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ABSTRACT

Unusual dispersion properties are observed in a phononic crystal of nylon rods in water when the lattice constant is adjusted so that Bragg
and hybridization gaps overlap in frequency. On the basis of experimental and numerical analyses of time-dependent transmission and spa-
tial field maps, the presence of two coexisting propagation modes of similar amplitude is demonstrated near the resonance frequency. This
phenomenon is attributed to the coupling of the rod resonances arranged in a triangular lattice, with phase shifts driven by the Bragg
condition.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0076628

Mesoscopic phononic structures present remarkable possibilities
for manipulating the dispersion of coherent wave transport through
the structures, thereby dramatically altering the frequency dependence
of the velocity and attenuation. Consequently, there are many papers
devoted to the study of such structures, one important example being
phononic crystals (PnCs) containing periodic arrangements of inclu-
sions embedded inside various matrix materials.1,2 One of the most
basic goals is to generate bandgaps in the dispersion of the material in
order to inhibit wave transport in certain frequency ranges, using
mechanisms, such as Bragg scattering3 or the hybridization between a
resonant mode of the scatterers and a propagating mode of the
matrix.4 PnCs exhibiting both types of bandgaps can be of particular
interest and have been studied via experiments, theory, and simula-
tions.4–15 However, even though both mechanisms lead to the forma-
tion of low transmission frequency bands in finite thickness materials,
the resulting behavior is still quite different, with hybridization gaps
often exhibiting negative values of the group velocity, whereas inside
Bragg gaps, this parameter is positive (and larger than in the matrix
material).7,16 Another distinguishing feature is that Bragg gaps require
periodicity, while hybridization gaps persist in disordered struc-
tures.17,18 Additionally, it has been shown that, with strong material
parameter contrast between the inclusions and the matrix, or with
carefully designed resonant scatterers, hybridization gaps can be
driven low enough in frequency to enable the representation of the

structures as homogeneous effective media with unique (and often
remarkable) acoustic or elastic metamaterial properties.19–23

In this Letter, we explore different unusual behavior in which
hybridization gaps also play a key role. By driving the frequency of the
hybridization gap inside the first Bragg gap of a phononic crystal, we
demonstrate and explain an unexpected type of atypical dispersion
effect due to the coupling between these two mechanisms. In previous
studies, the emphasis has mostly been on showing that combined
hybridization and Bragg gaps can have exceptional properties in terms
of bandgap width and/or depth,5,6,8,9,11–13 but not on looking for strik-
ingly atypical dispersion characteristics. Here, we show that by tuning
the resonant frequency, the transmitted phase above resonance can be
shifted by multiples of 2p, leading to switching between apparently
different dispersion curves, and that the transmission coefficient can
differ by orders of magnitude in its minimum value at the bandgap
center. We explain this unusual behavior by demonstrating the co-
existence at the same frequency of two propagating modes with differ-
ent wavevectors, with the competition between these modes driving
the switching behavior that is observed near the resonant frequency.
The existence of these two modes is established through analysis of
both experiments and simulations, giving insight into the character of
each mode and the influence of both resonance and lattice symmetries.
The possibility of tuning the competition between these modes
dynamically offers a remarkable opportunity for controlling both
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phase and amplitude of the transmitted signals through phononic
crystals.

The phononic crystals investigated were made from 0.46-mm-
diameter nylon rods, readily available from commercial fishing line,
arranged in a 2D triangular lattice and surrounded by water. The rods
were positioned inside a support structure with top and bottom plates
in which holes were drilled to ensure accurate positioning of the rods.
Crystal interfaces were oriented perpendicular to the CM direction,
and only normal incidence was considered. The crystal thickness
ranged from one to fourteen unit cells. Nylon density, longitudinal,
and shear velocities are, respectively, 1150 kg/m3, 2500 m/s, and about
1000 m/s, with this last parameter depending quite significantly on
experimental conditions. Wave propagation through these crystals
was measured using pulsed ultrasonic experiments, which were con-
ducted in a temperature-controlled water tank, using pairs of identical
transducers (Panametrics) spanning the frequency range from 0.3 to
2.2MHz. By taking a Fourier transform of the measured time signals,
the complex transmission spectra (both amplitude and phase) were
obtained, yielding the dispersion curves and the frequency dependence
of the transmission coefficient. For further details, see the supplemen-
tary material.

This crystal has the interesting property of exhibiting both
hybridization and Bragg gaps in the same frequency range. For small
lattice periods, the first Bragg gap appears at frequencies higher than
the first resonant mode of the nylon rods, resulting into two distinct
stop bands near 1.0 and 1.5MHz that exhibit the characteristic group
velocity signatures of hybridization and Bragg gaps (negative and large
positive velocities, respectively).7 When the lattice constant a is
increased to 0.98mm, corresponding to a nylon filling fraction of 0.2,
the first Bragg gap is brought to lower frequencies and overlaps with
the hybridization gap. The overlap is further controlled by exploiting
the strong dependence of the nylon shear velocity vT on experimental
conditions, which allow the frequency of the hybridization gap to be
finely tuned by changing the temperature, by swelling the nylon via
water absorption through prolonged immersion in the water tank, or
by varying the tension. Under these conditions, we find that this crys-
tal then exhibits remarkable transmission properties, in both phase
and magnitude, with the interaction between hybridization and Bragg
effects introducing phase rotations, which change the effective wave-
number seen in the higher frequency dispersion branch. An example
of this atypical dispersion is shown in Fig. 1 for a five-layer-thick crys-
tal at three representative temperatures. Anomalous switching behav-
ior is also found when the number of layers in the slab is varied.7

The origin of this anomalous behavior is revealed by digitally fil-
tering the transmitted experimental time signals with different
narrow-bandwidth Gaussian frequency filters. Figures 2(a)–2(c) show
that the transmitted pulses are Gaussian over most of the frequency
range, except around the resonance frequency. Near resonance, the
observed signal shape [Fig. 2(b)] reveals a signature of multimode
propagation, with two interfering pulses created by two propagation
modes with different phase velocities, attenuations, and group delays.
With a fitting procedure, these individual modes can be retrieved. For
instance, the signal shown in Fig. 2(d) can be separated into the two
signals of Fig. 2(e). The overall shape of the transmitted pulse is then
easily explained by inspecting the modes at different times [Fig. 2(f)]:
in the middle of the pulse, the signal becomes very low because the
two modes are almost exactly out of phase. By repeating the fitting

procedure with different frequency filters, dispersion properties of the
individual modes can be extracted, as shown in Fig. 3 (symbols). The
range of frequencies where this procedure can be applied is limited not
only by the attenuation of the modes, but also by their phase differ-
ence, with the fitting method working most reliably when the two
modes are out of phase with each other.

To further investigate this multimode propagation effect, numeri-
cal simulations were performed using the ATILA finite element
code.24 A 2D domain was considered, with a plane wave of chosen fre-
quency normally incident on a PnC slab of finite thickness, with peri-
odic boundary conditions on the sides. Losses were taken into account
by adding an imaginary part to the bulk modulus of the nylon rods,
equal to 5.5% of the real part.25 To avoid including near field effects in
the scattering parameters of the slab, transmitted and reflected fields
were measured 4mm away from the slab. Using the simulated com-
plex transmission spectrum, attenuation, and wavenumber can be cal-
culated directly for a wide range of frequencies. However, since the
harmonic simulation results can be affected by the internal reflections
at the boundaries of the slab, a conventional inversion method26,27 was
preferred to retrieve the complex wavenumber, exploiting both reflec-
tion and transmission spectra.

For the modal decomposition, simulated displacement and pres-
sure fields obtained for a 30-cell-thick slab were first interpolated on a
square grid with a width of a and a depth of

ffiffiffi

3
p

a=2 centered on each
rod in the slab, which allows building data sets with field values at the
same position relative to the rod in each cell. For each frequency, every
data set was then fitted to a superposition of two-plane waves. Several
optimization steps were then added to converge on the average com-
plex wavevector values, as well as field maps, for both modes. With
this procedure, two modes with imaginary wavevectors up to
2.2mm�1 could be fitted, without making any assumption about the
nature of the modes.

The numerical modal decomposition result (Fig. 3) is in good
agreement with the experimental one in the frequency range where
both can be obtained. It shows that the two modes can be treated as

FIG. 1. Atypical dispersion curves (a) and intensity transmission coefficients (b)
measured (symbols) and simulated (lines) from the phase and amplitude of the
transmission through a five-cell-thick phononic crystal of nylon rods in water.
Results for three temperatures are shown, with experimental data during swelling of
the nylon rods in the insert. (In the inset, the transmission axis ranges from 5�
10�9 to 1� 10�4, and a 1 m/s change in vT is sufficient to switch between the left-
and right-bending dispersion curves at the crossover point.) The dashed vertical
lines indicate the first and second Brillouin zone boundaries.
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FIG. 2. Transmitted experimental time signals through a six-cell thick slab. (a)–(c) Filtered time signals with filters of same width Df ¼ 20 kHz, but different central frequencies.
(d) and (e) Time signals obtained by the modal decomposition procedure (original filtered signal in black, individual modes in blue and red). (f)–(h) Zoomed views of (d) and (e)
at selected times.

FIG. 3. Experimental (symbols) and simulated (solid lines) frequency dependence of (a) the wavenumber and (b) the power transmission coefficient for the two individual modes
(red and blue), and for the case when a single mode is assumed (black), with a six-cell-thick slab. Vertical dashed lines correspond to the edges of the first two Brillouin zones.
Panel (a) also shows the band diagram obtained when considering an infinite crystal [dot-dashed green lines—see also Fig. S1(b) in the supplementary material].
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extensions of the bands located below and above the gap. Indeed, the
band structure of the infinite crystal, calculated with COMSOL
Multiphysics, confirms the frequencies of the two passbands around
the gap (dot-dashed green lines in Fig. 3). Since the eigenvalues are
obtained in the real wavevector, complex frequency domain, this simu-
lation does not give access to solutions in the frequency region where
the two complex wavevector modes overlap. It should also be noted
that this type of simulation reveals an additional resonance-related
mode inside the gap, from 1100 to 1150 kHz. However, inspection of
the corresponding field maps shows that this mode is deaf, i.e., anti-
symmetric with respect to the propagation direction, and, thus, not
excitable with normally incident plane waves.

Contrary to the usual hybridization effect in acoustic systems where
losses are inevitable, the two passbands do not connect inside the gap to
form a single dispersion branch with negative group velocity, but instead
create a band where two modes with different wavevectors coexist. This
two-mode behavior is in sharp contrast to the case of a randomly disor-
dered sample of the same nylon rods at the same rod concentration,
where only one mode was found experimentally near 1MHz,28 pointing
to the important role of the interaction between Bragg and resonance-
related effects in governing the competition between the two modes in
our crystals. It is also interesting to compare our observations with
experiments and theory for random dispersions of plastic spheres in a
fluid, where an additional slowly propagating mode due to interfacial
waves was found over a wide frequency range.18 While this 3D system
also exhibits two-mode propagation, the character of the two modes is
very different in our 2D crystal case. Here, the faster mode is strongly
modified by the presence of the Brillouin zone boundary, forming a dis-
persion branch close to the one seen for Bragg gaps, whereas the slower
mode crosses the first Brillouin zone boundary (around 870kHz) with-
out forming a clearly perceptible bandgap. Additionally, the relative
amplitude of the two modes has also been strongly modified, with a slow

mode dominating the transmitted signal in a much larger frequency
range, thus enhancing the multimode behavior.

The transmitted power spectra shown in Fig. 3(b) are calculated
using the average pressure fields obtained from the modal decomposi-
tion. They confirm that transmission in the lower and upper parts of
the frequency spectrum is due, respectively, to the first and the second
retrieved modes. The frequency where the transmitted power is equal
for the two modes is very close to the frequency where the onset of a
strong dependence of the effective monomode wavenumber on the
slab thickness can be observed. This confirms the idea that the unusual
behavior in transmission is due to the presence of two modes with
similar amplitude but very different wavenumbers.

Indeed, from the modal decomposition results, the apparent
monomode wavevectors for different slab thicknesses can be recalcu-
lated, provided that we have a good approximation of the transmission
coefficients at the input interface, to represent the coupling between
the incoming plane wave and the individual modes. If we base this
approximation on the value of the average pressure field in the first
cell for each mode (normalized by the input field), good qualitative
agreement with the numerical monomode results can be obtained,
with similar phase shifts at the resonance frequency and the same
number of phase rotations. Additionally, if we use the transmission
coefficients at the input interface as fitting parameters, excellent quan-
titative agreement can be achieved for all thicknesses, as shown in
Fig. 4. This shows that the coupling mechanism for the two individual
modes is independent of the slab thickness.

Insight into the character of each mode can be gained from their
displacement and pressure field maps, shown at 1105 kHz in Fig. 5. At
that frequency, their attenuation is equal. Note that the modes do not
exhibit a large difference in terms of energy localization within the cell,
so that neither mode can be identified as an interfacial mode. In fact,
both modes involve deformations of the rods from a circular to oval

FIG. 4. Frequency dependence of (a) the real and (b) the imaginary parts of the wavenumber k extracted from the simulations of one to seven-cell-thick slabs (lines) and
reconstructed from the modal decomposition results (symbols). Vertical dashed lines show the edges of the first two Brillouin zones.
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cross section (i.e., a quadrupolar resonance), even though the first
mode has a more symmetric shape. The two modes also differ by the
phase of the quadrupolar deformation in the first cell, indicating differ-
ent coupling with the incoming plane wave.

If we modify the crystal lattice to align successive rows of scatter-
ers along the propagation direction, thus forming a rectangular lattice,
no dual-mode behavior is observed. Interestingly, the dual-mode
behavior can be recovered if we consider a square lattice oriented
along the CM direction (i.e., along the square’s diagonal). These cases
show that the effect is strongly related to the geometry of the lattice,
and more particularly to the alignment of the rods between successive
rows of the crystal. Due to the quadrupolar resonance, the critical cou-
pling directions are along and perpendicular to the propagation direc-
tion. Thus, in configurations where the rods in successive rows are
staggered, two solutions can coexist at the same frequency, which
mainly differ by the phase shift between successive rows, but are simi-
lar in terms of phase shift over two rows. This interpretation is rein-
forced by the proximity of the two modes to theM and C points in the
multimode frequency band (successive rows out-of-phase and in-
phase, respectively). For structures where rods in successive rows are
aligned, the strong coupling between the resonant fields in adjacent
rows only allows for one phase shift at a given frequency, giving rise to
only one complex dispersion branch inside the gap.

In conclusion, using decomposition methods based on experi-
mental time-dependent transmitted signals, as well as numerically

obtained field maps, we have demonstrated that the unusual disper-
sion properties of this 2D fluid/solid crystal can be explained by the
presence of two competing propagation modes. Our detailed analysis
reveals the conditions under which such atypical dispersion character-
istics occur: simultaneous Bragg and hybridization mechanisms, a
crystal structure in which the inclusion positions are staggered in adja-
cent rows perpendicular to the propagation direction (such as in a tri-
angular lattice) and a resonance symmetry that allows competing
interactions between inclusions on neighboring and next neighboring
rows (such as quadrupolar resonances). Thus, our results lay the foun-
dation for future work with other phononic and even photonic crys-
tals, opening opportunities for practical applications that exploit such
two-mode behavior. For example, since the transmission spectra
depend strongly on the balance between the two propagation modes,
in both amplitude and phase, this type of crystal could have interesting
applications for signal dispersion control. The full potential of this
type of application depends on the ability to tune the resonant fre-
quencies of the inclusions, a situation that is readily fulfilled for the
model nylon rod-based case studied here, since the properties of nylon
enable several crystal tuning mechanisms (temperature, water absorp-
tion, and tension). Some of these mechanisms could even be imple-
mented rapidly enough (e.g., by embedding fine heating wire inside
the rods or by modulating the tension) to enable dynamic processing
control.

FIG. 5. Displacement (a)–(c) and pressure (d)–(f) amplitude field maps at 1105 kHz in the third cell of a slab: (a) and (d) total field, (b) and (e) first mode and (c) and (f) second
mode (propagation direction is along the vertical axis). The top row shows the displacements in a single nylon rod, while lower row displays the pressure amplitudes throughout
the hexagonal unit cell (in which the location of the rods is indicated by the dark blue circles and the center rod is the one for which the displacement maps are plotted).
Displacement magnitude is shown both in the colormap and the arrow size. Pressure and displacement units are independent.
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See the supplementary material for additional information about
the phononic crystal, the experimental setup, and the infinite crystal
band diagram.
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