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In this work we propose a high-order discretization of the Baer-Nunziato two-
phase flow model (Baer and Nunziato, Int. J. Multiphase Flow, 12 (1986),
pp. 861-889) with closures for interface velocity and pressure adapted to the
treatment of discontinuous solutions, and stiffened gas equations of states. We
use the discontinuous Galerkin spectral element method (DGSEM), based on
collocation of quadrature and interpolation points (Kopriva and Gassner, J.
Sci. Comput., 44 (2010), pp. 136-155). The DGSEM uses summation-by-
parts (SBP) operators in the numerical quadrature for approximating the in-
tegrals over discretization elements (Carpenter et al., SIAM J. Sci. Comput.,
36 (2014), pp. B835-B867; Gassner et al., J. Comput. Phys., 327 (2016), pp.
39-66). Here, we build upon the framework provided in (F. Renac, J. Com-
put. Phys., 382 (2019), pp. 1-36) for nonconservative hyperbolic systems to
modify the integration over cell elements using the SBP operators and replace
the physical fluxes with entropy conservative fluctuation fluxes from Castro
et al. (SIAM J. Numer. Anal., 51 (2013), pp. 1371-1391), while we derive
entropy stable numerical fluxes applied at interfaces. This allows to prove a
semi-discrete inequality for the cell-averaged physical entropy, while keeping
high-order accuracy. The design of the numerical fluxes also formally pre-
serves the kinetic energy at the discrete level. High-order integration in time
is performed using strong stability-preserving Runge-Kutta schemes and we
propose conditions on the numerical parameters for the positivity of the cell-
averaged void fraction and partial densities. The positivity of the cell-averaged
solution is extended to nodal values by the use of an a posteriori limiter. The
high-order accuracy, nonlinear stability, and robustness of the present scheme
are assessed through several numerical experiments in one and two space di-
mensions.
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1. Introduction

Compressible two-phase flow models find extensive applications in engineering and physics. For instance, in the
aerospace industry, they are used to model the flow of a mixture of liquid kerosene and air through the combustion
chamber of jet engines, whereas, in the oil and gas industry they are used to model and simulate the extraction
of oil through pipelines. Elsewhere, in the nuclear industry these models are used to study and simulate the flow
inside a pressurized water reactor. One of the models commonly employed for the study of compressible two-phase
flows is the Baer-Nunziato model [5], which was originally proposed to describe the flow of a mixture of energetic
granular material embedded in gaseous combustion product. This was later modified and adapted to the study of
mixture of gas and liquid in [58, 18, 21, 28]. In general, the model is a two-velocity, two-pressure, two-temperature
system that describes two-phase flows in complete disequilibrium with respect to the chemical, mechanical, thermal,
and thermodynamic processes. The interaction between the phases are governed by the presence of nonconservative
products and zeroth order relaxation source terms. In this work we will neglect the source terms and limit ourselves
to the convective part of the model. However, the homogeneous model under consideration is fairly general using
closure laws for the interface velocity and pressure [18, 28] as well as stiffened gas equations of states (EOS) relevant
for flows with both liquid and gas phases.

The homogeneous Baer-Nunziato model is a system of first order, nonlinear, nonconservative partial differential
equations. The system is hyperbolic and may become weakly hyperbolic and even resonant. Hyperbolic systems
may generate discontinuous solutions in finite time even for smooth initial data, however, in the case of nonconser-
vative systems, the definition of the nonconservative product is not unique at discontinuities in the classical sense of
distributions and leads to an ambiguity in the value of the product. Following the notion of the Rankine-Hugoniot
conditions from conservation laws, the jump conditions for nonconservative systems may be generalized and may be
either based on the choice of Lipschitz paths connecting separate states around discontinuities [20], or based on the
kinetic relations derived from the physical entropy [7]. Furthermore, uniqueness of the solution requires satisfying a
nonlinear stability condition, for a given convex entropy function, called the entropy condition [48].

Numerical schemes that approximate hyperbolic systems should ideally recover admissible solutions by satisfying
a discrete entropy condition [48, 35]. This property of the numerical scheme is known as entropy stability. In the case
of conservation laws, Tadmor [62] provided the framework for entropy conservative and entropy stable numerical
fluxes which allow for either conservation or dissipation of entropy in space by three-point finite volume schemes.
This was extended to nonconservative systems in [51, 11] by the use of fluctuation fluxes and the theory of connecting
paths [20]. However, path-consistent schemes do not always converge to the right admissible solutions as the solutions
are dependent on the choice of path which defines the jump relation and hence the viscous profile used to attain entropy
stability [2, 13, 15]. Entropy stable schemes using fluctuation fluxes to discretize nonconservative hyperbolic systems
can be found in [37, 10, 54] and we refer to [49] for a review.

High-order accuracy of the numerical scheme is another exceedingly desirable quality that one seeks. Though not
exhaustive, we refer to finite volume schemes using the path-consistent framework and either reconstruction operators
[12], or central schemes [14]; to discontinuous Galerkin (DG) methods [57, 27, 26]; or to ADER methods [23, 22].
Among these the DG methods have gained substantial popularity over the years. The semi-discrete form of the DG
method is proven to satisfy an entropy inequality for square entropy functions in scalar conservation laws [43], which
was extended to symmetric systems in [38].

In [31], Gassner and coauthors have proposed an entropy stable high-order scheme for the compressible Euler
equations using the discontinuous Galerkin spectral elements method (DGSEM), which was extended to general
conservation laws in [17]. They used the general framework for conservative elementwise flux differencing schemes
[25] satisfying a semi-discrete entropy inequality for the cell-averaged entropy. The DGSEM is based on collocation
of quadrature nodes with interpolation points using the Gauss-Lobatto quadrature rules [46]. The scheme was shown
to satisfy the summation-by-parts (SBP) property [29] for the discrete operators which allows to take into account
the numerical quadrature that approximates integrals compared to other techniques that require their exact evaluation
[43, 36, 37]. Such a form of the nodal DG method has found tremendous use in the development of entropy stable
high-order schemes for the compressible Euler equations [31, 17] and multicomponent Euler equations [55], the
shallow water equations [65], the magnetohydrodynamic (MHD) equations [50, 9, 66] and gradient flows [61]. In the
case of nonconservative systems, a semi-discrete framework was proposed in [54] based on the DGSEM formulation
that proves to be entropy stable and high-order accurate.

In the present work we utilize the framework from [54] and focus on the design of a high-order entropy stable
scheme for the Baer-Nunziato model. This framework is here extended to systems that contain both space derivatives
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in divergence form and nonconservative products, which is based on a direct generalization of the frameworks of
entropy stable finite volume schemes for conservation laws [62] and for nonconservative systems [11]. Such gener-
alization has already been proposed for balance laws in [11]. This generalization allows the design of discretizations
that reduce to conservative schemes using conservative numerical fluxes when the nonconservative products vanish as
it is the case away from material fronts in the Baer-Nunziato model. Using this framework, we modify the integration
over cell elements using the SBP operator and replace the physical fluxes with two-point entropy conservative fluxes
in fluctuation form [11], while we use entropy stable fluxes at the cell interfaces [11, 54]. The entropy conservative
fluxes are derived by using the entropy condition [11], and we add upwind-type dissipation as advocated in [41] to
obtain the entropy stable numerical fluxes. Let us stress that such choice of numerical fluxes at interfaces is not
unique and may be replaced by other numerical fluxes from the literature that guaranty entropy stability and robust-
ness [19, 37]. The scheme is also kinetic energy preserving at the discrete level. The present method is introduced in
one space dimension for the sake of clarity and we provide details on its extension to multiple space dimensions on
Cartesian meshes in the appendices. The extension of the DGSEM to quadrangles and hexahedra is direct and based
on tensor products of one-dimensional basis functions and quadrature rules.

We then focus on high-order integration in time for which we rely on strong stability-preserving explicit Runge-
Kutta methods [60, 33] which are defined as convex combinations of first-order schemes and keep their properties
under some condition on the time step. We analyze the properties of the fully discrete one-step scheme and derive
explicit conditions on the time step and numerical parameters to maintain the positivity of the cell-averaged partial
densities and a maximum principle for the cell-averaged void fraction. Positivity of the solution is then enforced at
nodal values by the use of a posteriori limiters [67, 68]. Numerical tests in one and two space dimensions are finally
performed to assess the properties of the present scheme.

The plan of the paper is as follows. Section 2 describes the Baer-Nunziato model and highlights its physical
and mathematical properties. In section 3, we introduce the DGSEM framework and the semi-discrete scheme. The
derivation of entropy conservative and entropy stable numerical fluxes are given in section 4. The properties of the
scheme and the limiters are described in section 5. The results of the numerical experiments in one space dimension
are presented in section 6, while those in two space dimensions are presented in section 7. Finally, concluding remarks
on the present work are provided in section 8.

2. The Baer-Nunziato model

We consider the Cauchy problem for the homogeneous Baer-Nunziato two-phase flow model in one space dimen-
sion [4, 24, 64, 3]:

Ju+ d,f(u) + c(u)d,u =0, xeR, >0, (la)
u(x,0) = up(x), xeR, (1b)
where
(071 0 ur
a1p1 a1p1U) 0
11Uy ai(piui +pr) —Ppr
u:=|apE |, fa):=|aueE +p)|, c@dau:=|-puy|d.a, 2)
ar02 Q02U 0
Q20212 a>(pau; + p2) p1
@02 @iz (p2Es + p2) pryp

represent the variable vector, physical fluxes, and nonconservative product, respectively. The phase densities are p;,
the velocities are u;, and the specific total energies are E; = ¢; + uf /2 where e; is the specific internal energy and
i = 1,2 refers to the ith phase. The void fraction of each individual phase is denoted as a; and we assume that both
satisfy the saturation condition

a+ay = 1. 3)

In one space dimension, the model is a system of seven equations including the evolution equations for the mass,
momentum and energy of each phase, along with a transport equation for the void fraction. The solution u belongs to
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the phase space
Quu={ueR:0<ai<1,0>0,u; €R, pie; > peus i = 1,2}. (4)

Space variations of the physical quantities are governed by the flux function f : Q,,, > u — f(u) € R” and the
nonconservative product c(u)d,u, with ¢ : Q ., > u - c(u) € R7*7 which couples the phases and hinders the system
(1a) to be written in divergence form. Furthermore, observe that if «; is uniform in space, the phases decouple into
separate systems of compressible Euler equations.

The pressure of each phase p; is related to the density and internal energy through a stiffened gas EOS:

pioi-€) = (vi — Dpie; = ¥iPe,i» )

where y; = Cp,/Cy; > 1 is the ratio of specific heats of phase i and pe; > 0 are some constants. System (la)
is supplemented with closure laws for the interfacial velocity and pressure, u; and pj, respectively, that govern the
exchange of information at the interface of the two phases. In this work, we use definitions of the interfacial velocity
and pressure based on convex combinations of the velocities and pressures of the two phases [18, 28] and adapted to
the treatment of discontinuous solutions:

up = Buy + (1 = Plua, (6a)
pr = up1 + (1 — wp2, (6b)
where the weights are
1-p8T
S L E——l ) S R RS )
xaipr + (1 = x)azp> BT+ (1 =BT

and 7; denotes the temperature of the ith phase.

Under the particular choice for the closures (6) and (7), the characteristic field associated to the eigenvalue uy for
the Jacobian f’(u) + c(u) of (1) is linearly degenerate (LD) [18]. This allows to close the jump relation across an
isolated material interface since u; is now continuous across it. Moreover, the possible choices for y in (7) are the
ones that allow to obtain a conservative equation for the physical entropy for smooth solutions [18]. Physical systems
such as the Baer-Nunziato model are indeed naturally equipped with a physical entropy function. Using

_ Pit P,

PiCyviTi = piei = Pooi = , =12, )
yi—1
the phasic entropies read
si(pin6) = =CuiIn (P52) = ~Cy(In6; + (i = DInp;) = Cyyln (i = DCyi).  i= 1.2, ©9)

with 6; = % the inverse of temperature, and obey the second law of thermodynamics.
Smooth solutions of (1) satisfy

2 2 2
0, Z:‘ a;p;s; + 0, Z:‘ a;p;iSil; = Z;(PI = p(ur — u;)6;0a;, (10

which indeed vanishes for the closure of interfacial quantities (6) and (7):

2

D = P = )i = 0. (1)
i=1
In the case of non-smooth solutions, such as shocks, admissible weak solutions must satisfy a nonlinear stability
condition for the convex entropy function n(u) := — Z,-zzl a;p;s; and entropy flux g(u) := - Ziz:l QiU;p;S;:
Im(a) + dxg(w) < 0. (12)

System (1a) can also be written in quasi-linear form as

du+Awadu=0, xeR>0, (13)
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—— Exact solution

..... uh(x,t)

- .
. A S
xipo Mexp T Xy

Fig. 1: A one-dimensional representation of the mesh with cells «; of size h. The left and right interfaces of cell ; are at Xl and representation
2

of the left and right traces at Xl

[Nt

where A : Q,,, > u = A(u) = f'(u) + e¢(u) € R is a matrix-valued function for smooth solutions of (1). The system
(13) is hyperbolic over the phase space (4) and A(u) admits real eigenvalues

(@) = uy —cy, L) =uy — ¢z, A3() = uy, A4() =uy, As(u) = uz, dg(u) = u; +cy, () =uy +c,  (14)

associated to linearly independent eigenvectors. Here c;(po;, €)? = vi(yi — 1)(pie; — po.i)/pi is the speed of sound for
the EOS (5). Observe, in (14), that A3, A4 and A5 are associated to LD fields, whereas the others ones, A1, A5, A¢ and
A7, are associated to genuinely nonlinear (GNL) fields. Note that (13) is only weakly hyperbolic when uy is equal to
one transport velocity, u; or u,, for y = 1 or 0 in (7). In this work we assume that (13) is hyperbolic and well-posed
and exclude resonance phenomena [19]:

a;#0, w#u+xc, i=1,2. (15)

When resonance occurs, the system turns degenerate as the right eigenvectors no longer span the whole phase space
4).

During the remaining course of this work we will be interested in discretizing the initial value problem (1). We
will discretize the system in space using the DGSEM framework from [54] and propose numerical fluxes that maintain
the nonlinear stability condition (12) at the semi-discrete level in addition to several other properties.

In the remainder of the paper, we will use the following general notation for the vectors in (2):

; 0 Uy
aip; aipili 0 .
u= , f(u)= , c(u)du = o, i=1,2, 16
aipitt; w ai(p1u; +pi) (W -pr | (1o
a;piE; a;u;(0;E; + p;) —p1uy

where the first component is obviously redundant from (3).

3. Space discretization with the DGSEM

We discretize the physical domain using a grid €, := Ujezk; containing cells k; = [x;_1,x;, 1 I x, 1= Jh with
cell size h > 0, see Figure 1. Here the mesh is assumed to be uniform without loss of generality.

3.1. Numerical solution

We look for approximate solutions in the function space of piecewise polynomials

Vi = {vn € LAQu) < vile, € Pyl &; € Q). (17)
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where P, («;) denotes the space of polynomials of degree at most p in the element ;. The approximate solution to (1)
is sought as

P
w(x,1) = Z $EOUKD)  Vx € kjukj € Q> 0, (18)
k=0

where the subset (q&(}, ...,¢5.’ ) constitutes a basis of V} restricted onto ; and U?gk@ are the associated degrees of
freedom (DOFs). Here we use the Lagrange interpolation polynomials fo<«p associated to the Gauss-Lobatto nodes
over the reference element / = [-1,1]: =1 = 59 < 51 <--- < 5, = 1. The basis functions thus satisfy the relation

t(s) =6, 0< k1< p, (19)

where 0y is the Kronecker symbol. The basis functions with support in a given element «; are written as (b’]‘.(x) =
tx(oj(x)), where o j(x) = 2(x — x;)/h and x; = (xj+% + xj_l)/2 denotes the center of the element.

The DOFs thus correspond to the point values of the solution: given 0 < k < p, j € Z, and r > 0, we have
uh(x’;, 1= U’;(t) for x’; = x;j + sph/2. Likewise, the left and right traces of the solution at the element interfaces are
llh(x;” 2 1 = U? () and uh(x}jl /20 1) = U(}(t), respectively. The integrals over the elements are approximated using
the Gauss-Lobatto quadrature rule, where the points are collocated with the interpolation points of the numerical
solution:

h P
f fOdx = 3 ) wif (3. (20)
Kj 1=0

where w; > 0, with Zfzo w; = 2, are the quadrature weights and xi, the quadrature points. This allows to define the
discrete inner product in the element «; as

h
p._ i I
f8) =3 go Wi f (). 1)
We also introduce the discrete difference matrix
, h
Dy = {i(s0) = 3d(x)), 0 < k1< p, (22)

This operator satisfies the summation-by-parts property, as noticed in [46],
wiDyg + wiDy = 6kp01, — 61000 Y0 < k, 1 < p, (23)

which is the discrete analogue of the following integration-by-parts

f #h(0)d. 4 (x)dx + f d, @ (0 (x)dx = [¢’;<x>¢§(x)]jijjjj, (24)

since the Gauss-Lobatto quadrature rule is exact for polynomial integrands up to degree 2p — 1. Furthermore, the
property >, £; = 1 implies

14
ZDk,zo VO < k < p. (25)
1=0

3.2. Semi-discrete form
The semi-discrete DGSEM formulation of (1a), see [57, 26, 54], reads: find u;, in ((Vﬁl’ )7 such that

fg vidudx + fg v(O.£C0) + cup)d, oy )dx + v;l(x;+%)D_(U§.’(t), 0, (0)

JEZ (26)
+ D (X DU, (0, U0) =0 Vv, € VI, >0,
JEZL :

where D*(-, -) are the numerical fluxes at the interfaces in fluctuation form which will be defined below.
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Upon substituting v;, for the Lagrange interpolation polynomials ¢’jf(x) = {i(0 j(x)), defined by (19), and using the
quadrature rule (20) to approximate the volume integrals, (26) becomes

h dUf u
ORI 4y Dk,(f(Uﬁ.) + c(U’;)U§) + 5k,,D—(U§?,U‘}+1) + 6k0D+(U§’71,U3) =0 VjeZ0<k<p, (27
=0

along with the projection of the initial condition (1b) on the function space:

US(0) = up(xh) VjeZ,0<k<p. (28)

3.3. Numerical fluxes
We rely on numerical fluxes in fluctuation form [51] that satisfy the properties of entropy conservation and entropy
stability for the semi-discrete form (27). Here we recall their definition from [11].

Definition 3.1. Let D, be consistent numerical fluxes in fluctuation form, D; (u,u) = 0 for all w in Q,,,,, and (1, q) be
an entropy-entropy flux pair for (1a), then D3, are said to be entropy conservative if they satisfy the following relation:

vu)'D (u,u") + v(u")'Di(u,u*) = glut) —gu) Yu* € Q,,, (29)
where v(u*) := ' (u*) denote the entropy variables.
In this work we look for entropy conservative fluxes with the following form
D, (u,u") =h(@ ,u") - fw)+d (u,u"), (30a)
D! (u,u") =f(u*) —h@ ,u") +d*(u",u"), (30b)
where h(u™, u") is a numerical flux that approximates the traces of the physical fluxes, f(u*), and d*(u~, u") are fluc-

tuation fluxes for the discretization of the nonconservative term in (1a). The numerical fluxes satisfy the consistency
conditions:

h(u,u) =f(w), d*(w,u)=0 VYueQ,,. (31)
The condition for entropy conservation now becomes
vau ) d (u,u") +vwH)'d"w ,ut) + [v f—g] = h@ ,u")[v] VYu*eQ,., (32)

where [a]] = a* — a~ denotes the jump operator. This relation is a direct generalization of entropy conditions in
[62, 11] to systems with both conservative and nonconservative terms.

Furthermore, we seek entropy stable fluxes by adding dissipation to the entropy conservative fluxes as advocated
in [41] for conservation laws:

D*(u,u*) ;=D (u,u") £ D,(u”,u"), (33)
where D, (u™, u") is a numerical dissipation that satisfies consistency and entropy dissipation:
D,(w,w) =0, [v]'D,(u",u’) >0 VYuu*eQ,, (34)

Observe, in the semi-discrete form (27), that the discrete volume integral does not bear proper constraints towards
entropy conservation or dissipation. In other words we cannot control the sign of its scalar product with the entropy
variables. Therefore, we modify the volume integral and replace it with entropy conservative fluctuation fluxes, as in
[54]. The semi-discrete scheme now reads

k
"’7"}’% +Ré(uy) =0, (35)
where )
Ri(u;) = wy Z DyD(U;, UY) + S, D™ (U, Ul )+ SD* (U7, UY), (36)
and ”
D@ ,u"):=D,.(u,u")-D! (u",u’), (37a)
D h,u*) +h@*,u) +d (u,u*) - d @, u). (37b)

Note that in the above relation we do not require h to be symmetric as in [25, 17], but rather use the symmetrizer
4(hu™,u*) + h@u*, u)).
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3.4. Properties of the semi-discrete scheme
The modification to the integrals over cell elements in (36) allows for an entropy stable numerical scheme that

preserves the high-order accuracy of the scheme. Below we generalize the results from [54] to systems that contain
both conservative and nonconservative terms.

Theorem 3.1. Let D* be consistent and entropy stable fluctuation fluxes (33) and (34) in (36) and D defined by (37b)
with consistent and entropy conservative fluctuation fluxes (32) and (31). Then, the semi-discrete numerical scheme
(35) satisfies an entropy inequality for the entropy-entropy flux pair (n,q) in (12):

d(n(u ) )
h=—= + Q(U7. U, )) — Q(U7 . U) < 0, (38)
5w
where (n(uy)) ;(t) = Z 7k Uk (t) is the cell averaged entropy and the conservative numerical entropy flux is defined
k=0
by
+
1
0wty = L) 4 2wy D, ut) - Sy DY u), (39)
Further assuming that d* in (37b) have the form
d*(u,u*) = C*(u ", u")[u], (40a)
Clu ,u"):=C"(u,u")+C (u,u"), (40b)
C ,u") +Cu*,u") = c(u) + c(u*), (40c¢)
C(u,u) = c(u), (40d)

where [[u]] = u* — u~, the semi-discrete DGSEM (35) is a high-order approximation in space of smooth solutions for
the nonconservative system (1a) that satisfies

d .
h (), +(e(uy), dw,)? + D7(U7, UG, ) + £(UT) + D*(U”, LU -9 =0, 41)
d[ J J+ J J
for the cell averaged solution
1 1< .
w0 = f w0 = 5 Do) “2)

Proof. These results are consequences of, e.g., [17, Theorem 3.3] for the conservative terms and [54, Theorems
3.1 and 3.2] for the nonconserative ones. First, the entropy inequality has been proved in [54, Theorem 3.1] by
using the definition (37a) of the volume terms together with the entropy condition (29). High-order accuracy of the
discretization in the volume integral in (36) has been proved in [17, Theorem 3.3] for the conservative terms by using
the symmetric flux %(h(u’, ut) + h(u*,u’)) in (37b) and the SBP property (23), and in [54, Theorem 3.2] by using
(40) and the SBP property. Finally, by summing (35) over 0 < k < p and using (36) and (42) we obtain

d<uh>j

)4 )4
h— +Zzkak,D(Uk,Ul)+D (U7, U5, )+ D*(U”_ |, U$) =0
k=0 [=0



260

262

263

264

265

266

267
268

269

270

271

272

273

2

N

4

275

276

277

278

279

280

281

282

283

2

o3
R

285

286

287

F. Coquel et al. / Journal of Computational Physics (2020) 9

where

p
Z w DD, U L) Z wDy(h(UE, U + d (U, U)) + Z wDy(h(UL, U — d* (UL, UY))

k,1=0 k,1=0 =0
p p
= > oDu(h(UL. U + a7 (U3 UD) = > worDy(h(U, Uf) — d (U}, U) + £(U7) ~ £(U))
k,I=0 k,I=0
(40a) “
n 2 OkakzaU’f, U)(U; - U)) + £(UY) — £(UY)
@)\ k1! N k y1iNpTk 0\ 70 0
o ];_0 wDuC(U*, UHU, + ];)w,leC(U L UDUE = e(UD)UY + c(UDUY + £(U7) - £(U9)

p
(40c)
=7 ouD(e(Uh) + (UN)U, - e(UHU? + c(UHUS + £(U7) - £(U5)
k=0

p P
@ Z W Due(UHU = 3" iy Dye(UAHUS +£(U7) - £(UY)
k,1=0 k,1=0

2 Celw). o)) +£(U7) ~ £(US)

O

Note that (41) proves that the discretization of the fluxes f in (36) is in conservative form. In the following section
we propose numerical fluxes for (13) that satisfy the assumptions in Theorem 3.1.

4. Numerical fluxes for the Baer-Nunziato model

Here we derive the numerical fluxes for the model (1a) that satisfy the entropy conservation (32) and dissipation
(33) properties together with the assumptions in Theorem 3.1. An essential tool which would help in the algebraic
manipulations are the Leibniz identities, which we recall here. Let a*,a™,b",b7,¢*, ¢” in R have finite values, then
we have

[ab]l = al[b]l + bllal, [abc]l = a(blc] + €lb]) + bellall, (43)

is the arithmetic mean and [[a]] = a™ — a™ is the jump operator.

— + -
where a = “£¢

4.1. Entropy conservative fluxes
We begin by proposing entropy conservative numerical fluxes.

Proposition 4.1. The numerical fluxes (30) with the following definitions are consistent and entropy conservative
fluxes that satisfy the assumptions (40) of Theorem 3.1 for the Baer-Nunziato model (1a) with the EOS (5) and the
interface variables (6).

0 1 urt
v | o |, il hy, PO ()| 0
h(u ,u ) = hpui BS 2 leu/- s d (u ,u ) = 2 _pli ) (4’4)
Bk hor, —priyy
where o o
e — = 10 — | A u;u ,9
(pis houys BoE) = (a iUiPi, a, uzp, pTJ, [ (Cg— 5 )+ Pg + pw,]]
‘ l (45)
(/~1 pu, ( = p Cvi M, M,- ) + Peo, ,) s

[a]

Bs = 0is defined in Theorem 5.2 and a = [inal

is the logarithmic mean [41].
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2 Proof. Consistency of the numerical flux h follows from consistency of the arithmetic and logarithmic means and the
289 fact that pje; = p;Cy;T; + po; from (8). It can be easily checked that d* satisfy (40) and consistency d*(u, u) =
290 Now let us recall the entropy variables associated to the entropy in (12):

(=1 (p161 — p26»)
u?
291 V(ll) = St (hl B 7]@ B (46)
Lt,‘@,‘
—6;

22 where h;(p;,e;) = e; + Rilpi.ci) = C,,T; is the specific enthalpy for phase i = 1, 2. Then, the discrete counterpart of (11)

203 holds for the interface clgsures (6) and reads

2
> = pour — wfille] = 0. (@7)
i=1
295 Entropy conservation requires the fluxes (30) to satisfy (32) so we have to check that
29 AQm~,u") := —h(u~,u") - [v(w)] + v(u’) -d"(u",u*) + v(u*) - d*(u”,u*) + [f(u) - v(u) — g(w)] = 0. (48)

27 Below we detail each term in the above relation by using the Liebniz identities (43) for the numerical fluxes (44).
206 Note that direct manipulations give
W

Q) ©) — u; uf
2 [P0 = (vi— DCyillpill = peoilil,  [h61 =0, [s1= ~Cy,[ln6;1 - (i — DCyillnpll, @ - 7=

300 Then, by (44) and (46), we have

%@][uieiﬂ—aiﬁi(ﬁ,( s ) RO w,][w]]

1

i

2
[vaw)] - h(u",u") = Z piill(h; — u?[2)6; — ;] + @ (ﬁiﬁ? +
i1
ail 2 - A (Cu o uiul
—,BsT ( [p:fill + pill(hi — u; /2)6; — s:1l + piuaillu;6;1 — (Pi (Q_X + T) + Poo,i) [[91']])
2 —
N ~@pia(adilu + /2100 - Culln 61 - (v; — DCuilinpi1)
i=1

9 ) (w61 — @u; (ﬁi ((;’ L ) + % + poo,i] [6:1

i

+ a; (p,u + 2L
— ke “( i = DCuillpil + peosll6ill - i (ﬁ,@i[[u,-]] +12/206:] - Collln 6] — (y; — 1)cvi[[1np,~11)
+ pitt; (w161 + 6:l[ui1) - ( (f,— + T) + pm,i) [[ei]])

43)

(49)

'MN

—Qiltip (u iOillui]l + u2/2[[9]] Cyillln6;] - (i — l)Cvil[lnp;]])

i=1

2 plel —= 1A [Cu uu ptel
+a,(up, gi)(ul[ﬁ]]+9[[u]]) a/iu,-(p,-(@—i+ 2) 7I+pm,][[9,z]].

a0t (50)
302 Furthermore, using (44) we easily obtain

vw)-d (u,ut) + vt - d* )—Z(pIuI pitt; — prunillail 2 Zp,u@[[a/, : (51)

i=1
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and
2
[f(a) - v(u) - g(w)] = Z[[_aipiui(si —(hi - ”,‘2/2)91‘) + ai(piu? + puib; — ai(piE; + pi)uib; + aip;siu;l
i=1
= Z[[a,plu 61 = Z pitibilei] + @pifilul + @wllp6:1 (52)
(49 —_— _— __
2 Z paibillel + @pibilluill + @it (v — DCyillpill = peo 16:1).
i=1
Substituting (50), (51) and (52) into (48) and collecting terms proportional to [p;], [«;], and [6;], we get

2
— (49) — | A =27 ptl
AQ(u ,l.l+ = a; ,'I/tl-gi ( ,M + )9 + p; ,] u;
o ,u") =)’ (p pitt; + B2 + pi | L]

i=1

W —  pibi L ut) . pibs
+a,u,(,( Cvl“}[‘}f]“) p-u?—% p-(%’+ 2) pg + Pooi — poo,i][[gi]]

1

- 1= DO (il pid - o) = O,

which concludes the proof. O

Remark 4.1. The contributions to the volume integral in (36) of the terms associated to B in (44) vanish due to the
symmetrizer h(u™,u") + h(u*,u™) in (37b). They will however play an important role in the design of the entropy
stable fluxes at interfaces (see Theorem 5.2). They may be compared to the upwinding term in the Lax-Friedrichs flux
derived in [59] for (1a). The main motivation for including this term was to introduce stabilizing mechanisms in the
transport equation for the void fractlon as is evident from the first component of h in (44). However, 1y is associated
to a LD field, so the remaining terms hp , hpu , and hpE are further included so that this dissipation does not affect the
entropy balance as shown in the proof above.

Remark 4.2. Assuming perfect gas EOS in (5), p; = 0, and uniform void fractions, [@;] = O, then the numerical
Sflux h(u™,u") in (44) for both phases reduce to the entropy conservative Chandraskhar flux [16] for the compressible
Euler equations. This numerical flux has been here extended to the stiffened gas EOS (5).

4.2. Entropy stable fluxes

We here follow the procedure in [41] and build entropy stable fluxes (33) by adding upwind-type dissipation to the
entropy conservative numerical fluxes (30). We introduce numerical dissipation to the equations of mass, momentum
and energy for each phase. The rationales for this particular choice of the numerical dissipation are as follows. First,
we do not add numerical dissipation to the void fraction equation as it is associated to a LD field. We stress that the
conservative flux in (44) already adds dissipation through an upwinding term without altering the entropy balance (see
Remark 4.1). Second, since we exclude resonance effects according to the assumption (15), the void fractions remain
uniform across shocks leading to uncoupled phases. It is, thus, appropriate to include dissipation phase by phase.

Proposition 4.2. A class of entropy stable fluxes (33) that satisfy (34) can be obtained for the Baer-Nunziato model
(1a) where the numerical dissipation takes the form

0 0 0 0 0

0 kn 0 0 |fle]

0 ks ksz O [|[w] |
0 ki ki kag )\IT:1

D,(u",u") =

where the matrix entries satisfy the following conditions

Cy; “ut
kop 20, k33 >0, ks 20, ks =ukon, kaz =uiksz, ku = ( él + == szz- (53)
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Proof. By construction we have D, (u, u) = 0. Then, using (46) and (9), we get

2
v - Dy(u,u) = Y ka(y; = DCyillpillin pil + ksl = ksa[ T 10611
i=1
- J— J— Cvi u_zz
+ Oi(ksz — kooup)[pillluill — | kaz — uiksz — koo ) [o:16;1

— (ka3 — uiks3)[[u; 1161
2
E > kn(yi = DCullpilln il + kssBilla - kasI TG > 0
i=1

O

Using dimensional arguments, we define k33 = p;k» and kay = p,Cy k20, and kyp = % max (pA(u’), pA(u+)>, with
€ > 0 and pa(u) = max;=;2(Ju;| + ¢;) the spectral radius of A(u) in (13), to get the following numerical dissipation

0
€ o1
D,(u”, u") = = max (pa(u). pa(u’)) Low;] : (54)

(S + 55 o1 + AlED

Remark 4.3. Nonconservative systems may admit shocks which depend on small scale mechanisms such as viscosity
and that numerical methods may fail to capture because the leading viscosity terms in the equivalent equation do
not match these mechanisms [49]. The jump conditions indeed depend on the family of paths prescribed in the jump
relations which should be consistent with the viscous profile. Using (54) the decay rate for the cell-averaged entropy
(38) reads

d{n(uy));
h dt

1cv, 1 — _
Cullprl” + pibilluil* - piCy, [T 16,1 < O

&\ i —
+ QUL WY, ) - (U, UY) = - Z
where the two last terms in the RHS are analogous to the ones in the physical model [28] for a Prandtl number
PV,' = 3’}/1/4

4u; 3C,,
dm(u) + 0xq(w) = - Z Tt (Gi(axui)z 3P, 29, Ti0:6; ).
and u; > 0 is the dynamic viscosity coefficient and are therefore consistent with the small scale mechanisms. The
first term in the RHS was seen to improve stability and robustness of the computations despite its lack of physical
relevance.

5. Properties of the high-order DGSEM scheme for the Baer-Nunziato model

5.1. Kinetic energy preservation
The equation for the kinetic energy of the model (1a) can be derived from the mass and momentum equations:

6;K,‘ + (9xKiu,- + u,ﬁxa/,-p,- - plu,ﬁxai =0, i=1,2,

where K; = %aipiu? is the partial kinetic energy of the ith phase. These equations contain nonconservative terms
of pressure work and energy transfer between the phases. The property of kinetic energy preservation by numerical
schemes was introduced in [42] for the compressible Euler equations, where a general condition was provided to
impose kinetic energy preservation for finite volume schemes, and was seen to be useful in turbulent flow simulations.
Kinetic energy preservation was later extended to high-order nodal DG schemes in [30, 31] and we refer to [47] for
split forms of the convective terms in the compressible Euler equations that lead to kinetic energy preserving schemes.
According to [31, Theorem 2] it is sufficient to show that the volume terms of the advective part of the cell-averaged
kinetic energy can be written in conservation form.
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sz Theorem 5.1. The discretization of the volume integral in (36) with the numerical fluxes (44) is kinetic energy pre-
363 Serving.

ss  Proof. Let us consider the time derivative and volume term of the advective parts of the mass and momentum equa-
ss tions of phase i = 1,2 in (36). Using (44) they read

p
o AKTN = hd ok ol )+ > 2w D (U U, AR = hd ok pf k) + Zzkak, Ut e Ut U1,

1=0
wr  with A77(u™,u%) = %(hpi(u‘, u®) + h,,(ut,u )) Raddrby u;p;. Introducing K aﬁjpﬁj(uﬁj)z, we have
u 0{ wk Wk )? ok P " k u +u uk )? a1k vl
wa Y AR - AR = N el k) + Z 2w Dya(uf ;=5 — == )i (U%, UL
k=0 k=0 k,I=0
& kol £ vl
=d(Ki(wp); + | 204Dy =5 (U, U)
k=0
370 aj)d,(K (uh)>J + Z (,Ukal 'j ”/’ldp(Uk,Ul) - Z wlle ” 'jhap(Uk,Ul) + Mp Kp - MO KO
k=0 k,I=0
a7 =d(Ki(up)); + u;, Kp —u; K,Oj,
s by symmetry of 4 (u”, u*), which concludes the proof. O
ara 5.2. Positivity of the numerical solution
375 High-order time integration is made through the use of strong stability-preserving explicit Runge-Kutta schemes

ars  [60] that are convex combinations of explicit first-order schemes in time. Therefore, we focus on the fully discrete
a7 scheme by using a one-step first-order explicit time discretization.

a7 We use the notation 1™ = nAt with At > 0 the time step, and set A = 4, (")( Y = wy(-, ™) and Uk " U’;(t(”)).
ars  The fully discrete scheme reads
50 %(U’]‘.’”” - U + ARV ) = 0 (55)

a1 where R’]‘.(~) is defined in (36). Our analysis of the discrete scheme provides conditions on the numerical parameters
sz that guarantee the positivity of the cell-averaged partial densities and a maximum principle on the cell-averaged void
ss fraction. Unfortunately, we were not able to derive conditions for positivity of the partial internal energies, i.e.,
s pPi€; > Pico, and we refer to [19] for a first-order scheme that guaranties such condition.

ss  Theorem 5.2. Assume that p?<€kZ<1’” > 0, ?;";” "> 0fori=1,2and let By, in (44), be locally defined at element

asss  interfaces, then under the CFL condition

- 0,n
1 ) N 183j+1/2 qu 18ij1/2 + qu
Amaxmax| max —|(uy,’,dx@;); + Opp + o ,
jez i=12 | 0<k<p wy g I 2 2

%87 _ . _ . (56)

1 (B —Uijo12Pij12 € | 1 By + Uijr172)Pijr12 € 1

w_ 0,n + on | w_ 2 pin + pin < 5’
0 20, @i Pij @i
" 10" p(]"' ol
- i, i,j+1 A i,j+1 i,

s where U ji1p = » Pijr12 = W, and
389 ﬁSﬂ]/z = {E?g('u | |ul ]+l|) (57)

w0 we have for the cell averaged solution at time t""*V

1 (@inpin)™ >0, (i) >0, i=1,2, jel
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Furthermore,
0.n
P Bsjop —utt" By tur;
(n+1) _ Wy (n) k\p Sj+1/2 J Sj-1/2 J k.
C){™V =3 | 5 = A dudh)] + 6y =+ 10— ol
k=0 (58)
0,n
BS;+1/2 U.]] 0n BS‘;'—I/Z + qu i
A Ay

is a convex combination of DOFs at time 1.

Proof. Summing over 0 < k < p the first component of (55) for the void fraction we obtain

)4
>(n+l) = wkakml

<ai,h j £ B
JJ pn_ 0,1
_ Wi D Ur BY,+|/2 0.n pn ulj +ﬁs_,~_|/z 0.n
= Z —_ Z Wi klll[ (Z "+ 6kp—(ai’j+l - ai,j ) + (5](0—(0’1.!]. - 1]—1)
— 2 2 2
p-l By, +u"
@n M 5 dp) gn | @0 %) o\p , Dsie T L 0
= = _ N+ | — — MW —_—
kl( Ao g )kt | D A ded))) 4 = Lt
_.pn 0,n b
+ & - | (n) .d ¢P>P +’8s"*”2 qu o 4 ’Bsf*‘/2 +qu o ’Bsf”/2 qu a(),n
2 Th 2 &xPj 7} D) ij ) ij-1 B ij+1

which is a convex combination of DOFs at time n with (57) and the following restriction on the time-step:

p.n
ﬁSjH/Z _qu IBSH/Z +qu Wi
2

Afuy”, d @t + 51,

since from (6) we have 8, , > max(lulf’"l, |ll1(])~;"l D.
For the cell-averaged partial densities, we use a similar technique to [67, 52] and sum over 0 < k < p the second
component in (55) for the partial densities to get

p.n 0,n

p st a :8
(n+1) _ Wk kn kn — i,J i,j+1 Si+1/2 (O pn\ | A 0,n p.n
(@inpin); = ) 5@ P — A\ ijer2 3 T Ty e T g )Ptz T Engap\Pija T Pij
pin 0,n
G G PG B on  pa on__pn
Ui j-1/2 2 2 ai,j lj 1 p’f 1/2 = i pz; plj 1
p-1
Wi
=) Eknghn
5 Tij i
k=1
+ wp 2 ﬂsj+1/2 + Uijr172 Pije1j2 Evijap pnopn o Bs_m/z = Ui j+1/2 Pij+1/2 + €vijui2 On
) o o @ i Pij ) 0n on i, ,+1pz ;+1
i,j i,j pi,j+1 i,j+1
" wo A(ﬁwl/z — Ui j-1)2 Pij-1/2 + EVL/I/Z) 0.n On +/l(18311/2 + Ui j-172 Pij-172 " EVL/‘I/Z) PP
0,n 0,n i,j i j V20 pin i,j—1i,j-1
2 2 Pij @;; 2 Pij-1 @i

and is positive if

s

1 Bsjp = Wij-172 Pij-172 €y < @ 2 By * Uije12 Pijera €y < Wp
2 0,n + aOn = ’ 2 pp,n + o) Y
Pij ij Lj L.j

provided €, ., = 0 and (57). O
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5.3. A posteriori limiters

The properties of Theorem 5.2 hold only for the cell averaged value of the numerical solution at time ”"*1, which
can be extended to nodal values by using a posteriori limiters [68, 67]. We here limit the void fraction with the bounds
of its initial value over the whole domain, while we enforce positivity of the partial densities, similar to [54]. The
limiter reads

ksl .
U =00 — )™ Y) + )™, 0<k<p, jez, (59)
with 0 < 0; < 1 defined by 6; := min(@ip",H;”' :i=1,2) where
(n+1)
(aiwpin); ~—€
i . ’ ) i . kn+1
67" = min D oo s (@p)f™ = min (@ipi); AR
(@inpin); = (@ipi)] Sksp ©0)
) g @ _ o \0+D)
0% = min <al’h>j mi,j Ml',j <al’h>j min _ i al.”.H—l "™ = max ak n+1
! (i) — @i @nex — )T Y ek T Y ek Y

0 < € < 1is a parameter (we set € = 1078 in our numerical tests), and

m{, = min min af."(.), M, = max max a/f’p.
5] jeZ 0<k<p 5] 5J j€Z 0<k<p 5J
L S0k ot . . . .
The limiter (60) guarantees that P~ SPT s 0 together with the following bounds on the void fractions m;’/. <
d?jgkgp,}ﬁl g M;Yj-

6. Numerical tests in one space dimension

In this section we assess the high-order accuracy, robustness, and nonlinear stability of the numerical scheme for
the Baer-Nunziato model by considering numerical tests for the initial value problem (1). We recall the numerical
scheme in Appendix A. We use u; = up and p;y = p; as the interfacial variables (6). Unless stated otherwise,
all numerical tests are performed with fourth order accuracy in space, p = 3, on a unit domain Q = [-0.5,0.5]
discretized with a uniform mesh of 100 cells. The values of the numerical dissipation parameter ¢, in (54) lie in the
range [0.1,0.5]. The time integration is performed by using the three-stage third-order strong stability-preserving
Runge-Kutta scheme by Shu and Osher [60]. The limiter (59) is applied at the end of each stage. The time step
is computed through (56). The numerical experiments of sections 6 and 7 have been obtained with the CFD code
Aghora developed at ONERA [56].

6.1. Advection of density and void fraction waves
We first test the high-order accuracy of the scheme (35). Let us consider a unit domain with periodic conditions
and the following initial condition ug(x)

1 1 1
o) = 5 + 7SIm0, pio() = 1+ 58I, w0 =1 po(®) =1, i=1.2,

which results in a density wave and a void fraction wave with different frequencies and amplitudes that are purely
advected in a uniform flow. The EOS parameters in (5) are y; = 1.4, po, = 2.0 and y» = 3.0, pe, = 5.0.

Table 1 indicates the values of the norms of the error on %(pl + py) obtained at final time 7, = 5 with different
polynomial degrees and grid refinements, as well as the associated orders of convergence. We observe, as the mesh is
refined, that the expected p + 1 order of convergence is recovered with the present scheme.

6.2. Riemann Problems
We now consider a series of Riemann problems from [9, 64, 19] to assess the entropy conservation, robustness,
and stability properties of the present scheme. The initial condition reads

u,, x<Xxp,
uo(x) =
Ugr, X > Xp.

Table 2 contains the initial conditions for the different Riemann problems, while the physical parameters are given in
Table 3.
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p|h leall,y O1 llenllry O2  llenlli~@,) O
1/32 4.51E-02 - 5.08E-02 - 8.52E-02 -

1 1/64 7.71E-03 255 9.75E-03 2.38 2.05E-02 2.05
1/128 | 2.90E-03 141 3.38E-03 153 6.79E-03 1.59
1/256 | 7.67E-04 192 8.88E-04 193 1.71E-03 1.99
1/32 2.08E-04 - 2.24E-04 - 5.41E-04 -

’ 1/64 1.93E-05 3.43 249E-05 3.29 5.88E-05 3.20
1/128 | 2.59E-06 290 3.29E-06 292 8.16E-06 2.85
1/256 | 3.43E-07 292 4.40E-07 290 1.25E-06 2.71
1/32 1.33E-06 - 1.74E-06 - 5.57E-06 -

3 1/64 421E-08 498 6.19E-08 4.81 249E-07 4.48
1/128 | 2.28E-09 4.21 3.55E-09 4.12 1.53E-08 4.03
1/256 | 1.41E-40 4.02 2.22E-10 399 1.00E-09 3.93

Table 1: Test for high-order accuracy: different norms of the error on densities under p- and A-refinements and associated orders of convergence
at final time Tyq, = 5.

Test case a1 P1 ui pP1 P2 up P2
BC u, 05 1.0 0.0 1.0 1.0 0.0 1.0
u; 05 1.125 0.0 1.1 1.125 0.0 1.1
RP1 u, 0.1 1.0 1.0 1.0 1.5 1.0 1.0
w09 2.0 1.0 1.0 1.0 1.0 1.0
RP) u 08 2.0 0.0 3.0 1900.0 0.0 10.0
u 0.1 1.0 0.0 1.0 1950.0 0.0 1000.0
RP3 u, 02 099988 -1.99931 04  0.99988 -1.99931 0.4
u; 05 099988  1.99931 0.4  0.99988  1.99931 0.4
RP4 u 03 1.0 -19.59741  1000.0 1.0 -19.59716  1000.0
u; 08 1.0 -19.59741  0.01 1.0 -19.59741  0.01
RES u,  0.999 1.6 1.79057 5.0 2.0 1.0 10.0
uz  0.001 2.0 1.0 100 2.67183  1.78888 15.0

Table 2: Initial conditions for the Riemann problems.

6.2.1. Test for entropy conservation
The property of entropy conservation of the numerical fluxes (30) in the modified scheme (35) is validated based
from the experimental setup introduced in [9]. Here we only focus on entropy conservative fluxes, so we choose €, = 0
in (54). The initial condition corresponds to the test case EC in Table 2 which generates discontinuities of moderate
strength in each phase. We impose periodic boundary conditions and the global entropy should remain constant over
the computational domain, while being modified only as a result of the time integration. We thus introduce the entropy
budget
Ea,(1) = h| D mw)); - (r(uo)) |, (61)

KjEQh

which evaluates the variations in the computation of the cell-averaged entropy over the domain Q. The results
in Table 4 show that the error (61) decreases to machine accuracy when refining the time step, with the order of
convergence corresponding to the theoretical approximation order of the time integration scheme. This validates the
entropy conservation of the numerical fluxes (30).

6.2.2. Riemann problems

The results of the Riemann problems in Table 2 are shown in Figures 2 to 6, where we compare the numerical
results with the exact solutions from [64, 19].

Here the test RP1 consists in the advection of a material interface in a uniform flow and the results in Figure 2
show that the velocity and pressure of both phases remain uniform in time which may be related to the so-called
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EC RPI RP2 RP3 RP4 RP5
X0 0.0 0.0 0.0 0.0 0.3 0.0
Tmax | 0.15 025 0.15 0.15 0.007 0.05
Y1 14 3.0 1.35 1.4 1.4 3.0
2 1.4 1.4 3.0 1.4 3.0 1.4
Poo, 0.1 0.1 0.0 0.0 0.0 0.0
P~, | 0.0 00 34000 0.0 100.0 0.0

Table 3: Location of discontinuity on Qy, final time, EOS parameters from (5).

time step | Eq,(H) o

At 6.85E-06 -

At/2 2.08E-06 | 2.94
At/4 2.65E-07 | 2.97
At/8 3.31E-08 | 2.99

At/16 4.14E-09 | 3.00
At/32 5.14E-10 | 3.00

Table 4: Global entropy budget and the corresponding order of convergence O when refining the time step at final time 7, = 0.15.

criterion of Abgrall [1]. The observed smearing of the contact is a consequence of the limiter (60) which is a common
remark for all Riemann problems that we will consider.

The results for tests RP2 and RP3 in Figures 3 and 4 contain the development of shocks, rarefaction and contacts
in both phases. The scheme captures the correct solutions, but the intermediate states contain small oscillations at the
shock and rarefaction waves in phase 1 of RP2. It is however observed that as the mesh is refined all the intermediate
states are accurately captured and the DG solution converges to the exact weak entropy solution. The scheme also
proves to maintain the positivity of the partial densities in the near vacuum region of RP3, see Figure 4.

The capabilities of the scheme to resolve strong shocks are demonstrated in Figure 5 for the RP4 test case. Here
the left-traveling rarefaction waves and the material discontinuity are well captured, whereas small oscillations are
observed around the right-traveling shock in both phases. A possible reason could be that, as the dissipation is
introduced in the numerical scheme through the interfaces, the internal DOFs may suffer from a lack of stabilization
mechanism.

Finally, the test case RP5 probes the numerical scheme close to resonance (15) mimicking pure phases separated
by a material interface. Numerical experiments are given for two different grids. Note that we do not consider pure
phases in this work and restrict ourselves to conditions close to resonance (see [19] about the numerical difficulties
associated to resonance effects and the derivation of a robust scheme handling such phenomena). The design of the
present scheme is based on entropy variables (46) requiring the map u — v(u) to be one-to-one and thus excluding
pure phases. We indicate in Figure 6 the regions where the corresponding phases exist. The results show a correct
approximation of the intermediate states where either phase exists, while spurious oscillations occur but in regions
where the corresponding phase is absent. As the mesh is refined, we observe a damping of the oscillations where the
phase exist, but oscillations in the regions of vanishing phase persist.

7. Numerical tests in multiple space dimensions

The Baer-Nunziato model in multiple space dimensions reads

Ju+V-flu)+cw)Va=0, xe€ RY >0, (62)
where
a; 0 VI-r
wi=| Y fu) = aipiv; cavu:=| O Ve, i=12
C i | " aieivivi +pD |’ | -pid v o

aipoiE; ai(piE; + p)V; —Prvi
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Fig. 2: Comparison of the fourth order accurate numerical solution to the exact solution for test case RP1 at final time 7),,, = 0.25.

with v; = (u;, v;, w;)" the velocity vector of the ith phase, p; = pi(0;, ;) given by (5) and ¢; = E; — %V,’ - v; the specific
internal energy.

The DGSEM scheme (35) can be extended to (62). The derivation of the scheme for Cartesian meshes is intro-
duced in Appendix B, while the numerical fluxes for the above model are presented in Appendix C. Unless stated
otherwise, the time step is computed with the CFL condition in Appendix D and was seen to maintain positivity of
the solution though it does not guaranty positivity of the partial internal energies.

Numerical experiments in two-space dimensions are given in the remainder of this section including tests on high-
order accuracy, entropy conservation, kinetic energy preservation, together with the simulation of a shock-bubble
interaction problem.

7.1. Advection of density and void fraction waves

We here reproduce the test on accuracy from section 6.1 and consider the pure advection of oblique void fraction
and density waves in a uniform flow in a unit square with periodic boundary conditions. The initial condition reads

1 1 1
a10(®) = 5 + 7 sin(4n(x + ). pio®) = 1+ = sin (220 +3). ui0®) = 1 vio(®) = 1, pio®) = 1, i=1.2. (63)



499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

F. Coquel et al. / Journal of Computational Physics (2020) 19

The EOS parameters in (5) are y; = 1.4,ps, = 2.0 and y» = 3.0, pe, = 5.0. The obtained results are presented in
Table 5. It is again observed that the expected p + 1 order of convergence is achieved.

p|h lealpy  O1 llellry O llenllisgy O
1/32 1.00E-01 1.83 1.11E-01 1.82 1.83E-01 1.65
1 1/64 1.67E-02 2.58 2.03E-02 2.45 3.98E-02 2.20
1/128 | 4.86E-03 1.78 5.83E-03 1.80 1.16E-02 1.78
1/32 4.84E-04 3.67 590E-04 3.65 1.22E-03 3.59
) 1/64 3.81E-05 3.66 4.92E-05 3.58 1.00E-04 3.61
1/128 | 2.77E-06 3.78 3.77E-06 3.71 1.06E-05 3.55
1/32 2.77E-06 6.37 3.53E-06 6.28 1.32E-05 5.75
3 1/64 8.04E-08 5.11 1.03E-07 5.10 5.38E-07 4.61
1/128 | 4.18E-09 426 527E-09 429 296E-08 4.18

Table 5: Test for high-order accuracy with initial condition (63): different norms of the errors on %(pl + p2) under grid and polynomial degree
refinements and associated orders of convergence at final time T}0 = 5.

7.2. Entropy conservation

We also check entropy conservation by using the same procedure as in section 6.2.1 on the unit square with
periodic boundary conditions. The initial condition is EC in Table 2 with zero transverse velocity, v; = 0 fori = 1,2,
and we keep the same EOS parameters. The global entropy budget, similar to (61), is displayed in Table 6 when
refining the time step. Again the conservation of entropy by the space discretization is observed.

time step Eqll) o

At 7.49E-04 -

At/2 1.07E-04 | 2.81
At/4 1.37E-05 | 2.97
At/8 1.72E-06 | 2.99

At/16 2.15E-07 | 3.00
At/32 2.67E-08 | 3.01
At/64 3.19E-09 | 3.06

Table 6: Global entropy budget (61) in two space dimensions and the corresponding order of convergence O at final time 7}, = 0.15.

7.3. Kinetic energy preservation

The property of kinetic energy preservation in Theorem 5.1 is here investigated. We propagate material and contact
discontinuities in a unit square with periodic boundary conditions, following the initial condition uy(x,y) = ug if
0 < x,y < % or % < x,y < 1, else up(x,y) = ug (see Table 7). The EOS parameters for the two-phases are
vi =7v2 = 14, pe1 = 0.1, and pe 2 = 0. For this test, the pressure fields are uniform and equal so that the kinetic
energy is conserved.

Figure 7 presents the temporal variations of the global kinetic energy of the domain KE(f) = fQ pl 1 7 a;p;u; 2dx
from its initial value and we observe that KE(¢) does not vary in time. We conclude that KE(?) is not changed by the

advective terms, but only by the pressure work, which validates Theorem 5.1.

Test case Q. p1 U Vi PL P2 U V2 P2
KEP uwy 04 10 10 10 1.0 15 10 1.0 1.0
uy, 06 20 10 10 1.0 10 10 1.0 1.0

Table 7: Initial conditions for the kinetic energy preservation test case.
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7.4. Shock-bubble interaction

This numerical test involves the interaction between a shock wave and a material discontinuity. The test was
introduced by Haas and Sturtevant [34] to experimentally study the interaction of a shock wave with a single discrete
gas inhomogeneity. Later it was adopted as a numerical benchmark to validate the robustness and accuracy of various
numerical schemes for compressible two-phase flows, see [53, 59, 32, 45, 40, 44, 63, 55] and references therein.

The computational domain Q; = [0, 6.5]%[0, 1.78] is discretized using a Cartesian mesh with 1300x356 elements.
The initial condition involves a bubble of unit diameter containing a mixture of 95% of helium by volume (a; = 0.95)
and 5% of air, to exclude resonance effects (15), in a domain filled with 5% of air. The center of the bubble is located
atx = (3.5,0.89). A left moving shock is initially placed at the rightmost edge of the bubble, xy = 4, and then moves
to the left and interacts with the bubble. The initial condition is provided in Table 8.

a Pi U; Vi Pi

Pre-shock air ( =2) | 0.05 1.3764 -0.3336 0.0 1.1213
Helium bubble i = 1) | 0.95 0.1819 0.0 0.0 0.7143
Post-shock air (i = 2) | 0.05 1.0 0.0 0.0 0.7143

Table 8: Physical parameters for the initial condition of the shock-bubble interaction problem.

The EOS parameters for helium and air are y; = 1.648 and C,; = 6.06, and y, = 1.4 and C,, = 1.786, respectively.
The physical model does not involve viscous effects so to avoid oscillations of the interface we smoothen the initial
condition around the material interface following [45, 39, 8]. The numerical test is performed using periodic boundary
conditions at the top and bottom boundaries, and non-reflective conditions on the left and right boundaries.

Figure 8 illustrates the deformation of the He bubble as the shock passes through it. The plotted fields are those
of the void fraction for phase 1, the total pressure and numerical Schlieren. It is observed that the material interface
and the shock are accurately captured without excessive smearing of the contact. Note however that, for the Baer-
Nunziato model, the pressure field shows the presence of a secondary shock inside the bubble (see e.g. the Schlieren
at t = 62us). This secondary shock is due to the presence of air inside the bubble. Furthermore, as the shock leaves
the bubble, vortices are generated on the bubble interface as a result of the Kevin-Helmoltz instability.

Figure 9 shows the space-time diagram for three characteristic points on the interface of the bubble. We compare
the results obtained with the DGSEM scheme to reference data from [45]. The deformation of the bubble shows
complete agreement with the reference data and indicate that the smooth initial condition does not affect the global
deformation of the bubble.

Finally, we compare results obtained under mesh refinement in Figure 10. We observe a sharpening of the material
interface and the excitation of Kelvin-Helmoltz vortices as the mesh is refined. The positions of the three characteristic
points in Figure 9 are clearly unaffected by the mesh refinement.

8. Concluding remarks

In this work, we derive a high-order entropy stable scheme for the Baer-Nunziato model [5, 58] for flows of
two separated immiscible fluids in complete disequilibria with respect to the chemical, mechanical, thermal, and
thermodynamic processes. Here we focus on the discretization of the convective part of the model and neglect the
disequilibria source terms. The exchange of information at the interfaces of the fluids is governed through interface
variables of pressure and velocity, for which we choose closure laws [18, 28] that allow the material interface to be
associated to a LD field and an entropy inequality in conservative form to be derived from the model. The model is
closed with stiffened gas EOS relevant for both gas and liquid phases.

The space discretization is performed by using the semi-discrete entropy stable DGSEM framework proposed in
[54], which involves modifying the integration over cell elements by replacing the physical fluxes with two point
entropy conservative fluxes in fluctuation form [51, 11], while employing entropy stable fluctuation fluxes at the cell
interfaces. This framework is here generalized to include both conservative and nonconservative terms to allow a
conservative discretization of the former ones. The entropy conservative fluxes are derived by using the condition
in [11], to which we add upwind type dissipation to obtain the entropy stable fluxes. The semi-discrete scheme is
high-order accurate for smooth solutions, satisfies an entropy inequality, and is kinetic energy preserving.
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We use a method of lines with an explicit time integration and propose conditions on the numerical parameters
that guarantee the positivity of the cell-averaged partial densities and a maximum principle on the void fraction for
the fully discrete scheme coupled with a first-order forward Euler discretization. High-order integration in time is
performed using strong stability-preserving explicit Runge-Kutta schemes [60]. The positivity of the solution is then
extended to nodal values using a posteriori limiters adapted from [67, 68, 52].

The numerical tests involve specific test cases that support the high-order accuracy, stability and robustness of the
semi-discrete scheme in one and two space dimensions. Riemann problems are performed in one space dimension in-
volving the development of strong shocks, contacts, near vacuum regions, and vanishing phases. The results obtained
with a fourth-order scheme show that the present method captures the physically relevant solution. The intermediate
states are well resolved, as well as the shocks and contacts and the computation is shown to be robust in situations
close to either vacuum, or resonance. Furthermore, the application to the simulation of a shock-bubble interaction
problem in two space dimensions confirm the accurate approximation of the shock and material interfaces.

Future work will concern the consideration of stiff relaxation source terms for a mixture of gas and liquid and
their modeling to achieve both entropy stability and Galilean invariance in the same way as what has been done in [6]
for modeling deflagration-to-detonation transition in granular explosives.

Acknowledgement
The authors would like to thank Prof. Soshi Kawai for sharing the reference data for the space-time diagrams in
Figure 9.

Appendix A. The semi-discrete DGSEM for the Baer-Nunziato model

Here we recall the semi-discrete scheme (35)

U k 0
e N Z D(UL, U)Dy + 64, D™ (UL, 1Y, ) + 60D (U2, UY) = 0

-
where y
Du ,u*)=2h(u " ,u’)+d (u ,u") -d"(u",u),

and to which we apply the numerical fluxes from Propositions 4.1 and 4.2, that gives the semi-discrete system of
equations for the two-phase Baer-Nunziato model (2) at each DOF k of cell j at time n:

wehd o, o 1]] i+1/2 0s laillj-1,2
TE‘QU +wkZul aljDkl+6kp ((ul = Bsjrip)————— J + 0x0 (ulj 1+ﬂSH/2)TJ =0,
wih d il jv1/2 ;

— (@ lpl)kn + Wy ZZh (Ukn Uln)Dkl + 6/(17( Pij+1/2 BY/H/Z B hﬁ:m/z - (aipiui)?n

€,
— 5 max (pa(u}"). pa (i) Ipi] ,m)

[aillj-i/2 - 0
+ 6/(0(BS_/'_]/2 Thp,:j_]/z - hp;v/'_”z + (al-piul‘)]"n

fvj; n n /
+ —2”2 max (pA(u?Ll),pA(u?’ ))[[Pi]]jl/Z] =0, =12,



585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

22 F. Coquel et al. / Journal of Computational Physics (2020)

a)kh d L
- 7 (oz,p,u,) + wy, ;; (thu, (U’;»n, Uljn) _ PI];' naljn) Dy
- 2\ [@idljs2 ) )
+ 6kp(hp“i,j+l/2 - (IBS,'H/thMi,jn/z + plfn) T - a'gjn(piui + Pz)fn

€
_ 2” max (pA(up )pA(llj+1))|[Pz“ ]]/+1/2)

- [aillj-1/2
+ 6k0( (ﬂsj_l/zhpu,;,-_l/z plon) + hpu,;_/-_”z + a?’,n(quz + pi)_?’n
(VPPN .
+ =52 max (pa}")), pa ™)) [piti1 -1 /2] =0, i=12,

wkh d

P
2 dt(a’plE Dy + o Z (2hﬂE (Ukn Uln) - pi"u "a/Z")Dkl

J J
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ol i+ po)]”

g P [l js1)2
2 @ Ui

P
+ 6kl’(hpE[.j+1/z (ﬁ?,n/? pEijuip T pl J
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6. Cy; Ui j Ui —
~ /21/2 max (oA (u?"), pa @) {(6 + 5 = )'[pi]]j—l/Z +pi,j+l/2[[Ef]]j+1/2]]
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+ =2 max (pa(u), pa (") [(9 L S Vs + By o 1/2]) 0 i=12,
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Where &, /ﬂ/z 2 0, pa(w) = max;=1 2(|ui| + ¢;), Bs,.,, is defined is (57), while the numerical fluxes (A, Ao, hok;) and
(h Npus» Mok, ) are defined from (45).

Appendix B. DGSEM in multiple space dimensions

We here extend the DGSEM to multiple space dimensions and restrict ourselves to Cartesian meshes. For the sake
of clarity we introduce the scheme in two space dimensions, d = 2, on uniform grids without loss of generality.

The physical domain Q is discretized with a Cartesian grid €, with elements «; ; = [x;_ 1 X1 1X[y; j-1s Vsl ] with
Xyl = = ihy, y; il = = jhy, where h, > 0 and h, > O are the space steps.The Cartesian coordinate system is denoted as

(0, e, €y). Each element «; ; is defined through the mapping x; ; : I 3 (£,1) = x = X ;(£, 1) € k;; with I = [-1,1]%
The function space V)’ restricted onto an element «;; is spanned with functions defined as tensor products of one-
dimensional Lagrange polynomials associated to the Gauss-Lobatto nodes (see section 3.1):

i (xi &) = L@, 0<kI1<p,

which satisfy the cardinality relation £(&;)¢,(n;) = 63,05 for O < k,k,I,1 < p. The approximate solution is now
represented as

)4
w(X, 1) = Z SLEOUE() Vx ek 12 0.
k,1=0

The integrals over the physical elements and faces are approximated with Gauss-Lobatto quadratures:

p
f Foodv =Y w2 [ foas =Y w5 oy,
k=0

k,1=0

where wy and wywy are the Gaussian weights, and |e| is the length of e.
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The semi-discrete DGSEM for the discretization of (62) then reads

hyhy dUi’ilj hy (& R —
T dt + wl?(zokakmD(Ui’j’ U,"j’

i,j> ij

hX N N m
+ wq( 2, wiDuDUY,, Uf

m=0

with

e,) + 6,D (U7

[
>J

0l
U

i+1,j°

— ik
ey) +6,D" (U, U

kO

i,j+1°

ey) + §k0D+ (U

L

D@ ,u*,n) :=D,.(u,u*,n) - D} (u*,u",n),

and the numerical fluxes are defined in Appendix C.

i-1,j

=17

Pl " oY ex))

ij?

ey) + 5D (U U, ey)) =0,

Appendix C. Entropy conservative and entropy stable fluxes in multiple space dimensions

In multidimensional space, for solutions belonging to the phase space

Q.. = {u eR™: 0<a;<1,p>0,v;€RY, pie; > Poois | = 1,2},

the entropy conservative fluxes (30) are defined as follows:

D} (u",u",n) = +th(u ,u",n) Ff(w) - n+d*(u",u*,n),

for the system (62). They are assumed to be consistent, h(u, u,n) = f(u) - n and d¥(u,u,n) = 0, and are defined as

follows:
0
@;0;V; - N
I :
h(u,u*,n) := a; | pi(Vi - m)V; + Py —,BSM
91' 2 C .
(. (Cvi Vi Vi) D _ ﬁi(é”+
a; i — + + = +Pwoi|Vi N i
P o 3 0, Peo,
vi-n
_ [ail 0 .
d*(u,u*,n) ;= —= . e {1,2).
(u,u",n) > —p*n iefl,2}
—privi - n
The entropy stable fluxes read
D*(u,u",n) =D .(u,u",n) £ D,(u’,u",n),
with
0
e ol
D,(u”,u*,n) = EV max (pA(u_,n),pA(u+,n)) oiv:l
C,, Vi -vH
— . + - . i +_i Ei
( 5 > ][[p]] PillEill

where €, > 0 and pa(u,n) = max;=; >(|v; - n| + ¢;).

b}

iefl,2},
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Appendix D. Condition for positivity of the cell-averaged solution in multiple space dimensions

Ay =  with At > 0 the time step. Let Pi;

At
h.t and

> (, then the cell-averaged partial densities and

The condition for positivity of the solution is based on the extension of Theorem 5.2. We introduce A, =
OSKISPn o 9 | 5 of 0<kl<p,

void fractlon are positive, at time 11, under the following CFL condition:

m —u pm m +u Om
Siv1/2 li,j Si-1/2 Ii,j
(A + 4y) max max max | max — Z‘“lleuIz + Okp + 0ko s
keQy, u=uy,up 0<m<p | 0<Khk<p Wy J 2 2
m _ VI’”P m ImO
Sj+1/2 ij Sj-1/2 i.J
max — ZkaleI, ;o . 10— ,
0<I<p Wy - 2 2
(ﬂm _ ) en (ﬂ + M ) en (Dl)
1 Si-1/2 Ui 1/2 pz 1/2 &, 12 1 Siv1/2 i+1/2 pz+l/2 V,+1/2
w_O 2 Om + CVOm w_ 2 pl’m + a,l’m ’
pi/' i Or i.j i.j
_ u o>m Am m (n)
1 (ﬂsj 12 J 1/2)'0] 1/2 V, 12 1 (stn/z + vj+1/2)pj+l/2 EV/+1/2 1
w_ 2 m0 a,mO ’ O.T 2 mp + (Ymp < 5’
0 Pij o r Pij ij

where

_ pm,n Om,n mp n mO,n
B, = max (Iulp,j| |uip,i+l,j|)’ B, = Hi §(| ], |), 0<m<p,

ip=12 1 ip,i,J z,,,z,J+l
[lm 7y Omn S mon
—m _ i+1,j =m — i+1,j
Uppip = =5, Vislp = = 3 > 0<m<p,
Om,n _ _pm.n mO,n _ _mp.n
A — i+1,j ij Am :;+1 ij
pi+l/2 - lnpo'"l" lnppmn > ,0j+|/2 lnpm()n lnpmpn B 0 <m< p,

where u, v, and p refer either to phase u;, or to u, in (D.1).
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Fig. 3: Test for convergence of solution through mesh refinement: RP2 at at final time 7,4y = 0.15. The black symbols represent solutions on a
mesh with 100 elements, whereas the symbols in red represent solutions on a mesh with 400 elements.
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Fig. 8: The snapshots of the deformation of the He bubble due to the left traveling shock at various physical times. For each snapshot, the left plot
displays contours of the void fraction @ and of the total pressure p = a1p; + @2p2, while the right plot shows the Schlieren ¢ = exp(IVpl/|Vplmax).
with p = @1p1 + @2p2, obtained with a polynomial degree p = 3.
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Fig. 9: Space-time diagram for three characteristic points on the interface of the He bubble. The solid lines are the reference data from [45], while
the symbols are the results obtained with the present DGSEM scheme for polynomial of degree p = 3 and on a 1300 x 356 mesh.
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contours of the void fraction a and of the total pressure p = @|p; + @2p2, while the bottom figures show Schlieren ¢ = exp(|Vpl/|Vpolmax), With
p = a1p1 + azp2, obtained with a polynomial degree p = 3.





