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Executive summary
This document describes the basic functional architecture of the Intelligentisa project.
This document reviews all the elements necessary to run a LoRAWAN network and the
associated functions. The objective is to integrate the functional architecture into an
orchestration framework, possibly by virtualizing some fundamental functions, such as
LoRAWAN network Servers (LNSs). This requires to identify basic functional blocks,
in particular telemetry exploiting metrics from the substrate virtualized infrastructure
as well as supported LoRAWAN networks, and orchestration functions for the de-
ployment and the optimization of LoRAWAN networks to achieve some performance
objectives. In a first step, all these issues are considered without slicing considerations
and in a second step, the concept of slicing in the context of LoRAWAN networks is
introduced.
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Chapter 1

General Introduction

1.1 Motivation

Communication network infrastructures are nowadays undergoing a profound transformation
related to the softwarization of all their basic components, from core network functions to radio
access, including mobile devices and connected objects. Routers, switches, access control func-
tions and handsets together with IoT devices are increasingly built as compositions of software
components, each of them potentially following an independent development cycle but eventu-
ally working in a composite infrastructure that still ought to be as reliable and performing as
possible.

Network virtualization and softwarization technologies enable, on the one hand, the cost-
effective operation of network services in the form of network slices while ensuring SLA man-
agement; on the other hand, they open the door for the definition of interfaces in support of
truly network automation. The research in network automation algorithms is today a green
field, with neither established good practices nor sufficient state-of-the-art on models for these
novel environments.

The advent of 5G together with the explosion of IoT devices are pushing network operators
in the direction of designing flexible infrastructures that have to at the same time (i) be scalable
with the number of devices [10], (ii) ensure service level agreements (SLA), (iii) be cost-efficient
and (iv) grant high availability and low latency to communication services. As a matter of
fact, the number of mobile and IoT devices is already exploding, with usage varying from the
monitoring of garbage baskets in cities to bovines in mountains.

For low-latency and high reliability services, such as in the case of public-safety services,
SLA management is fundamental in order to be able to discriminate among network slices with
different sets of requirements. Although there are contributions in 5G to allow this differentiation
in the core network, the integration of IoT radio SLA management in a network automation
architecture is not specified today; indeed, even if radio resource blocks can be dynamically
assigned for the data plane, the devices access (part of the control plane) is random, which limits
these approaches when IoT devices massively access the network [7]. The problem becomes even
more challenging in non-5G networks, such as LoRa, where the access is based on an ALOHA-
type technique that does not allow resource partitioning by using traditional methods.

The Intelligentsia project aims at tackling this research field by specifying new functional
elements, in particular virtual LoRaWAN Network Servers (for short, vLNS) and by exploiting as
much as possible the new opportunities offered by virtualization, both for deploying on-demand
virtualized network functions and for monitoring deployed ones. The associated monitoring
infrastructure will subsequently be used to run Machine Learning algorithms in order to meet
the requirements in terms of quality of the services supported by IoT networks. This global
process is part of the global orchestration of the network.
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1.2 State of the art

Network automation is not, per se, a new research area. Historically, about 10-20 years ago,
both Academia and Industry have addressed challenges related to how to get distributed sets
of agents to self-organize, to automatically discover themselves and the network states, and to
operate necessary reconfigurations of the network. This was for example the focus of the FP6
AUTOI (Autonomic Internet) research project, and a number of research contributions falling
in the area of autonomic networks. A complete survey of major contributions in the former area
of autonomic networking is given in [3]. We can also cite standardization activities related to
this area, as for instance the ones related to the GRASP (Generic Autonomic Signaling Protocol
Application Program Interface) protocol architecture [4].

Nonetheless, these pioneering research activities are still lacking a stable reference technical
architecture on top of which a decision-making framework could be developed and deployed at
a large scale, for instance to solve routing or resource allocation optimization problems. With
the advent of network virtualization, and in particular Network Functions Virtualization (NFV)
and Software Defined Networking (SDN), the reference building blocks for the upcoming 5G
and beyond 5G infrastructures are today quite clearly specified [10]. The relative maturity of
NFV/SDN systems and platforms have moved the edge of industry specification efforts to the
definition of the interfaces required for realizing network automation for real systems, somehow
meeting the expectation of autonomic networking research appeared 20 years ago, but with a
much clearer technology environment.

Two working groups at ETSI, the Zero-Touch Network and Service Management (ZSM)
and Experiential Networked Intelligence (ENI), are addressing this need and have very recently
produced a set of reference documents [5, 6]; similar activities exist at 3GPP. Besides standard-
ization activities, open source network automation platforms have recently emerged, notably
the Open Network Automation Platform (ONAP), chosen by many operators like Orange and
AT&T as a reference platform for future network automation systems [7, 8, 9]. These platforms
[11] and specifications are opening the way to a potentially very large set of network orchestra-
tion decisions for which there is a critical need for automation algorithms, and yet a clear method
of determining how the state of a fully virtualized and programmable infrastructure, composed
of a variety of software modules, should be modeled and inferred in runtime to support resilient
and automated network orchestration.

In this global picture, the goal of Intelligentsia project is to propose orchestration and network
automation solutions to address the special constraints of IoT services, in order to meet quality
requirements of services supported by IoT networks.

1.3 Organization

This report is organized as follows: In Chapter 2, we introduce the various elements of the
architecture. In Chapter 3, we describe the functional architecture without slicing. In the
subsequent Chapter 4, we introduce the concept of slicing in LoRA networks. Some concluding
remarks are presented in Section 5.

ANR INTELLIGENTSIA project 5



Chapter 2

Elements of the architecture

2.1 Global architecture

The objective of the Intelligentsia project is to address three main research directions:

- the specification of novel media access protocols and resource sharing policies able to sup-
port network slicing for IoT access networks in general, and LoRa networks in particular;

- the specification and the development of an access gateway dedicated to a domain of
IoT devices and based on virtualization techniques to support new traffic engineering
operations (virtualized LoRa Network Server, vLNS);

- the design of a network automation framework that incorporates novel learning algorithms
to infer in real-time the state of the network and reconfigure accordingly the IoT access
network, integrating the new proposed access gateway and IoT device behavior.

To reach these goals, it is necessary to specify a functional architecture. At first glance,
the big picture of the envisioned architecture is depicted in Figure 2.1. The various elements
composing the architecture are:

- IoT devices transmitting packets of data in the form of radio signals;

- radio gateways receiving and transmitting radio signals, demodulating and decoding them
to restore information in the form of bits, which are subsequently transmitted in the form
of IP packets to LoRaWaN Network Servers (LNSs);

- LNSs subsequently transmitting packets to the destination network through an IP network.

The major innovation of the project is to exploit the new possibilities offered by virtualization
techniques to make LNSs virtual and to instantiate them on the fly depending on radio conditions
and on traffic demand. This goal is perfectly in line with the general Virtualized Network
Function (VNF) framework, which aims at making VNFs highly flexible and at instantiating
them on demand [16]. In turn, this requires a network infrastructure capable of supporting
VNFs. For instance, some equipment and functional elements are necessary:

- Data centers to host VNFs and their associated Virtualised Infrastructure Manager (VIM).

- An orchestration platform capable of onboarding VNFs, managing their life cycle (deploy-
ment, monitoring and deletion).

This requires that the network infrastructure is equipped with data centers located sufficiently
close to devices and capable of exploiting the analytics provided by an ad-hoc monitoring plat-
form. On the basis of these analytics, the orchestration platform has to make decisions in order
to place the LNSs and possibly to upgrade them or duplicate them according to traffic conditions.

6
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Figure 2.1: Global picture of the Intelligentsia architecture.

The above elements form the minimal set to support a virtualized IoT infrastructure. The
Intelligentsia project aims at going one step further by integrating the concept of slice. A slice
is composed of a set of devices transmitting information with some requirements in terms of
quality (e.g., delay or loss sensitive transmission, availability of the service, etc.). This puts
further requirements on the management of the infrastructure:

- resource allocation, which is slice oriented,

- monitoring which is capable of taking into account the slice level (e.g., specific Key Per-
formance Indicators (KPIs), slice oriented probes, etc.);

- the orchestration platform should be able to offer APIs to access the performance of slices.

2.2 Elements of the functional architecture

2.2.1 IoT devices

The LoRaWAN specification defines three device types (Class A, B, and C), which determines
for the devices (i) when downlink messages can be received, and (ii) the energy efficiency. All Lo-
RaWAN devices must implement Class A, whereas Class B and Class C extend the specification
of Class A.

Class A devices support bi-directional communications between a device and a gateway.
These devices are most of the time in sleep mode, and they wake up randomly to send uplink
messages. After an uplink transmission, the device then opens two receive windows at specified
times (one and two seconds). The server can respond either in the first receive window, or in
the second receive window, but should not use both windows.

Class A is the most energy efficient and results in the longest battery life time. Class B
devices extend Class A by adding scheduled receive windows for downlink messages sent by

ANR INTELLIGENTSIA project 7
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the server. A periodic beacon signal is transmitted by the gateway to synchronize the clock of
the devices with the network server. This allows to periodically open receive windows by the
devices. Class C devices extend Class A by keeping the receive windows open unless they are
transmitting (the devices continuously listen for downlink messages), this allows for low-latency
communication but it is more energy consuming than Class A devices. Class C devices require
a constant power source.

The majority of literature only consider Class A LoRaWAN devices, because they are the
most power efficient. As Class B and Class C devices inherit Class A behavior, it is possible to
configure the mentioned parameters for all LoRaWAN classes. In the case of Class B devices,
SF and channel can be configured as well for the periodic downlink reception windows with
additional MAC primitives.

2.2.2 Radio technology

The term LoRaWAN represents an open standard promoted by the LoRa Alliance that defines
Medium Access Control (MAC) and network management protocols on top of the Long Range
(LoRa) Physical (PHY) layer, which is instead proprietary of Semtech. LoRa PHY is designed
to operate on the unlicensed frequency bands which are defined by local regulations. All the
described configurations are the ones available for the 863-870MHz band in Europe (EU863-870).

The innovative aspect of the LoRa PHY layer consists in its radio modulation technique. It
is based on Chirp Spread Spectrum (CSS) technology and it allows us to select between one of
the available Spreading Factors (SF) for a transmission. Different SFs make it possible to trade
bitrate for range. Specifically, a transmission using the subsequent higher SF will take double
the time and have half the bitrate. The difference in range is due to the fact that higher SFs
make transmissions more robust. The range difference between SFs is not trivial to quantify,
because it is highly dependent on the scenario we are in.

In LoRa, the term Data-Rate (DR) is used to identify a coupling of Spreading Factor (SF) and
Bandwidth [kHz] used for a transmission. The SF-based data-rates defined by the LoRaWAN
specifications are listed in Table 2.1. The usage of DR6 is not very common, as it constraints
the number of available frequencies by using double the bandwidth.

Data-Rate Configuration
Transmission
duration of a
59B packet [s]

0 SF12 / 125 kHz 2.629
1 SF11 / 125 kHz 1.478
2 SF10 / 125 kHz 0.657
3 SF9 / 125 kHz 0.369
4 SF8 / 125 kHz 0.205
5 SF7 / 125 kHz 0.113
6 SF7 / 250 kHz 0.057

Table 2.1: LoRa TX data rates.

Moreover, transmissions happen on a Frequency [MHz]. By definition, a LoRa Channel is an
entity associated to a Frequency and one or more allowed Data-Rates, usually the same for every
Channel. The EU863-870 LoRaWAN supports a maximum of 16 channels. The three default
ones are listed in Table 2.2. Network operators are free to add any frequency in the EU863-
870 spectrum given that devices are instructed to use them in compliance with the restrictions
defined by the ETSI [EN300.220] standard (see Section 7.2.3, Table 5).

Devices need to comply with law-imposed duty-cycle restrictions: uplink is 1% for every
sub-band. This duty-cycle limits the percentage of time you can spend transmitting on a group
of frequencies belonging to the same sub-band. In particular, it defines the time a device has

ANR INTELLIGENTSIA project 8
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Modulation Bandwidth
[kHz]

Channel
frequency
[MHz]

LoRa
DR/Bitrate Duty Cycle

LoRa 125
868.10
868.30
868.50

DR0 to DR5
/ 0.3-5 kbps <1%

Table 2.2: Default channels for LoRa transmission.

to wait before being able to transmit again. For instance, if a device transmits for 1s on a 1%
duty cycle freq., it will have to wait 99s before being able to transmit again on any freq. of the
same sub-band.

Transmissions on different Frequencies do not interfere (i.e., they are orthogonal). Trans-
missions using different SFs on the same Frequency are instead semi-orthogonal, that is, each
one of them suffers of minor interference from the others. In LoRa, each device is assigned a set
of available Channels and it will pick one randomly each new transmission, therefore changing
Frequency. This technique is called Frequency Hopping and it is claimed to help increase the
robustness to interference of the whole system.

The SF or, more precisely, the DR to be used for UL transmissions is stored by the device and
can be set dynamically by a MAC level message from the Network Server or by an Adaptive Data
Rate (ADR) algorithm in the device. Concerning DL transmissions, the first receive window
(RX1) uses the same settings of the UL transmission, while the second (RX2) by default uses
freq. 869.525MHz (10% duty-cycle) and SF12.

2.2.3 Radio access gateways

Radio gateways are the infrastructure elements providing LoRa coverage to the end devices.
They will receive uplink signals from the devices and transmit the correct LoRa frames to the
network server. Uplink signals can be received by more than one gateway, so the LNS may have
to deal with duplicated bits of information.

Gateways are usually equipped with a software called the packet forwarder: that software
will transmit all frames received by the radio front-end in the form of a UDP stream. Packet
forwarders from different manufacturers usually use payloads in a format defined by Semtech,
that will contain the payload itself, as well as metadata such as the radio condition in which
the packet was received. This UDP stream is also used to emit downlinks through the radio
front-end, and to send regular statistics messages to the LNS.

Many LNS manufacturers have made the choice to run an additional agent on the gateway,
to prevent from sending the non-secured UDP stream over public networks. This additional
agent which is local to the gateway can then add authentication and ciphering to the payloads.

This agent can also provide additional features, such as connectivity checks between the LNS
and the gateway, gateway radio (re)configuration, gateway maintenance connectivity, gateway
firmware upgrade, gateway uplink cache in case of disconnection from the LNS.

Note that a gateway is also subject to duty cycle limitations, i.e., the fraction of time that
the gateway may be busy (see TTN Duty Cycle), and may start dropping packets if a given
application sends too many downlink packets (depending on implementation).

It is worth noting that most commercially available gateways are half duplex, meaning in
particular that they are unable to receive uplink messages while transmitting data. This might
also induce additional latency on downlinks if such a downlink arrives while the gateway is
decoding an uplink.

The following elements may be relevant when considering a gateway

- Available Host resources (CPU, RAM, etc)

ANR INTELLIGENTSIA project 9
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– These host resources are relevant indicators of activity peaks when deviating from
their nominal values.

- Available downlink duty cycle

– As any other LoraWan node, gateways are only allowed to emit a given amount of
time. Keeping track of how much of this ratio has been consumed will allow to detect
cases where a gateway would drop downlinks due to exceeded duty cycle.

- Available time ratio for listening to uplinks

– in some cases, some gateways are dedicated to the reception of uplinks, and never
used for downlinks. Such behaviour could be dynamically controlled in order to react
to either uplink or downlink bursts.

- Message processing time

– This is the time between the instant when a downlink was received from the LNS,
and the instant it is supposed to be sent. If the message is received too late, it will
be dropped.

2.2.4 Virtual LoRaWAN Network Servers (vLNS)

LoRaWan typical architecture

The LNS is the interface between the LoRaWAN world and the generic IP world. Here is a
non-exhaustive list of its features:

- Transmit the messages from the devices to the application servers, and from the application
servers to the devices

- Respond to the Over The Air Activation (OTAA) devices’ join requests to let them enter
the network

- Select the most appropriate gateway for a given downlink message

- Configure the devices through MAC commands defined in the standard (e.g. set network,
channels, configure data rates, etc) - see Appendix A.

Two implementations in particular should be mentioned in the context of this project:

- Chirpstack, a quite widely used open source LNS, with sufficient reliability and features to
make it production-ready. This implementation has an application centric point of view,
in the sense that devices will be grouped into profiles, which will be used to configure all
the aspects of the communication chain, from device radio setting to application server
integration.

- The Acklio LNS, a proprietary LNS developed by one of the members involved in the Intel-
ligentsia project. Already used in industrial deployments, this product allows a fine tuning
of devices regarding the radio aspects, while enabling the application server integration to
be grouped into device profiles. Such device profiles allow the platform administrator to
configure the data flow of a large number of devices (usually serving the same purpose) by
routing their uplinks to one or more destination depending on the lorawan fport value in
each frame. The product is also compatible with advanced device payload manipulation
tools.

While the architecture of an LNS is by no means standardized the following functional blocks
have been identified.

ANR INTELLIGENTSIA project 10
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Figure 2.2: Typical LoRaWan architecture.

- The Network Server : This component handles all the LoRaWAN protocolar aspects,
such as incoming and outgoing LoraWan frames or signaling. While needing minimal
state-full data in order to have information on the device sessions, it could quite easily be
scaled horizontally depending on the incoming LoraWan load. The minimal state-full data
mentionned above are the LoraWan session data of devices (keys, devaddr, counters, etc),
as the network server needs these data in their most recent version in order to process
payloads. The simplest way of scaling here would be to keep such session in a database
able to also scale horizontally (both the acklio LNS and chirpstack use Redis) and rely on
this database cluster to warranty up-to-date session info.

- Connected Device Platform : also called Application Server in chirpstack and in
some semtech representations, is the interface to the state-full data of the platform (in
database), such as the list of registered devices, their session keys, radio and application
profile, etc. It is also used as an entry point for administration, either to configure elements
of the LoRaWAN chain (devices or gateways) through a web API, or to interface with
application servers (for example through a REST API) to let the client application send
downlinks to devices or query other aspects of the LoRa network.

- The Join Server : In some cases, it is possible to involve an external actor in the join
process of the Over The Air Activation (OTAA) devices, and therefore in the way the
payloads are being ciphered. When doing so, the final application server is also often
involved. With such a setup, the Join Server will interact with the LNS when a device
requires access to the network, and will be the element authenticating the device, but will
only share with the LNS the keys that will let it route the LoRaWAN packet, but not
the payload decryption one. It will, on the other hand, share the decryption key with the
final destination server, thus achieving end-to-end payload encryption at the cost of a very
tight coupling between the application server and the join server.

The typical architecture of a LoRaWan network without join server is depicted in Figure 2.2.
When we introduce the concept of join server, then we have the architecture displayed in

Figure 2.3.

Virtualization of LNS

The three elements mentioned above, as well as their assorted databases can be deployed using
containers. In the case of chirpstack, publicly available images can be pulled from dockerhub.
Different container orchestration solutions can then be used, such as docker-compose and kuber-
netes. The different services are usually configured at startup time, with either env variables or
configuration files. Such configurations are then usually fixed for the lifetime of the container.

ANR INTELLIGENTSIA project 11
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Figure 2.3: Typical LoRaWan architecture.

When scaling up to cope with an increase in traffic, the network server will be the service to
duplicate as it handles all the crypto and protocol processing parts. Messages from the gateways
are delivered to the network server containers through MQTT, so the MQTT broker will take
care of load balancing between the different network servers subscribed to it.

There will however be a need for state sharing of the device session between the network
server containers. Such state is stored in a redis database, that can also be scaled up in a multi
instance cluster.

For both the network server and redis container, the way to scale up dynamically would
be by interfacing with the docker orchestrator in order to increase or decrease the amount of
containers for a given configuration.

Finer control over already running container might be necessary depending on use cases.
Both the acklio LNS and chirpstack use gRPC for interprocess communication (modern open
source high performance Remote Procedure Call). Such an API could also be exploited for this
purpose.

In a sense, such container based deployments already respond to many aspects of a VNF,
by opposition to embedded LNSs that are often shipped with physical gateways. However, such
deployments schemes will mostly work on the separation of the communication chain in the
functional communication blocks described above, their deployment, release and initial scaling.
While these blocks are relatively clear functionally, even between different implementations, a
finer definition of their behaviour could be beneficial, especially in terms of metrics and associated
scaling strategies.

There is also some potential improvements on the gateway side where a physical gateway is
linked to a single LNS. Virtualized lorawan gateways could be achieved by running more than
one gateway agents on a single gateway. This would allow sharing of the radio resources. In
particular, uplinks cost almost nothing to forward to their respective LNS when already received
on the gateway. Downlink duty cycle is quite precious, and might need enforcement of how it is
made available to different virtual gateways.

With regard to monitoring vLNSs, the following elements may be relevant when considering
an LNS:

- Available Host resources (CPU, RAM, etc)

– These host resources are relevant indicator of activity peaks when deviating from
their nominal values.

- Duration between device uplink and customer server response

– A class A device opens a reception window right after an uplink. In order to be able
to use this reception window, it is important that all the cloud side processing (LNS
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+ Customer server) is done before its expiry. Seeing how this interval evolve might
help detect overload cases.

- Device session consistency (missing uplink frame counters)

– Lorawan frames contain a frame counter incremented at each message. Detecting
holes in a device’s uplink messages may help detect coverage gaps.

- Device pending downlinks

– Class A Devices can only receive downlinks after an uplink. So downlinks received
by the LNS outside of this reception windows will be kept in queue. An evergrowing
downlink queue would most likely be a symptom of poor device coverage, or badly
tuned customer side application.

- Gateway overlapping

– When an uplink is received by more than one gateway, the LNS will receive all of
these. Keeping track of the number of gateways that receive uplinks from a given
device, and with what radio values (RSSI, SNR) may help evaluate the density of the
gateway deployment and how well a given area is covered.

- Message counters and processing time

– Such counters will provide a direct estimation of the load an LNS is receiving.

2.2.5 Edge cloud

As IoT is traditionally developed at the edge of the network, an ideal placement of vLNS
is an edge cloud. A testbed representing an edge cloud of an operator is considered in the
Intelligentsia project and a provisional setting of the testbed setting at Cnam, in particular for
Task 4.3 activities, is depicted in Figure 2.4; this testbed is intended to test the concepts of the
project and is not the fianl test bed, which should involved real radio gateways and IoT devices.

Figure 2.4: Provisional testbed setting for Task 4.3 activities.

This preliminary testbed is composed of two physical servers, where three virtual gateway
nodes and two vLNS nodes would be deployed along with an ns3 node meant to generate
emulated physical layer traffic. Such a setting is in fact to date already deployed for another
use-case on which Cnam started working waiting for the virtualized network functions, and
related software, of the virtualized LoRAWAN architecture to be defined.

In terms of forwarding, standard open vswitches hosted in containers could be controlled by
a dedicated controller, hence adding additional monitoring points and contributing with related
metrics to the machine learning framework. The actual location of the application servers
will be determined in coordination with the partners, but likely they will be exterior to the
Cnam testbed and connected through the Internet, possibly using a tunneling technique such
as VXLAN or GRE or LISP.
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What the current testbed does not include is an orchestration layer. The one of Kubernetes is
currently disabled and the plan is to determine which components from ONAP, and/or ORAN
and/or OpenSourceMano platforms could be integrated, as developed later in the document.
Depending on these aspects, from 1 to 3 additional physical servers may be allocated to the
testbed in 2022.

2.2.6 Monitoring

Monitoring has to be distributed and to adapt to the constantly changing needs of the infras-
tructure. This means that the monitoring system should support not only metric collection, but
also aggregation, filtering and processing in a hierarchical fashion to enable :

- Scalability across the overall system.

- Introducing hierarchical analytical and actuation points to efficiently exploit metrics.

- Support a scalable decision making distribution.

Monitoring plateform based on Prometheus

Prometheus is an open source monitoring solution originally developed by soundcloud. It has
since then become a reference in terms of infrastructure monitoring solution.

Prometheus monitoring tools provide a modular architecture to capture metrics. Those
features provide a complete framework to handle different types of infrastructures separately,
and to be able to analyse the end-to-end services in the architecture. Moreover, alerts are defined
by using Prometheus Alert Manage. It provides level of control and management workflow,
allowing the platform to warn management entities, as endpoints, of an alert in the platform.

In its usual mode, Prometheus periodically scrapes target using HTTP requests. The re-
sponses to these scrapes are a list of metric identifiers, and of their current value. Prometheus
uses these metrics to build time series, that it enriches using metadata extracted from the host.

These time series can be used to build dashboards, but can also be queried using a dedicated
language: PromQL. Such queries can then be used to generate alerts, for example if a metric
goes above a given threshold.

Prometheus alerts are usually send to sysadmins by mail or other methods. In the context
of intelligent self configuring network, however, the Prometheus-am-executor might be of in-
terest. This tool of the Prometheus suite is able to receive Prometheus alerts, and automatically
take action. A frequent use case consists, for example, of reacting to hard drive storage space
alerts by clearing temporary files or rotating logs. One could also imagine using this feature to
auto-scale a service based on its RAM usage, or traffic volume.

Preliminary experiments run at Cnam with a local NFV infrastructure composed of two
physical servers and a dozen of virtualized network functions. In terms of monitoring, the
collection of thousands of metrics at physical level, container level and VNF level leverages
on Prometheus node-exporters (https://github.com/prometheus/node_exporter) as monitoring
components for the physical server level, while Pods and containers are monitored through a
Kubernetes embedded CAdvisor (https://github.com/google/cadvisor) agent. Both exporters
are compliant with Prometheus data model and architecture so that feature metrics can be
exported through GET requests at a specific polling frequency.

Metrics monitored

Within the framework of the Intelligentsia project, several metrics will be monitored in order
to allow for the scaling of services and the network in the case of increasing or decreasing loads,
and more generally to ensure the proper functioning of the proposed solutions.

These metrics can be classified into two main parts:
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- metrics related to virtualized services (i.e., VNF),

- metrics related to algorithms for the optimization of the MAC layer of LoRaWan networks,
through access improvement.

Virtualized infrastructure metrics. Service monitoring involves tracking the evolution of
various metrics such as CPU, memory, file system, and network metrics, and so forth, at both
VNF/container and physical server levels. It is also on the basis of these metrics that the
infrastructure state will be determined and the orchestration decision will be taken, which may
require, for example, the use of time series analysis for state classification or prediction of
anomalous network conditions.

A reference dataset example for this area is the one documented in the SYRROCA repository
https://github.com/SYRROCA. Metrics derived from server and container logs and also related
to the traffic behavior were therein collected every 5 s, forming time-series of 17280 values per
feature and per day during 21 days, while a virtualized network service was running. Collected
features are explicitly typed as counters or gauges, to ease their pre-processing. To give an idea
of the important magnitude in the number of features that can be reached working on a dataset
of virtualized infrastructure metrics, Table 2.3 details the number of features per layer and
resource group for the SYRROCA dataset. Such scales justify the usage of a machine learning
approach to process them.

CPU Network Memory File-system Total
Physical 370 290 40 260 960
Virtual 60 80 160 230 530

Table 2.3: Number of features per layer and resource type for the example SYRROCA dataset.

Access network related metrics. In this section, we focus on metrics that could be used
to improve medium access in LoRaWAN networks. The metrics treated are not be exhaustive
but give an idea of the factors that can be used to optimize the access to the network. All these
metrics come from aggregating the metadata provided by packets at their reception. A detailed
list is provided in Appendix B.

Even if the objectives are different, these different metrics can be considered for the auto-
configuration of the devices, the prioritization of the access but also the orchestration of the radio
interface through slicing. Moreover, contrary to Section 2.2.2, we will not limit the discussion
to the devices of class A, because this class has many limitations and may not be sufficient to
support advanced functions such as prioritization or network slicing. The following metrics are
widely used in LoRaWAN Medium Access bibliography [17]:

- Packet Delivery Rate (PDR) [≡ Data Extraction Rate (DER)[9]]: The ratio of
received packets to transmitted packets over a period of time.

- Packet Error Rate (PER): The ratio of packets with CRC error to sent packets over a
period of time. (A packet with CRC error was demodulated at the GW –it used resources–,
but the error-detecting code did not pass. I.e, the packet has at least one bit of error, and
can not be used)

- Packet Loss Rate (PLR): The ratio of lost packets to sent packets over a period of time.
(The GW never received these packets. It can be indirectly calculated with the “frame
count” LoraWAN MAC metadata field at the NS. However, only the ED knows the PHY
parameters of a lost frame)

- Network Energy Consumption (NEC) [9]: Energy spent by the network to success-
fully extract a message. (Power and time. Energy spent will depend on PHY parameters
of the packets: e.g., SF and size)
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- Jain’s Fairness index [11]: (
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i
, where xi denotes the normalized throughput of

each device and n the total number of active devices in each “slice”. Index varies between
0 and 1, with 1 being perfectly fair.

- Per-Node Signal-to-Noise-Ratio (SNR): LoRa SNR, measured by GWs, of the last
N packets received for a given ED1.

Metrics can also be applied per relevant sub-sets of the LoRaWAN domain elements. For
example, it is relevant to partition the metrics per:

- Entities: Network Server-Wide, Gateway, Node.

- LoRa Physical Parameters: Frequency, Data Rate (Spreading Factor).

- A combination of previous categories (intersection).

Finally, we propose two metrics that are not explicit in the bibliography:

- Per Gateway-Metric: Spectrum usage (radio-time).

– Partitioned per frequency and data rate, over a period of time.

– E.g.: DownLink, UpLink (UL) OK frame, UL CRC error frame, idle radio; Illustrated
in Fig. 2.5.

- Per Node-Metric: Energy Packet Delivery Ratio (EPDR).

– Energy spent to successfully deliver an N Bytes frame.

– Will be useful aggregated per Data Rate (DR).

– EPDR can only be calculated in node, but the ED will need information from the
Network Server (e.g., the PDR per DR).

Figure 2.5: Possible spectrum-use metrics per Gateway

From a Network-perspective, spectrum-use metrics (as the GW-centric ones) will be primor-
dial. As a final remark, it is worth noting that maximizing packet delivery (“throughput”) in

1Network-side implementations of the Adaptive Data Rate (ADR) algorithm, like The Thing’s Network’s
(https://www.thethingsnetwork.org/docs/lorawan/adaptive-data-rate/index.html), use this metric (the
mean value of last N samples) in order to estimate if the ED could lower its Data Rate (“link budget").
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spite of everything else, is not an appropriate goal. “Fairness” considerations should be taken into
account. To illustrate this statement: far-from-GW ED devices will have a higher-than-mean
energy/spectrum usage to deliver a packet; yet, the network should prioritize them somehow.
Otherwise, if raw-throughput is the only optimization goal, only EDs close to each GW will take
priority. The metrics in this subsection will serve as inputs to other higher-layer actions (E.g.,
balancing fairness, throughput, and other considerations).

2.2.7 Orchestration

The term ‘orchestration’ is used in the context of virtualized networks and cloud networking to
express the capability to deploy and (re)configure components that become easily programmable
thanks to the softwarization of various infrastructure components. It is therefore important to
specify the list of orchestration actions that can be envisioned in the framework of INTEL-
LIGENTSIA project, to later determine which components the orchestration platform should
encompass. That is, orchestration actions that are related to an the end-to-end network com-
posed of:

1. LoRA devices and radio channel.

2. LoraWAN access gateways.

3. LoraWAN Network Servers (LNSs).

4. Application servers.

5. Transport network.

Orchestration actions

In terms of orchestration actions, we can at this stage identify the following possible orchestration
space to be considered by the network automation framework.

1. LoRA devices and radio channel.

The current practice in the management of IoT devices and related physical and MAC
layer connection is to:

- Configure Spreading Factor (SF) and bandwidth as one of the combinations offered
by the data rate parameter;

- Configure the transmission power.

Both decisions are done accordingly to radio channel conditions determined at the LNS
level with algorithms that are not formally specified, with some proposals at the state of
the art such as [22, 27].

In addition, the following reconfigurations are possible using MAC primitives:

- Available uplink channels that can be used;

- Maximum duty-cycle duration, aggregated over all sub-bands;

- Number of default retransmissions per uplink packet;

- Delay of the first downlink reception window after a transmission;

- SF (in terms of data rate) and channel for both downlink reception windows.

Even if they seem not to be exploited today, we could explore their usage and assess the
utility to include them in the set of orchestration actions.
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2. LoraWAN access gateways.

Access gateways are anchored at the antenna facility. Their function is a basic digital
signal processing of the received signal and to forward data to the LNS. Data forwarding
is done by encapsulating the layer-2 frame into an IP packet format toward the LNS.

About the digital signal processing involved, given the low bitrate at stake, it does not
seem at this stage of particular utility to implement the radio signal processing in software
to possibly locate it elsewhere in the core of the network as done for instance in software-
defined cellular radio access systems.

About the data encapsulation toward the LNS, under a virtualized network setting the
gateway no longer resumes to an antenna with a quasi-static forwarder bridge, but to a
programmable bridge requiring to be configured with:

Adressing. As the vLNS location as well as the gateway-to-LNS assignments may change
with time, the LNS address, identifier and location information may change accord-
ingly and hence would need to be reconfigured as a function of the orchestration
actions applying to the LNS (see below).

Transport encapsulation. LoraWAN Frame to IP encapsulation may be needed for the
back-hauling network, as for instance in case of slicing a type-of-service field (DiffServ
Code Point) may be added, in case of a virtual network overlay protocol such as NSH
et al.

Bridging. The legacy basic gateway bridge could therefore possibly become a software-
switch component able to perform the above mentioned encapsulation with address
and transport header fields. In case of co-localised vLNSs and/or application server,
additional port-forwarding and virtual bridge network configuration may need to be
handled.

Besides these actions, scaling ones do not seem to be useful given the low bitrate at stake at
a given antenna, but we will be able to assess the importance of this aspect for high-density
settings during the experimentation.

3. LoraWAN Network Servers (LNSs).

The LNS architecture described above would require the following possible configurations:

Placement. vLNS may be duplicated at different physical locations and different physical
servers, in a serverless way as done by Kubernetes, to adapt to load and infrastructure
conditions.

LNS-gateway clustering. The assignment of radio gateways to LNS may change in time
due to changing conditions related to, for instance, faults, interference and mobility
phenomena at the gateway and device levels, and performance degradation or faults
in the backhauling network.

Scaling. In a virtualized setting, the computing power allocated to a LNS can change in
time as a function of the load, i.e. the number of gateways handled by a LNS and
the number of devices beyond these gateways.

Bridging. For both uplink and downlink communications toward and from the appli-
cation server and radio gateways, as the application server may be virtualized and
possibly relocated in time, and the active radio gateways for a given device may also
change in time as well.

4. Application servers (ASs).
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Placement. Application servers may be duplicated at different physical locations and
different physical servers, in a serverless way as done by Kubernetes, to adapt to load
and infrastructure conditions.

LNS-AS clustering. in case of multiple application server instances, the assignment of
LNS to application servers may change in time due to changing conditions related to,
for instance, performance degradation or faults in the backhauling network.

Scaling. In a virtualized setting, the computing power allocated by an application can
change in time as a function of thee load.

Bridging. For both uplink and downlink communications toward and from the LNS/vLNS.

5. Transport network.

The local bridging reconfigurations needed at the gateway, LNS, application server loca-
tions (which may, in some envisioned setting even be physically the same), as listed above,
already absolve network function chaining functions impacting the transport network for-
warding. Besides this, the following orchestration actions are related to network-wide
reconfigurations due to standard:

- Network path change.
To cope with network state change. This could be related to the usage of an MPLS-TE
or an SDN architecture to have a more direct control on network path configuration
by means of traffic engineering optimization.

- Load-balancing.
With given network paths, the network stack may need to adapt to other orchestration
actions (placement, scaling) affecting arbitrary load-balancing policies as for instance
function of the computing power of LNS and application servers.

Orchestration decision-making

The decision-making logic to handle these orchestration actions has to gather information from
monitoring data. Available monitoring data and related filtering policies will be specified in
Task 2.1.

Let us remember that one goal of the project is to assess, by means of both modeling and
experimentation, how these orchestration actions would be integrated in a network automation
framework. In particular, an expected outcome is to determine which actions would better be
left under the control of autonomous and standalone distributed agents running at the different
stages (e.g., device or LNS levels) and which could instead be run within a network automation
framework encompassing active coordination among agents and/or full centralization. More
likely a mix of distributed coordination and centralization among involved parties could reveal
as being a good compromise trading reliability with efficiency.

The network automation framework itself could be relying on a variety of algorithmic ap-
proaches for executing the decision-making related to the orchestration actions, from online
first-fit / best-fit algorithms classically adopted in node placement policies, to more sophisti-
cated scheduling algorithms also relying on optimization approaches. In WP2, we will investigate
the possibility to build a machine learning framework that works on the network data features
collected by the monitoring elements, potentially forming a set of many thousands of metrics,
hence calling for a machine learning approach able to scale with this complexity. WP2 will have
to determine if there is a gain in integrating also the IoT access network elements (e.g., the IoT
devices, gateways).

Orchestration platforms

It is the goal of Task 4.3 to specify the specific orchestration platform and software components
we will use to implement the network automation framework, integrating the requirements
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stemming from algorithms and protocols that will be defined in WP2 and WP3, accordingly
to use-case specification from Task 1.2 and life-cycle management requirements from Task 1.3.
The orchestration platform needs to be able to:

- integrate some if not all the project decision-making modules, at least those requiring a
global view instead of a local view;

- communicate with the radio access network components, namely the LNS, the gateway
and possibly even the IoT devices;

- configure the edge cloud and network function virtualization infrastructure, namely its
scheduler for Kubernetes or specific orchestrator for NFV platforms;

- the programmable transport network, namely the network controller able to configure
network bridges.

Our envisioned reference orchestration platform is ONAP (Open Network Automation Plat-
form). We will determine at which extent ONAP can support the above mentioned orchestration
actions or a subset, so that we may end up with complementary bricks or even alternative plat-
forms when WP4 will start based on the state of the art of automation platforms in 2022.

Our current view is that the possible ONAP integration with the LoRA radio gateways should
happen via the A1 interface currently envisioned for the interconnection with the Open Radio
Access Network (ORAN) platform conceived for cellular access networks, and in particular the
so-called Radio Intelligent Controller (RIC). Recently, the ORAN RIC was decomposed into a
near-real-time scheduling entity sitting within the core of the ORAN architecture, and a non-real-
time entity sitting within the orchestration platform. Indeed, both ONAP and ORAN releases
are these days undergoing a fast update and we expect in 2022 to see novel bricks appearing
in future corresponding releases, and in particular a featured newer version of the RIC modules
beyond the A1 interface.

On the other hand, the LNS actually ensures the function of a radio controller, yet processing
both the data-plane and the control-plane; as far as its distribution using multiple instances,
virtualized or not, may reveal not to be interesting from a performance perspective, the commu-
nication with the orchestration layer could happen with the LNS. Instead, in case of distribution,
this would be more difficult and the relay through a dedicated RIC handling only the control-
plane, and guaranteeing data coherency seems more pertinent.

Therefore, our goal is to understand if we may envision to leverage on the ORAN RIC, by
means of a dedicated RIC application, to link the orchestration platform with the LoRA access
network, or if instead leveraging on an ad-hoc project-made radio controller. The decision will
have to be taken depending on the importance that the different orchestration actions described
above would take, and in particular which ones our study in WP2 will determine to be effective
and useful to be integrated with the orchestration framework. At this stage it is indeed not
straightforward to determine if the LoRA device and radio gateway orchestration actions would
benefit from the global view provided by an orchestration platform as ONAP. Intuitively they
should, given the relationship between the number of radio devices per LoRAWAN network node
and the required computing resource scaling of the LNS and application servers, and the project
use-cases may eventually show the importance of this multi-resource relationship.

As a contingency plan in case of problems, alternative orchestration platform approaches
will also be considered, for example leveraging on OpenSourceMano orchestrator system or an
ad-hoc orchestrator, possibly using Ansible for the configuration interface.
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Chapter 3

Functional architecture without
slicing

3.1 Global view

In view of the elements introduced in Chapter 2, the functional architecture considered in this
project to model LoRaWAN networks is depicted in Figure 3 and is composed of

- a substrate network layer comprising the radio gateways and the cloud infrastructure for
hosting the VNFs associated with the LoRa network (LNS and Application servers);

- a telemetry layer collecting analytics from the substrate network and exposing synthesized
metrics (after filtering, aggregation, etc.) to the orchestration layer;

- an orchestration layer for the management: lifecycle management of the VNFs, resource
allocation, etc.

The control plane of the LoRa network is executed by vLNS as illustrated in Figure 2.3.
The LoRa enabled server processes the data plane (similar to the UPF of 5G control plane), the
Application server ensures the control of sessions (the equivalent of the AMF and SMF functions
of the 5G control plane) and the Join Server authenticates devices (similar to the AUSF function
of the 5G control plane).

The VIM of edge and centralized cloud platforms will ensure the deployment of the containers
hosting the VNFs in collaboration with the orchestration layer. The VIM of a cloud platform is
in charge of managing the resources of the platform. The orchestration may move some VNFs
or requires to scale up/down some functions when analyzing the measures from the network
provided by the Telemetry layer aggregating LoRa analytics (radio metrics) and Prometheus
analytics (from the cloud infrastructure). This loop is spanned over the Data Analytics Engines,
the Optimization Function and Decision Engine of the orchestration layer.

In the following two sections, we give more information on two functional blocks: telemetry
and optimization function as they will be instrumentalin the project.

3.2 Telemetry

Network automation include several provision of the service and its management. All the service
elements included in the contract and their functional and non-functional aspects:

- Functional aspects include all the subscribed functionalities contained in the offer.

- Non-functional aspects include QoS (behaviour).
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Figure 3.1: Reference functional architecture.
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Monitoring represents the use of any available technical tool to assess permanently or for a
given period of time a particular indicator, e.g. a server load or the response time for a service.

The monitoring requirements apply to the software service network on both, functional and
non-functional aspects:

- Functional monitoring. provides the monitoring of devices and LoRa functions.

- Non-functional monitoring should be able to monitor and control their behaviours
(non-functional aspects) using for example autonomic management approach. Placing the
monitoring of QoS very close around each service component helps to detect exactly the
malfunctioning component. Their generic nature allows a provider to apply them on any
service.

We propose to measure a QoS of each component (hardware and software) allowing better
diagnostic of various malfunctions whereas most existing tools monitor network traffic or CPU
usage when they should monitor the functional component performance.

The various metrics have been introduced in Section 2.2.6. We include metrics from the
virtualized infrastructure as well as the ones of LoRA. It is worth noting that a LoRa packet
is the unity of interaction with the Medium. LoRa metrics derive from packets in terms of (a)
reception rates and (b) associated metadata (LoRa-PHY at GW, and LoRaWAN-MAC at NS).
The Telemetry layer must gather a time series of LoRa packet’s metadata. This fundamental
information suffices to compute any LoRA Medium Access-related metric that may be defined
in the future. See Appendix B for detail on a LoRA packet’s metadata and Subsection 2.2.6
(Access network related metrics) for concrete LoRa metrics examples (e.g., Packet Delivery Rate,
Network Energy Consumption).

The metrics reported from the virtualized infrastructure as well as from LoRA elements are
represented in Figure 3.2.

3.3 Resource allocation algorithms

We describe in this section the algorithms, which will be specified in other work packages.

3.3.1 Resource allocation algorithms on devices

Three are the key Physical parameters a LoRa End Device (ED) must fix at every LoRa packet
to Send/Transmit: (1) Spreading Factor (SF), (2) central Frequency, and (3) Transmit (TX)
Power. It is worth recalling that the abstraction of a LoRa Data-Rate (DR) includes a choice
of SF, and the abstraction of a LoRaWAN Channel defines valid tuples of central Frequencies
and LoRA DRs, see 2.2.2 for detail on these fundamental notions. Each node can set up the
possible DR and TX power independently1, or use the the standardized LoRaWAN’s Adaptive
Data Rate (ADR) mechanism (See LoRaWAN’s standard [19] Section 4.3.1.1).

In this proposal, EDs will chose the fundamental Physical parameters using Reinforcement
Learning techniques, in particular Bandits algorithms [18]. The Bandit algorithm will converge
to a choice of Physical parameters (notably SF, but it generalizes to any combination of param-
eters, using the Bandit’s abstraction of Arm). In order to converge (i.e., “learn”), the ED needs
feedback from the LNS (i.e., DownLink packets with statistics). The feedback messages will
include the Packet Delivery Ratio detailed per choice of Physical parameters (Arms) which, as
stated before, will be used by the algorithm to converge. In Bandit’s nomenclature, this feed-
back information is used to calculate the delayed Reward (i.e., a scalar value that synthesizes the
optimization problem) of each Arm. While the Bandit’s algorithms can be taken from literature
with little modifications, the definition of the Reward is a fundamental challenge (i.e., a scalar
value that captures –and solves– the problematic at hand).

1About the Frequency: the LoRaWAN standard suggest to uniformly randomize the choice.
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Figure 3.2: Reference functional architecture: exchanged metrics.
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NOTE About Mobility Use Cases: In Use Cases with EDs “mobility” (i.e., highly dynamic,
non-periodic, medium changes), long-term convergence is not possible nor desirable, this prob-
lematic is tacked by the field of non-stationary Bandit problems. The abstractions remain the
same: Arms and Rewards. For example, the convergence concept used in the previous paragraph
will apply but for shorter periods of time (i.e., we discretize the mobility problem in time, and
can converge for these discrete parts of the problematic).

3.3.2 Resource allocation algorithms on LNS

Splitting the LoRaWAN access network into slices is much less natural than in the so-called
cellular technologies. Indeed, in NB-IoT networks, for example, after a contention access phase,
the allocation of resource blocks can be done deterministically (i.e. free from contention data
submission).

In LoRaWAN networks, the story is quite different, since for maximum energy savings, it
was decided to reduce the number of control messages to a minimum, which is also justified by
the small size of the packets. To achieve such an objective, the devices do not necessarily have
to associate with the network for each data transmission. Moreover, the devices do not even
associate with a particular access point, implying the reception of the packets by several access
points at the same time, which results in a higher reliability of the network.

The architectural modifications of LoRaWAN, very briefly described above, make all re-
source management extremely complicated at the gateway level. Resource management, on the
other hand, can be done quite naturally at the LNS level, which has a slightly less local vision
(compared to the gateways) of the use of resources, the reliability of the network, etc. The
access resource partitioning algorithms, which will be proposed in the Intelligentsia project, will
therefore be implemented at the LNS level.

In the context of the Intelligentsia project, and more particularly in WP3 (Task 3.3), resource
partitioning solutions will be investigated. Since slicing cannot be done in a deterministic way,
probabilistic solutions will be studied for the partitioning of wireless resources in time and space
(i.e. frequency). This partitioning can be done according to different modes (by service level
agreement (SLA), by traffic class, by tenant, . . . ), these will be studied in order to select the
most relevant option(s) with respect to the project objectives.

The design of algorithms for access slicing will be done in Task 3.3. Different algorithms can
be studied, in particular algorithms based on deep reinforcement learning.

3.3.3 End-to-end resource allocation

The Orchestration layer embeds functions in charge of optimizing the resources allocated in the
LoRa network (radio gateways and Core network), the Edge and the Central Clouds.

The resource allocation algorithms executed at the Orchestration layer will rely on a set of
functional metrics provided by the Telemetry layer. The objective of Task 2.1 is to define the
different functional metrics used for state machine modeling and network automation.

To manage the resource allocation at the Orcherstration layer, we plan in a first step to
classify the state of the network, then in a second step to select the actions that the orchestrator
must transmit to the VIM of the Edge and Central Clouds as well as to the LoRa network (radio
gateways and Core network).

Several types of algorithms will be used to learn and to infer in real-time the current state
of the network and to select network orchestration actions to reconfigure the network elements.
The classification of the state will be performed using standard clustering approaches based on
regularly sampled memory and leveraging on dimensionality reduction on the set of features
(e.g., k-means, principal component or linear discriminant analysis), as well as Long Short Term
Memory (LSTM) networks. The design of these algorithms will be done in Tasks 2.2 and 2.3.

The selection of orchestration rules will be made based on reinforcement learning logic to
define when a state transition should take place and which rule is better to activate for network
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state regeneration. A catalogue of appropriate orchestration actions will be defined to reconfigure
IoT device behavior, radio gateways for access control, Edge and Central Cloud for scaling
and placement of vLNS and application server, and routing and placement of functions in the
transport network segment. Reinforcement learning algorithms for the selection of rules to be
used at the Orchestration layer will be developed in Task 2.4.
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Chapter 4

Functional architecture with Slicing

4.1 Introduction

Network slicing is a big promise of 5G networks by enabling the customization of network features
to customer needs. Slicing has been standardized by 3GPP (references) and implemented in
some orchestration platforms like ONAP (references). Via slicing, a given customer can reserve
resources in the network (bandwidth, IT resources, etc.) and customize network functions, for
instance by requesting the network operator to implement specific and tailored network functions
for its own usage. Such an approach is notably made possible by Network Function Virtualization
(NFV), which enables VNFs to be customized and instantiated on demand.

A 5G slice can involve a private air interface (sub-licensed frequencies, frequencies reserved
by the operator for a given customer, dedicated frequencies in the 2.6 GHz band, etc.), a private
(virtualized) RAN, a private core network and private transport capacities or all these elements
can be shared with the public mobile network, any combination of private and shared elements
can in principle be possible. The 5G interface is “scheduled” in the sense that time slots and
frequencies are alternatively allocated to the different connected UEs according to a scheduling
algorithm. Hence, it is possible to allocate bandwidth to a UE on the 5G air interface even if
the resources (time slots and frequencies) are not permanently allocated to the UE.

In the case of LoRaWan IoT networks, the scope of slicing is more restricted but also more
complex. An IoT LoRaWan network involves end devices, the radio interface, the network
server (LNS) and the application server. This last element depends on the IoT application
and is specific to a given customer. We have seen in the previous chapter that an LNS can be
virtualized and hence customized and instantiated on demand as any other VNF. In the present
document, we shall not consider virtual radio gateways. Theoretically, radio gateways could be
virtualized as in the case of Base Band Units (BBUs) in the framework of cloudRAN. We shall
instead assume that a LoRa radio gateways are shared by all devices. We shall specify rules for
distinguishing between devices.

In LoRaWan IoT network, the radio interface is much more complex to manage because it is
based on ALOHA medium access. Transmission by EDs is not scheduled and transmissions of
two packets by two different EDs can overlap and the two packets are eventually lost. Collision
is an inherent limitation of the ALOHA medium access scheme, which is nevertheless easier to
implement and requires less processing in the EDs.

Under the above assumptions, the realization of a slice relies on:

- customization of the vLNS,

- a fine tuning of the parameters of end devices spreading factor, power transmission, coding
rate, etc.,

- on policies implemented in radio gateways and LNSs (frequency allocation, remote control
of end devices, etc.),
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- management of radio frequencies (reservation of some frequencies, allocation of spreading
factors, etc.),

- modulation of the transmission power of devices.

A slice then relies on an adequate management of both radio resources and network resources
(vLNS). We assume that the backhaul bandwidth is sufficient to transport information trans-
mitted by EDs without loss.

4.2 Different levels of network slicing

As in 5G cellular networks, slicing in LoRaWan IoT can be based on several levels of isolation.
SF, Transmission power

4.2.1 Strict isolation

To ensure strict isolation, it is possible to reserve frequencies for a group of devices. Moreover,
with the virtualization of LNSs, it is possible to deploy a vLNS for a group of EDs. A vLNS
can be deployed by an orchestrator as any other VNF.

While this approach guarantees isolation as much as possible and the quality of transmission
by the EDs of the slice suffers from limited interactions with EDs outside of the slice (interference
is still possible), this approach is resource consuming and certainly too much expensive, especially
in dense areas where numerous EDs should have access to the LoRa spectrum. This is why we
investigate in the next section, the case when slices share the radio spectrum.

4.2.2 Slices on shared radio spectrum

As mentioned in the previous section, vLNSs can be instantiated on demand and from an
orchestration point of view, they appear as any other VNF. Some configuration is necessary in
the radio gateways to send the packets to the ad-hoc vLNS.

A slice is usually defined for a given group of EDs and has objectives in terms of:

- quality of service expressed in Data Rate, latency to transmit a packet (including retrans-
missions), packet loss,

- availability.

There are a number of parameters which have a direct impact on the above metrics:

- TX data rate (Spreading Factor + Bandwidth),

- Transmission Power (TP),

- Number of transmissions for each uplink message,

- List of possible radio channels for uplink transmissions,

- Mask of of active radio channels for uplink transmissions.

These parameters can be tuned to distinguish between EDs and thus create slices.
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4.3 Slicing in the existing literature

Although numerous works deal with the problem of network slicing, only very few works deal
with slicing in LoRaWan networks [14, 11, 21, 15, 13, 12]. These works have a common co-author
and follow a single methodology. The authors propose a three-step methodology:

- Clustering: The main idea here is to assign devices to slices according to some criterions.
In this step the number of slices is also determined.

- Throughput estimation: The devices’ throughput estimation is done using maximum
likelihood, with the exception of [21] for which the mini-batch Gradient Descent and the
unserved capacity are used to provide such an estimation.

- Resources allocation: In this step, the radio resources are reserved for the different
slices, according to their needs.

Three slice types are introduced in [14] on the basis of quality and reliability as described in
Table 4.1: Urgency and Reliability Aware (URA), Reliability Aware (RA) and Best Effort (BE).
The values for latency should be considered as indicative and not firm objectives. A critical
review of objectives should be performed in light of technological constraints. Nevertheless, one
can keep in mind that there are globally three levels for latency: strict, elastic and a value
in between. This roughly corresponds to the classical cases of QoS in networks: Expedited
Forwarding, Assured Forwarding and Best Effort. It is also worth noting that these QoS classes
have never been used in practice. This is why we shall develop a more pragmatic approach to
QoS in the Intelligentsia project.

Table 4.1: IoT QCIs table.

QCI Slice
Name

Resource
Type

Priority Packet Delay
Budget (ms)

PER % Example Services

71 URA GBR 1 100 10−3 Real time, smart mobility
72 RA GBR 2 200 10−3 Real time, eHealth and home

security
73 BE nGBR 3 300 10−6 Delay tolerant, smart agricul-

ture

To meet the requirements in terms of quality and reliability, the authors in [14] propose
to find an allocation of TP and SF in place of the classical ADR mechanism. This is done in
two steps: first, channels are allocated to slices proportionally to the average throughput of
their devices. Then, TP and SF are assigned to devices inside each slice using a multi-criteria
decision analysis method based on Gaussian Mixture Models (GMM) and Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS).

The objectives of the optimization are i) maximization of throughput and ii) minimization
of delay, Packet Loss Ratio and energy consumption. Different weights are assigned to these
objectives for each slice based on the QoS requirements. Then, the weights are used to find the
best combination of TP and SF for each device in the slice.

The method is compared via simulation with a TP and SF allocation scheme that reflect the
state of the art: SF is chosen so as to reach the closest gateway with the maximum data-rate
possible, and then TP is set to me minimum value needed to still be in range. Results obtained
by progressively increasing the number of devices show that the proposed slicing-based method
is worse in terms of energy consumption, and comparable in term of packet loss, unsatisfied
nodes in delay and unsatisfied nodes in throughput. Nevertheless, it is able to achieve slice
isolation by exploiting the independent channels.

Excepting the papers introduced above, the concept of slicing is not explored in LoRaWan
networks. Nevertheless, there are business opportunities identified by operators. As IoT becomes
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more widely spread, the need for QoS and security is clearly identified by business units of
operators, in particular Orange Business Services. Moreover, new mechanisms are appearing
in EDs in order to reduce collisions inherent to the CSMA scheme used in LoRa. This is in
particular the case of the Listen-Before-Talk (LBT) scheme [23], implemented by some Semtech
products. It is nevertheless worth noting that LBT can only partially reduce collisions, as two
EDs which are sufficiently distant can give rise to collisions at the radio gateway while they
cannot detect each other.

In WP3, new methods of accessing the radio medium will be introduced to implement slicing
on the basis of data analysis algorithms developed in WP2. Moreover, in WP3 we will not be
limited to the vision of slicing as presented in this section, which corresponds rather to a classical
vision of QoS support in networks. Indeed, several visions of network slicing are possible:

- Per IoT device: IoT devices sharing the same quality of service requirements, which
correspond to the vision of the papers introduced in this section.

- Per tenant: Several devices’ owners acting in the same network, which allows the support
of multi-tenancy within the same infrastructure.

- Per service: Support of several services (with QoS requirements) within the same net-
work. This corresponds to the classical view of network slicing, which generalizes the per
IoT device view with customized constraints.

Other visions of the slicing may exist like the one ensuring fairness between slices or hybrid
approaches mixing these different views. These different visions will be developed in WP3.

4.4 Impact of slicing on the functional architecture

In light of the previous section, we see that the introduction of slicing in IoT raises many issues:

- Identification of use cases: See Deliverable D1.2 where several use cases are identified.
After discussion with OBS, there is clearly a need for studying the use case of waste
management. This is the simplest case as EDs are static. More challenging use cases are
identified in D1.2 where EDs are mobile (cattle, vehicles).

- Orchestration: negotiation and life cycle management of slices, notably the deployment of
vLNS.

- Radio gateways: introduction of algorithms for controlling EDs in order to meet the re-
quirements of slices; coordination between several gateways could be necessary.

- End Devices: introduction of algorithms for sharing the bandwidth of the LoRa cell ac-
cording to the requirements of the various slices. Some parameters could be remotely
controlled by the radio gateway and some algorithms could be implemented in the device
to access the medium (LBT and other collision avoidance scheme).

4.4.1 Orchestration issues

With regard to orchestration, slicing in IoT raises the same issues as slicing in cellular networks,
except that the VNFs are not the same:

- negotiation of the slice characteristics,

- provisioning and parameterization of the associated VNFs and their life cycle management
(deployment, removal, update/upgrade, etc.),

- monitoring and MADE (Measure, Analyze, Decide, Execute) loop,
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- parameterization of radio access gateways and possibly EDs for slicing support.

The 3GPP has released various 5G Technical Specifications (namely, TS 23.501 [2], TS
23.502 [3], TS 23.503 [4], TS 28.530 [5], TR 28.531 [6], TR 28.801 [1]) for supporting network
slicing. Among the most relevant entities introduced by 3GPP, we can cite:

- Network Service (NS): A logical network composed of a chain of network functions.

- Network Slice Instance (NSI): A set of instances of network functions and the required
cloud resources to execute them.

- Network Slice Subnet (NSS): A slice subnet is a network segments or sub-slice within a
broader slice. For instance the access network within an end-to-end mobile network.

- Network Slice Subnet Instance (NSSI): A set of instances of network functions belonging
to a network segment.

According to 3GPP, a single cellular device (UE) can support up to eight simultaneous
connections to different slices. A slice shall be in fact identified by a Slice Differentiator (SD).
The UE attachment to a given slice is then performed by the Network Slice Selection Function
(NSSF), while using the Network Slice Selection Assistance Information (NSSAI), that refers
to the expected slice performance (latency, bandwidth). During the registration procedure, the
Access and Mobility Management Function (AMF) selects the adequate NSI among the enabled
slices according to the user subscriptions. The NF Repository Function (NRF) is responsible of
discovering the functions involved in the selected slice. The establishment of a session and data
transmission is then given after the selection of the User Plane Function (UPF) function by the
Session Management Function (SMF). The slice behavior is supervised by the Policy Control
Function (PCF).

To the best of our knowledge, there are no NSSAI nor SD for IoT devices. The configuration
of a slice in the context of IoT should then be based on other identifiers, for instance the MAC
address. This means that for the negotiation of a slice in the context of LoRaWAN beyond
security and QoS, EDs with their identifiers and location should be explicitly declared.

Now, the slice negotiation and management involve specific orchestration functions. 3GPP
has introduced various entities for dealing with the network slicing management and orchestra-
tion, as follows:

- Communication Service Management Function (CSMF): It enables translating the perfor-
mance requirements of a service to slice technical features (service level);

- Network Slice Management Function (NSMF): It performs the management and orches-
tration of NSI (slice level);

- Network Slice Subnet Management Function (NSSMF): Responsible of the management
of NSSI (subnet level).

The CSMF offers a northbound interface to the core commerce layer in charge of the slice
negotiation with the user. This will not be considered in this project.

As argued in [24], the CSMF and NSMF could be inside or outside the orchestration platform.
of the slice. These two functions are within the scope of a supervision center (e.g., in the case
of Virtual Private Networks). The trend in ONAP development is to insert these two functions
into ONAP. In the present document, we identify these two functions without placing them
explicitly inside or outside ONAP.

The orchestration platform will be in charge of the life cycle management of VNFs associated
with LoRaWAN slices to meet security requirements and to configure radio gateways in order
to meet QoS requirements. The concept of slicing has also a big impact on monitoring as the
slice level has to be introduced when analysing and processing data.

ANR INTELLIGENTSIA project 31



D1.1.1 - Reference architecture for slicing in LoRAWAN networks WP1

4.4.2 Monitoring issues

In Section 2.2.6, a number of metrics have been identified to monitor the performance of the
radio interface. The presence of slices lead to the introduction of an aggregation level when
collecting and aggregating metrics. As a matter of fact, metrics should be labeled by taking into
account the slice level when necessary.

This means that the NSMF has to pass information on the slice level to

- the various elements of the substrate layer (LoRa RAN, edge cloud, central cloud) in order
to send slice labeled metric to the telemetry layer,

- the telemetry layer to analyse and aggregate data.

For monitoring slices, the telemetry layer should send sliced labelled and aggregated data to the
NSMF, which in charge of maintaining the slices under utilization in order to meet the SLA
requirements.

4.5 Slice enabled functional architecture

To take into account slicing, we are led to modify the functional architecture presented in Sec-
tion 3.1. We basically introduce the NSMF and CSMF functions. Their relation with the Core
Commerce is not detailed in the present document. Basically, according to the Open Digital
Architecture specified by the TM Forum (see for details), the output of the Core Commerce
layer is a Customer Facing Service (CFS) specification, which has to be converted into a Re-
source Facing Service, which is then translated into network services (VNFs, transport capacities
including the air interface). The functional architecture taking account of slicing is depicted in
Figure 4.1. It is worth noting that a slice in the case of a LoRa network is much simpler than
a slice for a cellular network. The only VNF is the LNS, which can be shared or dedicated to
the slice. The real issue in the case of LoRa network is the air interface. In cellular networks,
the access to the air interface is regulated by the scheduler. In LoRa networks, EDs transmit
according to the CSMA scheme and collisions and interference impact the delivery of packets
sent by the EDs.

In Figure 4.1, we have illustrated in yellow the elements of the network impacted by the
instantiation of a slice:

- The CSMF and NSMF functions of the orchestration platform translate the user request in
terms of network service (vLNS and transport capabilities); we have placed these functions
inside the orchestration platform but could be put outside;

- We have illustrated the case when a slice comprises its own Application server and portal
together with a dedicated LoRa core network;

- Transport functions and controlers have to be slice aware and controlers may configure via
Software Defined Network (SDN) interfaces some transport elements to reserve bandwidth
or configure priority levels in the backhaul network;

- radio functions in the radio gateways as well in EDs to support slices and their SLAs.

We see that slicing impacts almost all the functions of the network, which have to be slice
aware in order to take the right actions and decisions with regard to Service Level Agreements
(SLAs) of slices.

The concept of slicing has also a major impact on the telemetry layer. The metrics coming
from the radio and transport layers and the virtualized infrastructure may not be labeled with
slice identifier. Additional modules have to be introduced in the telemetry layer in order to
process data and then expose them to the orchestration layer. An additional module has to
be introduced in order to make the connection between data and slices. These applies for data
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Figure 4.1: Reference functional architecture - slice aware functions are in yellow.
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from the data planes as well as those from the virtualized infrastructure. This is illustrated in
Figure 4.2.
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Figure 4.2: Reference functional architecture - slice aware functions are in yellow.
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Chapter 5

Conclusion

We have introduced in this deliverable a functional architecture for the introduction of slicing
in LoRaWAN networks. We have have notably identified the various functional blocks for
supporting slicing as well as the metrics which could be used for maintaining the SLA of a slice.

The implementation of the slicing concept in LoRaWAN networks raises a number of ques-
tions and challenges that will be addressed in the different tasks of WP2 and WP3. We describe
below some of these challenges:

1. Definition of the Slicing concept for LoRaWAN networks.

- We plan to take into account three levels of quality of service (Urgency and Relia-
bility Aware, Reliability Aware and Best Effort) which will correspond to 3 types of
slices. It will be necessary to define the resources associated with each slice in the
LoRaWAN access network, in particular the use and sharing of the 8 or 16 channels
supported in EU868 between the slice types. Two approaches could be considered,
strict segmentation of channels according to the type of slice or, on the contrary,
sharing of part or all of the channels between the types of slice.

- Other more advanced visions of network partitioning will also be considered. In these
different visions, introduced above, we will consider a finer sharing of resources with
the possibility to have a better spectral efficiency.

- On the other hand, within each slice, several elements will have to be configured in
order to guarantee the level of quality of service required by a maximum number of
end-devices of the LoRaWAN network. We can mention in particular the choice of
the transmission power, the Spreading Factor or the Coding Rate for changing the
priority of the access to the network.

2. Slice-aware components.

- LoRaWAN networks are composed of three segments: the air interface between end-
devices and gateways, the segment between gateways and LNSs, and finally the seg-
ment between LNSs and the central cloud. For each of these segments, the hardware
and software elements must be able to take into account the three types of slice
considered in the project. To do this, it will be necessary to define algorithms for
routing packets for each slice, to collect the information necessary for monitoring each
level, and to modify the configuration of the parameters associated with slicing by
the orchestrator taking also into account the overall network state. It will be essen-
tial to ensure that all the parameters on the three layers are properly configured to
guarantee the implementation of end-to-end slicing.

- On the other hand, it will be necessary to define the use and sharing of each hardware
and software element between the slices. From a hardware point of view, it will
be necessary to specify whether gateways and LNSs will be exclusively associated
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with one slice or whether they can be used for several slices. From the software
point of view, it is important to agree on the sharing of Application Server and Join
Server components between the slices. The use of separate components between the
slices allows better isolation and greater security of traffic routing between the slices.
Conversely, sharing these components between slices makes it easier to maintain them
and to provision or reconfigure slice through a single API. Moreover, a single shared
component provides a consolidated view of the network state and facilitates the scaling
decision according to the load.

3. Gateways parenting to multiple LNS.

- The provisioning of vLNSs will be considered in the project in order to allow, de-
pending on the choice of slicing implementation, either the assignment of distinct
LNSs to the slices and/or a distribution of the load. Thus, in order to correctly route
end-device packets, it will be necessary to manage the association and communica-
tion between each gateway and one or more LNSs depending on the type of packet
(association of new end-devices or data packets for a type of slice).

- On the other hand, it will be necessary to extend the definition and configuration of
the association between gateways and LNS in the LoRaWAN network. Indeed, the
gateways are in charge of filtering the packets which are not destinated for the LoRa
network of the gateway, but also of transferring the packets to the good LNS. There-
fore, it will be necessary to take into account the various types of slices considered
in the project and to allow a dynamic (re)configuration of the associated LNS for a
correct transfer of the packets.

- LoRa gateways are by design half-duplex and cannot listen when transmitting data to
end devices. To achieve the expected quality of service of a slice it could be envisaged
to dedicate certain gateways only for UL or DL communications.

4. Respect for the duty cycle.

- In LoRaWAN networks, each node (end devices and gateways) must respect a certain
duty cycle rate for the use of each channel during UL or DL communications. LNS
is in charge of taking into account this aspect in a LoRaWAN network since it is the
only node that can have an overview of the network. However, the use of multiple
LNSs makes difficult the consideration of duty cycle. To respect the LoRa standard,
it will be necessary to delegate this control at the gateway level and take this aspect
into account at the orchestrator level when setting up the end devices and gateways.
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Appendix A

LoRaWAN orchestration parameters
in detail

The purpose of this section is to present a structured set of parameters that could be used to
represent a snapshot of the current configuration of a LoRa network. The effort will then be put
on the design of an intelligent classification algorithm that can correlate such configurations to
a set of abstract network states.

The following parameter list is obtained from the LoRaWAN specification document [8] and
the LoRaWAN regional parameters document [20] provided by the LoRa Alliance. Here, by
parameters, we mean the internal network settings that can be modified in real time during
the network operation. Thus, they are inferred from the MAC commands provided by the
LoRa specifications to modify the behaviour of the network, that is, the behavior of one of the
connected End Devices (ED).

We consider class A end devices, in the following, as they are the most used, power-efficient
and configurable, therefore being the true strength of the LoRa technology. However, in other
WPs, we could also deal with the case of class B devices, which have other features that could be
interesting for slicing. Moreover, for the time being, we focus on the version of the technology for
the European 863-870MHz ISM Band, as different regions implement different MAC commands
and different radio channels management policies to comply with local regulations.

Finally, in order to identify a structured set of parameters for the whole network, we could
use a list containing, for each connected ED, the following sets of parameters. A list of the
connected EDs could be easily maintained by the network server. We assume that such a list
does not change, that is, no EDs are removed or added to the network during its operation.
Therefore, parameters related to network join procedures are not considered.

EU868MHz Class-A LoRaWAN End Device parameters

Transmission window (TX) parameters

- TX data-rate. This parameter is set with the LinkADRReq MAC command and is en-
coded on 4 bits. The encoding is region-specific and is defined in the regional parameters
document, as detailed in Table A.1.

LoRa data-rates are an abstraction: in reality most of them correspond to a coupling of
Spreading Factor (SF) and Bandwidth [kHz] (i.e., the parameters of LoRa modulation
used to obtain a given data-rate).

4In this context it means: LoRa modulation technology
4Frequency Shift Keying
4Long Range Frequency Hopping Spread Spectrum
4Occupied Channel Width
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DataRate Configuration Indicative physical
bit rate [bit/s]

0 LoRa1: SF12 / 125 kHz 250
1 LoRa: SF11 / 125 kHz 440
2 LoRa: SF10 / 125 kHz 980
3 LoRa: SF9 / 125 kHz 1760
4 LoRa: SF8 / 125 kHz 3125
5 LoRa: SF7 / 125 kHz 5470
6 LoRa: SF7 / 250 kHz 11000
7 FSK2: 50 kbps 50000
8 LR-FHSS3 CR1/3: 137kHz OCW4 162
9 LR-FHSS CR2/3: 137kHz OCW 325
10 LR-FHSS CR1/3: 336kHz OCW 162
11 LR-FHSS CR2/3: 336kHz OCW 325

12..14 Reserved for future use -

15 Ignore field and keep current
configuration -

Table A.1: TX data rates.

- TX power. This parameter is set with LinkADRReq MAC command and is encoded on
4 bits. If it is set to a value higher than the device’s maximum TX power, the ED will
operate at its maximum TX power. The encoding is region-specific and is defined in the
regional parameters document. In Europe, TX Power values are given by Table A.2.

TXPower Configuration (EIRP)
0 Max EIRP
1 Max EIRP – 2dB
2 Max EIRP – 4dB
3 Max EIRP – 6dB
4 Max EIRP – 8dB
5 Max EIRP – 10dB
6 Max EIRP – 12dB
7 Max EIRP – 14dB

8..14 Reserved for future use

15 Ignore field and keep current
configuration

Table A.2: TX power.

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output
power referenced to an isotropic antenna radiating power equally in all directions and
whose gain is expressed in dBi.

- Number of transmissions for each uplink message. It is set with the LinkADRReq MAC
command and by default to 1 (i.e., no re-transmissions by default). The valid range is
[1:15] (i.e., a 4 bits integer), with 0 making the ED ignore the field and keep the current
configuration.

- List of possible radio channels for uplink transmissions. Channels can be added or modified
using the NewChannelReq MAC command. The EU863-870 LoRaWAN only supports
a maximum of 16 channels. Each end device must include three default channels that
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cannot5 be modified and guarantee a minimal common channel set between end-devices
and network gateways. Such channels are defined in the regional parameters document
and are listed in Table A.3.

Modulation Bandwidth
[kHz]

Channel
frequency
[MHz]

LoRa
DR/Bitrate Duty Cycle

LoRa 125
868.10
868.30
868.50

DR0 to DR5
/ 0.3-5 kbps <1%

Table A.3: Default channels for LoRa transmission.

DataRates (DRs) numbers correspond to the ones detailed in the TX data-rate parameter.
For each channel the following information is stored:

– TX channel frequency. For non-default channels this parameter is set with the
NewChannelReq MAC command. It is encoded using a 24 bits unsigned integer.
The actual channel frequency in Hz is the value×100, whereby values representing
frequencies below 100 MHz are reserved for future use. This allows setting the fre-
quency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. A
value of 0 disables the channel. As we are detailing the technology for the European
863-870MHz ISM Band, frequencies supported by all EU868MHz end-devices are in
the 863-870MHz spectrum.

– TX channel min data-rate. For non-default channels this parameter is set with the
NewChannelReq MAC command. It is encoded with 4 bits and it follows the same
convention of the TX data-rate parameter.

– TX channel max data-rate. For non-default channels this parameter is set with the
NewChannelReq MAC command. It is encoded with 4 bits and follows the same
convention as the TX data-rate parameter. It must be higher than the TX channel
min data-rate parameter.

– RX1 frequency. It can be set with the DlChannelReq MAC command and defaults
to the uplink frequency. It is encoded using a 24 bits unsigned integer and follows
the same convention as a new TX channel frequency.

- Mask of active radio channels for uplink transmissions. This parameter is set with the
LinkADRReq MAC command and is a subset of the list of possible uplink radio channels
stored in the end device. The mask is encoded on 16 bits and each bit is set to 1 if the
channel can be used for transmission. The bits represent the channels stored in the ED in
order.

Subsequent LinkADRReq MAC commands can be used to set the channels mask if more
than 16 channels are allowed. If this is the case, the other fields set by this MAC command
will be updated using the last command in the batch.

Finally, there exists an option in the LinkADRReq MAC command to disable the channel
mask entirely.

- Max aggregated TX duty-cycle. This parameter is set with the DutyCycleReq MAC com-
mand and corresponds to the TX duty-cycle over all sub-bands. The valid range for this
parameter encoding is d = [0 : 15] (i.e., a 4 bits integer) and the corresponding maximum
duty-cycle is computed as: 1

2d
.

5They can be modified in specifications v1.1
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Receiving windows (RX*) parameters

- RX1 delay from TX end. This parameter is set with the RXTimingSetupReq MAC com-
mand and by default to 1 second. This parameter is encoded using 4 bits, corresponding
to the delay in seconds. Therefore, the range is between 1 and 15 seconds, with the value
0 defaulting to 1 second.

- RX1 data-rate. This parameter is set with the RXParamSetupReq MAC command and
defaults to zero. It is encoded using 3 bits, so its value ranges between [0 : 5]. The actual
data-rate is a function of the uplink data rate and the 3 bit parameter (RX1DROffset) as
given by Table A.4.

Table A.4: RX1 data rates.

- RX1 frequency. It depends on the channel used for the uplink TX.

- RX2 data-rate. It is set with the RXParamSetupReq MAC command and follows the same
4 bit convention of TX data-rate. The default value is 0.

- RX2 frequency. It is set with the RXParamSetupReq MAC command. It is encoded
using a 24 bits unsigned integer and follows the same convention as a new TX channel
frequency. The default frequency of the second receiving window is 869.525 MHz (10%
duty cycle limitation).

Other interesting parameters (from Specifications v1.1, not present in 1.0.4)

- ADR_ACK_LIMIT parameter of the end device’s ADR backoff algorithm. It is set with
the ADRParamSetupReq MAC command and defaults to 64. It is set using a 4 bits
integer: the parameter value in seconds can be obtained by elevating the coded integer to
the power of 2.

- ADR_ACK_DELAY parameter of the end device’s ADR backoff algorithm. It is set with
the ADRParamSetupReq MAC command and by default to 32. It is set using a 4 bits
integer: the parameter value in seconds can be obtained by elevating the coded integer to
the power of 2.
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Appendix B

LoRaWAN packet metadata

Here follows a detailed list of PHY layer metadata that is produced at gateway level once a packet
is demodulated [26]. These metadata can be classified into two categories: radio transmission
parameters (e.g., SF and channel frequency) and radio reception measurements (for instance,
SNR and RSSI). The following table is taken from the Semtech’s packet_forwarder gateway
protocol documentation [25].

time string UTC time of pkt RX, us precision, ISO 8601 ’compact’ format
tmms number GPS time of pkt RX, number of milliseconds since 06.Jan.1980
tmst number Internal timestamp of "RX finished" event (32b unsigned)
freq number RX central frequency in MHz (unsigned float, Hz precision)
chan number Concentrator "IF" channel used for RX (unsigned integer)
rfch number Concentrator "RF chain" used for RX (unsigned integer)
stat number CRC status: 1 = OK, -1 = fail, 0 = no CRC
modu string Modulation identifier "LORA" or "FSK"
datr string LoRa datarate identifier (eg. SF12BW500)
datr number FSK datarate (unsigned, in bits per second)
codr string LoRa ECC coding rate identifier
rssi number RSSI in dBm (signed integer, 1 dB precision)
lsnr number Lora SNR ratio in dB (signed float, 0.1 dB precision)
size number RF packet payload size in bytes (unsigned integer)
data string Base64 encoded RF packet payload, padded

Moreover, once the packet arrives at the server, its MAC header is decrypted and a number
of MAC layer parameters can be obtained. Some of the most relevant ones are the address used
to identify the sender device, the frame counter, message type and parameters related to ADR.
For a complete list look up the MAC header section in the LoRaWAN specifications [8].
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