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A B S T R A C T

This study addresses the issue of robust dynamic output feedback control (DOF) for polynomial
Takagi–Sugeno (T–S) fuzzy systems in the Finite Frequency (FF) domain. Sufficient conditions
for designing the robust DOF control are derived in terms of the sum of squares (SOS). The
proposed strategy is built in the FF domain to reduce conservation-generated by the techniques
established in the whole frequency domain. In addition, there are no transformation matrices or
equality constraints under these conditions, which simplifies the numerical solution. To show
the validity of the suggested technique, several numerical examples are presented.

1. Introduction

Many issues of analysis and control design of a large class of nonlinear systems have been effectively solved using Takagi–
ugeno (T–S) fuzzy models [1]. It has been demonstrated that T–S fuzzy models can Transform higher-order nonlinear systems into
weighted combination of a set of linear systems, by using fuzzy IF–THEN rules. In both continuous and discrete-time, several
ethods for T–S systems have addressed in the literature. The stability and stabilization issues of nonlinear systems represented

y T–S fuzzy systems have been investigated in the literature. In [2], authors proposed quadratic Lyapunov function (LF) to
erive stability conditions represented in terms of LMI for T–S fuzzy control systems that unfortunately tend to give conservative
onditions. Furthermore, various relaxed stabilization conditions were also suggested to derive less conservative results in [3]. The
obust controller for T–S fuzzy systems with uncertainties is explored in [4,5]. Hence, It is widely understood that the existence of
ncertainty may decrease the performance of many control systems and can even cause instability, that is why robust stability of
ncertain T–S fuzzy systems is a critical concern.

The majority of the previous references have concentrated on state feedback control issues. Unfortunately, state variables are
ot always fully measurable throughout many industrial applications. Hence, the output feedback control and particularly the
ynamic output feedback control is for remarkable interest. Some results on the DOF case exist in the literature [6–8] using the
escriptor representation approach and LMI-based design conditions [6]. In [7], authors proposed an unified systematic framework
or designing DOF controllers for nonlinear systems described by T–S models. These existing LMI based results, however, do not
ake into account uncertainties. [9], has studied the robust DOF control for a class of discrete-time nonlinear fuzzy systems with
arametric uncertainties where the control is designed via an LMI based approach.

In general, polynomial systems are an extension of T–S systems that allow the study of a larger class of nonlinear systems [10,11].
ndeed, polynomial T–S fuzzy systems can overcome the quadratic approach and allows reducing the conservatism of the existing
MI results. To provide more relaxed stability, in [12,13], some results on static output feedback control of continuous-time T–S
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fuzzy systems based on a polynomial Lyapunov function are proposed. As well known, solving problems by SOS-based conditions of
polynomial systems is less conservative than using LMI-based conditions for T–S systems. At this stage, it is worth noting that the
DOF control for polynomial systems is not widely studied as its linear counterpart. In [14], the problem of designing DOF controller
for discrete polynomial fuzzy model-based was investigated. Moreover, all the DOF control designs previously cited deal with the
entire frequency range (EF) which may bring some conservatism. As a result, it is essential and more practical to develop DOF control
in the finite frequency domain (FF). Some approaches have been proposed to deal with the GKYP lemma using LMI techniques. One
can refer to [15], where the problem of fault detection filtering design has been provided for discrete-time T–S fuzzy systems in the
FF domain. Moreover, [16], discussed the problem of SOF 𝐻∞ control of continuous T–S systems in FF domain. A new descriptor

ethod in FF was recently developed in [17] to facilitate the output feedback controller design. The aforementioned results show
hat FF conditions are less conservative than the entire frequency domain and encompass the standard ones as a particular case.
evertheless, relatively few research efforts have been devoted to polynomial fuzzy systems in the FF domain. Problem of fault
etection was addressed in [18] for polynomial fuzzy system in the FF domain. To the best of our knowledge, there has not been
ny research done yet on the robust DOF control design for polynomial fuzzy systems in the FF domain and this issue remains an
pen and challenging point. The present research is motivated by the issue of how to reduce conservatism even more and construct
olynomial fuzzy discrete-time systems.

We present a new technique for robust DOF control for polynomial T–S fuzzy systems in the FF domain in this study. Using
olynomial Lyapunov function and FF bounded lemma sufficient conditions were derived in terms of SOS, to guarantee the stability
f the polynomial fuzzy system. This paper presents an SOS-based technique to solve the stabilization of discrete DOF polynomial
ystems. Compared to the existing approaches, the polynomial nonlinearities can be precisely manipulated and a wide class of other
onlinearities can be treated by adding auxiliary variables and constraints. The suggested method does not need any transformation
atrices nor equality constraints that are difficult to satisfy. The proposed methodology not only ensures the closed-loop system’s

tability but also leads to less conservative outcomes. The remainder of this paper is organized as follows. The T–S system description
nd some preliminary results are stated in Section 2. The proposed approach is presented in Section 3 while in Section 4 some
umerical examples are given to illustrate the effectiveness of the proposed method. Finally, a conclusion takes place in Section 5.

Notation:
∙ R: the set of real numbers;
∙ 𝐼 : identity matrix (of size specified by the context);
∙ 𝜌(.): eigenvalue of a matrix;
∙ ∗: represents a term induced by symmetry.
∙ 𝑀⊥ orthogonal matrix of 𝑀
∙ 𝑀−1 inverse matrix of 𝑀 .
∙ 𝑠𝑦𝑚(𝑀): is defined as s𝑦𝑚(𝑀) = 𝑀 +𝑀𝑇 .
∙ 𝐴𝑇 represents the transpose matrix of 𝐴.
∙ 𝑃 > 0 means that 𝑃 is real symmetric and positive definite.

. Problem formulation

Consider a polynomial discrete-time system described by the following T–S fuzzy model, in which the 𝑖th rule is described as
ollows:

Plant Rule 𝑖: IF 𝜍1(𝑥(𝑘)) is 𝑀𝑖1 AND . . . AND 𝜍𝑝(𝑥(𝑘)) is 𝑀𝑖𝑝 THEN
{

𝑥(𝑘 + 1) = �̄�𝑖(𝑥(𝑘))�̃�(𝑥(𝑘)) + �̄�𝑖(𝑥(𝑘))𝑢(𝑘)

𝑦(𝑘) = �̄�𝑖(𝑥(𝑘))�̃�(𝑥(𝑘))
(1)

where 𝑥(𝑘) ∈ R𝑛 is the state vector, �̃�(𝑥(𝑘)) is a vector of monomials in 𝑥(𝑘), 𝑢(𝑘) ∈ R𝑚1 is the control input, 𝑦(𝑘) ∈ R𝑚2 is the
measurement output. 𝑖 = 1, 2,… , 𝑟 and 𝑟 is the number of IF–THEN rules, 𝜍1(𝑥(𝑘)) = [𝜍1(𝑥(𝑘)) 𝜍2(𝑥(𝑘)) … 𝜍𝑝(𝑥(𝑘))] are known
premise variables, 𝑀𝑖𝑗 are fuzzy sets, �̃�(𝑥(𝑘)) ∈ R𝑁 is an 𝑁 × 1 vector of monomial in 𝑥(𝑘). �̄�𝑖(𝑥(𝑘)), �̄�𝑖(𝑥(𝑘)), and �̄�𝑖(𝑥(𝑘)) are
polynomial matrices in 𝑥(𝑘) which are composed of two parts as:

�̄�𝑖(𝑥(𝑘)) = 𝐴𝑖(𝑥(𝑘)) + 𝛥𝐴𝑖(𝑘),

�̄�𝑖(𝑥(𝑘)) = 𝐵𝑖(𝑥(𝑘)) + 𝛥𝐵𝑖(𝑘)

�̄�𝑖(𝑥(𝑘)) = 𝐶𝑖(𝑥(𝑘)) + 𝛥𝐶𝑖(𝑘)

(2)

where 𝐴𝑖(𝑥(𝑘)), 𝐵𝑖(𝑥(𝑘)) and 𝐶𝑖(𝑥(𝑘)) are polynomial matrices. 𝛥𝐴𝑖(𝑘), 𝛥𝐵𝑖(𝑘) and 𝛥𝐶𝑖(𝑘) are unknown matrices that account for
time-varying parameter uncertainties and are assumed to be structured under the form:

𝛥𝐴𝑖(𝑘) = 𝑋𝛥𝑖𝛥(𝑘)𝑌𝛥𝑖, 𝛥𝐵𝑖(𝑘) = 𝑋𝛥𝑖𝛥(𝑘)𝑌𝐵𝑖,

𝛥𝐶𝑖(𝑘) = 𝑋𝐶𝑖𝛥(𝑘)𝑌𝛥𝑖,
(3)

and 𝛥(𝑘) are unknown time-varying matrix functions satisfying:
𝑇
𝛥(𝑘) 𝛥(𝑘) ≤ 𝐼

2
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The defuzzification process of the polynomial T–S system (1) are inferred as follows:
{

𝑥(𝑘 + 1) = 𝐴(ℎ)�̃�(𝑥(𝑘)) + 𝐵(ℎ)𝑢(𝑘)

𝑦(𝑘) = 𝐶(ℎ)�̃�(𝑥(𝑘))
(4)

where

𝐴(ℎ) ∶=
𝑟
∑

𝑖=1
ℎ𝑖(𝜍(𝑥(𝑘)))�̄�𝑖(𝑥(𝑘)), 𝐵(ℎ) ∶=

𝑟
∑

𝑖=1
ℎ𝑖(𝜍(𝑥(𝑘)))�̄�𝑖(𝑥(𝑘))

𝐶(ℎ) ∶=
𝑟
∑

𝑖=1
ℎ𝑖(𝜍(𝑥(𝑘)))�̄�𝑖(𝑥(𝑘))

ℎ𝑖(𝜍(𝑥(𝑘))) =
𝑤𝑖(𝜍(𝑥(𝑘)))

∑𝑟
𝑖=1 𝑤𝑖(𝜍(𝑥(𝑘)))

, 𝑤𝑖(𝜍(𝑥(𝑘))) =
𝑠

∏

𝑗=1
𝑀𝑖𝑗 (𝜍𝑗 (𝑥(𝑘)))

where 𝑀𝑖𝑗 (𝜍𝑗 (𝑥(𝑘))) is the grade of membership of 𝜍𝑗 (𝑥(𝑘)) in 𝑀𝑖𝑗 and 𝑤𝑖(𝜍(𝑥(𝑘))) represents the weight of the 𝑖th rule. It should be
noted from the properties of membership functions that ℎ𝑖(𝜍(𝑥(𝑘))) ≥ 0, for 𝑖 = 1, 2,… , 𝑟 and ∑𝑟

𝑖=1 ℎ𝑖(𝜍(𝑥(𝑘))) = 1 for all 𝑘.
In this paper, it is assumed that �̃�(𝑥(𝑘)) = 0 if 𝑥(𝑘) = 0. Moreover, we defined the polynomial transformation matrix from 𝑥(𝑘) to

�̃�(𝑥(𝑘)) by 𝑇 (𝑥(𝑘)) as follows �̃�(𝑥(𝑘 + 1)) = 𝑇 (𝑥(𝑘 + 1))𝑥(𝑘 + 1). Thus, the polynomial T–S system (4) can be rewritten as:
{

�̃�(𝑥(𝑘 + 1)) = 𝑇 (𝑥(𝑘 + 1))[𝐴(ℎ)�̃�(𝑥(𝑘)) + 𝐵(ℎ)𝑢(𝑘)]

𝑦(𝑘) = 𝐶(ℎ)�̃�(𝑥(𝑘))
(5)

Recall that the premise variables of the fuzzy system (5) cannot be used to design the controller since they are assumed to be
non-measurable. It means that the well-known parallel distributed compensation control cannot be applied in this case. Hence, we
adopt the following DOF controller

𝐾 ∶

{

𝑥𝑑 (𝑘 + 1) = 𝐴𝑑 (𝑥(𝑘))𝑥𝑑 (𝑘) + 𝐵𝑑 (𝑥(𝑘))𝑦(𝑘)

𝑢(𝑘) = 𝐶𝑑 (𝑥(𝑘))𝑥𝑑 (𝑘) +𝐷𝑑 (𝑥(𝑘))𝑦(𝑘)
(6)

where 𝑥𝑑 (𝑘) represents the state vector of the DOF controller, and 𝐴𝑑 (𝑥(𝑘)), 𝐵𝑑 (𝑥(𝑘)), 𝐶𝑑 (𝑥(𝑘)), and 𝐷𝑑 (𝑥(𝑘)) are the sought polynomial
matrices. The overall closed-loop system with DOF controller 𝐾 can be represented by

𝜉(𝑘 + 1) = A𝜉(𝑘) (7)

where

𝜉(𝑘 + 1) =

[

�̃�(𝑥(𝑘 + 1))

𝑥𝑑 (𝑘 + 1)

]

, 𝑇 (𝑥+) = 𝑇 (𝑥(𝑘 + 1)),

A =

[

𝑇 (𝑥+)[𝐴(ℎ) + 𝐵(ℎ)𝐷𝑑 (𝑥(𝑘))𝐶(ℎ)] 𝑇 (𝑥+)𝐵(ℎ)𝐶𝑑 (𝑥(𝑘))

𝐵𝑑 (𝑥(𝑘))𝐶(ℎ) 𝐴𝑑 (𝑥(𝑘))

]

The following Lemmas will be used intensively in the sequel.

Lemma 1 ([19]). Let A =

[

𝐴1 𝐴2

𝐴3 𝐴4

]

System (7) is asymptotically stable if and only if the following condition holds: 𝜌(𝐴4 +𝐴3(𝑒𝑗𝜃𝐼 −

𝐴1)−1𝐴2) < 1 for all 𝜃 ∈ [−𝜋, 𝜋], and 𝜌(𝐴1) < 1.

Lemma 2 ([20]). Let the matrices 𝜃, 𝐹 , 𝜙 and 𝛹 be given, and denote 𝑁𝜃 is the null space of 𝑇𝜃𝐹 , where 𝑇𝜃 = [𝐼 − 𝑒𝑗𝜃]. The inequality

𝑁𝑇
𝜃 𝜃𝑁𝜃 , 𝑤𝑖𝑡ℎ 𝜃 ∈ [𝜃1, 𝜃2] (8)

holds if and only if there exist 𝑄 > 0 and a symmetric matrix 𝑃 , such that

𝐹 𝑇 (𝜙⊗ 𝑃 + 𝛴𝜃 ⊗𝑄)𝐹 + 𝜃 < 0 (9)

where 𝜙 =

[

1 0

0 −1

]

, 𝛴𝜃 is in Table 1, with 𝜃𝑐 = 𝜃1+𝜃2
2 , 𝜃𝜔 = 𝜃2−𝜃1

2 , and 𝜃1, 𝜃2 satisfying −𝜋 ≤ 𝜃1 ≤ 𝜃2 ≤ 𝜋, where 𝜃1, 𝜃2, 𝜃𝑙, 𝜃ℎ are

known scalars.

Definition 1 ([21]). A multivariate polynomial 𝑓 (𝑥), for 𝑥 ∈ R𝑁 is a Sum of Squares (SOS) if there exist polynomials 𝑓𝑖(𝑥), 𝑖 = 1,… , 𝑛
such that

𝑓 (𝑥) =
𝑛
∑

𝑖=1
𝑓 2
𝑖 (𝑥) (10)

This implies 𝑓 (𝑥) ≥ 0 for any 𝑥 ∈ R𝑛.
3
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Table 1
𝛴𝜃 , in different frequency ranges.
Frequency range Low-frequency Middle-frequency High-frequency
𝛺 |𝜃| ≤ 𝜃𝑙 𝜃1 ≤ 𝜃 ≤ 𝜃2 𝜃ℎ ≤ |𝜃|

𝛴𝜃 =
[

0 𝛴1
𝛴𝑇

1 𝛴2

] [

0 1
1 −2𝑐𝑜𝑠(𝜃𝑙)

] [

0 𝑒(𝑗𝜃𝑐)

𝑒(−𝑗𝜃𝑐) −2𝑐𝑜𝑠(𝜃𝜔)

] [

0 −1
−1 2𝑐𝑜𝑠(𝜃ℎ)

]

Proposition 1 ([22]). Let 𝑓 (𝑥) be a polynomial in 𝑥 ∈ R𝑛 of degree 2𝑑. Let 𝑍(𝑥) be a column vector whose entries are all monomials in
with degree no greater than 𝑑. Then, 𝑓 (𝑥) is said to be SOS if and only if there exists a positive semi-definite matrix 𝑄 such that

𝑓 (𝑥) = 𝑍𝑇 (𝑥)𝑄𝑍(𝑥) (11)

emma 3 ([23]). Given a symmetric matrix 𝛴 ∈ R𝑝×𝑝 and two matrices 𝑋, 𝑍 of column dimension 𝑝, there exists a matrix 𝑌 such that
he LMI

𝛴 + 𝑠𝑦𝑚{𝑋𝑇 𝑌 𝑍} < 0 (12)

olds if and only if the following two projection inequalities with respect to 𝑌 are satisfied:

𝑋⊥𝑇𝛴𝑋⊥ < 0, 𝑍⊥𝑇𝛴𝑍⊥ < 0. (13)

where 𝑋⊥ and 𝑍⊥ are arbitrary matrices whose columns form a basis of the null spaces of 𝑋 and 𝑍, respectively.

Lemma 4 ([24]). Let 𝑇 , 𝑄, 𝑈 , and 𝑊 be some given matrices and 𝛼 a scalar. The following inequality is fulfilled

𝑇 +𝑊 𝑇𝑄𝑇 +𝑄𝑊 < 0 (14)

if the following condition holds:
[

𝑇 ∗

𝛼𝑄𝑇 + 𝑈𝑊 −𝛼𝑈 − 𝛼𝑈𝑇

]

< 0

Lemma 5 ([9]). Given matrices 𝑇 , 𝑋, and 𝑌 of appropriate dimensions and with 𝑇 symmetrical

𝑇 +𝑋𝛥𝑌 + 𝑌 𝑇 𝛥𝑇𝑋𝑇 < 0 (15)

where 𝛥 = 𝛥(𝑘)(𝐼 − 𝐽𝛥(𝑘))−1, 𝛥(𝑘)𝑇 𝛥(𝑘) < 𝑅, and 𝑅−1 − 𝐽𝐽𝑇 > 0. The inequality in (15) holds if and only if for matrix 𝑁 and scalar 𝜖

⎡

⎢

⎢

⎢

⎣

𝑇 ∗ ∗

𝑁𝑌 −𝑁 −𝑁𝑇 + 𝜖𝑅 ∗

𝑋𝑇 𝐽𝑇𝑁𝑇 −𝜖𝐼

⎤

⎥

⎥

⎥

⎦

< 0 (16)

3. Main result

The objective is to design a DOF controller in finite frequency domain, that stabilizes the polynomial fuzzy system. For brevity,
in the following analysis, 𝑥 is used instead of 𝑥(𝑘) and �̃�(𝑥) instead of �̃�(𝑥(𝑘)). Moreover, 𝐊 = {𝐤1,𝐤2,… ,𝐤𝑚} denotes the row indices
of 𝐵𝑖(𝑥) whose corresponding row is zero and 𝑥 = (𝑥𝐤1 , 𝑥𝐤2 ,… , 𝑥𝐤𝑚 ).

Theorem 1. The closed-loop system (7) is asymptotically stable if there exist symmetric matrices 𝑃 (𝑥) > 0, 𝑃1(𝑥), 𝑃2(𝑥) > 0 and 𝑄(𝑥) > 0
such that the following conditions are satisfied:

𝐹 𝑇 (𝜙⊗ 𝑃1(𝑥) + 𝛴𝜃 ⊗𝑄(𝑥))𝐹 + 𝜃 < 0 (17)

𝐴𝑇
1 𝑃 (𝑥)𝐴1 − 𝑃 (𝑥) < 0 (18)

where 𝐹 =

[

𝐴1 𝐴2

𝐼 0

]

, 𝜙 =

[

1 0

0 −1

]

, 𝜃 =

[

𝐴3 𝐴4

0 𝐼

]𝑇

(𝜙⊗ 𝑃2(𝑥))

[

𝐴3 𝐴4

0 𝐼

]

, 𝛴𝜃 and 𝛺 are in Table 1

Proof. By Lemma 1, we have 𝜌(𝐴1) < 1 if and only if there exist 𝑃 (𝑥) > 0 such that 𝐴𝑇
1 𝑃 (𝑥)𝐴1 − 𝑃 (𝑥) < 0, LMI in (18) is satisfied.

Denote

𝑆(𝑒𝑗𝜃) = 𝐴4 + 𝐴3(𝑒𝑗𝜃𝐼 − 𝐴1)−1𝐴2 = 𝐴3𝐺(𝑒𝑗𝜃) + 𝐴4 (19)

by Lemma 2, inequality (17) is equivalent to:
[

𝐺(𝑒𝑖𝜃)
]𝑇

𝜃

[

𝐺(𝑒𝑖𝜃)
]

< 0, ∀𝜃 ∈ 𝛺 (20)

𝐼 𝐼

4
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S
a

T
p
s

w

or in a more compact form

𝑆(𝑒𝑗𝜃)𝑇 𝑃2(𝑥)𝑆(𝑒𝑗𝜃) − 𝑃2(𝑥) < 0, 𝑃2(𝑥) > 0, ∀𝜃 ∈ 𝛺 (21)

o 𝜌(𝑆(𝑒𝑗𝜃)) < 1 is finally guaranteed for all 𝜃 ∈ 𝛺. Combining 𝜌(𝐴1) < 1, and 𝜌(𝑆(𝑒𝑗𝜃)) < 1, we conclude that system (7) is
symptotically stable based on Lemma 1.

The proof is completed.

heorem 2. The closed-loop fuzzy system (7) is robustly stable if there exist polynomial matrix 𝐹1(𝑥), 𝐺𝑙(𝑥), 𝑙 = 1, 2, 3 symmetric
olynomial matrices 𝑃 (𝑥) > 0, 𝑄(𝑥) > 0 and 𝑃𝑠(𝑥), 𝑠 = 1, 2. 𝜀𝑙(𝑥) are non-negative polynomials such that the following conditions are
atisfied:

𝜈𝑇1 (𝑃 (𝑥) − 𝜀1(𝑥)𝐼)𝜈1 𝑖𝑠 𝑆𝑂𝑆 (22)

𝜈𝑇1 (𝑄(𝑥) − 𝜀1(𝑥)𝐼)𝜈1 𝑖𝑠 𝑆𝑂𝑆 (23)

− 𝜈𝑇2 (𝜑(𝑥) + 𝜀2(𝑥)𝐼)𝜈2 𝑖𝑠 𝑆𝑂𝑆 (24)

− 𝜈𝑇3 (�̄�(𝑥) + 𝜀3(𝑥)𝐼)𝜈3 𝑖𝑠 𝑆𝑂𝑆 (25)

here

𝜑(𝑥) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜑11(𝑥) 𝜑12(𝑥) 𝜑13(𝑥) 𝜑14(𝑥)

∗ 𝜑22(𝑥) 𝜑23(𝑥) 𝐹1(𝑥)𝐴2

∗ ∗ 𝜑33(𝑥) 𝜑34(𝑥)

∗ ∗ ∗ −𝑃2(𝑥)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

< 0 (26)

�̄�(𝑥) =

[

𝑃 (𝑥) − 𝐺1(𝑥) − 𝐺𝑇
1 (𝑥) 𝐺1(𝑥)𝐴1

∗ −𝑃 (𝑥)

]

< 0 (27)

𝜑11(𝑥) = 𝑃1(𝑥) − 𝐺1(𝑥) − 𝐺𝑇
1 (𝑥)

𝜑12(𝑥) = 𝐺1(𝑥)𝐴1 + 𝜆𝐺2(𝑥)𝐴3 + 𝛴1𝑄(𝑥) − 𝐹 𝑇
1 (𝑥)

𝜑13(𝑥) = −𝜆𝐺2(𝑥) − 𝐺𝑇
3 (𝑥)

𝜑14(𝑥) = 𝐺1(𝑥)𝐴2 + 𝜆𝐺2(𝑥)𝐴4

𝜑22(𝑥) = 𝛴3𝑄(𝑥) − 𝑃1(𝑥) + 𝑠𝑦𝑚{𝐹1(𝑥)𝐴1}

𝜑23(𝑥) = 𝐴𝑇
1 𝐺

𝑇
3 (𝑥) + 𝐴𝑇

3 𝐺
𝑇
2 (𝑥)

𝜑33(𝑥) = 𝑃2(𝑥) − 𝐺2(𝑥) − 𝐺𝑇
2 (𝑥)

𝜑34(𝑥) = 𝐺3(𝑥)𝐴2 + 𝐺2(𝑥)𝐴4

with 𝛴1 and 𝛴2 are given in Table 1 and 𝜈𝑖 𝑖 = 1,… , 7 are independent vectors of 𝑥(𝑘).

Proof. we can verify that (27) is equivalent to,
[

𝑃 (𝑥) 0

∗ −𝑃 (𝑥)

]

+ 𝑠𝑦𝑚(

[

𝐺1(𝑥)

0

]

[

−𝐼 𝐴1
]

) < 0 (28)

By Lemma 3 with

𝛴𝑎 =

[

𝑃 (𝑥) 0

∗ −𝑃 (𝑥)

]

, 𝑋𝑎 = 𝐼, 𝑌𝑎 =

[

𝐺1(𝑥)

0

]

, 𝑍𝑎 =
[

−𝐼 𝐴1
]

the inequality (28) can guarantee

[

𝐴𝑇
1 𝐼

]

[

𝑃 (𝑥) 0

∗ −𝑃 (𝑥)

][

𝐴1

𝐼

]

< 0 (29)

this implies that the closed-loop system is robustly stable.
Let

𝛴𝑏 =

⎡

⎢

⎢

⎢

⎢

𝑃1(𝑥) 𝛴1𝑄(𝑥) 0 0

𝛴𝑇
1 𝑄(𝑥) 𝛴2𝑄(𝑥) − 𝑃1(𝑥) 0 0𝑣
0 0 𝑃2(𝑥) 0

⎤

⎥

⎥

⎥

⎥

, 𝑋𝑏 = 𝐼,
⎣ 0 0 0 −𝑃2(𝑥) ⎦

5
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i

c

w

o

o

T

m

𝑖

w

𝑌𝑏 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐺1(𝑥) 𝜆𝐺2(𝑥)

𝐹1(𝑥) 0

𝐺3(𝑥) 𝐺2(𝑥)

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑍𝑏 =

[

−𝐼 𝐴1 0 𝐴2

0 𝐴3 −𝐼 𝐴4

]

with 𝛴1 and 𝛴2 as in Table 1. (26) is equivalent to

𝛴 + 𝑠𝑦𝑚{𝑋𝑇 𝑌 𝑍} < 0 (30)

Choosing 𝑍⊥ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐴1 𝐴2

𝐼 0

𝐴3 𝐴4

0 𝐼

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and applying Lemma 3, we obtain from (30) that (17) holds.

The proof is completed.

Remark 1. Because of the presence of bi-linear variables 𝐺2(𝑥)𝐷𝑑 (𝑥)𝐶(ℎ) and 𝐺1(𝑥)𝑇 (𝑥+)𝐵(ℎ)𝐷𝑑 (𝑥)𝐶(ℎ), Theorem 1 is not a convex

ssue. Many convex approaches exist in the literature to solve this problem. In [12], an equality constraint was utilized for the SOF

ontrol. An iterative SOS technique has been proposed in [25], to solve numerically the SOF control for polynomial systems. It is

orth noting that the iterative techniques are dependent on the initial values. However, how to choose the initial values is still an

pen problem. Thus, to overcome such drawbacks, an SOS design method is provided in this work without imposing any constraint

n the system matrices.

heorem 3. The closed-loop fuzzy system (7) is robustly stable if there exist a known scalar 𝛼, symmetric positive definite polynomial

atrices 𝑃 (𝑥), 𝑄(𝑥), symmetric polynomial matrices 𝑃𝑠(𝑥) 𝑠 = 1, 2, matrices 𝐹1(𝑥), 𝐺𝑙(𝑥) 𝑙 = 1, 2, 3, 𝑈 (𝑥), 𝐴𝑑 (𝑥), 𝐵𝑑 (𝑥), 𝐶𝑑 (𝑥), �̂�𝑑 (𝑥) for

= 1, 2,… , 𝑟 such that the following conditions are satisfied

𝑆𝑂𝑆 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (22)

𝑆𝑂𝑆 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (23)

− 𝜈𝑇4 (𝛹𝑖𝑖(𝑥) + 𝜀𝑖(𝑥)𝐼)𝜈4 𝑖𝑠 𝑆𝑂𝑆 𝑖 = 1, 2..., 𝑟 (31)

− 𝜈𝑇4 (𝛹𝑖𝑗 (𝑥) + 𝛹𝑗𝑖(𝑥) + 𝜀𝑖𝑗 (𝑥)𝐼)𝜈4 𝑖𝑠 𝑆𝑂𝑆 𝑖 = 1,… , 𝑟 − 1; 𝑗 = 𝑖 + 1,… , 𝑟 (32)

− 𝜈𝑇5 (�̄�𝑖𝑖(𝑥) + 𝜀𝑖(𝑥)𝐼)𝜈5 𝑖𝑠 𝑆𝑂𝑆 𝑖, 𝑠 = 1, 2.., 𝑟 (33)

− 𝜈𝑇5 (�̄�𝑖𝑗 (𝑥) + �̄�𝑗𝑖(𝑥) + 𝜀𝑖𝑗 (𝑥)𝐼)𝜈5 𝑖𝑠 𝑆𝑂𝑆 𝑖 = 1,… , 𝑟 − 1; 𝑗 = 𝑖 + 1,… , 𝑟 (34)

here

𝛹𝑖𝑗 (𝑥) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛹11(𝑥) 𝛹12𝑖𝑗 (𝑥) 𝛹13(𝑥) 𝛹14(𝑥) 𝛹15𝑖(𝑥)

∗ 𝛹22(𝑥) 𝛹23𝑖𝑗 (𝑥) 𝑘1𝐶𝑑 (𝑥) 𝛹25𝑗 (𝑥)

∗ ∗ 𝛹33(𝑥) 𝛹34(𝑥) 𝛹35𝑖(𝑥)

∗ ∗ ∗ −𝑃2(𝑥) 𝐶𝑇
𝑑 (𝑥)

∗ ∗ ∗ ∗ 𝑅(𝑥)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0 (35)

�̄�𝑖𝑗 (𝑥) =

⎡

⎢

⎢

⎢

�̄�11(𝑥) �̄�12𝑖𝑗 (𝑥) �̄�13𝑖(𝑥)

∗ −𝑃 (𝑥) �̄�𝑇
𝑗 (𝑥)�̂�

𝑇
𝑑 (𝑥)

⎤

⎥

⎥

⎥

< 0 (36)
⎣ ∗ ∗ 𝑅(𝑥) ⎦

6
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𝛹11(𝑥) = 𝑃1(𝑥) − 𝐺1(𝑥) − 𝐺𝑇
1 (𝑥)

𝛹12𝑖𝑗 (𝑥) = 𝐺1(𝑥)𝑇 (𝑥+)�̄�𝑖(𝑥) + 𝛴1𝑄(𝑥) + (𝑘�̂�𝑑 (𝑥) + 𝜆𝐵𝑑 (𝑥))�̄�𝑗 (𝑥) − 𝐹 𝑇
1 (𝑥)

𝛹13(𝑥) = −𝜆𝐺2(𝑥) − 𝐺𝑇
3 (𝑥)

𝛹14(𝑥) = 𝑘𝐶𝑑 (𝑥) + 𝜆𝐴𝑑 (𝑥)

𝛹15𝑖(𝑥) = 𝛼(𝐺1(𝑥)𝑇 (𝑥+)�̄�𝑖(𝑥) − 𝑘𝑈 (𝑥))

𝛹22(𝑥) = 𝛴2𝑄(𝑥) − 𝑃1(𝑥) + 𝑠𝑦𝑚{𝐹1(𝑥)𝑇 (𝑥+)�̄�𝑖(𝑥) + 𝑘1�̂�𝑑 (𝑥)�̄�𝑗 (𝑥)}

𝛹23𝑖𝑗 (𝑥) = �̄�𝑇
𝑖 (𝑥)𝑇 (𝑥

+)𝑇𝐺𝑇
3 (𝑥) + �̄�𝑇

𝑗 (𝑥)(𝜆3�̂�
𝑇
𝑑 (𝑥)𝑘

𝑇 + 𝐵𝑇
𝑑 (𝑥))

𝛹25𝑗 (𝑥) = 𝛼(𝐹1(𝑥)𝑇 (𝑥+)�̄�𝑖(𝑥) − 𝑘1𝑈 (𝑥)) + �̄�𝑇
𝑗 (𝑥)�̂�

𝑇
𝑑 (𝑥)

𝛹33(𝑥) = 𝑃2(𝑥) − 𝐺2(𝑥) − 𝐺𝑇
2 (𝑥)

𝛹34(𝑥) = 𝜆3𝑘𝐶𝑑 (𝑥) + 𝐴𝑑 (𝑥)

𝛹35𝑖(𝑥) = 𝛼(𝐺3(𝑥)𝑇 (𝑥+)�̄�𝑖(𝑥) − 𝜆3𝑘𝑈 (𝑥))

𝑅(𝑥) = −𝛼(𝑈 (𝑥) + 𝑈𝑇 (𝑥))

�̄�11(𝑥) = 𝑃 (𝑥) − 𝐺1(𝑥) − 𝐺𝑇
1 (𝑥)

�̄�12𝑖𝑗 (𝑥) = 𝐺1(𝑥)𝑇 (𝑥+)�̄�𝑖(𝑥) + 𝑘�̂�𝑑 (𝑥)�̄�𝑗 (𝑥)

�̄�13𝑖(𝑥) = 𝛼(𝐺1(𝑥)𝑇 (𝑥+)�̄�𝑖(𝑥) − 𝑘𝑈 (𝑥))

Proof. According to the SOS conditions (33)–(34), we write

𝑟
∑

𝑖=1
ℎ2𝑖 (𝜍(𝑥(𝑘)))�̄�𝑖𝑖 +

𝑟−1
∑

𝑖=1

𝑟
∑

𝑗=𝑖+1
ℎ𝑖(𝜍(𝑥(𝑘)))ℎ𝑗 (𝜍(𝑥(𝑘)))(�̄�𝑖𝑗 + �̄�𝑗𝑖)

=
𝑟
∑

𝑖=1

𝑟
∑

𝑗=1
ℎ𝑖(𝜍(𝑥(𝑘)))ℎ𝑗 (𝜍(𝑥(𝑘)))�̄�𝑖𝑗 < 0

We can verify that (36) implies

𝑟
∑

𝑖=1

𝑟
∑

𝑗=1
ℎ𝑖(𝜍(𝑥(𝑘)))ℎ𝑗 (𝜍(𝑥(𝑘)))

{ [

�̄�11(𝑥) �̄�12𝑖𝑗 (𝑥)

∗ −𝑃 (𝑥)

]

+ 𝑠𝑦𝑚

{ [

𝐺1(𝑥)𝑇 (𝑥+)�̄�𝑖(𝑥) − 𝑘𝑈 (𝑥)

0

]

𝑈−1(𝑥)
[

0 �̂�𝑑 (𝑥)�̄�𝑗 (𝑥)
]

} }

< 0

(37)

by Lemma 4, letting

�̄�𝑥 = 𝑈−1(𝑥)
[

0 �̂�𝑑 (𝑥)�̄�𝑗 (𝑥)
]

, �̄�𝑥 =

[

𝐺1(𝑥)𝑇 (𝑥+)�̄�𝑖(𝑥) − 𝑘𝑈 (𝑥)

0

]

, �̄�𝑥 =

[

�̄�11(𝑥) �̄�12𝑖𝑗 (𝑥)

∗ −𝑃 (𝑥)

]

and defining �̂�𝑑 (𝑥) = 𝑈 (𝑥)𝐷𝑑 , we can guarantee that (37) is equivalent to

𝑟
∑

𝑖=1

𝑟
∑

𝑗=1
ℎ𝑖(𝜍(𝑥(𝑘)))ℎ𝑗 (𝜍(𝑥(𝑘)))

[

�̄�11(𝑥) 𝐺1(𝑥)𝐴1

∗ −𝑃 (𝑥)

]

< 0

which is equivalent to (27).
Let

𝑇𝑖𝑗 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛹11(𝑥) 𝛹12𝑖𝑗 (𝑥) 𝛹13(𝑥) 𝛹14(𝑥)

∗ 𝛹22(𝑥) 𝛹23𝑖𝑗 (𝑥) 𝑘1𝐶𝑑 (𝑥)

∗ ∗ 𝛹33(𝑥) 𝛹34(𝑥)

∗ ∗ ∗ −𝑃2(𝑥)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑄𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐺1(𝑥)𝑇 (𝑥+)�̄�𝑖(𝑥) − 𝑘𝑈 (𝑥)

𝐹1(𝑥)𝑇 (𝑥+)�̄�𝑖(𝑥) − 𝑘1𝑈 (𝑥)

𝐺3(𝑥)𝑇 (𝑥+)�̄�𝑖(𝑥) − 𝜆3𝑘𝑈 (𝑥)

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

𝑊𝑗 =𝑈−1(𝑥)
[

0 �̂�𝑑 (𝑥)�̄�𝑗 (𝑥) 0 𝐶𝑑 (𝑥)
]

,

applying Lemma 4, the inequality in (35) leads to

𝑇𝑖𝑗 + 𝑠𝑦𝑚

⎧

⎪

⎪

⎨

⎪

⎪

⎡

⎢

⎢

⎢

⎢

⎢

𝐺1(𝑥)𝑇 (𝑥+)�̄�𝑖(𝑥) − 𝑘𝑈 (𝑥)

𝐹1(𝑥)𝑇 (𝑥+)�̄�𝑖(𝑥) − 𝑘1𝑈 (𝑥)

𝐺3(𝑥)𝑇 (𝑥+)�̄�𝑖(𝑥) − 𝜆3𝑘𝑈 (𝑥)

⎤

⎥

⎥

⎥

⎥

⎥

𝑈−1(𝑥)
[

0 �̂�𝑑 (𝑥)�̄�𝑗 (𝑥) 0 𝐶𝑑 (𝑥)
]

⎫

⎪

⎪

⎬

⎪

⎪

< 0 (38)
⎩ ⎣
0

⎦ ⎭
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t

By defining 𝐺2(𝑥)𝐵𝑑 (𝑥) = 𝐵𝑑 (𝑥), 𝐺2(𝑥)𝐴𝑑 (𝑥) = 𝐴𝑑 (𝑥), 𝑈 (𝑥)𝐷𝑑 (𝑥) = �̂�𝑑 (𝑥), 𝑈 (𝑥)𝐶𝑑 (𝑥) = 𝐶𝑑 , we can verify that (38) is equivalent

o

𝑟
∑

𝑖=1

𝑟
∑

𝑗=1
ℎ𝑖(𝜍(𝑥(𝑘)))ℎ𝑗 (𝜍(𝑥(𝑘)))

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛹11(𝑥) 𝛹12𝑖𝑗 (𝑥) 𝛹13(𝑥) 𝛹14(𝑥)

∗ 𝛹22(𝑥) 𝛹23𝑖𝑗 (𝑥) 𝑘1𝐶𝑑 (𝑥)

∗ ∗ 𝛹33(𝑥) 𝛹34(𝑥)

∗ ∗ ∗ −𝑃2(𝑥)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 T12(𝑥) 0 T14(𝑥)

∗ T22(𝑥) T23(𝑥) T24(𝑥)

∗ ∗ 0 T34(𝑥)

∗ ∗ ∗ 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎫

⎪

⎪

⎬

⎪

⎪

⎭

< 0

(39)

T12(𝑥) = (𝐺1(𝑥)𝑇 (𝑥+)�̄�𝑖(𝑥) − 𝑘𝑈 (𝑥))𝑈−1(𝑥)�̂�𝑑 (𝑥)�̄�𝑗 (𝑥)

T14(𝑥) = (𝐺1(𝑥)𝑇 (𝑥+)�̄�𝑖(𝑥) − 𝑘𝑈 (𝑥))𝑈−1(𝑥)𝐶𝑑 (𝑥)

T22(𝑥) = 𝑠𝑦𝑚{(𝐹1(𝑥)𝑇 (𝑥+)�̄�𝑖(𝑥) − 𝑘1𝑈 (𝑥))𝑈−1(𝑥)�̂�𝑑 (𝑥)�̄�𝑗 (𝑥)}

T23(𝑥) = �̄�𝑇
𝑗 (𝑥)�̂�

𝑇
𝑑 (𝑥)𝑈

−𝑇 (𝑥)(𝐺3(𝑥)𝑇 (𝑥+)�̄�𝑖(𝑥) − 𝜆3𝑘𝑈 (𝑥))𝑇

T24(𝑥) = (𝐹1(𝑥)𝑇 (𝑥+)�̄�𝑖(𝑥) − 𝑘1𝑈 (𝑥))𝑈−1(𝑥)𝐶𝑑 (𝑥)

T34(𝑥) = (𝐺3(𝑥)𝑇 (𝑥+)�̄�𝑖(𝑥) − 𝜆3𝑘𝑈 (𝑥))𝑈−1(𝑥)𝐶𝑑 (𝑥)

From (39), the condition (26) is obtained. The proof is completed.

Remark 2. We can notice that the proposed results contain some slack variables, the introduction of these parameters is not
necessary to derive our results, but it can provide more degrees of freedom and more flexibility in the resolution space.

Theorem 4. Let 𝛼, 𝜆 and 𝑘, be some given scalars. The polynomial fuzzy system (7) is robustly stable if there exist a symmetric positive
definite matrices 𝑃 (𝑥), and 𝑄(𝑥), symmetric matrices 𝑃𝑠(𝑥) 𝑠 = 1, 2 and matrices 𝐹1(𝑥), 𝐺𝑙(𝑥) 𝑙 = 1, 2, 3, 𝑈 (𝑥) and 𝐴𝑑 (𝑥), 𝐵𝑑 (𝑥), 𝐶𝑑 (𝑥),
�̂�𝑑 (𝑥) and 𝑁𝑖(𝑥), and positive scalars 𝜖𝑖 for 𝑖 = 1, 2,… , 𝑟, given scalars 𝛼 > 0 such that the following conditions are satisfied

𝑆𝑂𝑆 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (22)

𝑆𝑂𝑆 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (23)

− 𝜈𝑇6 (𝛯𝑖𝑖(𝑥) + 𝜀𝑖(𝑥)𝐼)𝜈6 𝑖𝑠 𝑆𝑂𝑆 𝑖, 𝑠 = 1, 2,… , 𝑟 (40)

− 𝜈𝑇6 (𝛯𝑖𝑗 (𝑥) + 𝛯𝑗𝑖(𝑥) + 𝜀𝑖𝑗 (𝑥)𝐼)𝜈6 𝑖𝑠 𝑆𝑂𝑆 𝑖 ≠ 𝑗 = 1, 2, ..𝑟 (41)

− 𝜈𝑇7 (�̄�𝑖𝑖(𝑥) + 𝜀𝑖(𝑥)𝐼)𝜈7 𝑖𝑠 𝑆𝑂𝑆 𝑖, 𝑠 = 1, 2, ..𝑟 (42)

− 𝜈𝑇7 (�̄�𝑖𝑗 (𝑥) + �̄�𝑗𝑖(𝑥) + 𝜀𝑖𝑗 (𝑥)𝐼)𝜈7 𝑖𝑠 𝑆𝑂𝑆 𝑖 ≠ 𝑗 = 1, 2, ..𝑟 (43)

where

𝛯𝑖𝑗 (𝑥) =

⎡

⎢

⎢

⎢

⎣

𝛶𝑖𝑗 (𝑥) 𝑌 𝑇
𝑖 (𝑥)𝑁𝑇

𝑖 (𝑥) 𝑋𝑖(𝑥)

∗ 𝜖𝑖𝑅1(𝑥) −𝑁𝑖(𝑥) −𝑁𝑇
𝑖 (𝑥) 𝑁𝑖(𝑥)𝐽𝑖(𝑥)

∗ ∗ −𝜖𝑖𝐼

⎤

⎥

⎥

⎥

⎦

< 0 (44)

�̄�𝑖𝑗 (𝑥) =

⎡

⎢

⎢

⎢

⎣

�̄�𝑖𝑗 (𝑥) 𝑌 𝑇
𝑖 (𝑥)𝑁𝑇

𝑖 (𝑥) �̄�𝑖(𝑥)

∗ 𝜖𝑖𝑅1(𝑥) −𝑁𝑖(𝑥) −𝑁𝑇
𝑖 (𝑥) 𝑁𝑖(𝑥)𝐽𝑖(𝑥)

∗ ∗ −𝜖𝑖𝐼

⎤

⎥

⎥

⎥

⎦

< 0 (45)

𝛶𝑖𝑗 (𝑥) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝛹11(𝑥) 𝛶12𝑖𝑗 (𝑥) 𝛹13(𝑥) 𝛹14(𝑥) 𝛶15𝑖(𝑥)

∗ 𝛶22𝑖(𝑥) 𝛶23𝑖𝑗 (𝑥) 𝑘1𝐶𝑑 (𝑥) 𝛶25𝑗 (𝑥)

∗ ∗ 𝛹33(𝑥) 𝛹34(𝑥) 𝛶35𝑖(𝑥)

∗ ∗ ∗ −𝑃2(𝑥) 𝐶𝑇
𝑑 (𝑥)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

< 0 (46)
⎣
∗ ∗ ∗ ∗ 𝑅(𝑥)

⎦
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𝛶12𝑖𝑗 (𝑥) = 𝐺1(𝑥)𝑇 (𝑥+)𝐴𝑖(𝑥) + 𝛴1𝑄(𝑥) + (𝑘�̂�𝑑 (𝑥) + 𝜆𝐵𝑑 (𝑥))𝐶𝑗 (𝑥) − 𝐹 𝑇
1 (𝑥)

𝛶15𝑖(𝑥) = 𝛼(𝐺1(𝑥)𝑇 (𝑥+)𝐵𝑖(𝑥) − 𝑘𝑈 (𝑥))

𝛶22𝑖(𝑥) = 𝛴2𝑄(𝑥) − 𝑃1(𝑥) + 𝑠𝑦𝑚{𝐹1(𝑥)𝑇 (𝑥+)𝐴𝑖(𝑥) + 𝑘1�̂�𝑑 (𝑥)𝐶𝑗 (𝑥)}

𝛶23𝑖𝑗 (𝑥) = 𝐴𝑇
𝑖 (𝑥)𝑇 (𝑥

+)𝑇𝐺𝑇
3 (𝑥) + 𝐶𝑇

𝑗 (𝑥)(𝜆3�̂�
𝑇
𝑑 𝑘

𝑇 + 𝐵𝑇
𝑑 (𝑥))

𝛶25𝑗𝑗 (𝑥) = 𝛼(𝐹1(𝑥)𝑇 (𝑥+)𝐵𝑖(𝑥) − 𝑘1𝑈 (𝑥)) + 𝐶𝑇
𝑗 (𝑥)�̂�

𝑇
𝑑 (𝑥)

𝛶35𝑖(𝑥) = 𝛼(𝐺3(𝑥)𝑇 (𝑥+)𝐵𝑖(𝑥) − 𝜆3𝑘𝑈 (𝑥))

�̄�𝑖𝑗 (𝑥) =

⎡

⎢

⎢

⎢

⎣

�̄�11(𝑥) �̄�12𝑖(𝑥) �̄�13𝑖(𝑥)

∗ −𝑃 (𝑥) �̄�23𝑖𝑗 (𝑥)

∗ ∗ 𝑅(𝑥)

⎤

⎥

⎥

⎥

⎦

< 0 (47)

�̄�12𝑖𝑗 (𝑥) = 𝐺1(𝑥)𝑇 (𝑥+)𝐴𝑖(𝑥) + 𝑘�̂�𝑑 (𝑥)𝐶𝑗 (𝑥)

�̄�13𝑖(𝑥) = 𝛼(𝐺1(𝑥)𝑇 (𝑥+)𝐵𝑖(𝑥) − 𝑘𝑈 (𝑥))

�̄�23𝑖𝑗 (𝑥) = 𝐶𝑇
𝑗 (𝑥)�̂�

𝑇
𝑑 (𝑥)

Proof. The SOS conditions (40)–(41) can be expressed as:

𝑟
∑

𝑖=1
ℎ2𝑖 (𝜍(𝑥(𝑘)))𝛯𝑖𝑖(𝑥) +

𝑟−1
∑

𝑖=1

𝑟
∑

𝑗=𝑖+1
ℎ𝑖(𝜍(𝑥(𝑘)))ℎ𝑗 (𝜍(𝑥(𝑘)))(𝛯𝑖𝑗 (𝑥) + 𝛯𝑖𝑗 (𝑥))

=
𝑟
∑

𝑖=1

𝑟
∑

𝑗=1
ℎ𝑖(𝜍(𝑥(𝑘)))ℎ𝑗 (𝜍(𝑥(𝑘)))𝛯𝑖𝑗 (𝑥) < 0

which is verified if 𝛯𝑖𝑗 (𝑥) < 0
using Lemma 5, we obtain

𝛶𝑖𝑗 + 𝛥𝛶𝑖𝑗 = 𝛶𝑖𝑗 + 𝑠𝑦𝑚{𝑋𝑖𝛥𝑌𝑖} < 0 (48)

where for 𝑋𝑐𝑖 = 0,

𝑋𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐺1(𝑥)𝑇 (𝑥+)𝑋𝛥𝑖

𝐹1(𝑥)𝑇 (𝑥+)𝑋𝛥𝑖

𝐺3(𝑥)𝑇 (𝑥+)𝑋𝛥𝑖

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑌𝑖 =
[

0 𝑌𝛥𝑖 0 0 𝛼𝑌𝐵𝑖
]

and for 𝑌𝐵𝑖 = 0,

𝑋𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐺1(𝑥)𝑇 (𝑥+)𝑋𝛥𝑖 + (𝑘�̂�𝑑 (𝑥) + 𝜆𝐵𝑑 (𝑥))𝑋𝑐𝑖

𝐹1(𝑥)𝑇 (𝑥+)𝑋𝛥𝑖 + 𝑘�̂�𝑑 (𝑥)𝑋𝑐𝑖

𝐺3(𝑥)𝑇 (𝑥+)𝑋𝛥𝑖 + (𝜆3𝑘�̂�𝑑 (𝑥) + 𝐵𝑑 (𝑥))𝑋𝑐𝑖

0
�̂�𝑑 (𝑥)𝑋𝑐𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑌𝑖 =
[

0 𝑌𝛥𝑖 0 0 0
]

𝛥𝛶𝑖𝑗 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

0 𝛥𝛶12𝑖 0 0 𝛥𝛶15𝑖

∗ 𝛥𝛶22𝑖 𝛥𝛶23𝑖 0 𝛥𝛶25𝑖

∗ ∗ 0 0 𝛥𝛶35𝑖

∗ ∗ ∗ 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

< 0 (49)
⎣

∗ ∗ ∗ ∗ 0
⎦
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where

𝛥𝛶12𝑖 = 𝐺1(𝑥)𝑇 (𝑥+)𝑋𝛥𝑖𝛥(𝑘)𝑌𝛥𝑖 + (𝑘�̂�𝑑 (𝑥) + 𝜆𝐵𝑑 (𝑥))𝑋𝐶𝑖𝛥(𝑘)𝑌𝛥𝑖
𝛥𝛶15𝑖 = 𝛼(𝐺1(𝑥)𝑇 (𝑥+)𝑋𝛥𝑖𝛥(𝑘)𝑌𝐵𝑖)

𝛥𝛶22𝑖 = 𝑠𝑦𝑚{𝐹1(𝑥)𝑋𝛥𝑖𝛥(𝑘)𝑌𝛥𝑖 + 𝑘1�̂�𝑑 (𝑥)𝑋𝐶𝑖𝛥(𝑘)𝑌𝛥𝑖}

𝛥𝛶23𝑖 = 𝑌 𝑇
𝛥𝑖𝛥

𝑇 (𝑘)𝑋𝑇
𝛥𝑖𝑇 (𝑥

+)𝑇𝐺𝑇
3 (𝑥) + 𝑌 𝑇

𝛥𝑖𝛥
𝑇 (𝑘)𝑋𝑇

𝐶𝑖(𝜆3�̂�𝑑 (𝑥)𝑇 𝑘𝑇 + 𝐵𝑑 (𝑥)𝑇 )

𝛥𝛶25𝑖 = 𝛼(𝐹1(𝑥)𝑇 (𝑥+)𝑋𝛥𝑖𝛥(𝑘)𝑌𝐵𝑖) + 𝑌 𝑇
𝐶𝑗𝛥

𝑇 (𝑘)𝑋𝑇
𝐶𝑗�̂�

𝑇
𝑑 (𝑥)

𝛥𝛶35𝑖 = 𝛼(𝐺3(𝑥)𝑇 (𝑥+)𝑋𝛥𝑖𝛥(𝑘)𝑌𝐵𝑖)

Inequality (48) reduces to (35). By the same way, we can show that (47) equivalent to (36).
The proof is completed.

Corollary 1. The polynomial fuzzy system (7) is robustly stable if there exist a symmetric positive definite matrices 𝑃𝑠(𝑥) 𝑠 = 1, 2, matrices
𝐹1(𝑥), 𝐺𝑙(𝑥) 𝑙 = 1, 2, 3, 𝑈 (𝑥) and 𝑁𝑖(𝑥) for 𝑖 = 1, 2,… , 𝑟 and positive scalars 𝜖𝑖 such that the following conditions are satisfied

𝑆𝑂𝑆 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (22)

𝑆𝑂𝑆 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (23)

− 𝜈𝑇6 (𝛬𝑖𝑖(𝑥) + 𝜀𝑖(𝑥)𝐼)𝜈6 𝑖𝑠 𝑆𝑂𝑆 𝑖, 𝑠 = 1, 2,… , 𝑟 (50)

− 𝜈𝑇6 (𝛬𝑖𝑗 (𝑥) + 𝛬𝑗𝑖(𝑥) + 𝜀𝑖𝑗 (𝑥)𝐼)𝜈6 𝑖𝑠 𝑆𝑂𝑆 𝑖 ≠ 𝑗 = 1, 2,… , 𝑟 (51)

𝛬𝑖𝑗 (𝑥) =

⎡

⎢

⎢

⎢

⎣

�̄�𝑖𝑗 (𝑥) 𝑌 𝑇
𝑖 (𝑥)𝑁𝑇

𝑖 (𝑥) 𝑋𝑖(𝑥)

∗ 𝜖𝑖𝑅1(𝑥) −𝑁𝑖(𝑥) −𝑁𝑇
𝑖 (𝑥) 𝑁𝑖(𝑥)𝐽𝑖(𝑥)

∗ ∗ −𝜖𝑖𝐼

⎤

⎥

⎥

⎥

⎦

< 0 (52)

�̄�𝑖𝑗 (𝑥) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛹11(𝑥) �̄�12𝑖𝑗 (𝑥) 𝛹13(𝑥) 𝛹14(𝑥) 𝛶15𝑖(𝑥)

∗ �̄�22𝑖 𝛶23𝑖𝑗 𝑘1𝐶𝑑 𝛶25𝑗

∗ ∗ 𝛹33(𝑥) 𝛹34(𝑥) 𝛶35𝑖(𝑥)

∗ ∗ ∗ −𝑃2(𝑥) 𝐶𝑇
𝑑 (𝑥)

∗ ∗ ∗ ∗ 𝑅(𝑥)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0 (53)

�̄�12𝑖𝑗 (𝑥) = 𝐺1(𝑥)𝑇 (𝑥+)𝐴𝑖(𝑥) + (𝑘�̂�𝑑 (𝑥) + 𝜆𝐵𝑑 (𝑥))𝐶𝑗 (𝑥) − 𝐹 𝑇
1 (𝑥)

�̄�22𝑖(𝑥) = −𝑃1(𝑥) + 𝑠𝑦𝑚{𝐹1(𝑥)𝑇 (𝑥+)𝐴𝑖(𝑥) + 𝑘1�̂�𝑑 (𝑥)𝐶𝑗 (𝑥)}

Proof. Corollary 1 follows directly from conditions (40)–(41) in Theorem 4 by letting 𝑄(𝑥) = 0 and 𝑃𝑠(𝑥) > 0.

Remark 3. In [9], the robust DOF control of discrete-time was investigated, for nonlinear fuzzy systems with parametric
uncertainties via LMIs, however these conditions are only in the EF. On the other hand, in [14] authors have developed some results
to design an 𝐻∞ DOF control for discrete polynomial fuzzy model. In comparison with the above-mentioned design methods, this
study proposes a robust DOF control for polynomial fuzzy systems. Based on a GKYP and some lemmas, a novel control law is
derived by using the SOS approach. In addition, the introduction of slack variables provides more flexibility and more degrees of
freedom in the resolution space. This can help in reducing the conservatism. As discussed in [16,18,26], the FF conditions are more
general and contain the entire frequency conditions as special cases, which means that our work covers the solutions set of [9,14]
while ensuring less conservativeness.

Remark 4. Pre- and post multiplying (52) by

𝐻 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 𝐼 0 0 0 0 0

0 0 0 𝐼 0 0 0

𝐼 0 0 0 0 0 0

0 0 𝐼 0 0 0 0

0 0 0 0 𝐼 0 0

0 0 0 0 0 𝐼 0

0 0 0 0 0 0 𝐼

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0 (54)

and 𝐻𝑇 , respectively, and letting 𝐹1(𝑥) = 0 and 𝑃2(𝑥) = 𝑃3 then Corollary 1 reduces to Theorem 1 in [9] in the case 𝑃2 = 0. That
is, Theorem 1 in [9] is a special case of Corollary 1 in this paper. Thus, when compared to existing results in the literature, our
technique of polynomial fuzzy models in FF can give less conservative results.
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Table 2
𝛽’s values, Example 1.

Methods 𝛽 𝑓𝑜𝑟 𝐶𝑎𝑠𝑒 𝐴
𝜆 = 0.08

𝛽 𝑓𝑜𝑟 𝐶𝑎𝑠𝑒 𝐵
𝜆 = 0.28

Theorem 1 in [9] 0.49 0.199
Corollary 1 for 2𝑑 = 0 0.48 0.185

Theorem 4 𝑀𝐹
𝜋
6
≤ |𝜃| ≤ 𝜋

3
2𝑑 = 0

0.81 0.67

Theorem 4 𝐿𝐹
|𝜃| ≤ 𝜋

6
2𝑑 = 0

0.62 0.56

Theorem 4 𝐻𝐹
|𝜃| ≥ 𝜋

3
2𝑑 = 0

0.90 0.72

4. Simulation examples

In this section, we provide two numerical examples in order to highlight the effectiveness and the advantages of the proposed
esults. The first one is used here to compare the proposed results in terms of conservatism when the system is not polynomial. The
econd example shows that higher order polynomial Lyapunov functions achieve more relaxed stability results. From the simulation
esults, it can be seen that the proposed approach has clear advantages over LMI-based ones.

xample 1. To demonstrate the validity of the studied method, let us consider the following uncertain fuzzy plant model, which
is represented by a two-rule [9]

𝐴1 =

[

1 −𝛽

−1 −0.5

]

, 𝐴2 =

[

1 𝛽

−1 −0.5

]

, 𝐵1 =

[

5 + 𝛽

2𝛽

]

, 𝐵2 =

[

5 − 𝛽

−2𝛽

]

,

𝑋𝛥1 = 𝐺𝛥2 =

[

0.4

−0.4

]

, 𝐶1 = 𝐶2 =
[

0.5 0.2
]

, 𝑌𝛥1 =
[

−0.2 𝛽
]

,

𝑌𝛥2 =
[

−0.2 −𝛽
]

, 𝐽1 = 𝐽2 = 1.2

here the membership functions are taken as the same as those used in [9]

ℎ1(𝜍(𝑥(𝑘))) =
𝑥1(𝑘) + 𝛽

2𝛽
, ℎ2(𝜍(𝑥(𝑘))) = 1 − ℎ2(𝜍(𝑥(𝑘)))

Let us consider the following two case as taken from [9]:
case A: 𝑋𝑐1 = 𝑋𝑐2 = 0 and 𝑌𝐵1 = 𝑌𝐵2 = 0.3
case B: 𝑌𝐵1 = 𝑌𝐵2 = 0 and 𝑋𝑐1 = 𝑋𝑐2 = −0.4
Choose the following control parameters 𝛼 = 2. Then, using the proposed methods for the degree (2𝑑 = 0) of the polynomial

Lyapunov function, the maximum 𝛽𝑚𝑎𝑥 which guarantee the robust stability of DOF T–S fuzzy system are listed in Table 2.
Table 2 shows the values of 𝛽𝑚𝑎𝑥 obtained with the EF approaches existing in [9], that designed by Corollary 1 in this paper,

nd the FF approach presented for different frequency ranges, where LF, MF and HF denote low-frequency, middle-frequency and
igh-frequency ranges, respectively. We can see that Theorem 4 with (2𝑑 = 0) provides larger value of the parameter 𝛽𝑚𝑎𝑥 than the
esults in [9]. And it is also easy to see that the FF controller synthesis results achieve better performances than the full frequency
nes.

Solving the SOS conditions in Theorem 4, with 𝛽 = 0.8 𝜆 = 0.08 and 𝛼 = 1, we obtain the following DOF gain matrices:

𝐴𝑑 =

[

−0.6830 0.3151

−0.1613 0.0663

]

, 𝐵𝑑 =

[

0.0748

0.1663

]

,

𝐶𝑑 =
[

−0.8520 −0.1626
]

, 𝐷𝑑 = −0.4619.

Fig. 1 shows the state responses of the close-loop fuzzy system (7) from the initial condition 𝑥(0) = [−0.4 1]𝑇 and 𝑥𝑑 (0) = [0 0]𝑇 .
ccording to the simulation results, we can see that the designed robust DOF controller presented in this paper is effective.

emark 5. Note that with the T–S polynomial fuzzy system, as the number of variables and/or the degree of the polynomial
ncreases, the conservatism of the result decreases, but the computational complexity increases. Furthermore, the SOS approach has

significant benefit in this work because it is a generalization of existing T–S fuzzy system approaches and is more efficient for
escribing nonlinear control systems.
11
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Fig. 1. System response with the polynomial DOF.

xample 2. Consider a two-rules polynomial fuzzy model [27] in the form of (7). The corresponding parameter matrices are given
s follows:

𝐴1 =

[

0.5 0

−𝑥22(𝑘) 1

]

, 𝐴2 =

[

0.5 0

−𝑥22(𝑘) −0.2172

]

, 𝐵1 = 𝐵2 =

[

0

1

]

,

𝐶1 = 𝐶2 =
[

0 1
]

,

he membership functions are formulated as [27]

ℎ1(𝑘) =
𝑠𝑖𝑛(𝑥2(𝑘)) + 0.2172𝑥2(𝑘)

1.2172𝑥2(𝑘)
ℎ2(𝑘) = 1 − ℎ1(𝑘)

(55)

Chosen 𝜆 = 0.1, 𝛼 = 0.2, solving the SOS conditions in Theorem 4 in the case 𝛥(𝑘) = 0, within FF domain 𝜋
6 ≤ |𝜃| ≤ 𝜋

3 the
corresponding control gain matrices are as follows

𝐴𝑑 =

[

−4.573 × 10−5𝑥22(𝑘) 5.46 × 10−6𝑥22(𝑘)

−3.525𝑥22(𝑘) 0.421𝑥22(𝑘)

]

, 𝐵𝑑 =

[

1.879 × 10−5𝑥22(𝑘)

1.566𝑥22(𝑘)

]

,

𝐶𝑑 =
[

−0.2556𝑥22(𝑘) −0.09437𝑥22(𝑘)
]

, 𝐷𝑑 =
[

−1.837𝑥22(𝑘)
]

,

The proposed polynomial DOF controller (6) is employed to control the polynomial fuzzy system subject to the initial condition.
Fig. 2 shows the transient response of state variables for the polynomial fuzzy system without parametric uncertainties, where the
initial values of the state variables are 𝑥(0) = [0.5 0.5]𝑇 and 𝑥𝑑 (0) = [0 0]𝑇 . We can see that the system is asymptotically stable.

5. Conclusion

The problem of DOF controller design for uncertain polynomial T–S fuzzy systems in the FF field (in discrete-time setting) has
been considered in this paper. Based on the Polynomial Lyapunov function the robust DOF control is established such that the closed-
loop polynomial T–S system is robustly stable. Specifically, employing the GKYP lemma, less conservative results are obtained in
terms of SOS. Some examples are provided to show the validity and efficacy of the suggested method. Our future study will include
the application of the theoretical results obtained in this work to some real applications, such as vehicle active suspension systems.
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Fig. 2. Time response of the closed-loop system states.
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