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Abstract 24 

 25 
During the mid-to-late Pliocene (ca. 4–3 Ma), several hominin species were present in central 26 

Sahel, eastern and southern Africa. Potential discovery of hominin remains from this period is limited 27 

by the availability of exposed Pliocene deposits and the ability to investigate them. As a result, most 28 

discoveries have been made in the Afar region of Ethiopia and in the Lake Turkana basin, thus unveiling 29 

only a portion of Pliocene hominins’ probable geographical presence. In this study we provide a 30 

continental view of geographic areas potentially accessible to these hominins. To do so, we simulate the 31 

climatic envelope suitable for mid-to-late Pliocene hominin presence, using the earth system model 32 

IPSL-CM5A and the Maxent habitat suitability algorithm. The latter indicates high habitat suitability 33 

for these hominin species in semi-arid regions where annual thermal amplitude and mean annual 34 

precipitation are moderate, mostly corresponding to tropical xerophytic shrublands. Our habitat model 35 

estimates geographically continuous, suitable climatic conditions for hominins between central Sahel 36 

and northeastern Africa, but not between eastern and southern Africa. This discontinuity suggests that 37 

southern African and eastern African hominins were separated by an environmental barrier that could 38 

only crossed during particularly favourable periods or by undertaking long-range dispersal over 39 

climatically hostile habitats. During simulated periods of climate changes driven by orbital precession 40 

this climatic barrier is not present. The Turkana basin, the Laetoli region, and a large part of southern 41 

Africa remain suitable for all precession angles, suggesting that these areas may have functioned as 42 

refugia. The constant presence of these stable areas combined with the periodic establishment of 43 

corridors for dispersion can potentially explain hominin diversity in eastern Africa.  44 
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1. Introduction 51 

 52 

The mid-to-late Pliocene, ca. 4–3 million years ago (Ma), was a period of global warmth with 53 

atmospheric CO2 concentrations around 400 ppm, smaller ice sheets, reduced desert areas compared to 54 

the present, a global temperature 2–3°C warmer than the preindustrial period (e.g. Salzmann et al.; 2013; 55 

Haywood et al., 2020). Oxygen isotope ratios of benthic foraminifera and continental ice records show 56 

that this period was climatically stable, with the exception of short-lived cold episodes around 3.6 Ma 57 

and 3.3 Ma (De Schepper et al., 2014; Lisiecki and Raymo, 2005). During this period, several hominin 58 

species appear to have coexisted and fossil occurences occur in three distinct geographic areas: central 59 

Sahel (Australopithecus bahrelghazali: Brunet et al., 1995, 1996; Lebatard et al., 2008), eastern Africa 60 

(Au. anamensis, Au. afarensis: Haile-Selassie et al., 2019; Kenyanthropus platyops: Leakey et al. 2001; 61 

Au. deyiremeda: Haile-Selassie et al., 2015) and southern Africa (Au. prometheus: Clarke and Kuman, 62 

2019; Au. africanus: Dart, 1925; Herries et al., 2013). These hominins thrived in C3-C4 mosaic habitats 63 

(Behrensmeyer and Reed, 2013), close to freshwater sources in the form of rivers (Curran and Haile-64 

Selassie, 2016), springs and oases (Barboni et al., 2019), or lakes (paleo-lake Turkana: Feibel, 2011; 65 

Boës et al., 2019; paleo-lake Chad: Schuster et al., 2009; Lee-Thorp et al., 2012). They may have used 66 

technology, since the oldest recovered retouched pebble assemblage discovered near Lake Turkana is 67 

dated ca. 3.3–3.2 Ma (Harmand et al., 2015).  68 

While their exploited microhabitats appear to have been mostly dominated by the presence of freshwater 69 

and some locally sustained trees, several authors propose that they could have coped with a variety of 70 

environments (within which similar microhabitats could occur), thus leading to the idea that the genus 71 

Australopithecus could have been eurytopic (Bonnefille et al., 2004; Behrensmeyer and Reed, 2013). 72 

Our ability, however, to observe and investigate hominin remains from this period is limited by the 73 

availability of exposed Pliocene deposits. As a result, most discoveries have been made in the Afar 74 

region of Ethiopia and the Lake Turkana Basin, thus representing only a portion of the probable Pliocene 75 

hominin geographic distribution. Here, we aim to provide a continental view of the geographic areas 76 

potentially accessible to these hominin populations. Reconstructing the presence of freshwater sources 77 

at reduced geographic scales is speculative for chronological intervals that have a resolution of hundreds 78 



of thousands of years and regions for which detailed paleotopography is unknown. However, sources of 79 

perennial freshwater and associated gallery vegetation can occur anywhere total annual precipitation 80 

exceeds 200–300 mm and topographic depressions or river channels exist (Quade et al., 2018). This is 81 

the case during the mid-Holocene and the Last Interglacial when surface drainage was reactivated in the 82 

Sahara (e.g. Coulthard et al., 2013; Skonieczny et al., 2015), as well as in areas where precipitation is 83 

lower than that threshold, but sustained by groundwater (e.g. present-day Ounianga lakes in northeastern 84 

Chad: Kröpelin et al., 2008). C3-C4 mosaic habitats, similar to those occupied by hominins, are 85 

ubiquitous in African savannah environments (Marston et al., 2018) for which woody cover depends on 86 

the frequency and intensity of single rainfall events (Good and Caylor, 2011), which are not known for 87 

past periods. Although there is a link between large-scale climate and hominid microhabitats, i.e., 88 

perennial freshwater sources enable the development of mosaic habitats, we cannot mechanically 89 

calculate this. 90 

We address these issues from a statistical point of view by employing climate envelope modeling 91 

methods to determine which large-scale climate variables are most appropriate for explaining known 92 

hominin occurrences between 4 Ma and 3 Ma and inferring their potential distributions. To do so, we 93 

employ a set of mid-to-late Pliocene climatic variables simulated with the earth system model IPSL-94 

CM5A (Dufresne et al., 2013) to create a climatic envelope model that best matches the distribution of 95 

mid-to-late Pliocene hominin occurrences using the kuenm R package (Cobos et al., 2019), which uses 96 

the Maxent algorithm (Phillips et al., 2006, 2017). Via this approach, we 1) evaluate the capacity of 97 

these methods to diagnose the appropriate areas for which we possess data; 2) map potentially suitable 98 

areas currently free of paleontological remains and 3) employ a series of insolation sensitivity 99 

experiments to investigate potential dispersal between our targeted geographic regions and potential 100 

refuge areas.  101 

 102 

 103 

 104 

 105 

 106 



 107 

2. Methods  108 

2.1 Climate model description and setup 109 

 110 

We use the earth system model IPSL-CM5A to simulate late Pliocene climate. Atmospheric 111 

resolution of the model is 3.75° in longitude by 1.9° in latitude, with 39 vertical levels. Mean grid 112 

spacing of the ocean model is approximately 2°, while latitudinal resolution is refined to 0.5° near the 113 

equator and 1° in the Mediterranean Sea. This model has been widely used for the study of future and 114 

past climates (e.g. Dufresne et al., 2013; Kageyama et al., 2013; Contoux et al., 2012, 2015). The 115 

boundary conditions used to force the model follow the Pliocene Model Intercomparison Project phase 116 

1 (PlioMIP1) guidelines described by Haywood et al. (2010). They have been adapted to the IPSL-117 

CM5A model with a modified topography, smaller ice sheets, and atmospheric concentration of CO2 118 

fixed at 405 ppm (Contoux et al., 2012). The climate model uses PlioMIP boundary conditions 119 

designed to simulate the climate of the mid-Piacenzian (Contoux et al., 2012). Given that benthic 120 

isotope ratios show that climate variability was low from 4–2.8 Ma except for two cold outbursts at 121 

3.6 and 3.3 Ma (Lisiecki and Raymo, 2005; Tan et al., 2017), we extrapolate that this simulation is 122 

valid for the period between 4–3 Ma, which mostly corresponds to the Piacenzian. There exists a 123 

multitude of possible orbital configurations for any period that spans several hundred thousand years, 124 

but we can only use one set of orbital parameters per simulation since we conduct equilibrium climate 125 

simulations rather than transient ones. Because the primary goal of the PlioMIP simulation was to 126 

compare the climate of the mid-Piacenzian to the preindustrial, the choice made by the PlioMIP 127 

community was to use the present-day orbital configuration. This present-day configuration is one for 128 

which eccentricity is small. In other words, climate variability linked to precession, which is the main 129 

mode of climate variability during the Pliocene, is also small. Thus, we use it as a proxy for Pliocene 130 

‘mean’ climate. This simulation (Pliocene ‘mean’ climate) has been extensively studied and compared 131 

to other climate models in the framework of PlioMIP1 (e.g. Haywood et al., 2010; Zhang et al., 2013). 132 

We also conducted four additional Pliocene experiments in order to capture an envelope of maximum 133 

climate variability during our target period. We do so using modified orbital parameters corresponding 134 



to the period of highest eccentricity (see appendix 1) with four different precession angles (one per 135 

simulation), corresponding to the Earth at perihelion at the Northern Hemisphere summer solstice 136 

(PlioMax June) and autumn equinox (PlioMax September), and the two opposites, at aphelion at 137 

Northern Hemisphere summer solstice (PlioMin June) and autumn equinox (PlioMin September). 138 

Orbital parameters were calculated using the Analyseries software (Paillard et al., 1996).  139 

Climatological means were calculated from the last 50 years of each simulation. Bias correction of the 140 

climate model output was obtained by using the climatic anomalies (temperature difference and 141 

percent change for precipitation, e.g. Hély et al., 2009) superimposed on Climate Research Unit 142 

climate observations at 0.5° by 0.5° (New et al., 2002). This is possible since the biases of a climate 143 

model are supposed to be stationary through different time periods (Krinner and Flanner, 2018). Our 144 

simulated climatic fields are thus downscaled from a resolution of 1.9° by 3.75° to 0.5° by 0.5°. 145 

 146 

2.2 Vegetation model description and setup 147 

 148 

We employed the BIOME4 model (Kaplan et al., 2003) to calculate vegetation in equilibrium with 149 

the Pliocene mean climate and the four orbital Pliocene climates. To do so, we calculated climate 150 

anomalies between each Pliocene experiment and the preindustrial control experiment (temperature 151 

difference and percentage of change for precipitation and clouds, e.g. Hély et al., 2009) interpolated at 152 

0.5°x0.5°. The anomalies were then added to the 0.5°x0.5° gridded data from the Climate Research Unit 153 

(New et al., 2002). The model BIOME4 calculates vegetation types in equilibrium with climate model 154 

outputs (monthly mean precipitation, air surface temperature, cloud cover and absolute annual minimum 155 

air surface temperature). Atmospheric CO2 concentration was fixed at 405 ppm (PlioMIP value) and 156 

soil characteristics kept at present-day values. 157 

Biomes are assigned according to which plant functional types (PFT) are dominant, as well as the 158 

productivity and leaf area index (LAI) of each PFT. For example, when the productivity on one grid cell 159 

is dominated by the the tropical raingreen tree PFT, followed by the C4 tropical grass and the woody 160 

desert PFT, the grid cell will be associated with tropical xerophytic shrubland biome if the LAI of the 161 



tropical raingreen tree PFT is < 4 and to the tropical savannah biome if the LAI of tropical raingreen 162 

tree PFT is > 4. 163 

 164 

2.3 Hominin occurrence data 165 

 166 

Predictive architectures used to estimate ecological niches or climatic envelopes rely, in part, upon 167 

the geographic coordinates (longitude and latitude) of locations where the target population has been 168 

observed. In this study, the occurrence data are the locations where fossil hominins dated from ca. 4–3 169 

Ma have been recovered. This choice was made for several reasons. First, our climate model is 170 

representative of Piacenzian climate (ca. 3.6—2.8 Ma). This corresponds to the chronological interval 171 

to which Au. afarensis has been dated. Climatic envelope modeling is performed typically at the 172 

species level. However, the diversity of Australopithecus species is poorly constrained as some 173 

species, and even genera, are controversial (Au. bahrelghazali, Au. prometheus, K. platyops). The 174 

intra-specific and inter-specific variability of Australopithecus species is also poorly understood, such 175 

that with the recent discovery of the first complete cranium of Au. anamensis (Haile-Selassie et al., 176 

2019) remains previously assigned to Au. afarensis were reclassified as Au. anamensis. Given the 177 

taxonomic uncertainty of many Australopithecus remains, and considering that the genus provides a 178 

working framework, we chose to simulate the climatic envelope suitable for the ensemble of Pliocene 179 

Australopithecus species, as well as Kenyanthropus. This approach is justified by the review of 180 

Australopithecus paleoenvironments carried out by Behrensmeyer and Reed (2013) demonstrating that 181 

these hominins are all associated with similar environments, thus suggesting that their climatic 182 

envelopes were likely similar. We excluded the more primitive Ardipithecus, which is older than 4 183 

Ma, as well as Australopithecus species that are clearly Pleistocene in age (Au. garhi and Au. sediba) 184 

since climatic deterioration due to the Northern Hemisphere Glaciation was already well established 185 

by that time (e.g. Tan et al., 2018).  186 

In order to have independent training and test data sets and to limit spatial auto-correlation, we 187 

eliminated multiple occurrences such that a grid cell (0.5° by 0.5°) only contained a single occurrence 188 

point (see below). As a result, we have only 18 occurrence points (Table 1) despite the fact that more 189 



than 18 paleontological sites exist. Most of these localities are tightly clustered, especially in the 190 

Awash Valley and the Turkana Basin. 191 

 192 

Table 1. Hominin occurrence points used in this study. The sites of Assa Issie (Au. anamensis), Aramis 193 

(Ardipithecus and Au. anamensis), Maka and Belohdelie (Au. afarensis) and Bouri (Au. garhi) all fall in 194 

the grid cell ‘Middle Awash’ because of their geographic proximity.  195 

 196 
Occurrence point Lon (°) Lat (°) Age (Ma) Age reference 

Koro-Toro 19.0 16.0 3.5—3 Brunet et al., 1995; Lebatard et al., 2008 

Woranso-Mille 

40.5 11.5 

3.8—3.3 Deino et al., 2010; Haile-Selassie et al., 2012, 

2015; Saylor et al., 2019 

Hadar & Dikika 

40.5 11.0 

3.5—2.9 Behrensmeyer and Reed 2013; Alemseged et 

al., 2006 

Middle Awash 40.5 10.5 4.2—3.4 White et al., 1993, 2006a; Renne et al., 1999 

Galili 40.5 9.5 4.5—3.5 Kullmer et al., 2008 

Usno 36.0 5.5 ca. 3.4 White et al., 2006b 

Shungura 36.0 5.0 3.5—3 Brown et al., 2013 

Fejej 36.5 4.5 4—3.6 Kappelman et al., 1996; Fleagle et al., 1991 

Koobi Fora 35.5 4.0 4.3—2.7 Brown et al., 2013 

Allia Bay 36.5 4.0 4.1—3.8 Behrensmeyer and Reed, 2013 

Lomekwi 36.5 3.5 3.5 Leakey et al. ,2001 

Lothagam 36.0 3.0 ca. 3.5 Leakey and Walker, 2003 

Kanapoi 36.0 2.5 4.2—4 Leakey et al., 1998; Ward et al., 2013 

Kantis 36.5 -1.5 3.5—3.4 Mbua et al., 2016 

Laetoli 35.0 -3.5 3.8—3.4 Su and Harrison, 2008 

Makapansgat 29.0 -24.0 3.4—2.6 Herries et al., 2013 

Sterkfontein (member 2) 27.5 -26.0 3.6—3 Bruxelles et al., 2019 

Taung 24.5 -27.5 3—2.6 Herries et al., 2013 

 197 

 198 

2.4 Maxent climate envelope model and kuenm R package descriptions and set-up 199 

 200 

We use the term “climatic envelope modelling” to describe our approach. This term expresses the 201 

idea that “a multivariate space of climatic variables best matching the observed species’ distribution is 202 

being estimated” (Araujo and Peterson, 2012). It does not imply a direct link with Hutchinson’s theory 203 

of ecological niches, as is the case with the term “ecological niche modeling”. In this study, we assume 204 

that aspects of climate determine, at least in part, species distributions, and we do not interpret the 205 

resulting predictions within a strict ecological niche framework. The output from the Maxent model is 206 

termed habitat suitability index. This term of habitat should not be interpreted in the sense of 207 

microhabitat because the climatic data that we provide Maxent are at a large scale of 0.5° (i.e. roughly 208 

2500 km2). The term habitat suitability index should be understood as a measure of how suitable the 209 

large-scale environment was to the targeted African Pliocene hominins.  210 

To model the climatic envelope, we use the Maxent algorithm (Phillips et al., 2006, 2017; Phillips 211 

and Dudik, 2008), which has shown to perform well compared to other correlative predictive 212 



architectures, especially when relying on limited occurrences datasets (e.g. Phillips et al., 2006; Elith et 213 

al., 2006; Hernandez et al., 2006). Maxent requires the geographic location of sites where the target 214 

species have been observed (i.e., fossil localities) and geographically continuous environmental 215 

variables over the region of interest, which are derived from the climate model described above. 216 

Maxent is based on the maximum entropy principle such that the estimated probability distribution is 217 

constrained by climatic characteristic associated with the known occurrence localities while it avoids 218 

assumptions not supported by the data. Maxent is not a classical presence-absence modeling method, 219 

but rather a presence-background method as real absences are not known and cannot be taken into 220 

account during the sampling of environmental variables (Guisan et al., 2017). This approach to 221 

background sampling makes Maxent suitable for making distributional predictions based on 222 

paleontological data. Maxent will compare the probability distribution associated with presence 223 

occurrences with the one associated with background points randomly sampled in the environment. The 224 

area over which this comparison will be done (i.e. the calibration area) has a great influence on model 225 

performance. Its size should be neither too small or too large (e.g. VanDerWal et al., 2009), and should 226 

be biologically meaningful to ensure that the background points represent the environmental conditions 227 

accessible to the species (Anderson and Raza, 2010; Barve et al., 2011). The calibration area 228 

encompassing all occurrences points and used in Maxent models can be found in Appendix 1. Maxent, 229 

however, is known to be sensitive to model settings (e.g. parameterization, number of variables) that 230 

affect model complexity (Warren and Seifert, 2011; Peterson et al., 2018). The more complex a model 231 

is, the more likely it will be overfitted. The more overfitted a model is, the more it will struggle to 232 

extrapolate suitable habitats outside areas where occurrences are already known (Peterson et al., 2007).  233 

In order to address this sensitivity and select the optimal parameterization, we employed the 234 

kuenm R package (Cobos et al., 2019) to produce and evaluate candidate models, as well as to perform 235 

final evaluations of the best models. We performed model calibration by testing the performance of 236 

2210 candidate models. We produced these models using 26 distinct variable sets, made up of all unique 237 

combinations of two or more of the five climatic and vegetation variables from the Pliocene ‘mean’ 238 

climate simulation descibed below. The candidate models also employed one of 17 regularization 239 

multipliers (0.1–1 at intervals of 0.1, 2–6 at intervals of 1, as well as 8 and 10), and five feature classes 240 



or feature class combinations (q, qp, lp, lq, lqp; l=linear, q=quadratic, p=product). We based our 241 

evaluations of the candidate models’ performance by first evaluating significance and predictive power 242 

using partial ROC (500 iterations, and 50% of data for bootstrapping; Peterson et al., 2008) and omission 243 

rate metrics. We then evaluated model complexity using the Akaike Information Criterion for small 244 

sample sizes (AICc) (Warren and Seifert, 2011). We retained model parameterizations that resulted in 245 

statistically significant models, resulted in omission rates lower than 5%, and ΔAICc values less than 246 

two. The parameters of these retained models were used to create final models with 10 replicates by 247 

bootstrapping. The complete kuenm R script that used the Pliocene ‘mean’ climate model is provided as 248 

an Rmarkdown document in Appendix 2. The final model was projected onto the sets of environmental 249 

conditions for each of the four precession angle configurations. During the process of model projection, 250 

we allowed free extrapolation given the response curves (i.e., response curves not truncated for at least 251 

two variables) observed during model calibration. In order to consider, the risks associated with strict 252 

extrapolation and to prevent misinterpretation of transferred areas with non-analogous conditions, we 253 

employed the mobility-oriented parity (MOP) metric (Owens et al., 2013). Following the approach 254 

suggested by Pearson et al. (2006) for small sample sizes, the simulated climatic envelope represents 255 

“regions that have similar environmental conditions to where the species is known to occur, and not as 256 

predicting actual limits to the range of a species”, given that absence of proof is not the proof of absence 257 

(see Discussion). The lower threshold for hominin presence was set to the value of the lowesthabitat 258 

suitability index (fixed sensitivity; Peterson et al., 2011: p.119) score amongst the occurrence points. 259 

The five variables used for predicting the envelope model are representative of mean climate 260 

and seasonality: Warmest Month Temperature (WMT), Coldest Month Temperature (CMT), 261 

Temperature Difference between the warmest and the coldest months (DT), Mean Annual Precipitation 262 

(MAP), and Driest Month Precipitation (DMP). Mean Annual Temperature (MAT), Wettest Month 263 

Precipitation (WMP), Precipitation Difference between the wettest and the driest months (DP) and Net 264 

Primary Productivity (NPP) were excluded from the final analysis, following the recommendations of, 265 

e.g. Merow et al., (2013), because they contributed only marginally to the definition of the climatic 266 

envelope and were highly correlated to the employed variables. The candidate models used to build the 267 



final model do not necessarily include all of the five selected variables as model overfitting increases 268 

with the number of employed environmental variables (Guisan et al., 2017).  269 

Given the chronological uncertainty associated with hominin fossil contexts and the temporal 270 

span of the targeted period, we cannot associate specific fossils or groups of fossils with a particular 271 

orbital configuration. The most conservative choice is to use the least extreme orbital 272 

configuration―Pliocene ‘mean’ climate―to estimate a climatic envelope. With this configuration, 273 

eccentricity is small thereby favoring lower seasonality and lower climatic variability linked to 274 

precession. To detect suitable areas that remained stable across the four precession configurations (i.e. 275 

refugia), we thresholded the final model and each projection by reclassifying as non-suitable (i.e. 0) all 276 

grid cells with suitability scores lower than the lowest value amongst the occurrence points. Next, 277 

suitability scores were grouped into three equal categories (low-, mid- and high-suitability areas) to 278 

facilitate the reading of the models’ geographic projections and prevent direct interpretations of 279 

suitability values. Finally, a binary model was computed by reclassifying all suitable grid cells as one 280 

and non-suitable cells as zero. We then compared the four obtained binary predictions with the main 281 

Pliocene ‘mean’ climate model to reveal temporally stable areas of suitability. 282 

 283 

2.5 Temporal and spatial sampling sensitivity tests 284 

 285 

In order to test the sensitivity of our climatic envelope model to the chosen temporal window with 286 

respect to occurence sampling, we replicated the approach described above by removing the oldest and 287 

most recent Australipthecus taxa from the dataset (i.e. A. anamensis, A. africanus, A. prometheus). The 288 

localities, Lomekwi, Kanapoi, Makapansgat, Sterkfontein and Taung, are removed from model 289 

computation, resulting in the loss of all South African occurrences. The map of habitat suitability 290 

corresponding to this sensitivity test is available in Appendix 1. As recommended for small occurrence 291 

datasets (Pearson et al., 2006; Shcheglovitova and Anderson, 2013), we used a delete-one jackknife 292 

approach (or leave one out approach) to evaluate the influence of individual occurence on predictive 293 

variability. We removed one locality from the dataset, computed the model with n – 1 localities in 294 

kuenm and repeated this process until every locality have been removed once (i.e. n separate models 295 



for n observed localities). The n projections of these n models, as well as a consensus of all 296 

projections, are available in Appendix 1.  297 

 298 

3. Results 299 

 300 

3.1 Climate model validation 301 

 302 

First, we assess the validity of the climate model at hominin sites by comparing 303 

paleoenvironmental reconstructions to the biome simulated with the BIOME4 model using IPSL-304 

CM5A climate variables (see Supplementary Material). Vegetation reconstructions at hominin sites 305 

describe a seasonal, dry mosaic of woodland, shrubland and grassland (Behrensmeyer and Reed, 2013 306 

and references therein), with small-scale more mesic environments sustained by local water resources 307 

(e.g. microhabitats sustained by rivers, lakes and springs; see Barboni et al., 2019). The BIOME4 308 

model indicates tropical xerophytic shrubland, tropical savannah, or tropical deciduous woodland at 16 309 

of the 18 hominin localities (Fig. 1, see also Methods). In the BIOME4 model, productivity is higher 310 

in tropical deciduous woodland (Kantis locality) than in tropical savannah (Usno and Laetoli 311 

localities), and in tropical savannah than in tropical xerophytic shrubland (e.g. Awash Valley, Koro-312 

Toro locality), but the same plant functional types are present in these three biomes. These biomes 313 

describe a mix of tropical raingreen trees, C4 tropical grass, and woody desert plant functional types 314 

(C3 and C4) that correspond to a warm, seasonally dry climate, which is in good agreement with the 315 



mosaic of woodland, bushland and grassland inferred from vegetation reconstructions, although local-316 

scale water sources are invisible to the model. 317 

 318 

 319 

Figure 1. Vegetation simulated with BIOME4 for the Pliocene mean climate. Red circles are the 18 320 

hominin occurrence points.  321 

 322 

3.2 Hominin climatic envelope estimations and robustness 323 

At a regional scale, the highest habitat suitability areas reconstructed by the climatic envelope 324 

model are located in tropical eastern Africa, except over eastern Somalia and western Ethiopia (Fig. 325 

2). The Turkana Basin, areas west of Lake Victoria, as well as a region covering southern Somalia, 326 

eastern Kenya and northern Tanzania (including Laetoli and coastal regions, hereafter called the SKT 327 

region), and finally western Eritrea, northern Somalia-Djibouti and eastern Ethiopia (including the 328 

Awash valley) are the most climatically suitable regions for Australopithecus. Three other regions 329 

show reasonable habitat suitability indices. The first is a latitudinal corridor at ca. 15°N, covering 330 

Africa from the Atlantic coast to the Red Sea, at roughly the latitude of Lake Chad. This Sahelian 331 



corridor suggests a probable continuity of environmental conditions between the Awash valley and the 332 

Lake Chad region, with the potential for population dispersals within this corridor. The second area of 333 

interest is located in South Africa, southwestern Angola, Botswana, non-coastal Namibia, southern 334 

Mozambique, and southeastern Zimbabwe. This area is not connected to eastern Africa in our model, 335 

suggesting that population dispersals to or from this southern African area would not have been 336 

possible under mean Pliocene climate conditions. The last area is located on the African 337 

Mediterranean coast, including the locality of Ain Boucherit, where no Pliocene hominins have been 338 

recovered to date, but where stone artefacts and cut-marked bones dating to ca. 2.4 Ma are 339 

documented (Sahnouni et al., 2018). Our geographic coverage also includes southern regions of 340 

Eurasia (e.g. Yemen, Israel, Jordan, parts of southern Europe) for which habitat suitability attains 341 

values suggesting that mid-to-late Pliocene hominins could have survived in these regions if they had 342 

been accessible. After kuenm calibration process, the final model meeting significance and complexity 343 

requirements (of 2210 candidate models) is based on two of the five available variables: the 344 

temperature difference between the warmest and the coldest month (DT) and mean annual 345 

precipitation (MAP). All hominin occurrences are located in regions where annual precipitation is 346 

below 800 mm/yr with a marked dry season and limited annual thermal amplitude (up to 15°C; Fig. 3) 347 

inside semi-arid zones (BS in the Köppen-Geiger classification, Peel et al., 2007).  348 



Sensitivity tests on the occurrence data (i.e., leave one out approach) reveal that habitat 349 

suitability in the Sahelian corridor is not governed by a single locality, not even Koro-Toro located in 350 

central Sahel, while the suitable area in northern Africa is a result of climatic similarities to occurrence 351 

points located in eastern Africa (e.g. the Middle Awash) or in southern Africa (e.g. Taung; see Suppl. 352 

Fig. 1). The Allia Bay locality in Kenya has the strongest influence on suitability scores in the 353 

Sahelian corridor, but even its removal is insufficient to make this pattern disappear. The consensus 354 

map (see Suppl. Fig. 1), which combines all the sensitivity tests, demonstrates the robustness of the 355 

depicted pattern for hominins in Pliocene ‘mean’ climate (Fig. 2) by preserving the three main areas of 356 

suitable habitats (i.e. eastern, southern Africa, and the Sahelian corridor).  357 

 358 

Figure 2. Habitat suitability index for hominins under the Pliocene mean climate scenario. All values 359 

above the lowest presence threshold are shown (see Methods). Low suitability regroups cells with 360 

habitat suitability values ranging from 0.08–0.36; middle suitability range from 0.36–0.63; and high 361 

suitability is assigned to cells with values over 0.63. The final kuenm model is based on the DT and 362 

MAP variables. 363 

 364 



The sensitivity test conducted via temporal sampling (i.e. the removal of youngest and oldest 365 

species; see Suppl. Fig. 2) demonstrates the robustness of the climate envelope modeled with all 366 

selected occurrences (Fig. 2). We performed this test without the three localities from South Africa 367 

and nevertheless the same areas remain suitable for hominins. The main differences between this 368 

sensitivity test and the main model are the absolute suitability values in suitable areas. In southern 369 

Africa, the eastern coast depicts middle and high suitability in the sensitivity test while in the main 370 

model these areas are associated with low suitability scores. In northern Africa and the European 371 

Mediterranean coast, suitability values are higher in the test, while conversely the areas of middle and 372 

high suitability in eastern Africa are more geographically limited than in the main model.  373 

Our results show that eastern and southern Africa were not connected, with respect to 374 

suitability, under Pliocene mean conditions. However, we know that Australopithecus was present 375 

both in eastern and southern Africa, indicating that either: 1) climate variability allowed them to cross 376 

this environmental barrier; or 2) they were able to reach/occupy both regions because their niche was 377 

in fact broader or because they attempted long-range dispersal across climatically unsuitable areas. In 378 

an effort to evaluate the first hypothesis, we further examined potential geographic variability of 379 

suitable areas for mid-to-late Pliocene hominins caused by orbital precession changes. 380 



  381 

 382 

Figure 3. Mean annual precipitation (MAP), driest month precipitation (DMP), temperature difference 383 

between the coldest and warmest months (DT), and coldest month temperature for the Pliocene 384 

(CMT). Areas suitable for hominins from figure 2 are outlined. MAP and DT are the variables 385 

composing the “best” parameter setting selected after model calibration. 386 

 387 

 388 

 389 

 390 



3.3 Orbitally driven climate variability and potential dispersals 391 

We projected the climatic envelope estimated from Pliocene mean climate conditions onto four 392 

Pliocene climate scenarios simulated with summer and autumn insolation maxima and minima (Figure 393 

4, Suppl. Fig. 3-6). This provides examples of the potential ability of Pliocene hominins to disperse  394 

Figure 4: Projections of the final model computed with the Pliocene mean configuration onto four 395 

orbital precession configurations (see Methods). PlioMax June with a precesion angle of 271° is the 396 

most distant configuration from Pliocene ‘mean’ climate (i.e. 100.04°), whereas PlioMin June is the 397 

closest (90.74°). 398 



geographically during specific climate scenarios driven by orbital precession variability—dispersals 399 

that would not necessitate them changing the environmental conditions they exploited.  400 

During periods of boreal summer or autumn insolation maxima (PlioMax June simulation and 401 

PlioMax September simulation, respectively), the Afar region and a large portion of eastern Africa are 402 

unsuitable, except for the Turkana region and the SKT region (including the Laetoli and coastal 403 

regions) (Fig. 4). During these periods, the tropical rain belt is located further north. The Sahelian 404 

band of suitability is shifted north of Koro-Toro (Suppl. Fig. 5) into the present-day Sahara for 405 

PlioMax September, and it is totally absent for PlioMax June. There remains a large unsuitable area 406 

between Laetoli (the southernmost eastern African site) and Makapansgat (the northernmost southern 407 

African site) for three of the configurations. However, in the PlioMax June projection (i.e. boreal 408 

summer maxima), a continuous zone of middle and high climatic suitability between eastern and 409 

southern Africa emerges (Fig. 4, bottom left), which would have allowed hominin dispersal to/from 410 

the south. Variations in precession angle could therefore be a potential factor controlling the 411 

emergence of corridors permitting the dispersion of ancient hominins between eastern and southern 412 

Africa along the Kingdon line (Kingdon, 2003; Joordens et al., 2019). During periods of boreal 413 

summer insolation minima (Fig. 4, top left, PlioMin June), the habitat suitability indices becomes high 414 

in the northern part of the African rift, particularly in the Ethiopian highlands, down to the Baringo 415 

locality and also extend down to Laetoli through the SKT region. Suitability in the Sahelian band 416 

increases strongly and shifts southward following the tropical rain belt. Three areas remain above the 417 

lowest presence threshold for all orbital configurations and can therefore be considered true core areas 418 

or refugia (Fig. 5)―the Turkana Basin, the SKT region, and a vast portion of southern Africa. To the 419 

contrary, the Sahelian band and the Awash Valley remain suitable in some, but not all, of the four 420 

climate scenarios. 421 



 422 

Figure 5: Refuge areas. Consensus map based on the final climatic envelope’s suitable areas estimated 423 

with Pliocene ‘mean’ climate (Fig. 2), as well as with the four orbital precession configurations (Fig. 424 

4).   425 

 426 

4. Discussion  427 

 428 

4.1 Australopithecus in semi-arid climate  429 

From the late Miocene onwards, early hominins were not found in sites sampling densely forested 430 

environments nor shadowless plains, but instead are known from more or less wooded, mosaic habitats 431 

(see Sponheimer 2013). The earliest known hominin, Sahelanthropus tchadensis, lived in a Sahelian-432 

like mosaic landscape close to lake settings (Vignaud et al., 2002; Le Fur et al., 2009; Blondel et al., 433 

2010; Novello et al., 2017). The early Pliocene hominins Ardipithecus ramidus and Ardipithecus 434 

kadabba are also thought to have lived in an open, wooded savannah biome (Levin et al., 2008; White 435 

et al., 1994, 2009; Cerling et al., 2011), within which they occupied localized forested micro-habitats 436 



sustained by springs (WoldeGabriel et al., 2009; Barboni et al., 2019). However not all early hominids 437 

are associated with savannahs, Orrorrin lived in an open deciduous forest, punctuated by very wet 438 

areas (Bamford et al., 2013; Senut, 2020). 439 

By the late Pliocene, Australopithecus occupied open landscape environments. Pliocene hominin 440 

localities of the Lower Awash Valley and the Turkana Basin had mammal communities corresponding 441 

to a climate for which precipitation was low (inferior to 800–1000 mm/yr) and temperature seasonality 442 

was pronounced (Robinson et al., 2017). Our model suggests that these populations occupied regions 443 

characterized by a semi-arid climate (dry and seasonal with moderate thermal amplitude) and 444 

environments that would have been more or less wooded depending on surface and sub-surface water 445 

availability. Blumenthal et al. (2017) postulate that variable climatic conditions in the Turkana Basin, 446 

within the range of present-day environments, were already present at 4.2 Ma, suggesting that the 447 

region’s hominins were already occupying (semi-)arid areas with soil temperatures of approximately 448 

30–35°C (Passey et al., 2010). Sponheimer (2013) also states that the australopithecine masticatory 449 

apparatus was adapted to abrasive food already by 4 Ma, implying that they could rely on (although 450 

perhaps only seasonally) xerophytic tubers which are found in arid environments and can contain up to 451 

70% water. A re-examination of Turkana Au. anamensis has shown that C4 biomass composed up to 452 

30% of their diet, suggesting increased foraging in open landscapes already by 4 Ma (Quinn, 2019). 453 

An increased proportion of C4 foods in the hominin diet occurs at 3.8 Ma (Uno et al., 2016), and Au. 454 

bahrelghazali was also dependent of C4-derived resources (Lee-Thorp et al., 2012). At Hadar, Au. 455 

afarensis was a mixed C3/C4 feeder and coped with ecological changes via “… a highly varied intake 456 

of C4 foods” (Wynn et al., 2016). Recent dental analyses of Au. africanus also reveal that this species 457 

faced seasonal dietary stress (Joannes-Boyau et al., 2019). Finally, our results show that the climate 458 

envelope of mid-to-late Pliocene hominins largely overlaps with semi-arid climates, but also includes 459 

more temperate climates. This agrees with Behrensmeyer and Reed (2013) who consider that 460 

Australopithecus could survive “considerable seasonal temperature” variations, thus suggesting that 461 

they possessed enhanced thermoregulatory capacities (Lieberman, 2015). This is a step towards the 462 

genus Homo, which appears to have been adapted to even more arid climates (DiMaggio et al., 2015; 463 

Robinson et al., 2017). 464 



4.2 Hypotheses on the paleobiogeography of Australopithecus  465 

Dispersal events during the Pliocene are thought to have strongly influenced the 466 

paleobiogeography of Australopithecus (Foley et al., 2013). Our results support this hypothesis by 467 

indicating that australopithecines in Chad, eastern Africa and South Africa faced similar climatic 468 

conditions. However, dispersal between eastern Africa and southern Africa appears to have been 469 

possible only during periods of extreme summer insolation (PlioMax June), when the Lake Malawi 470 

basin would have been dry enough to create continuous semi-arid environments (Fig. 4 and Suppl. 471 

Figure 5). To the contrary, Au. bahrelghazali, Au. afarensis, and K. platyops could have dispersed 472 

between the Turkana Basin, Laetoli and the SKT region, the Awash Valley and central Sahel—with 473 

the Turkana basin and the SKT region remaining suitable during periods of extreme insolation forcing. 474 

Isolation of some regions (e.g., the Turkana Basin and SKT regions serving as refugia), induced by 475 

climate and vegetation changes driven by orbital forcing, would have isolated animal populations 476 

(including hominids) and reduced gene flow, thus fostering allopatric speciation by vicariance. This 477 

would explain the highest levels of species diversity in eastern Africa in that distinct species could 478 

develop during periods when the two regions were not connected, and later disperse during periods 479 

when they were environmentally linked. Comparing the habitat suitability map to the vegetation model 480 

(Figs. 1 and 2), it is evident that areas of suitability correspond primarily to those where the simulated 481 

biome is tropical xerophytic shrubland (represented in pink in Fig. 1), although the two maps are not 482 

strictly superimposable. This environment is typically present along woodland margins (fringe 483 

environments), corresponding to the hypothesis that Australopithecus was an edge (or ecotonal) 484 

adapted genus (Sussman and Hart, 2015), as suggested for early Pleistocene Paranthropus robustus 485 

(Caley et al., 2018). 486 

According to our results, the coastal regions of southern Somalia and eastern Kenya would have 487 

been suitable even during extreme insolation changes (Fig. 5). This region is included in the extent of 488 

the coastal mosaic forest proposed by Kingdon (2003) and Joordens et al., (2019) (the coastal ape 489 

hypothesis). However, our vegetation model does not reproduce forest in this area, but rather tropical 490 

xerophytic shrubland (this biome does contain the tropical raingreen tree plant functional type); our 491 

model also supports the hypothesis that Australopithecus did not live in forest contexts, but rather in 492 



semi-arid zones. Small-scale patches of gallery forest could have been favoured by local conditions in 493 

this area, without being visible in the model, since the coastal forest at present only measures a few 494 

tens of kilometres of width at its maximum extent. The fact that occurrence points of Pliocene 495 

Australopithecus are located in semi-arid areas, which were already semi-arid areas during the 496 

Pliocene, does not mean that these species were restricted solely to these areas, since it remains 497 

possible that fossils have not been observed elsewhere. Our model, which effectively indicates areas 498 

where remains have been recovered, does predict that this region of southern Kenya and northern 499 

Tanzania had some tropical trees, and was climatically favourable for Australopithecus during the 500 

Pliocene even across climate changes linked to orbital precession variability. 501 

 502 

5. Conclusions 503 

 504 

During the mid-to-late Pliocene, different hominin species are identified in Africa at localities that 505 

are geographically separated (central Sahel, eastern Africa and southern Africa). When using a 506 

climatic envelope model, the estimated areas suitable for mid-to-late Pliocene hominins cover most of 507 

eastern Africa, the Sahelian corridor from the Atlantic coast to the Red Sea, large portions of southern 508 

Africa, and a restricted portion of the African northwestern Mediterranean coast. The climatic 509 

envelope associated with these areas is predominantly characterized by strongly seasonal precipitation 510 

and annual thermal amplitude up to 15°C, in accordance with the two variables selected by the kuenm 511 

R package to create the final model (i.e., mean annual precipitation and thermal amplitude between 512 

coldest and warmest month). The estimated envelope is geographically continuous between eastern 513 

Africa and the Lake Chad region, while a similar pattern is not observed between eastern Africa and 514 

southern Africa, suggesting that this environmental barrier was crossed during periods of extreme 515 

summer insolation maxima or that hominins had a broader climatic envelope than the one estimated 516 

with our occurrence data. The Turkana Basin, the region covering southern Somalia, eastern Kenya 517 

and northern Tanzania (including Laetoli and coastal regions), and a vast portion of southern Africa 518 

remain suitable during periods of orbital variability, contrary to the Sahelian corridor and the Awash 519 

valley. Those refugia are located in eastern and southern Africa and are only connected during certain 520 



orbital configurations, potentially explaining the diversity of hominin species observed in eastern 521 

Africa at that time. 522 

Further studies could improve our results, notably, due to the scarce nature of presently available 523 

data, but this is certainly a long-term perspective. For the immediate future, the increased capability of 524 

climate models to simulate Pliocene conditions via PLIOMIP2 (Haywood, 2020; Tan et al., 2020; 525 

Zhang et al., 2020) warrants pursuing.  526 

 527 
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Supplementary Figure 1. Binary map (green for suitable areas) for the 18 jackknife kuenm final models. 

Named locality is removed, number refers to Table 1. Map in the bottom right is the consensus map of the 

18 final models.   



 

 

Supplementary Figure 2. Sensitivity test on temporal window of sampling. Au. anamensis, Au. prometheus 

and Au. africanus are removed resulting in the removal of the three localities from southern Africa. HSM 

obtained with KUENM and Maxent algorithms. Climatic layers are Pliocene ‘mean’ climate. 

  



 

Supplementary Figure 3. Biomes, Mean annual precipitation (MAP), driest month precipitation (DMP), 

temperature difference between the coldest and warmest months (DT). Areas suitable for hominins from 

figure 4 PlioMin June final model are marked by contours. 

  



 

Supplementary Figure 4. Biomes, Mean annual precipitation (MAP), driest month precipitation (DMP), 

temperature difference between the coldest and warmest months (DT). Areas suitable for hominins from 

figure 4 PlioMax September final model are marked by contours. 

  



 

Supplementary Figure 5. Biomes, Mean annual precipitation (MAP), driest month precipitation (DMP), 

temperature difference between the coldest and warmest months (DT). Areas suitable for hominins from 

figure 4 PlioMax June final model are marked by contours. 

  



 

 

Supplementary Figure 6. Biomes, Mean annual precipitation (MAP), driest month precipitation (DMP), 

temperature difference between the coldest and warmest months (DT). Areas suitable for hominins from 

figure 4 PlioMin September final model are marked by contours. 

  



 

Supplementary Figure 7. Orbital eccentricity, June solstice and September equinox insolation at 30°N from 

3 to 4 Ma (Laskar 2004). Red lines represent the values used for the Pliocene ‘mean’ climate (present-day 

values). Red stars indicate values chosen for orbital climate simulations. 

  



 

Supplementary Figure 8. Calibration area. The purple area is used to compute KUENM-Maxent model, the 

probability distribution associated with occurrences is compared with background points randomly sampled 

in the environment within calibration area. It should encompass all occurrences points, but should not be too 

large to avoid model overfitting.  

 

  



Supplementary Table 1. Model-data comparison at hominin sites. 

Site 
Modeled  

       biome 
Data-inferred paleovegetation Water resource 

Koro-

Toro 

Tropical 

xerophytic 

shrubland 

Gallery forest, wooded savannah, open 

grassland (Fara et al. 2005, Novello et al. 

2017) 

Freshwater lake (Schuster et al. 

2009, Novello et al. 2017) 

Woranso-

Mille 

Tropical 

xerophytic 

shrubland 

Swamp, open woodland, grassland 

(Behrensmeyer & Reed 2013), riparian 

forest (Saylor et al., 2019) 

River, springs (Haile-Selassie et al. 

2007, Barboni et al. 2019), lake 

(Saylor et al., 2019) 

Hadar & 

Dikika 

Tropical 

xerophytic 

shrubland 

Tropical xerophytic shrubland (Bonnefille 

et al., 2004), open grassland 

(Behrensmeyer & Reed 2013) 

River, lake (Taieb et al., 1975) 

Middle 

Awash 

Tropical 

xerophytic 

shrubland 

Grassy woodland-bushland 

(Behrensmeyer & Reed 2013) 
 

Galili 

Tropical 

xerophytic 

shrubland 

Woodland to bushland with some open 

grassland (Behrensmeyer & Reed 2013, 

Kullmer 2008) 

 

Usno 
Tropical 

savanna 

Ecotonal environment at the edge of 

woodland and grassland  (Bobe 2011) 
River (Bobe 2011) 

Shungura 

Tropical 

xerophytic 

shrubland 

Same as Usno Same as Usno 

Fejej 

Tropical 

xerophytic 

shrubland 

unknown  

Koobi Fora 

Tropical 

xerophytic 

shrubland 

Tropical savannah (Salzmann et al. 2008) 
Floodplain (Behrensmeyer & Reed 

2013) 

Allia Bay 

Tropical 

xerophytic 

shrubland 

Seasonal, mosaic of woodland-grassland 

(Behrensmeyer & Reed 2013) 
 

Lomekwi 

Tropical 

xerophytic 

shrubland 

Tropical deciduous woodland (Salzmann 

et al. 2008) 

Fluvio-lacustrine (Boyd et al. 

2018) 

Lothagam 

Tropical 

xerophytic 

shrubland 

Dry and seasonally open (Behrensmeyer 

& Reed 2013) 
 

Kanapoi 

Tropical 

xerophytic 

shrubland 

Grassy woodland (Quinn & Lepre 2018), 

shrub savannah (Head & Muller 2018) 

Lake, river margin (Head & 

Muller 2018) 

Kantis 

Tropical 

deciduous 

woodland 

Mosaic of woodland, shrubland, grassland 

(Mbua et al. 2016) 
 

Laetoli 
Tropical 

savanna 

mosaic of woodland, bushland, shrubland, 

grassland (Su & Croft 2018) 

River margin (Su & Croft 2018), 

probable springs (Barboni et al. 

2019) 

Makapansgat 

Tropical 

xerophytic 

shrubland 

Mosaic of riparian woodland, bushland, 

edaphic grassland (Reed 1997) 

River or spring (Behrensmeyer & 

Reed 2013) 

Sterkfontein 
Warm mixed 

forest 

Temperate sclerophyll woodland 

(Salzmann et al. 2008), riparian forest, 

bushland (Behrensmeyer & Reed 2013) 

 

Taung 

Temperate 

sclerophyll 

woodland 

Dense woodland (Behrensmeyer & Reed 

2013) 

Spring (McKee & Kuykendall, 

2016, review in Barboni et al., 

2019) 

 

 

 

 



Koro-Toro site, Chad 

Fara et al., (2005) conclude that “paleoenvironments were heterogeneous”, with “lakeside environments surrounded 

by a patchwork of gallery forest, wooded savannah and open grassland”. Diatom data indicate freshwater lake, and 

phytolith data confirm the heterogeneous pattern and abundance of C4 grasses (Novello et al. 2017). The model simulates 

tropical xerophytic shrubland, here dominated by tropical raingreen trees and C4 grasses, with some woody desert plants, 

corresponding to the vegetation reconstructions. There is also evidence of lacustrine conditions (Schuster et al., 2009) 

at Koro-Toro site. A lake large enough would have locally impacted surrounding vegetation, even to a larger extent than 

gallery forest, especially on its eastern side, where the hominin site is located and where precipitation could have been 

increased by the presence of the lake (Contoux et al., 2013).  

 

Awash Basin, Ethiopia 

For the Awash sites, the model simulates tropical xerophytic shrubland for which the LAI of tropical raingreen trees is 

between 2.51 and 3.13, i.e. values typical of open woodlands. Data describe mosaic environments mixed C3-C4, grassy 

woodlands and bushlands (Behrensmeyer and Reed, 2013) likely to correspond to tropical savanna or to tropical 

xerophytic shrubland. In the model, tropical savannah (for which LAI must be superior to 4 in the model) is simulated 

on the grid cells located just to the west of each Afar site (Fig. 1), in agreement with plausible greater humidity and 

cooler temperature on the escarpments, which even today sustains a slightly more wooded and green vegetation 

compared to the lowlands. 

 

 

Turkana Basin 

At Usno the model simulates tropical savannah. For all the other sites in the Turkana basin, the model simulates tropical 

xerophytic shrubland. The data suggest, similarly to the Awash basin, a mosaic of woodland and grassland, more 

wooded at Usno and Shungura than in the rest of the basin, in agreement with the presence of the large and permanent 

Omo River fluvial complex (fluvio-deltaic context at Shungura, floodplain at Koobi-Fora, fluvio-lacustrine 

environments at Lomekwi, Behrensmeyer and Reed 2013).  

 

Kantis, Kenya 

Mbua et al., (2016) indicate a mosaic of woodland, shrubland, grassland with more C4 than other Au. afarensis sites. 

Here the model simulates more mesic environments than those of the Awash and of the Turkana basins, with the same 

mix of PFTs (tropical raingreen trees, C4 grass and woody desert plants). All PFTs are more productive, leading to the 

tropical deciduous woodland biome. 

 

Laetoli, Tanzania 

Via a combination of faunal and floral analyses, Su and Croft (2018) find that vegetation at Laetoli was a “mosaic of 

woodland, bushland, shrubland, grassland with riverine woodland in a relatively arid and seasonal environment”. The 

review of Barboni (2014) also indicates a mosaic of dry and moist woodlands and grassland, and few components of 

Afromontane forest. In our study, the simulated biome at Laetoli for the Pliocene mean climate is tropical savannah, 

with dominant tropical raingreen trees, the presence of conifer forest, C4 grass and woody desert plants. Thus, our 

simulated biome at Laetoli is consistent with the reconstructions. 
 

South Africa 

Makapansgat 

The biome simulated at Makapansgat is tropical xerophytic shrubland, dominated by tropical raingreen trees, with the 

presence of temperate broad-leaved evergreen trees, conifer forest, C4 grass and woody desert plants, suggesting a strong 

heterogeneity of the landscape. This could correspond to the habitat mosaic recognized by Reed (1997). 

Sterkfontein 

Salzmann et al. (2008) interpret data from Reed (1997) and Bamford (1999) as being representative of temperate 

sclerophyl woodland, while Reed (1997) suggests that Sterkfontein is more open than Makapansgat. Our model however 

simulates warm mixed forest, i.e. a landscape dominated by temperate broadleaved evergreen trees, with tropical 

raingreen trees, conifer forest, C4 grass and woody desert plants. This can hardly be reconciled with the reconstructions. 

 

Taung 

Fauna suggest relatively dense woodland (Behrensmeyer and Reed, 2013) while the model simulates temperate 

sclerophyll woodland, i.e. a rather open landscape composed of mainly temperature broadleaved evergreen trees, conifer 

forest, grass and woody desert plants. 

 

In summary, hominin sites are mostly mosaic environments of tropical trees, grasses and shrubs. Because data 

reconstructions are mostly qualitative, it is difficult to compare to model results, which also represents a larger spatial 



scale which smoothes heterogeneity, notably because it does not include water sources. Nonetheless, the model 

simulates a mix of trees, grasses and shrubs at all the hominin sites, in broad agreement with reconstructions. Thus the 

simulated large-scale vegetation is coherent with local-scale vegetation reconstructions at hominin localities, except for 

Sterkfontein and Taung localities (2 sites over 18). We are therefore confident that our model’s climatic variables can 

be used to reconstruct the Australopithecus climatic envelope at a broad geographic scale. 
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R scripts for KUENM and Maxent analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Example script for Pliocene ‘mean’ climate 

Computed with Rmarkdown 

 

Environmental layers 

Import of the simulated climatic layers from files beforehand cropped with calibration area (see Annexe 1) 
and preparation of the 2210 KUENM variables sets. “Plio_vars_noncor/var/m3_clipped” is the folder 
where non-correlated cropped layers are stored, “Plio_vars_noncor/FullVar” is the folder where non-
cropped (all Africa) layers are stored. 

library(kuenm) 
library(raster) 
library(rgeos) 
 
setwd("yourKUENMfolder") 
 
## preparing M variables (cropped layers for model computation) 
kuenm_varcomb(var.dir = "Plio_vars_noncor/var/m3_clipped", out.dir = "M_variables", mi
n.number = 2, in.format = "ascii", out.format = "ascii") 
 
## preparing G variables (non-cropped layers for projection of the model) 
kuenm_varcomb(var.dir = "Plio_vars_noncor/FullVar", out.dir = "G_variables", min.numbe
r = 2, in.format = "ascii", out.format = "ascii") 

Occurrences of Pliocene hominids 

Import of the occurrences of Pliocene hominids living in Africa between 4 and 3 Ma, see Table 1 for 
references and coordinates. The 18 occurrences are then splitted in training and testing datasets to 
conduct model calibration. For jackknife, leave-one out approach, 18 datasets are constructed by removing 
one occurrence point. The models used to evaluate the impact of orbital configuration are based on the 
full (18) dataset. 

## Import from .csv files 
hom <- read.csv("allOccurrence.csv", sep = ";") 
 
## Splitting in training and testing datasets 
kuenm_occsplit(occ = hom, train.proportion = 0.75, method = "random", save = TRUE, nam
e = "occ") 

Candidate models, evaluation and selection 

In this step, 2210 candidate models are produced and their performance are evaluated to select the best 
Maxent parameterization. 

## Parameters for model calibration 
 
# names for directory and files 
occ_joint <- "occ_joint.csv" 
occ_tra <- "occ_train.csv" 
M_var_dir <- "M_variables" 
batch_cal <- "Candidate_models" 
out_dir <- "Candidate_Models" 
# regression parameters 
reg_mult <- c(seq(0.1, 1, 0.1), seq(2, 6, 1), 8, 10)  
f_clas <- c("q", "lq", "lp", "qp", "lqp") 
args <- NULL 



maxent_path <- "C:/Maxent" 
wait <- FALSE 
 
run <- TRUE 
occ_test <- "occ_test.csv" 
out_eval <- "Calibration_results" 
threshold <- 5 
rand_percent <- 50 
iterations <- 100 
kept <- TRUE 
selection <- "OR_AICc" 
paral_proc <- FALSE 
 
## Computation of the candidate models 
kuenm_cal(occ.joint = occ_joint, occ.tra = occ_tra, M.var.dir = M_var_dir, batch = bat
ch_cal, out.dir = out_dir, reg.mult = reg_mult, f.clas = f_clas, args = args, maxent.p
ath = maxent_path, wait = wait, run = run) 
 
## Computation of model evaluation and selection 
cal_eval <- kuenm_ceval(path = out_dir, occ.joint = occ_joint, occ.tra = occ_tra, occ.
test = occ_test, batch = batch_cal, out.eval = out_eval, threshold = threshold, rand.p
ercent = rand_percent, iterations = iterations, kept = kept, selection = selection, pa
rallel.proc = paral_proc) 

Final models 

Computation of the final models and projection on G_variables (i.e. the entire Africa) 

batch_fin <- "Final_models" 
mod_dir <- "Final_Models" 
rep_n <- 10 
rep_type <- "Bootstrap" 
jackknife <- FALSE 
out_format <- "logistic" 
project <- TRUE 
G_var_dir <- "G_variables" 
ext_type <- "all" 
write_mess <- FALSE 
write_clamp <- FALSE 
wait1 <- FALSE 
run1 <- TRUE 
args <- NULL  
 
kuenm_mod(occ.joint = occ_joint, M.var.dir = M_var_dir, out.eval = out_eval, batch = b
atch_fin, rep.type = rep_type, jackknife = jackknife, out.dir = mod_dir, out.format = 
out_format, project = project, G.var.dir = G_var_dir, ext.type = ext_type, write.mess 
= write_mess, write.clamp = write_clamp, maxent.path = maxent_path, args = args, wait 
= wait1, run = run1) 

Computation of extrapolation risk analysis 

As with any model fitting exercise, interpretation of model predictions outside the range of the 
independent variables on which models were calibrated is perilous. To estimate the extrapolation risk we 
use Mobility-Oriented Parity (MOP) analysis (Owen et al. 2013) 

sets_var <- c("Set_8") #these are the variable combo sets used in Final models 
out_mop <- "MOP_results" 
percent <- 10 
swd <- FALSE 
paral <- FALSE 



 
kuenm_mmop(G.var.dir = G_var_dir, M.var.dir = M_var_dir, is.swd = swd, sets.var = sets
_var, out.mop = out_mop, percent = percent, parallel = paral) 
 
# MOP summary 
dir.create("MOP_summary") 
 
mops <- stack(list.files(out_mop, pattern = ".tif$", full.names = TRUE, recursive = TR
UE)) 
 
meam <- calc(mops, mean) 
minm <- calc(mops, min) 
 
writeRaster(meam, filename = "MOP_summary/Mean_MOP.tif", format = "GTiff") 
writeRaster(minm, filename = "MOP_summary/Min_MOP.tif", format = "GTiff") 

Computation of final model statistics 

Last step of the KUENM analysis, caution incorrect sp_name and scenarios variables can prevent the 
analysis from running. The final model can be projected on multiples environmental layers by adding their 
names in “scenarios” variable (e.g. “Africa”, “PlioMin June”, “PlioMin September”) and the respective 
layers in G_variables. 

# Model statistics: The final models to be analyzed will be found in the Final_Model_S
tats folder. 
format <- "asc" 
project <- TRUE 
stats <- c("med", "range", "avg") 
rep <- TRUE 
# the type of extrapolation can be selected according to user requirements  
ext_type <- c("E", "EC", "NE")  
out_dir <- "Final_Model_Stats" 
 
# Select names of taxa name in occurrence file and G_variable name (i.e. Africa) 
sp_name <- "Hominin" 
scenarios <- c("Africa") 
 
kuenm_modstats(sp.name = sp_name, fmod.dir = mod_dir, format = format, project = proje
ct,  
               statistics = stats, replicated = rep, proj.scenarios = scenarios,  
               ext.type = ext_type, out.dir = out_dir) 
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