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Abstract: In the last five years, we witnessed the shift from the vision of the Internet of things
(IoT), to an actual reality. It is currently shifting again from specific and single applications, to
larger and more generic ones, which serves the needs of thousands of users, across borders and
platforms. To avoid losing the personification of applications, on account of genericity, new
approaches and languages that use generic knowledge as a steppingstone, while taking into
consideration users and context’s specific and evolutive needs are on the rise. This chapter aims to
provide a framework to support the creation of such approaches (DSPL4IoT). It is later on used to
asses notable IoT specification approaches, and extract conclusion of the trends and persistent
challenges and directions. An approach for the specification of Natural Language (NL)
requirements for IoT systems is also provided to assist domain and application engineers with the
formulations of such requirements.
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1 INTRODUCTION

The Internet of Things (IoT) is here to stay. In 2020, a swapping 99% of companies maintained or
increased their budget for IoT (Gartner, 2020). And as the world recovers from a pandemic that
froze life as we know it (Covid-19) (World Health Organization, 2020), companies that have
succeeded digitalizing their business are the most likely to survive the aftermath. While for some
businesses this translates to moving their assets to the cloud, for others like manufacturing, health
or agriculture, digitalizing the business is much more complicated. It requires much more
advanced devices and technologies, mainly, IoT related. This means that sensors, actuators,
smartphones, computers, vehicles, buildings and even people and animal should evolve into
“things” (ITU, 2012). That simply -but not so simply- means that they should all eventually
possess the ability to remotely communicate, collaborate, have an impact on the environment they
serve and, in advanced scenarios, be artificially intelligent.

This new reality emphasizes the need for IoT dedicated standards, best practices and Frameworks.
While a plethora of existing works covers various IoT related issues, from its enabling technology
like middleware (Ngu et al, 2017), dedicated operating systems or lightweight communication
protocols (Baccelli et al., 2018), to storing and processing the big amount of generated data



(Chang et al., 2020)(Mohammadi et al. , 2018) , there’s been less focus on requirement
specification for this category of systems. After all, requirements are the core of any software
system as they convey the expectations of its users. Therefore, a “good” IoT system highly
depends on the accuracy, exhaustiveness and quality of the expressed and specified requirements.
Conceiving approaches that rise to the expectations of IoT developers and users ought to follow
clear guidelines that respect the requirement engineering process and that are drawn from theory
and practice in the field of the IoT. This chapter unfolds and organizes these guidelines in the form
of an IoT reference framework (DSPL4IoT). The chapter also presents and implementation of the
Framework in the form of a semi-formal language for the specification of requirements for IoT
development. The language, presented in Natural Language, and delineated by an EBNF grammar
(Feynman & Objectives, 2016), can be used by IoT engineers as a blueprint for the definition of
their specification. It presents a) an exhaustive view of requirement types that should be
considered, at one point or the other, b) interactions with various elements of the environment,
including the execution and running context, other devices, people, etc, and finally c) considers
the technical, business and contextual evolutions of the IoT field.

The chapter is organized as follows. First it introduces DSPL4IoT along with a definition of its
dimensions. Then, in section 3, the chapter defines the fundamentals of requirement specification.
Section 4 presents a motivational example. Section 5 introduces the NL specification template,
and section 6 maps other existing languages with the proposed Framework, in order to identify
current trends in IoT development as well as future directions. Section 7 exposes related similar
works before concluding the chapter in section 8.

2 IOT DESIGN FRAMEWORK

In order to design comprehensive IoT solutions that guarantee the characteristics discussed in the
previous section, three essential aspect should be taken into account :

● Reusability : in a specific domain, IoT applications tend to share similar functionalities and
qualities, as a result of related requirements. Therefore, existing knowledge shall not be
designed for single use. It should rather be stored, organized and capitalized upon for the
creation of different IoT applications, for different users and usages.

● Personalization : IoT applications shall represent the exact needs and expectations of their
users. While reusability helps develop new solutions, faster, and with lowers costs and
resources, IoT solutions are very specific to their client’s needs, in terms of the choice of
devices, the choice of components, and the execution environment.

● Evolution : The internet of things connects smart devices, in a “dumb” environment. The first
should adapt to the latter to maintain the required functionality and performance, and at times,
to adjust it. In addition to that, the environment is also uncertain. This often leads to change in
requirements after the execution of IoT software. Besides the evolution of requirements, the
composition of IoT solutions is also unstable, new devices can be added, while others can get
broken or disconnected. In a like manner, embedded software changes too. All these
adjustments shall be thought-out and managed.

The two first qualities are at the heart of software product line engineering. It’s a paradigm that
manages variability by considering a domain layer, where reusable knowledge is organized in
variability models, and an application layer, where single products are derived, in conformity with



final client’s requirements. Evolution is partially tackled in dynamic software product line
engineering, which restates the (re)configuration capabilities at runtime. This additional layer,
commonly referred to as adaptation layer, helps build self-adaptive software product lines.

Moreover, requirements only exist in a context (Pohl, 2010), therefore, at each engineering
level, the dependencies between requirements and the context in which they are valid should
clearly be stated, and separated from the larger environment that can be relevant for the
system, but which does not have a direct impact on it, at a time being.

2.1 Three engineering processes

Building IoT software that provides for all three characteristics follows the guidelines of the three
respective engineering processes, namely domain, application and adaptation engineering, as
previously stated by Mazo et al. (Mazo, 2018). The three engineering processes are illustrated in

Figure 1.

● Domain engineering is a development phase for reuse. It is a systematic approach to identify
the similarities and differences between protentional applications in a domain, particularly in
terms of requirements, architectures and components that can be reused across the IoT product
line (Pohl et al., 2005). This phase in the IoT development process is realized by a domain
expert, who’s likely to have a comprehensive knowledge of it. It offers a description of all the
artifacts and their dependencies, provides the means for their effective use and proposes an
approach for their implementation. Connectivity for example is a prominent concern for the
IoT, as IoT application depend entirely on the internet (Hinai & Singh, 2018) (Lin et al., 2017)
(Sánchez-Arias et al., 2017). Communication protocol can therefore be designed as a variable
which ought to be implemented as a Wi-Fi, Zigbee, RFID or Bluetooth, etc.

● Application engineering is a development phase through reuse (Pohl et al., 2005). It’s a
process where the reusable artefacts, defined during the study of the domain, are exploited for
the construction of compliant products. Thus, and based on the needs of end users, the
selection and assembly of the artefacts is carried out at this level, by an application engineer.
The result of this activity is an executable IoT application, an architecture, a test unit, etc.
During this phase, the application user can decide to alternate between the Wi-fi or RFID
protocols to connect his devices, according to a pre-set logic.

● Adaptation engineering maintains activities of application engineering after the IoT
solutions is executed. It manages the behavior of the derived product, i the face of changing
requirements, environments and internal alterations (Danny Weyns, 2017). As a reaction to an
internet interruption for example and in order to ensure service durability, the communication
protocol can dynamically switch to RFID technology instead if a Wi-Fi based communication.

2.2 Three requirement engineering aspects

Three addition dimensions should be considered in IoT design. The system, the (relevant)
context, the (generic) environment, as illustrated in Figure 1.

● The system is a collection of components, organized to perform a function (INCOSE, 2018).

It’s everything that “is” the IoT application, including devices, the communication
protocols, but also the components and their current configuration. As adaptations occur,
the devices involved in the IoT application along with the configuration of active



components may change, therefore changing the system too. It is therefore a dynamic
dimension.

● The context is every information that can be used to characterize the situation of an entity.
Therefore, everything that surrounds IoT applications, and which has a direct impact on it,
is part of the context (Sezer et al., 2018). Users that interact with the IoT application’s
interfaces, the weather, the state of batteries or the statistics about device’ usage is
considered part of the context. The elements of a context are not static. They are relevant
in specific configurations but can become inconsequential in other. This means that the
context is a dynamic dimension too, as its elements alternate between contextual and
environmental. Moreover, the composition of the IoT application itself evolves as
adaptations take place. Therefore, the context and system dimension are partially blended
as well.

● The environment is a dimension that is not affected, nor does it affect the system. It
contains information relating to the domain of the IoT application, along with some other
correlated domains which has the potential to be of value.

Figure 1 : IoT design Framework

Figure 1 presents the IoT design framework which shows the different concern levels that
should be specified, for a proper realization of IoT. The vertical dimensions guarantee
reusability, personalization and evolution, and the horizontal dimensions represent the IoT
system, along with its dependencies to its context and environment.



3 REQUIREMENTS SPECIFICATION FUNDAMENTALS

Requirements are the heart of any software (Chakraborty et al., 2012), including IoT systems. A
proper understanding of their engineering process is fundamental to a proper design, and
ultimatly, to a better user experience. Before diving into a classification of requirements (in
section 4) and mapping formal requirement specification approaches for IoT to the proposed
framework (in section 6), it is important to grasp the fundamental concepts of requirement
engineering development, from elicitation, specification, to verification and validation (Pohl,
2016).

While the focus of this chapter remains of the aspects of specification, the other activities are
discussed to provide the reader with a holistic view of the requirement engineering process, for the
development of IoT solutions.

3.1 Requirement Elicitation

Gathering requirements is a decisive phase in a requirement engineering development approach
(Lahboube et al., 2014). While it may appear evident, however, deciding what to build is
sometimes the hardest part about software development (Bowen & Hinchey, 1999). Building
software for the internet of things is specifically challenging, due to the fact that requirements are
constantly gathered, even after the IoT application is running (Antonino et al., 2018). First, at the
domain level, requirement elicitation is the responsibility of domain engineers who define what
the IoT application can do by eliciting reusable requirements. Also, with new devices, new
protocols and new services lunched to the market with a speed that’s never been witnessed before
(Atzori et al., 2017), come new requirements that shall dynamically be discovered. As illustrated
previously in the framework in figure 1, a marketplace has the potential to collect the new
requirements, formally through specialized crowdsourcing platforms (Salinesi et al., 2018), or
informally through public marketplaces. Then, at the application level, requirements are gathered
from the users of the final application. Through questioning, observation, or by the means of other
elicitation techniques (Khan et al., 2014). Yet again, contrary to conventional software, IoT
benefits from the powerful services that come with real time context-awareness, cloud data
supplied by thousands of connected devices, and the latest artificial intelligence algorithms
(Hwang & Chen, 2017). These cognitive capabilities empower IoT applications to anticipate
completely new user needs. Finally, at the adaptation level, requirements are expressed by both
clients and experts that are aware of context’s implications on a running application. And
similarly, to the previous engineering process, new adaptation requirements can be learned,
progressively, by intelligent services, made possible thanks to smart monitoring, and therefore,
elicited dynamically.

Regardless of their source, requirements are analyzed. This activity’s main concern is to
determine if the collected requirements are unambiguous, complete and consistent. It also helps
detect existing conflicts, inconsistencies or dependencies between requirements. At the end of this
phase, it’s not unlikely to build a simplistic prototype to confirm the expressed and collected
requirements.



3.2 Requirement specification

Once gathered, understood, revised and improved, requirements are documented. At this stage, a
requirement specification language is used to record requirements, in a formal, semi-formal or
even informal fashion.

According to the proposed Framework, at the domain level, domain experts provide a full map of
all possible capabilities, qualities, components at different levels of abstractions, and the
relationships and dependencies that govern these entities. They can also identify context elements
that potentially affect the behavior of the IoT application. Furthermore, as new requirements arise
to accompany a technological or business evolution in the IoT domains, the specification can be
performed by the use of external resources and services (i.e. Marketplace APIs) automatically
(self-adaptive model). Then, at the application/adaptation level, the project manager/expert who
accompanies the client at the elicitation phase drafts the specification document, taking into
account the causes and consequences of each derivation/adaptation. Once more, as new
requirements are learned on the go (i.e. New usage patterns, new execution environment, etc), the
corresponding specification should automatically be formulated too.

Requirement specification is very critical to the overall process. As a matter of fact, it’s a binding
contact between whoever the IoT solution is conceived for, and whoever is building it. Any
mistakes or even imperfections at this level may have exponential repercussions as the project
evolves, which often comes at a high cost or loss for both parties (Knauss et al., 2009).

Consequently, a variety of rigorous requirement specification languages exist. Some of them are
formal, other are unformal, and some are in between, and are therefore semi-formal (also called
hybrid or structured).

● Formal specification languages are specification documents, who’s syntax and semantics are
expressed and defined formally, using logic, algebra or standard mathematics (Spivey,
1989)(Jones, 1995). Formal languages are usually automatically processed and can preserve
traceability throughout the complete engineering process. Formality remains however difficult
to attain and use, especially when untrained software engineers are the ones usually
responsible to draft the specifications document, without much tool support either.

● Informal specification languages mainly refer to the use of human language to document the
specifications of a software system. Natural languages (NL) can either be unrestricted and
without any defined format, which leaves room to ambiguity, personal interpretation, bias, and
other quality defects. They are widely adopted nevertheless, thanks to their instinctive and
universal format

● Semi-formal specification languages rely on predefined graphical or textural notations that
constrain the expression and form of specification documents. Although they may lack
formality in the definition of their syntax or semantics, but they specify requirements in a
structured form, regulated by clear guidelines, and supported by tools. UML (OMG, 2017)
and KAOS (Lamsweerde, 2009) are some of the most notable semi-formal specification
languages. Some NL specification languages also belong to this category of languages due to
the fact that they have been improved by complementary concepts that enhance their
uniformity, like templates (Robertson & Robertson, 2012), ontologies (Körner & Brumm,
2009), or metamodels (Videira & Da Silva, 2005).



3.3 Requirement validation

Verification and validation are the final steps of requirement devolvement. During this stage, the
specifications document is assessed, to verify its correctness, completeness and consistency with
regards to the expressed needs of final users, before moving to the software system development
phase (Boehm, 1984). A variety of validation techniques can be employed (Maalem & Zarour,
2016). For instance, when the specification language is formal, this stage is often automatically
achieved, as most formal approaches generate prototypes (Yang et al., 2019). In the case of
semi-formal languages, traceability between user goals and the specifications is model-based
(Iqbal et al., 2020). Natural language specifications usually involve both clients and the
requirements development team.

4 MOTIVATIONAL EXAMPLE : THE CHAMELEON SMART CAR

Chameleon is a hand-picked smart car manufacturer on the rise. What differentiates it from the
competition is the diversity of its catalogue, assembled from years of experience in the
automotive, electronics and digital fields. The power of Chameleon smart cars goes beyond car
related applications, like smart tracking, smart parking, smart traffic, or smart braking. It also
includes services from other areas such as smart health, smart surveillance, or smart supply chain.
It can be destined for a variety of clients; like a logistics company, a special needs centre, a
housing complex or even the city. Therefore, confronted with such a diversity and genericity,
decisions regarding the quality and quantity of devices, components or services embedded in the
car for a specific application, is tedious. Furthermore, even after building the car, requirements are
prone to change, and sometimes, evolution. This change is a result of the varying and uncertain
circumstances in which cars run. In addition to changing requirements as projects progress, the
chameleon car faces challenges related to the consistent evolution of the embedded devices and
their software on the one hand, and the dynamic physical composition of the smart car on the
other. Both cases require runtime adaptation. This section describes the case in further details and
presents an application scenario.

The domain of the Chameleon solutions englobes all knowledge that has been collected in the
domain of smart cars. Starting from the mechanical parts and their components (i.e: engine,
wheels, brakes, etc), going through the embedded smart devices and their potential
configurations (i.e: Cameras, speed or proximity sensors, etc), all the way to possible smart
applications (i.e: Face recognition, smart braking, photo analysis, etc) or technologies
(communication technologies, routing protocols, etc). Requirements that articulate this
knowledge are connected to contextual information that might be relevant for the final user.
Some cities for example may prohibit self-driving cars during rush hours, while others don’t.
Time and location are therefore potentially relevant contextual elements. Moreover,
information about domains other than smart cars, like smart health, may not appear relevant
for all applications, but can if the car is destined for elderly clients. New devices, which have
proven more practical, and more accurate for the measurements of cardiovascular endurance,
should be presented to domain engineers in order to be considered as an alternative or
replacement for old versions of the same device, insuring thus state-of-the-art smart products.



These three dimensions of the Framework can be respectively implemented through domain
variability, context, and crowdsourcing models that enable public contribution.

Figure 2: The Chameleon cars domain

Figure 2 illustrates the first layer of the framework; the domain. The chameleon domain can
embed a multitude of functionalities, like smart health smart maintenance, park assist, smart
brake, smart supply chain, smart surveillance and smart traffic. Each of which can be
implemented in a variable manner as well. The context illustrated in the figure includes time
and place, nearest hospital and logistics, city public data, etc. The environment of the smart
car is a marketplace that contributes to each of the functionalities of the system dimension
with new devices, new requirements, new research, new patterns, etc.

With every client, new requirements come to light. Some of which are derived from the
domain knowledge, and some are specific to the new clients.

Both cars derived for a retirement home and a logistics company may want to use path
calculation algorithms, along with the sensors and cloud information required for that
purpose. several algorithm options are selected. Each activated depending on the state of
certain devices and the availability of specific data. The first application focuses on smart
health devices and applications to monitor vital signs. At specific times during the day, other
services such as smart brake and parking are also enabled to anticipate elderly drivers’ slow
reflexes and reduced sight. The second application requires smart traffic and surveillance
devices, together with data analysis application, without much regard to the other possible
options.

New requirements should also be considered, as each client operates according to its own
specific agenda. For instance, the Chameleon domain requirements to manage connectivity
include Wi-fi, RFID and 4G communication protocols. However, as the logistics company
operates using a ZigBee built-in platform, related requirements are added accordingly.



Figure 3 : The case of the Village Retirement Home fleet of cars

As illustrated in Figure 3 for the case of the Village Retirement Home (VRH), the smart
maintenance, smart supply chain and smart traffic are not selected. Amongst the remaining
functions, irrelevant devices and component for this client are disabled as well. Thus, creating
a fleet of cars that answer, without access, the needs of the client, while maintaining a certain
level of autonomy for reconfiguration at runtime.

As a matter of fact, the chameleon car is set to operate in dynamic circumstances, where the
context is constantly changing, the running software often updated and the composition of the
car itself is likely to be altered. For instance, the smart cars can be part of a national safety
program that helps track wanted profiles. Embedded cameras are empowered with face
recognition applications, connected to the police information system. This is called, smart
surveillance. When traveling in different countries, these applications are prohibited, as they
are conceived a breach of privacy. There are therefore disabled as a response to change in the
context. More flexible requirements are also expressed to deal with the uncertainties of the
context, like the state or battery level of sensors or the availability of certain services like road
information.



Figure 4 : An adaptation for the Village Retirement Home cars

Figure 4 shows simple adaptations of the smart car, as a result of decrease in charge, and
specific time in the day. In the first event, optional functionality like smart surveillance, along
with optional components like face recognition or weight sensors, are disabled to maintain the
operability of other mandatory services. The second event illustrates the smart brake
functionality case, which is only enabled at night-time, when the eyesight of elderly people
decreases.

5 HOW TO SPECIFY NL REQUIREMENTS FOR IOT SYSTEMS

In order to develop a representative typology of requirements for the specification of IoT systems,
a first draft of the classification is drawn from the chameleon cars case. A modified systematic
search in the current state of the art is then carried out in order to complete the list with new types
of requirements.

The typology of requirements presented below follows the rules of an EBNF grammar. The syntax

used is summarized in Table 1.

Symbol Description

<non-terminal> Syntax variables that define the requirement Natural Language

« terminal » Character strings that appear in the Natural Language

+ (Non) Terminals which can be instantiated in one or more occurrences

? Optional (Non)terminals

| An OR relation between two (Non)terminals

Table 1 : Description of the EBNF grammar

The resulting requirements fall under three main categories. First, high level requirements that
ensure reusability, they describe the main capabilities and qualities of a category of systems, along
with various possible compositions of single systems. Then, application requirements, which
describe the properties of the running system, taking into account the specificities of its final user



and its execution environment. And finally, runtime requirements, which are typical to
autonomous systems, as context-awareness and self-adaptation are innate properties of IoT
systems.

<Requirement> ::= <DomainRq>|<ApplicationRq>|<AdaptationRq>

5.1 Specification of domain requirements

Domain requirements are characteristic of a particular market segment, they describe the basic
functions that any system belonging to that domain is likely to have (Pohl et al., 2005). These
functions can be qualitative or quantitative, and thus are specified by means of functional or
non-functional requirements. In addition to that, variability requirements are introduced to
describe the possible relationships between “things”, which are categorized as hierarchical, group,
dependency or numeric (Mazo et al., 2012; Salinesi et al., 2011). The first three refer to the
possible compositions of the IoT product, and the last one describes parametric elements that can
be configured at runtime.

<DomainRq> ::= <FunctionalRq>|<NfunctionalRq>|<VariablityRq>

<FunctionalRq> ::= The <thing> (shall|could|Might) (Insure|maintain) <Task>

<NFunctionalRq> ::= The <thing> (shall|could|Might) be <Quality>

<VariabilityRq> ::= <HierchicalRq>|<GroupRq>|<DependencyRq>|<NumericRq>

<HierchicalRq> ::= The <thing> (shall|could|Might) be composed with (<thing> ("AND" <thing>)+)

<GroupRq> ::= The <thing> (shall|could|Might) be composed of at least <min> AND at most
(<max>|*) (instances of <thing>|(among (<thing> ("AND" <thing>)+))

<DependencyRq> ::= The <thing> shall (combine|dissociate) <thing> ("AND" <thing>)+)

<NumericRq> ::= The <thing> (shall|could|Might) be valuated within (<domain>|<enumeration>)

The grammar presented above describes a semi-formal NL approach that can be followed to
specify the elicited high-level reusable requirements for IoT applications. The non-terminal
<thing> used in the grammar refers to any element that composes the IoT application. This is

derived from the very definition of the term in the IoT glossary (ITU, 2012). A sample of
domain requirements for the chameleon car manufacturer, specified using this grammar, is
presented in the following table.

ID Req Type Requirements

Rq_6 FunctionalRq The cars could insure automatic brake

Rq_19 NfunctionalRq The cars could be efficient in terms of electric consumption

Rq_45 HierchicalRq The bumper may include pedestrian airbags

Rq_66 HierchicalRq The seat shall include drowsiness sensors

Rq_84 NumericRq The cars shall include at least three front and two back proximity sensors

Rq_398 GroupRq The gateway could mutate between three means of communication

Rq_576 DependencyRq The cars shall combine every airbag, with at least two active seat sensors,
and a control unit.



Table 2: Sample of domain requirement for the Chameleon cars

5.2 Specification of application requirements

Application requirements are designed in collaboration with the clients. They include
functionalities and qualities retained, represented by means of functional and non-functional
requirements. (Abbas et al., 2010; D’Ippolito et al., 2014; Muñoz-Fernández et al., 2018;
Yang et al., 2013). These requirements can be operationalized in various manners, in
accordance with other user requirements, like preference, cost, optimization or autonomy
(Soares et al., 2017). Preferability requirements describe explicit choices. Cost requirement
describe the budgetary constraints assigned to the product in question. Proportionality
requirements specify the rules that define logical relationships between various elements.
Optimization requirements define an optimum on the level of required performance or on
specific values of the application And finally, autonomy requirements represent flexibility,
which offers adaptation alternatives for dynamic contexts at runtime (Vassev, 2015) .

<ApplicationRq> ::= <FunctionalRq>|<NFunctionalRq>|<PrefereabilityRq>|<CostRq>|
<OptimizationRq>|<ProportionalityRq>|<AutonomyRq>

<FunctionalRq> ::= The <thing> shall (Insure|maintain) (<Task>|<AppParam>)

<NFunctionalRq> ::= The <thing> shall be (<Quality>|<AppParam>)

<PrefereabilityRq> ::= The <thing> shall (Not)? include (<thing>|<AppParam>) (with the value
<Operator><Value>)?

<CostRq> :== The <thing> shall cost (at most|at least) <Price>

<OptimizationRq> ::= The <thing> shall (maximize|minimize) the (<Quality>|number of <thing>)

<ProportionalityRq> ::= The <thing> shall repsectively select (<Param> ("AND" <Param>)+) <thing>
together with (<Param > ("AND" <Param>)+) <thing>

<AutonomyRq> ::= <VariabilityRq>

<AppParam> ::= <NewTast>|<NewQuality>|<NewThing>

The grammar above defines rules for a natural language specification of application
requirements. A sample of such requirements, as expressed in the retiring home case, is
presented in Table 3.

ID Req Type Requirements

VRH_Rq4 FunctionalRq The cars shall insure smart health monitoring.

VRH_Rq66 NfunctionalRq The cars shall be energy efficient.

VRH_Rq34
VRH_Rq166

PreferenceRq
The bumper shall include pedestrian airbags.
The cars shall not have front recording cameras

VRH_Rq89 CostRq The cars shall cost at most 15000$

VRH_Rq104 OptimizationRq The cars shall maximize the number of proximity sensors



VRH_Rq153
ProportionalityRq

The cars shall respectively select 2, 4 and 5 airbags together
with 2, 5 and 7 seats

VRH_Rq193
AutonomyRq

The cars could include smart assist services.
The gateway could mutate between various means of emergency
communications

Table 3 : A sample from application requirement for the of the Village Retirement Home case

5.3 Specification of adaptation requirements

Adaptation requirements describe the behaviour of IoT applications in dynamic contexts.
They describe the necessary reconfigurations to maintain required levels of satisfaction.
Contextual requirements define circumstances under which requirements shall be satisfied.
Temporal requirements determine the time, order or frequency with which requirements must
be satisfied. Optimization requirements maintain their role of maximization or minimization
of parameter values   or cardinalities (Uthariaraj & Florence, 2011). Relaxable requirements
refer to those that are necessary in particular contexts, but which may prove to be less
essential in other ones (Whittle et al., 2010). Awareness requirements are sensitivity
requirements that constrain the degrees of success or failure in implementing other adaptation
requirements (Souza et al., 2013). And finally, resilience requirements also called evolution
requirements, determine the requirements which specify the response to be given in the event
of failure to implement other adaptation requirements (Souza et al., 2012).

<AdaptationRq> ::= <ContextualRq>|<TemporalRq>|<OptimizationRq>|<RelaxableRq>|
<AwarenessRq>|<ResilienceRq>

<ContextualRq> ::= When <Event> if <condition>, <Requirement>

<TemporalRq> ::= (At <Time> | (Before|After) (<Time>|reinforcing that <Requirement>)| Between
<Time> and <Time> | as soon as (<Time>|<Requirement> is realized)),
<Requirement>

<OptimizationRq> ::= When <Event> if <condition>, the <thing> shall (maximize|minimize) the
(<Quality>|number of <thing>)

<RelaxableRq> ::= <OptimizationRq>, (eventually|until) <Requirement>

<AwarenessRq> ::= <AggregationRq>|<MetaRq>|<DeltaRq>

<AggregationRq> ::= <Requirement> should (succeed|fail) <Percentage> ((More|less) than
<Requirement>)?

<MetaRq> ::= <Requirement> should be satisfied within <TimeDuration>

<DeltaRq> ::= <Requirement> success rate should not (decrese|increase) (<TimeDuration>
<Frequency>)

<ResilienceRq> ::= When <Event> if <condition>, <Requirement> shall be (ignored|modified (into
<Requirement>)?)

The grammar described above introduces for each requirement type, a semi-formal approach
for the specification of adaptation requirements. A sample from the specification document of
the village retiring home case is presented Table 4.



ID Req Type Requirements

VRH_Rq566 ContextualRq
When a seat detector detects a new passenger, the cars shall be able to

communicate with the occupant’s health monitor wearable.

VRH_Rq587 TemporalRq
After 6 am, the cars shall enable all devices that contribute to smart

brakes.

VRH_Rq645 OptimizationRq
When electricity consumption is higher than 60%, the cars shall

optimize the use of slave sensors

VRH_Rq699 RelaxableRq
The cars shall use the least possible sensors, eventually, all sensor’s

battery levels shall stay superior than 40%.

VRH_Rq702 AwarenessRq
The car shall be able to reach the closest ambulance in the case of a

crash, within 10 seconds

VRH_Rq725 ResilienceRq
When the health emergency state is active, if VRH_Rq645 is not

satisfied, the cars shall use another meant of emergency communication

Table 4 : A sample from adaptation requirements for the of the Village Retirement Home case

Reusable domain requirements of IoT solutions on the one hand, and application and
adaptation requirements on the other, reveal the need to specify an extremely diverse set of
configuration requirements. Although this typology is based on the standard typology of
requirements (IEEE, 2009)(Lin et al. 1996), they differ from the latter as they are not always
binding. In reality, they are only verifiable in specific contexts. The specification of these
requirements, which can be described as "dynamic", is a steppingstone for the realization of
highly reconfigurable IoT solutions, which meet different needs, while ensuring the natural
evolution of this category of systems.

6 OUTLOOK ON NEXT GENERATION IOT DESIGN

For the last decade, a multitude of approaches have been proposed in order to specify and design
applications in the challenging but promising field of the Internet of things. This section presents
and overview of these approaches. Furthermore, to understand the scope of these contributions
along with the other aspects that need further investigation, each of the selected approaches is
mapped to the framework.

● Approach 1 : SysADL (Leite et al., 2017) is an architecture-based approach for building IoT
applications. According to the approach, all elements of the IoT application are defined before
they are used in the system architecture. Along with the structural definition, data,
components, actions, connections and executables are all defined as part of the system’s
environment. Both are defined in block definition diagrams. Data that flows in and out of each
element is also specified using the concept of ports. Instances of systems correspond in
SysADL to configurations. They describe how components are connected, thus, how actual
instances of the IoT application can be configured. Internal block diagrams are used to
describe possible configurations of components, connected using ports that send their
respective values. All of the above is defined as part of a structural viewpoint, which
correspond to the domain system and context dimensions of the proposed Framework. This
next view, called behaviour viewpoint, describes how the IoT elements contribute to the
fulfilment of high-level requirements described in this previous viewpoint. This shows



different application scenarios using an activity diagram and correspond to the application
system and context dimensions or the proposed framework. Several other SysML based
approaches like SysML4IoT are used for the specification of IoT solutions (Costa et al.,

2016). The mapping of these approaches with the IoT design Framework is presented in figure
6.

● Approach 2 : Authors in (Hussein et al., 2019) extended the previously discussed notation,
SysML4IoT, with self-adaptation capabilities, using a publish/subscribe adaptation paradigm
to model environment information and their relationship with the system. This is preformed
using a system management component which model adaptation triggers and runtime
configurations using the concept of states. This model matches with the system and
application adaptation dimensions of the proposed Framework as illustrated in figure 6.

● Approach 3 : State Constraint Transition is a language for the formal specification of IoT
systems (Achtaich et al., 2019). SCT is a variant of finite state machines (FSM) whose power
of expression is extended by means of the concept of constraints. This modelling language
provides an answer to the problems linked to the specification of dynamic requirements by
introducing the concept of configuration states, in which requirements are translated into
constraints. First, all IoT elements, together with the anticipated domain context are defined in
the form of variables. A domain variability model specifies the dependencies and
relationships between these elements, in the form of constraints. A configuration model
specifies application requirement as an instance of the domain variability model. Contextual
elements that arise with each specific application are defined within the application’s
corresponding state. A reconfiguration model specifies adaptation requirements, by the means
of configuration states embedded with constraints which formally specify dynamic
requirements. A perception model informs the generated constraint program with real time
contextual data or parameters, which potentially leads to a reconfiguration of the IoT solution.
The models described above are a projection of domain, application and adaptation
requirements, regarding both the system and its context. A projection of these models on the

framework described above are presented in figure 6.
● Approach 4 : The approach proposed by Karakostas (Karakostas, 2016) is based on the

author’s observation that it is difficult to predict with certainty when and if events will occur in
an IoT application. Thus, his proposal implements a bayesian model that predicts relevant
events and consequences. Through an air flight case study, the authors predict if a connecting
flight will be departing late, by calculating the probability of the incoming/arriving flights
doing departing or arriving late. This model is an implementation of the application
environment dimension and is presented in figure 6. Similar implementations are found in the
literature, like the works of Basu et al. (Basu et al., 2018) who tackle the problem using
cognitive bio-inspired models.

● Approach 5 : This contribution by authors Lunardi et al. (Lunardi et al., 2018) is based on
the Model Centred Architecture (MCA) paradigm, where a system is a compound of various
models and model handlers. Specifically, authors define M1 to specify all system and data
components. This coincides with system and context dimensions of the domain engineering
process in the proposed framework. Concrete functions and processes are later on specified at
an M0 level, which is an instance of M1 models. M0 corresponds to the application level, and



both system and context dimensions are specified using this approach. Furthermore, the
authors propose an extension to a semantic core model, using probabilistic ontology, in order
to predict human actions. This engine injects new knowledge as new behavioural patterns are
predicted. This model refers to the environmental dimension of the application engineering
process. The mapping of this approach with the Framewok is illustrated in figure 6.

● Approach 6 : Google Nest is one of the most commercially successful cases of IoT. It’s a1

smart home solution that sets up, monitors and manages home appliances like thermostats,
cameras and locks. While the design process and methods are not displayed to the public, we
can deduct from the actual solution that Google Nest solution follows generic and adaptable
specifications, which we labelled domain. While this solution offers a range of possible
configurations (applications), the derived applications are not flexible in terms of
requirements, and solutions are only personalized within the boundaries of the supported
devices and configurations. Devices and related applications are available on the Google Store,
which is a marketplace that is often updated with the latest supported technology. This
corresponds to the environment dimension of the framework. The various dimension

implemented by this technology are displayed in figure 6.

● Approach 7 : Comma is a self-driving car software. It’s an IoT solutions that can operate2

with any car that supports automatic acceleration, brake and parking. The design of Comma is
one of the most fitting to the proposed Framework. On the one hand, it offers a generic
solution that fits to different car application. It can work with a Honda as well as it does with a
Toyota, therefore supporting the domain system and context dimensions. The software is
opensource and available for the public. It is therefore crowdsourced, which makes for the
environment dimension of the domain. Comma collects application requirements through a
user interface in order to present a solution that is tailored to each specific case scenario. This
coincides with the application system and context, presented in the Framework. As the car
runs, adaptation scenarios are successfully specified and implemented. Moreover, comma is a
self-learning software. Its design specifies basic functionality and learns on the ground and as
the car drives itself, in order to improve its functionality, and provide most fitting actions and

reactions. This corresponds to the adaptation engineering process in totality. Figure 6
illustrates the projection of the comma specification process on the Framework (Yellow).

2 https://comma.ai/
1 https://nest.com/

https://comma.ai/
https://nest.com/


Figure 6 : IoT design trends

The approaches presented above are selected from different IoT applications, including smart
homes, smart cars and smart cities. They also represent examples evoked both from academic
research and from the industry. This clearly outlines the current trends in IoT development, but
also pinpoints the aspects that are just as important for building comprehensive technologies for
the future, that require more attention from academia and from the smart industry.

6.1 IoT and SoS

A great number of IoT solutions are specified, partially or completely, using the SysML notation
and principles. This is clearly displayed in figure 6, as most approaches focus on domain and
application requirement specification. This is not a coincidence. As a matter of fact, ever since
IoT became a hot topic in research, a lot of authors debated the need for new terminology to
something that had already existed and matured in the literature, under the name System of
Systems (SoS) (de C Henshaw, 2016; Mahya & Tahayori, 2016; Nikolopoulos et al. 2019). While
there are definitely new capabilities and specification challenges brought by the smart nature of
devices used in IoT applications, broadening the scope of SoS could be an approach to embracing
such progress instead of rethinking and reinventing a whole new paradigm.



6.2 IoT and autonomy

Specifying ad-hoc IoT applications for a static usage, without considering the dynamic context
and use cases, can be considered unrealistic. This approach may even lead to error-prone and
contradictory results a consequence of uncertainty. Self-adaptation, both to context and to
requirements, is a rising interest in IoT development. The main goal of research in this area is to
introduce new languages, patterns and algorithms that not only handle uncertainty, but also
discover and implement autonomously new requirements and usage scenarios at runtime.

6.3 IoT and AI

The focus around IoT for the last decade have revolved around three major topics. First,
standardizing the architecture in order to define and classify the main components and interfaces
depending on their features and purposes. Then, reinforcing the security of IoT software, devices
and the networks they're connected to in order to protect the user’s data and infrastructure. And
finally, building light software and communication protocols to cope with IoT constrained storage,
processing and bandwidth resources. This coming decade will evidently revolve around the 3 Ds.
Data, Discovery and Decision. Data is most relevant enabler for the future of IoT. As the amount
of collected information grows, and the quality and precision of data analytics algorithms evolve,
new requirements, devices and services can seamlessly be discovered, and decisions regarding
their implementation can be determined.

6.4 IoT and globalization

IoT is bigger than us. It’s bigger than one company. It’s even bigger than one country. If the
ethical and political implications of this acclamation are put aside, to reach its full potential, IoT
ought to belong to everyone and device ought to be connected with everything across the globe. If
one cannot drive his connected car across countries, seamlessly and without constraints and
complications, smart self-driving car solutions cannot compete with current cars. If smart health is
not globalized, including patient records and monitoring, a sick person could never comfortably
travel abroad without having to worry about consequences. In other words, IoT should be for all,
and all should be at its service.

7 CONCLUSION

The first ever application of the Internet of Things was created in 1990. Ever since, and for the last
three decades, new applications, devices, standards, and approaches expanded the reach and
significance of the internet of things paradigm. While several authors have proposed frameworks
and blueprints to structure the growing knowledge and complexity, the main efforts remained on
connectivity, security and data. This chapter is positioned as a reference IoT design Framework to
assist the requirement specification process. The main idea of the framework is to assist IoT
engineers in specifying reusable, client-tailored, self-adaptive, dynamic and cognitive IoT
applications. The chapter illustrates these capabilities using the case of a smart car company that
designs specific fleets of self-adaptive smart cars from a reusable and expandable set of
functionalities. Furthermore, an approach for the specification of natural language requirements
for IoT systems was elaborated. It describes on the one hand a typology for the requirements that



engineers often deal with while specifying this category of systems. On the other hand, it provides
a template for a proper formulation of requirements at the specification phase, in order to increase
precision and avoid ambiguity. The smart car case is used to provide explicit examples for the
specification of the various requirement types. Furthermore, in order to assess the IoT
specification current state, seven approaches from the literature and the industry were briefly
discussed and mapped to the proposed framework. This process emphasized the current trends in
IoT requirement specification, which mostly revolve around reusability and adaptation. It also
revealed emerging areas of interest, especially in terms of self-learning and artificial intelligence
capabilities.

REFERENCES

Abbas, N., Andersson, J., & Löwe, W. (2010). Autonomic Software Product Lines (ASPL). ACM
International Conference Proceeding Series, (January), 324–331.

Achtaich, A., Roudies, O., Souissi, N., Salinesi, C., & Mazo, R. (2019). Evaluation of the
State-Constraint Transition Modeling Language: A Goal Question Metric Approach. Software
Product Line Conference Proceedings - Volume B. Paris.

Antonino, P. O., Morgenstern, A., Kallweit, B., Becker, M., & Kuhn, T. (2018). Straightforward
Specification of Adaptation-Architecture-Significant Requirements of IoT-enabled
Cyber-Physical Systems. Proceedings - 2018 IEEE 15th International Conference on Software
Architecture Companion, ICSA-C 2018, 19–26. IEEE.

Atzori, L., Iera, A., & Morabito, G. (2017). Understanding the Internet of Things: definition,
potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks, 56, 122–140. Elsevier
B.V.

Baccelli, E., Gundogan, C., Hahm, O., Kietzmann, P., Lenders, M. S., Petersen, H., Schleiser, K., et al.
(2018). RIOT: An Open Source Operating System for Low-End Embedded Devices in the IoT.
IEEE Internet of Things Journal, 5(6), 4428–4440.

Basu, S., Karuppiah, M., Selvakumar, K., Li, K. C., Islam, S. K. H., Hassan, M. M., & Bhuiyan, M. Z.
A. (2018). An intelligent/cognitive model of task scheduling for IoT applications in cloud
computing environment. Future Generation Computer Systems, 88(June), 254–261. Elsevier B.V.

Boehm, B. W. (1984). Verifying and Validating Software Requirements and Design Specifications.
IEEE Software, 1(1), 75–88.

Bowen, J. P., & Hinchey, M. G. (1999). High-Integrity System Specification and Design. High-Integrity
System Specification and Design. Springer London.

de C Henshaw, M. J. (2016). Systems Of Systems, Cyber-Physical Systems, The
Internet-Of-Things…Whatever Next? INSIGHT, 19(3), 51–54. Wiley.

Chakraborty, A., Kanti Baowaly, M., Arefin, A., & Newaz Bahar, A. (2012). The Role of Requirement
Engineering in Software Development Life Cycle. Journal of Emerging Trends in Computing and
Information Sciences, 3(5), 723–729.

Chang, V., Sharma, S., & Li, C. S. (2020). Smart cities in the 21st century. Technological Forecasting
and Social Change, 153. Elsevier Inc.

Costa, B., Pires, P. F., & Delicato, F. C. (2016). Modeling IoT Applications with SysML4IoT.
Proceedings - 42nd Euromicro Conference on Software Engineering and Advanced Applications,



SEAA 2016, 157–164.

D’Ippolito, N., Braberman, V., Kramer, J., Magee, J., Sykes, D., & Uchitel, S. (2014). Hope for the
Best, Prepare for the Worst: Multi-tier Control for Adaptive Systems. Proceedings of the 36th
International Conference on Software Engineering.

Danny Weyns. (2017). Software Engineering of Self-Adaptive Systems: An Organised Tour and Future
Challenges. Handbook of Software Engineering, 1–41.

Feynman, R., & Objectives, C. (2016). EBNF A Notation to Describe Syntax, 1–19.

Gartner. (2020). IoT Adoption Trends. Retrieved June 23, 2020, from
https://www.gartner.com/en/innovation-strategy/trends/iot-adoption-trends

Hinai, S. Al, & Singh, A. V. (2018). Internet of things: Architecture, security challenges and solutions.
2017 International Conference on Infocom Technologies and Unmanned Systems: Trends and
Future Directions, ICTUS 2017 (Vol. 2018–January, pp. 1–4). Institute of Electrical and
Electronics Engineers Inc.

Hussein, M., Li, S., & Radermacher, A. (2019). Model-driven development of adaptive IoT systems.
CEUR Workshop Proceedings, 17–23.

Hwang, K., & Chen, M. (2017). Big-Data Analytics for Cloud, IoT and Cognitive Computing - Kai
Hwang, Min Chen - Google Books. John Wiley & Sons.

IEEE. (2009). 830-1998 - IEEE Recommended Practice for Software Requirements Specifications.
Retrieved March 1, 2020, from https://standards.ieee.org/standard/830-1998.html

INCOSE. (2018). Systems Engineering Handbook. INSIGHT, 1(2), 20–20. Wiley. Retrieved February
9, 2020, from http://doi.wiley.com/10.1002/inst.19981220

International Telecommunication Union — ITU-T Y.2060. (2012). Overview of the Internet of things.
Next Generation Networks — Frameworks and functional architecture models.

Iqbal, D., Abbas, A., Ali, M., Khan, M. U. S., & Nawaz, R. (2020). Requirement Validation for
Embedded Systems in Automotive Industry through Modeling. IEEE Access, 8, 8697–8719.
Institute of Electrical and Electronics Engineers Inc.

Jones, C. B. (1995). Systematic software development using VDM. Prentice Hall International.

Karakostas, B. (2016). Event Prediction in an IoT Environment Using Naïve Bayesian Models.
Procedia Computer Science, 83(Ant), 11–17. Elsevier Masson SAS. Retrieved from
http://dx.doi.org/10.1016/j.procs.2016.04.093

Khan, S., Dulloo Aruna B, & Verma, M. (2014). Systematic Review of Requirement Elicitation
Techniques. International Journal of Information and Computation Technology, 4(2), 133–138.
Retrieved February 12, 2020, from http://www.irphouse.com/ijict.htm

Knauss, E., Boustani, C. E. I., & Flohr, T. (2009). Investigating the impact of software requirements
specification quality on project success. International Conference on Product-Focused Software
Process Improvement (Vol. 32 LNBIP, pp. 28–42). Springer Verlag.

Körner, S. J., & Brumm, T. (2009). Natural language specification improvement with ontologies.
International Journal of Semantic Computing, 3(4), 445–470. World Scientific Publishing Co.
Pte Ltd.

Lahboube, F., Haidrar, S., Roudies, O., Souissi, N., & Adil, A. (2014). Systems of Systems Paradigm
in a Hospital Environment: Benefits for Requirements Elicitation Process. International Review
on Computers and Software (I.RE.CO.S.), 9(10), 1798–1806.

Lamsweerde, A. Van. (2009). Requirements Engineering: From System Goals to UML Models to



Software Specifications. Change.

Leite, J., Batista, T., & Oquendo, F. (2017). Architecting IoT applications with SysADL. Proceedings -
2017 IEEE International Conference on Software Architecture Workshops, ICSAW 2017: Side
Track Proceedings, 92–99.

Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A Survey on Internet of Things:
Architecture, Enabling Technologies, Security and Privacy, and Applications. IEEE Internet of
Things Journal, 4(5), 1125–1142. Institute of Electrical and Electronics Engineers Inc.

Lunardi, G. M., Machot, F. Al, Shekhovtsov, V. A., Maran, V., Machado, G. M., Machado, A., Mayr,
H. C., et al. (2018). IoT-based human action prediction and support. Internet of Things, 3–4,
52–68. Elsevier B.V.

Maalem, S., & Zarour, N. (2016). Challenge of validation in requirements engineering. Journal of
Innovation in Digital Ecosystems, 3(1), 15–21. Elsevier BV.

Mahya, P., & Tahayori, H. (2016). IoT is SoS. Int’l Conf. Internet Computing and Internet of Things
(pp. 38–42).

Mazo, R. (2018). Software Product Lines, from Reuse to Self Adaptive Systems. Université Paris 1
Panthéon - Sorbonne, France.

Mazo, R., Salinesi, C., Djebbi, O., Diaz, D., & Lora-Michiels, A. (2012). Constraints: the Heart of
Domain and Application Engineering in the Product Lines Engineering Strategy. International
Journal of Information System Modeling and Design, 3(2). IGI Global.

Mohammadi, M., Al-Fuqaha, A., Sorour, S., & Guizani, M. (2018, October 1). Deep learning for IoT
big data and streaming analytics: A survey. IEEE Communications Surveys and Tutorials.
Institute of Electrical and Electronics Engineers Inc.

Muñoz-Fernández, J. C., Mazo, R., Salinesi, C., & Tamura, G. (2018). 10 Challenges for the
specification of self-adaptive software. Proceedings - International Conference on Research
Challenges in Information Science, 2018–May(June 2019), 1–12.

Ngu, A. H., Gutierrez, M., Metsis, V., Nepal, S., & Sheng, Q. Z. (2017). IoT Middleware: A Survey on
Issues and Enabling Technologies. IEEE Internet of Things Journal, 4(1), 1–20. Institute of
Electrical and Electronics Engineers Inc.

Nikolopoulos, B., Dimopoulos, A. C., Nikolaidou, M., Dimitrakopoulos, G., & Anagnostopoulos, D.
(2019). A System of Systems Architecture for the Internet of Things exploiting Autonomous
Components. Int. J. System of Systems Engineering.

OMG. (2017). Unified Modeling Language Specification. Retrieved February 12, 2020, from
https://www.omg.org/spec/UML/About-UML/

Pohl, K. (2010). Requirements engineering: fundamentals, principles, and techniques. Springer
Publishing Company, Incorporated.

Pohl, K. (2016). Requirements Engineering Fundamentals, 2nd Edition: A Study Guide for the ... -
Klaus Pohl - Google Books. Rocky Nook.

Pohl, K., Böckle, G., & van der Linden, F. J. (2005). Software Product Line Engineering. Foundations,
Principles, and Techniques. Uwplatt.Edu (Vol. 49).

Robertson, S., & Robertson, J. (2012). Mastering the Requirements Process: Getting Requirements
Right. Addison-Wesley,.

Salinesi, C., Kusumah, I., & Rohleder, C. (2018). New Approach for Supporting Future Collaborative
Business in Automotive Industry. 2018 IEEE International Conference on Engineering,
Technology and Innovation, ICE/ITMC 2018 - Proceedings. Institute of Electrical and Electronics



Engineers Inc.

Salinesi, C., Mazo, R., Djebbi, O., Diaz, D., & Lora-Michiels, A. (2011). Constraints: The core of
product line engineering. Fifth International Conference On Research Challenges In Information
Science (pp. 1–10). IEEE.

Sánchez-Arias, G., González García, C., & Pelayo G-Bustelo, B. C. (2017). Midgar: Study of
communications security among Smart Objects using a platform of heterogeneous devices for the
Internet of Things. Future Generation Computer Systems, 74, 444–466. Elsevier B.V.

Sezer, O. B., Dogdu, E., & Ozbayoglu, A. M. (2018). Context-Aware Computing, Learning, and Big
Data in Internet of Things: A Survey. IEEE Internet of Things Journal, 5(1), 1–27. Institute of
Electrical and Electronics Engineers Inc.

Soares, M., Jéssyka, V., Guedes, G., Silva, C., & Castro, J. (2017). Core Ontology to Aid the Goal
Oriented Specification for Self-Adaptive Systems. Advances in Intelligent Systems and
Computing, 571, V–VI.

Souza, V. E. S., Lapouchnian, A., & Mylopoulos, J. (2012). (Requirement) evolution requirements for
adaptive systems. ICSE Workshop on Software Engineering for Adaptive and Self-Managing
Systems (pp. 155–164).

Souza, V. E. S., Lapouchnian, A., Robinson, W. N., & Mylopoulos, J. (2013). Awareness requirements.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 7475 LNCS, 133–161.

Spivey, J. M. (1989). The Z notation: a reference manual | Guide books. Prentice-Hall, Inc.Division of
Simon and Schuster One Lake Street Upper Saddle River, NJUnited States.

Uthariaraj, V. R., & Florence, P. M. (2011). QoS With Reliability And Scalability In Adaptive
Service-Based Systems, 37–56.

Vassev, E. (2015). Requirements Engineering for Self-Adaptive Systems with ARE and KnowLang.
EAI Endorsed Transactions on Self-Adaptive Systems, 1(1), e6.

Videira, C., & Da Silva, A. R. (2005). Patterns and metamodel for a natural-language-based
requirements specification language . CAiSE’05 (pp. 189–194).

Whittle, J., Sawyer, P., Bencomo, N., Cheng, B. H. C., & Bruel, J. M. (2010). RELAX: A language to
address uncertainty in self-adaptive systems requirement. Requirements Engineering, 15(2),
177–196.

World Health Organization. (2020). Coronavirus disease 2019 (COVID-19) Situation Report-72
HIGHLIGHTS.

Yang, Q. L., Lv, J., Tao, X. P., Ma, X. X., Xing, J. C., & Song, W. (2013). Fuzzy self-adaptation of
mission-critical software under uncertainty. Journal of Computer Science and Technology, 28(1),
165–187.

Yang, Y., Li, X., Ke, W., & Liu, Z. (2019). Automated Prototype Generation From Formal
Requirements Model. IEEE Transactions on Reliability, 1–25. Institute of Electrical and
Electronics Engineers (IEEE).


