we plan to extend the range of lossy compression defects simulated and apply our architecture to further and more generalised local audio degradations. We also aim to reduce model complexity without negatively affecting performance.
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 2 Figure 2. Typical example of glitch degradation. Top: linear frequency spectrogram of original signal. Bottom: same for signal with two degradations at frame 0 (intermittent) and frame 80 with binary ground truth annotations from spectrogram comparison.
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 2 Click performance in control datasets.

		dataset	acc_t	pr_t	rec_t	f1_t
	Hook-Net electronic	99.9997	99.91 99.74 99.82
	SigClick	electronic	99.94	80.34 98.06 84.94
	Hook-Net	rock pop	99.99992 100.0 99.90 99.95
	SigClick	rock pop	99.99	92.08 94.37 92.05
	Hook-Net	classical	100.0	100.0 100.0 100.0
	SigClick	classical	99.992	92.47 99.11 95.34
					Test-set
	accuracy (acc_t), test precision(pr_t), recall(rec_t) and f-
	measure (f1_t).			
		ep. acc_v	acc_t	pr_t	rec_t	f1_t
	Hook-Net 31 98.52	98.46 92.83	88.04 90.37
	Table 3. Glitch detection performance. Epoch with great-
	est validation-set accuracy, validation accuracy (acc_v),
	test-set accuracy (acc_t), test precision(pr_t), recall(rec_t)
	and f-measure (f1_t) for glitch detection. In percent.
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This also allows comparisons with spectrogram-based models, which did not perform as well and are omitted for brevity.
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