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Abstract

We study the well-known problem of translating between two representations of closure
systems, namely implicational bases and meet-irreducible elements. Albeit its importance,
the problem is open. In this paper, we introduce splits of an implicational base. It is a
partitioning operation of the implications which we recursively apply to obtain a binary tree
representing a decomposition of the implicational base. We show that this decomposition
can be conducted in polynomial time and space in the size of the input implicational base.
Focusing on the case of acyclic splits, we obtain a recursive characterization of the meet-
irreducible elements of the associated closure system. We use this characterization and
hypergraph dualization to derive new results for the translation problem in acyclic convex
geometries.

Keywords: meet-irreducible enumeration, implicational bases, closure systems, hierar-
chical decomposition.

1 Introduction

Finite closure systems over a (finite) ground set are set systems containing the ground set and
closed under set intersections. When ordered by inclusion, they are also known as (closure)
lattices [11, 24]. These structures are well-known in mathematics and computer science. They
show up in Knowledge Space Theory (KST) [16], database theory [14, 36], propositional logic
[29, 31], Formal Concept Analysis (FCA) [23], or argumentation frameworks [17, 20] for example.

Albeit ubiquitous, closure systems suffer from their size, which can be exponential in the size
of their ground set. For this reason, numerous research works have been conducted over the last
decades to construct space efficient representations of lattices [4, 9, 23, 25, 26, 31, 36, 38, 43].
The surveys [8, 46] are also recent witnesses of the importance and the relevance of compactly
representing closure systems.

Among all possible representations, there are two prominent candidates: implications and
meet-irreducible elements. An implication is a mathematical expression A!B, where A and
B are subsets of the ground set, modeling a causality relation between A and B in the closure
system: “If a set includes A, it must also include B”. Every closure system C over some ground
set V can be represented by a set Σ of implications called an implicational base. Dually, every set
of implications gives birth to a closure system [43]. As several implicational bases can represent
the same closure system, numerous bases with “good” properties have been studied. Among
them, the Duquenne-Guigues base [25] being minimum (the least number of implications) or
the canonical direct base [9] have attracted much attention. More recently, Adaricheva et al.

1



[1, 2, 3] have proposed refinements of the canonical direct base such as the D-base and the E-
base. Because of their simple nature, implications have been used under different shapes and
names such as functional dependencies in databases [14, 36], Horn functions in propositional logic
[29, 31], queries in KST [16] or attribute implications in FCA [23, 25] for instance. A second
way to compactly represent a closure system C is its family of meet-irreducible elementsM. It
is the unique minimal collection of sets from which the whole closure system can be recovered by
taking set-intersection. In Horn logic, meet-irreducible elements are called characteristic models
[31, 29] for they completely identify a given Horn function. Moreover, they appear in the poset
of irreducibles in [26, 38], in the Armstrong relations in databases [36], in the base of knowledge
spaces [16] or in the reduced context of FCA [23].

In this paper, we study the problem of translating between these two representations. This
problem is twofold. Either it asks to list the meet-irreducible elements of a closure system
given by an implicational base, or vice-versa, to construct an implicational base from a set of
meet-irreducible elements.

The choice of the representation impacts the complexity of several problems, thus making the
translation a crucial task. For example, it is NP-complete to decide whether an element belongs to
a minimal generator of a closure system if the latter is given by an implicational base [35]. When
the closure system is represented by its meet-irreducible elements, we can answer the question
in polynomial time [8]. The complexity of recognizing a class of closure systems also depends on
the representation. For instance, recognizing convex geometries and join-semidistributivity can
be achieved in polynomial time from a family of meet-irreducible elements [18, 39]. Whether we
can recognize convex geometries and join-semidistributive lattices from an implicational base is
open. Another example where the representation matters comes from propositional logic [29],
where abductive reasoning can be conducted in polynomial time from meet-irreducible elements,
while it is NP-complete with implications.

Translating is also important to enjoy the most compact representation for a given closure
system. Indeed, implicational bases and meet-irreducible elements are generally much shorter
than the closure systems they represent. However, when we compare the two representations,
there are cases where an implicational base has size exponential in the number of meet-irreducible
elements, or dually, where the number of meet-irreducible elements can be exponential in the
size of an implicational base [32, 37].

Known results We now review the principal results on the translation task. It has attracted
much attention during the last decades [2, 5, 7, 31, 36, 44]. The surveys [8, 46] provide a
detailed account of all the progresses made on this question. Since the size of the output can be
exponential in the size of the input, we express the complexity results in terms of the combined
size of the input and the output. This is output-sensitive complexity [28].

For completeness we discuss four representations for a closure system: implications, meet-
irreducible elements, the closure system itself or the closure operator. The closure operator is
seen as a black-box oracle returning the smallest closed set including a given set. We explain each
direction of Figure 1, which summarizes hardness results about the translation task. Numbers
in the figure refer to the following explanations.

(1). From any representation to the closure operator. The closure operation can be simulated
in polynomial-time from any other representation of the closure system, using intersections and
the closure algorithm (or the forward chaining) [23].

(2). From any representation to the closure system. The whole closure system can be con-
structed in output-polynomial time from any other representation, with the help of well-known
algorithms such as NextClosure [23].

(3). From the closure operator to meet-irreducible elements and implications. Lawler et al.
prove in [33] that meet-irreducible elements or implications cannot be enumerated in output-
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Closure system

Meet-irreducible elements

Implicational base

* Harder than hypergraph dualization

Closure operator

Output-poly (2, 4)

Output-poly (2, 5)

Output-poly (1)

Output-poly (1)

Intractable (3)

Intractable (3)

Output-poly (1, 2)

Open * (6)

Figure 1: The complexity of translating between the representations of a closure system.

polynomial time unless P = NP from a closure oracle.
(4). From the closure system to its meet-irreducible elements. It is sufficient to perform a

traversal of the closed sets, and check for the meet-irreducible property. This is done in (output)-
polynomial time.

(5). From the closure system to an implicational base. To find a (minimum) implicational
base, it is for instance possible to use the attribute-incremental approach of Duquenne and
Obiedkov [40] in output-polynomial time.

(6). From an implicational base to meet-irreducible elements and vice-versa. Remark that
undertaking the construction of the whole closure system as an intermediate will necessarily pro-
duce output-exponential time algorithms in the worst case. In the landmark paper [31], written
in the framework of Horn logic, these problems are called CCM for Computing Characteristic
Models and SID for Structure Identification. We keep these names for historicity.

Meet-irreducible elements enumeration (CCM)

Input: An implicational base Σ of a closure system C over V .
Output: The meet-irreducible elementsM of C.

Minimum implicational base identification (SID)

Input: The familyM of meet-irreducible elements of a closure system
C over V .

Output: A minimum implicational base Σ corresponding to C.

In [31] the author consider right-optimum implicational bases (minimizing the right-hand
sides of implications) and shows that both directions of the translation are equivalent. Whether
this equivalence also holds for minimum implicational bases is not clear as going from right-
optimum to minimum is much easier than the other way around [4, 41]. In any case, the task
is already harder than enumerating the maximal independent sets of a hypergraph [31]. This
latter problem, also known as hypergraph dualization, is a famous open problem [19, 21]. The best
known algorithm for this task is the one of Fredman and Khachiyan [21], running in output quasi-
polynomial time. Babin and Kuznetsov prove in [5] that it is coNP-complete to decide whether
an implication belongs to a minimum implicational base from the meet-irreducible elements.
In [30], the authors state that co-atoms of a closure system cannot be enumerated in output-
polynomial time unless P = NP. In [15], it is shown that the minimal pseudo-closed sets of
the Duquenne-Guigues basis cannot be enumerated in output-polynomial time unless P = NP
either. More recently [13], it has been shown that CCM and SID are harder than hypergraph
dualization, even in acyclic convex geometries. In spite of these hardness results, the complexity
of translating between meet-irreducible elements and implications remains unsettled.
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On the positive side, finding the canonical direct base from the meet-irreducible elements
(and vice-versa) is equivalent to hypergraph dualization [8, 9, 31]. Adaricheva et al. [2] obtain
similar results for the D-base. More generally, exponential time algorithms have been designed,
see e.g. [23, 40, 36, 44]. In [45], Wild shows that SID can be solved in polynomial time in
modular lattices. The authors in [7] devise output-polynomial time algorithms for both CCM
and SID in k-meet-semidistributive lattices. Finally, it has been proved [13] that CCM and SID
are polynomially equivalent to hypergraph dualization in the class of ranked convex geometries.

Contributions and outline. We are mostly interested in the problem CCM in the class of
acyclic convex geometries. It is a well-studied class of closure systems [3, 27, 43, 47], lying in the
intersection of convex geometries and lower-bounded closure systems [1, 22]. They also contain
distributive closure systems, in which the translation can be solved efficiently.

Let Σ be an implicational base for some closure system C over V . We start with some
preliminary definitions in Section 2. Then, we give the following results:

1. We introduce a partitioning operation of an implicational base called a split, inspired by
[10, 34]. We use this operation to hierarchically decompose Σ and its associated closure
system C. This part is detailed in Section 3.

2. Section 4 is devoted to acyclic splits:

(1) We characterize C with respect to this partitioning operation, see Subsection 4.1.

(2) We derive a recursive characterization of the set of meet-irreducible elementsM as-
sociated to C, see Subsection 4.2.

(3) We devise an algorithm solving CCM in the presence of acyclic splits. We highlight
cases where this procedure performs in output-quasipolynomial time using the algo-
rithm of Fredman and Khachiyan [21] for hypergraph dualization. This result includes
ranked convex geometries as a particular case. This is Subsection 4.3.

The paper gathers results communicated at the 21st conference ICTCS (for Section 3) and
the 8th workshop FCA4AI (for Section 4), without published proceedings.

2 Preliminaries

All the object considered in this paper are finite. For more definitions about closure systems
and implications, we refer the reader to [8]. If V is a set, we refer to 2V as the family of all
subsets of V . Sometimes, and mostly in examples, we shall write the subset {u1, . . . , uk} of V
as the concatenation of its elements, that is u1 . . . uk. Let S be a family of subsets of V . We
say that S is simple or an antichain if for every S1, S2 ∈ C, S1 * S2. Let V ′ ⊆ V . The trace
of S on V ′, denoted by S : V ′ is obtained by intersecting each element of S with V ′, that is
S : V ′ = {S ∩ V ′ | S ∈ S}.

Closure systems, closure operators Let V be a set. A closure system over V is a family C
of subsets of V such that V ∈ C and C1 ∩ C2 ∈ C for every C1, C2 ∈ C. The sets in C are called
closed (sets). When ordered by inclusion, the pair (C,⊆) is a (closure) lattice. In this paper, we
always assume that a closure system is equipped with this order. Hence, we write C to denote
the lattice (C,⊆). Let C1, C2 ∈ C. We say that C1 and C2 are comparable if C1 ⊆ C2 or C2 ⊆ C1.
We write C1 ⊂ C2 if C1 ⊆ C2 but C1 6= C2. We say that C2 covers C1, denoted by C1 ≺ C2, if
C1 ⊂ C2 and there is no closed set C ∈ C such that C1 ⊂ C ⊂ C2. In this case, C2 is a successor
of C1 and C1 a predecessor of C2. Let C ∈ C. The ideal of C in C, denoted #C contains all the
closed subsets of C, i.e. #C = {C ′ ∈ C | C ′ ⊆ C}. The filter "C of C in C is defined dually
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with the closed supersets of C. If C′ is a subset of C, the ideal of C′ is # C′ =
⋃

C′∈C′ #C
′ and its

filter is " C′ =
⋃

C′∈C′ "C
′. Let V ′ ⊆ V . A closed set M is meet-irreducible if M = C1 ∩C2 with

C1, C2 ∈ C implies M = C1 or M = C2. The set of meet-irreducible elements of C is denoted
M(C) or simplyM when clear from the context. The whole closure system can be recovered by
taking the intersections of every combinations of meet-irreducible elements. For a given closed
set C, we putM(C) = {M ∈M | C ⊆M}. We have C =

⋂
M(C).

Closure systems are closely related to closure operators. A mapping φ : 2V ! 2V is a closure
operator if for every X,Y ⊆ V , X ⊆ φ(X) (φ is extensive), X ⊆ Y implies that φ(X) ⊆ φ(Y )
(φ is monotone) and φ(φ(X)) = φ(X) (φ is idempotent). The family C = {φ(X) | X ⊆ V } =
{X ⊆ V | φ(X) = X} is a closure system. Similarly, every closure system C induces a closure
operator φ defined by φ(X) =

⋂
{C ∈ C | X ⊆ C} for every X ⊆ V . Note that since C is closed

by intersection, we also have that φ(X) = min⊆({C ∈ C | X ⊆ C}). Thus, the correspondence
between closure operators and closure systems is one-to-one.

Let C be a closure system over V with associated closure operator φ. We say that C is
standard if for every u ∈ V , φ(u)r {u} is closed. In particular, ∅ is closed. In this paper, all the
closure systems are considered standard, a common assumption [3, 46].

A standard closure system C over V is Boolean if C = 2V . It is distributive if C1 ∪ C2 ∈ C
for every pair of closed sets C1, C2. Let C1, C2 be two closure systems over disjoint V1, V2 (resp.).
The direct product of C1 and C2 is defined by C1 × C2 = {C1 ∪ C2 | C1 ∈ C1, C2 ∈ C2}.

Implicational bases An implication over V is an expression A!B where A and B are subsets
of V . An implicational base Σ over V is a family of implications (over V ). A subset C of V satisfies
ormodels an implicational base Σ if for every A!B ∈ Σ, A ⊆ C implies that B ⊆ C. It is known
[8, 46] that the family C = {C ⊆ V | C satisfies Σ} is a closure system. Its associated closure
operator φ can be computed with the closure procedure (or the forward chaining) [23]. For a given
X ⊆ V , this procedure starts from X and constructs a sequence X = X0 ⊆ · · · ⊆ Xk = φ(X) of
subsets of V such that for every 1 ≤ i ≤ k, Xi = Xi−1∪

⋃
{B | ∃A!B ∈ Σ such that A ⊆ Xi−1}.

The routine stops when Xi−1 = Xi.
On the other hand, every closure system C can be represented by at least one implicational

base Σ [46]. An implication A!B holds in a closure system C if all the closed sets of C are
models of A!B. Equivalently, A!B holds in C if B ⊆ φ(A). Two implicational bases are
equivalent if they represent the same closure system. In particular, an implicational base Σ is
equivalent to its unit-expansion Σu = {A! b | A!B ∈ Σ, b ∈ B}. We will interchangeably use
an implicational base or its unit-expansion.

Remark 1. As we restrict our attention to standard closure systems, we consider that an impli-
cational base Σ has no implications of the form ∅!B for some B ⊆ V .

Let Σ be an implicational base over V . The restriction of Σ to a subset V ′ of V is the
implicational base Σ[V ′] = {A! b ∈ Σ | A ∪ {b} ⊆ V ′}. Then, Σ[V ′] is a sub-base of Σ. Let
V1, V2 be a non-trivial (full) bipartition of V , that is V1∪V2 = V , V1∩V2 = ∅ and V1 6= ∅, V2 6= ∅.
An implicational base is bipartite (w.r.t. V1, V2) if every implication A!B satisfies A ⊆ V1 and
B ⊆ V2 or vice-versa. We write Σ[V1, V2] to denote a bipartite implicational base. A path in Σ is
a sequence v1, . . . , vk of elements of V such that for every 1 ≤ i < k there exists an implication
Ai!Bi with vi ∈ Ai and vi+1 ∈ Bi. The path is a cycle when v1 = vk. An implicational base
without cycles is called acyclic. A closure system which admits an acyclic implicational base is
an acyclic convex geometry [18]. Acyclic convex geometries are also known as G-geometries [43]
or poset type convex geometries [1]. The term acyclic comes from Horn logic and acyclic Horn
formulas [27, 47].

Directed hypergraphs [4] are a convenient graphical representation for (unit-expansions of)
implicational bases. A directed hypergraph D (over V ) is a pair (V,A) where A is a set of
hyperarcs. A hyperarc is a pair (A, b) where A ∪ {b} ⊆ V , A is the body and b the head of the
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hyperarc. A hyperarc can be used to model an implication A! b in the unit-expansion of an
implicational base Σ.

Example 1. Let V = {1, 2, 3, 4} and Σ = {12! 3, 23! 4, 4! 1}. The sequence 1, 3, 4 is a cycle
in Σ. We represent Σ and its associated closure system C in Figure 2. The meet-irreducible
elements of C are 2, 14, 13 and 134.

1 2

3

4

∅

2 3 1

14

134

13

1234

Figure 2: On the left, the (associated directed hypergraph of the) implicational base Σ in Example
1. On the right, its associated closure system C.

Enumeration complexity We conclude with a brief reminder on enumeration algorithms
[28]. Let A be an algorithm with input x of size n and output a set of solutions R(x) with
m elements. In our case, each solution in R(x) has size poly(n). We say that A is running in
output-polynomial time if its execution time is bounded by poly(m+n). If the execution time of
A is instead bounded by (n+m)log(n+m), A is said to run in output-quasipolynomial time.

3 Splits and hierarchical decomposition of implicational bases

Inspired by [10, 34], we define the split operation for an implicational base Σ over V . A split
is a bipartition (V1, V2) of the groundset V which completely partitions the implications of Σ in
three sub-bases:

Σ[V1]: the implications of Σ fully contained in V1,

Σ[V2]: the implications of Σ fully contained in V2,

Σ[V1, V2]: the implications of Σ whose premises are included in V1 and their conclusions in
V2, or vice-versa.

This partitioning operation can be conducted recursively and leads to a hierarchical decomposition
(H-decomposition) of Σ, represented by a full rooted binary tree. The root of the tree is labelled by
Σ[V1, V2], its left-child corresponds to a decomposition of Σ[V1], its right-child to a decomposition
of Σ[V2]. This tree is called a Σ-tree. We illustrate the structure of a Σ-tree in Figure 3.

Σ[V1, V2]

Σ[V1] Σ[V2]

Figure 3: A bipartition of Σ by a split.
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We characterize the implicational bases having a hierarchical decomposition into trivial bases,
and give a polynomial time and space algorithm, BuildTree, which takes an implicational base
Σ as an input, and outputs a Σ-tree if it exists. Afterwards, we relax the requirement of the
H-decomposition into trivial bases to H-factors, which are indecomposable sub-bases of Σ.

Finally, we consider the decomposition of C, when a split (V1, V2) of Σ is given. We show
that C is obtained by combining closed sets of C1, the closure system of Σ[V1], with closed sets
of C2, the closure system of Σ[V2]. The way C1 and C2 are combined depends on the implications
in Σ[V1, V2].

3.1 Split operation

Our first step is to define the split operation.

Definition 1. Let Σ be an implicational base over V . A split of Σ is a non-trivial bipartition
(V1, V2) of V such that for every A! b ∈ Σ, A ⊆ V1 or A ⊆ V2.

A split (V1, V2) induces three sub-bases Σ[V1], Σ[V2] and a bipartite base Σ[V1, V2]. Moreover,
every implication of Σ belongs to exactly one of Σ[V1], Σ[V2] or Σ[V1, V2] (recall that Σ has no
implications ∅! b). Intuitively, the split shows that Σ is fully described by two smaller distincts
bases Σ[V1] and Σ[V2] acting on each other through the bipartite implicational base Σ[V1, V2].

Example 2. Let V = {1, 2, 3, 4, 5, 6, 7} and consider the implicational base Σ with implications
12! 3, 3! 1, 56! 2, 23! 7, 45! 6 and 5! 7. Figure 4 represents Σ.

5 4

7

6
1 2

3

Figure 4: The implicational base of Example 2.

In Figure 5 we consider two possible bipartitions of V . The bipartition illustrated on the left
separates V in two sets V1 = {1, 3} and V2 = {2, 4, 5, 6, 7}. It is not a split since the premises
of 12! 3 and 23! 7 intersect both V1 and V2. The bipartition on the right puts V1 = {1, 2, 3}
and V2 = {4, 5, 6, 7}. It is a split with Σ[V1] = {12! 3, 3! 1}, Σ[V2] = {45! 6, 5! 7}, and
Σ[V1, V2] = {56! 2, 23! 7}.

5 4

7

6
1 2

3

5 4

7

6
1 2

3

Figure 5: Two bipartitions of V , the left one is not a split of Σ, the right one is.

Before giving a characterization of implicational bases having a split, we make two observa-
tions. First, if Σ is empty or contains only implications of the form a! b. In this case, every
non-trivial bipartition of V—every cut of the associated directed (hyper)graph—is a split. In
fact, an implication of the form a! b always satisfies the condition of Definition 1. Thus, these
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implications have no impact on the existence of a split. Second, there may be implicational bases
where no bipartition corresponds to a split, as shown by the next example.

Example 3. Consider V = {1, 2, 3} and the implicational base Σ = {12! 3, 13! 2}. Here, none
of the three possible bipartitions is a split:

• V1 = {1, 2} and V2 = {3} fails to separate the implication 13! 2;

• V1 = {1, 3}, V2 = {2} omits the implication 12! 3; and

• V1 = {2, 3}, V2 = {1} breaks the two implications of Σ.

In the following, we show that the implicational base’s connectivity is important for the
notion of a split. Let Σ be an implicational base over V . A premise-path in Σ is a sequence
v1, . . . , vk of (distinct) elements of V such that for every 1 ≤ i < k there exists an implication
Ai! bi in Σ such that {vi, vi+1} ⊆ Ai. Two vertices u, v ∈ V are said to be premise-connected
in Σ if there exists a premise-path from u to v. We say that Σ is premise-connected when every
pair of vertices in V is premise-connected. A subset C of V is a premise-connected component
of Σ if there exists a premise-path between each pair of vertices of C, and if C is inclusion-wise
maximal for this property. A singleton premise-connected component of Σ is trivial.

Example 4. Consider the implicational base Σ given in Example 2. For instance, 6, 5, 4 is a
premise-path and hence 4 and 6 are premise-connected. Here Σ is not premise-connected as
there is no premise-path between 2 and 6. The premise-connected components of Σ are {1, 2, 3},
{4, 5, 6} and {7} being trivial.

Using premise-connectivity, we are now in position to identify whether a given implicational
base admits a split or not.

Proposition 1. An implicational base Σ over V has a split if and only if it is not premise-
connected.

Proof. We begin with the only if part. Suppose that Σ has a split (V1, V2), and let u ∈ V1 and
v ∈ V2. Since a split is a non-trivial bipartition of V , such u and v must exist. Now let us
assume for contradiction there exists a premise-path u = v1, . . . , vk = v for some k ∈ N. Such a
premise-path exists if there is some j with 1 ≤ j ≤ k such that Aj ! bj is an implication of Σ,
Aj∩V1 6= ∅ and Aj∩V2 6= ∅. However, the implication Aj ! bj does not satisfy Definition 1. This
contradicts the assumption that (V1, V2) is a split of Σ. Hence, u, v cannot be premise-connected
and Σ is not premise-connected either.

We move to the if part. Suppose that Σ is not premise-connected and let C be a premise-
connected component of Σ. We show that (C, V rC) is a split of Σ. Let A! b be an implication
in Σ. If A ⊆ C or A is a singleton element, it is clear that it satisfies Definition 1. Assume that
A * C and that A is not a singleton element. Recall that no implication of the form ∅! b lies
in Σ. Let u, v be distinct elements in A and assume for contradiction u ∈ C and v /∈ C. Clearly,
u, v is a premise path between u and v. Let w be any element of C. Since u ∈ C, u and w are
premise connected. Consider any premise-path from w to u and append v to its end. The new
path is a premise-path connecting w and v. Hence, C∪{v} is premise-connected, a contradiction
with the fact that C is maximal. We deduce that A * C implies that A∩C = ∅. So (C, V rC)
is indeed a split of Σ.

It is important to note that premise-connectivity is not inherited. That is, a sub-base induced
by a premise-connected component need not be premise-connected in general.

Example 5. Consider the implicational base of Example 2 with the split V1 = {1, 2, 3}, V2 =
{4, 5, 6, 7}. The elements 5 and 6 are premise-connected in Σ but not in Σ[V2] = {5! 7, 45! 6}.
This happens because the implication 56! 2 is in Σ[V1, V2].
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Henceforth, premise-connected components of an implicational base may be further decom-
posed. Consequently, the split operation can be conducted in a recursive manner, leading to a
hierarchical decomposition of implicational bases, up to trivial cases.

3.2 The decomposition tree of an implicational base

Based on the split operation, we define a hierarchical decomposition of an implicational base Σ.
We call it a H-decomposition of Σ. The strategy is to recursively split Σ into smaller implicational
bases until we reach trivial cases. This recursive decomposition can be conveniently represented
by a full rooted binary tree T (full means that each node has precisely two children). An interior
node of the tree corresponds to a split (V1, V2) of Σ whose children are H-decompositions of
Σ[V1] and Σ[V2]. The leaves of the tree represent the ground set V . Since the splits (V1, V2) and
(V2, V1) are equivalent, the children of a node are unordered.

Definition 2 (Σ-tree and H-decomposition). Let Σ be an implicational base over V and T be a
full rooted binary tree. Then (T, λ) is a Σ-tree of Σ if there exists a labelling map λ : T ! V ∪2Σ

satisfying the following conditions:

1. λ(t) equals v for some v ∈ V if t is a leaf of T ;

2. λ(t) ⊆ Σ if t is an interior node (possibly λ(t) = ∅);

3. for every A! b ∈ λ(t), elements of A are labels of leaves in the subtree of one child of t
and b is the label of a leaf in the subtree of the other child.

4. the set {λ(t) | t ∈ T} is a full partition of V ∪ Σ and may contain the empty set.

If such labelling exists, we say that Σ is hierarchically decomposable (H-decomposable for short),
and H-indecomposable otherwise.

In the particular case where V = ∅, we must have that Σ = ∅. If it happens, we say for
convenience that Σ is trivially H-decomposable and that its Σ-tree is empty.
Example 6. The implicational base Σ from Example 2 is H-decomposable. In Figure 6, we
represent a possible Σ-tree for Σ.

56!2,23!7

12!3,3!1

/0
3

1 2 4 5 6 7

/0 /0

45!6,5!7

Figure 6: An Σ-tree for the implicational base of Example 2.

There are cases where a H-decomposition can be computed easily. For instance, if Σ is empty,
every full rooted binary tree whose leaves are labelled by a permutation of V and every interior
node by ∅ is a Σ-tree. The case where Σ only contains implications of the form a! b for some
a, b ∈ V behaves similarly, except that the interior nodes of the tree contain the implications of
Σ.

However, there are also some implicational bases that cannot be H-decomposed, for example
when they admit no split at all. Next, our objective is to characterize H-decomposable impli-
cational bases and devise a polynomial-time algorithm to build decomposition trees whenever
possible. We first need two preparatory propositions.
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Proposition 2. An H-decomposable implicational base Σ is not premise-connected.

Proof. Suppose that Σ is H-decomposable, and let (T, λ) be a Σ-tree with root r. Let (V1, V2) be
the split of V corresponding to r, i.e. V1 corresponds to the leaves of the left subtree of r and V2

to those of the right subtree. Then, according to Proposition 1, Σ is not premise-connected.

Remark that the converse of Proposition 2 does not hold in general. We exhibit a counter-
example. The main idea is to hide a premise-connected implicational base into a sub-base of a
non premise-connected one.

Example 7. Let V = {1, 2, 3, 4} and Σ = {12! 3, 13! 2, 23! 4}. The implicational base Σ
has a unique split, V1 = {1, 2, 3} and V2 = {4}. Thus it is not premise-connected and any
possible Σ-tree must have the split (V1, V2) in the label of its root. After splitting, we are left
with the sub-bases Σ[V2] = ∅, Σ[V1, V2] = {23! 4} and Σ[V1] = {12! 3, 13! 2}. Observe that
Σ[V1] is exactly the implicational base of Example 3. Hence, it is premise-connected and using
Proposition 2, it cannot be H-decomposed. It follows that Σ admits no H-decomposition either.

Inspired by the previous example, we show that H-decomposability is hereditary, i.e. if an
implicational base Σ has a Σ-tree then each of its sub-bases has a H-decomposition too.

Proposition 3. Let Σ be an implicational base over V and let X ⊆ V . Then Σ has a H-
decomposition only if Σ[X] is H-decomposable.

Proof. Let Σ be an implicational base over V , X ⊆ V , and let (T, λ) be a Σ-tree. If X = ∅, then
the result trivially holds. We construct a subtree not necessarily induced by T which corresponds
to a Σ[X]-tree. We start from the root r of T and apply the following operation for each interior
node t: if the sets of leaves of the left child and those of the right one both intersect X, keep t
with label λ(t) = λ(t)∩Σ[X]. Otherwise, there is a child of t whose set of leaves do not intersect
X. In this case replace t by the child whose set of leaves intersects X. The obtained subtree has
X as the set of label of its leaves, and the set of labels of the internal nodes are exactly Σ[X].

The following theorem characterizes H-decomposability and gives the strategy of an algorithm
computing a H-decomposition.

Theorem 1. Let Σ be a non premise-connected implicational base and let C be a premise-
connected component of Σ. Then Σ is H-decomposable if and only if Σ[C] and Σ[V r C] are
H-decomposable.

Proof. The only if part directly follows from Proposition 3. Let us show the if part. Let C be a
premise-connected component of Σ, (T1, λ1) be a Σ[C]-tree and (T2, λ2) be a Σ[V rC]-tree. We
consider a new tree (T, λ) such that T has root r with left subtree T1 and right subtree T2. As for
λ, we put λ(t1) = λ1(t1) if t1 ∈ T1, λ(t2) = λ2(t2) if t2 ∈ T2 and λ(r) = Σ r (Σ[C] ∪ Σ[V r C]).
In words, λ(r) contains each implication whose premise is not fully contained in C or V rC. It
is clear that conditions (i), (ii), (iv) of Definition 2 are fulfilled for (T, λ) as they are for (T1, λ1),
(T2, λ2) and C ∪V rC = V . Hence, we have to check (iii). Let A! b be an implication in λ(v).
If A ∩ C 6= ∅, then A ⊆ C since C is a premise-connected component of Σ. As A! b is not an
implication of Σ[C], it follows that b ∈ V r C. Dually, if A ∩ C = ∅, then b ∈ C since A! b is
not in Σ[V rC]. Consequently, condition (iii) is satisfied and (T, λ) is a Σ-tree as required.

Theorem 1 suggests a recursive algorithm which returns a Σ-tree for an implicational base Σ
if it is H-decomposable. If V = ∅, we simply output ∅. If V is a singleton element v, we output
a leaf with label v. Otherwise, we compute a premise-connected component C of Σ if Σ is not
premise-connected. We label the corresponding node by the implications of Σ[C, V rC], and we
recursively call the algorithm on Σ[C] and Σ[V r C]. This strategy is formalized in Algorithm
1, whose correctness and complexity are studied in Theorem 2.
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Algorithm 1: BuildTree.
Input: An implicational base Σ over V
Output: A Σ-tree, if it exists, FAIL otherwise

1 if V = ∅ then
2 return ∅ ;
3 if V has one vertex v then
4 create a new leaf r with appropriated λ(r);
5 return r ;

6 else
7 compute a premise-connected component C of Σ ;
8 if |C| = |V | then
9 stop and return FAIL ;

10 else
11 let r be a new node with λ(r) = Σ r (Σ[C] ∪ Σ[V r C]) ;
12 left(r) = BuildTree(Σ[C]) ;
13 right(r) = BuildTree(Σ[V r C]) ;
14 return r ;

Theorem 2. Given an implicational base Σ over V , the Algorithm BuildTree computes a Σ-tree
if it exists, in polynomial time and space in the size of Σ and V .

Proof. First, we show by induction on |V | that the algorithm returns a Σ-tree if and only if Σ is
H-decomposable. Clearly if V = ∅, the algorithms returns ∅. In the case where V is reduced to
a vertex v, the algorithm returns a Σ-tree corresponding to a leaf with label v.

Now, assume that the algorithm is correct for implicational bases with |V | < n, n ∈ N, and
consider a base Σ over V with |V | = n. Suppose Σ is H-decomposable. By Proposition 1, Σ is not
premise-connected. Let C be a premise-connected component of Σ. Inductively, the algorithm is
correct for Σ[C] and Σ[V rC] since 1 ≤ |C| < n. From Theorem 1, we have that both Σ[C] and
Σ[V r C] are H-decomposable. By induction, the algorithm computes a Σ[C]-tree (T1, λ1) and
a Σ[V r C]-tree (T2, λ2). Hence, the algorithm returns a labelled tree (T, λ) with root r whose
label is λ(r) = Σ r (Σ[C] ∪ Σ[V r C]) and children T1 and T2. This tree satisfies all conditions
to be a Σ-tree. Thus, the algorithm computes a Σ-tree for every H-decomposable implicational
base.

Now suppose Σ is not H-decomposable. We have two cases:

1. Σ is premise-connected and the algorithm returns FAIL in Line 7.

2. Σ is not premise-connected. The algorithm chooses a premise-connected component C
with 1 ≤ |C| < n. By Theorem 1, either Σ[C] or Σ[V rC] is H-indecomposable. Thus, by
induction, the algorithm will return FAIL for the input Σ[C] or Σ[V r C] in lines 11-12.
Since the algorithm stops, the output of the algorithm is FAIL.

Hence, the algorithm fails if the input Σ is H-indecomposable. We conclude that the algorithm
returns a Σ-tree if and only if the input Σ is H-decomposable.

Finally, we show that the total time and space complexity of the algorithm are polynomial.
The space required for the algorithm is bounded by the size of the implicational base Σ, the
ground set V and the size of the Σ-tree. As the size of the Σ-tree is bounded by O(|Σ| × |V |),
the overall space is bounded by O(|Σ| × |V |).

The time complexity is bounded by the sum of the costs of all nodes (or calls) of the search
tree. The number of calls is bounded by O(|V |), the size of the search tree. The cost of a call is
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dominated by the computation of a premise-connected component of the input Σ. For this, we
use union-find data structure of [42], which runs in almost linear time, i.e. O(|Σ|× |V |×α(|Σ|×
|V |, |V |)) where α(., .) is the inverse Ackermann function. The almost linear comes from the fact
that α(|V |) ≤ 4 for every practical implicational base (see [42]). Thus, the total time complexity
is O(|V | × (|Σ| × |V | × α(|Σ| × |V |, |V |)).

It is worth noticing, that the Σ-tree we obtain by the end of Algorithm 1 depends on the
choice of a premise-connected component in line 5. As shown by the following example, the
structure of the resulting Σ-tree is impacted by this choice.

Example 8. Let V = {1, 2, 3, 4, 5, 6, 7, 8} and let Σ be the implicational base {12! 3, 3! 1,
23! 4, 34! 5, 56! 7, 67! 8}. For convenience, we represent Σ in Figure 7.

1 3 5 7

2 4 6 8

Figure 7: The implicational base of Example 8.

The premise-connected components of Σ are {1, 2, 3, 4}, {5, 6, 7} and {8}. Thus, we can
devise at least three distinct Σ-trees for Σ. In Figure 8, we give two of them. Observe that the
first one (on the left) balances the size of labels of its interior nodes. On the other hand, the
second one is a balanced tree.

1 2

3

4 8

7

6 5

/0

12!3

23!4

34!5

67!8

56!7

/0

34!5,67!8

56!7

/0

5 6

7

4 8 3

2 1

/0

/0

23!4

12!3

Figure 8: Two Σ-trees for the implicational base of Example 8.

Following the previous example, a natural question arises: are all Σ-trees equivalently in-
teresting? In particular, a balanced Σ-tree is a good candidate as the balancing is a common
desirable property for decomposition trees to obtain efficient algorithms. This question, which
uniquely depends on the syntax of the implicational base, is left open for further research.

3.3 Extension of the H-decomposition

As seen before, there are implicational bases that cannot have a split and thus a H-decomposition
into trivial sub-bases. Such implicational bases are premise-connected, and will be called irre-
ducible H-factors (H-factors for short). Now we describe a slight modification of Algorithm 1 to
obtain a H-decomposition of implicational bases into H-factors. Instead of returning FAIL at line
7 in Algorithm BuildTree, we replace it by the following:

7’ create a new leaf r with λ(r) = Σ and return r;
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Example 9. Consider V = {1, 2, 3, 4, 5, 6} and let Σ = {45! 1, 12! 3, 23! 1, 13! 2, 3! 6}.
We represent Σ on the left of Figure 9. Clearly, Σ is not premise-connected and its premise-
connected components are {4, 5}, {1, 2, 3} and {3}. On the right of Figure 9, we present a
H-decomposition of Σ into H-factors.

1
2

3

4 5

6

∅

45! 1, 1! 4

3! 6

6 4 512! 3, 13! 2,
23! 1

Figure 9: H-decomposition into H-factors.

With this modification, each possible implicational base has now a H-decomposition where
leaves can be H-factors. To conclude this subsection, we show that H-factors are independent of
the choice of the Σ-tree.

Proposition 4. Let Σ be an implicational base over V and let (T1, λ1) and (T2, λ2) be two
Σ-trees. Then, T1 and T2 have the same number of leaves and {λ1(t1) | t1 is a leaf of T1} =
{λ2(t2) | t2 is a leaf of T2}.

Proof. If Σ is H-decomposable or (T1, λ1) = (T2, λ2), the result is clear due to Theorem 2.
Assume that Σ is not H-decomposable and that the trees are different. Let t1 be a leaf of T1 such
that λ(t1) = ΣH is a H-factor of Σ. Let VH be the set of elements spanned by ΣH and let t2 be
the lowest node of T2 such that ΣH ⊆

⋃
{λ(t′2) | t2 is an ancestor of t′2 in T2}. In other words,

t2 is the ancestor of all the elements in VH . If t2 is not a leaf, there exists a split in the sub-base
induced by t2 which separates the elements of VH , a contradiction with ΣH being a H-factor of
Σ in (T1, λ1). Hence, t2 is also a leaf, and λ2(t2) = ΣH follows by applying the same reasoning
in T1, which concludes the proof.

3.4 Splits and decomposition of a closure system

Naturally, the H-decomposition of an implicational base Σ induces a decomposition of the clo-
sure system C defined by Σ. We also call the decomposition of C a H-decomposition. The
H-decomposition of C is obtained from the H-decomposition of Σ, where the label of a node of
its Σ-tree is replaced by the closure system associated to the implicational base induced by its
subtree. The closure systems in leaves are the irreducible H-factors of the input closure system.
Figure 10 illustrates the H-decomposition of the closure system associated to the H-decomposition
of Example 9.

Theorem 3. Let Σ be an implicational base over V with closure system C, and let (V1, V2) be a
split of Σ. Let C1 and C2 be closure systems associated to Σ[V1] and Σ[V2] (resp.). Then:

1. C ∈ C implies that C ∩ V1 ∈ C1 and C ∩ V2 ∈ C2. Hence, C ⊆ C1 × C2;

2. C = C1 × C2 holds whenever Σ[V1, V2] = ∅ ( i.e. C is the direct product of C1 and C2);

3. if for every implication A! b in Σ[V1, V2], we have A ⊆ V1, then C : V1 = C1 and C : V2 =
C2; and

4. dually, if A ⊆ V2 for every A! b in Σ[V1, V2], we have C : V1 = C1 and C : V2 = C2.
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∅

∅

1 2

123 6

3

∅

1 26

36 2616

1236

∅

4 6 2 5

4614 24

146 346

36 26 56 25

256356145

12346

123456

246

Figure 10: H-decomposition of the closure system corresponding to Example 9.

Proof. Consider a split (V1, V2) of Σ, C1 and C2 the closure systems corresponding to Σ[V1] and
Σ[V2]. Their respective closure operators are φ1, φ2. We prove items (i), (ii) and (iii). Items
(iii) and (iv) are similar.

Item (i). Let C ∈ C, C1 = C ∩ V1 and let A! b be an implication of Σ[V1]. Suppose A ⊆ C1

and b /∈ C1. Then we also have A ⊆ C and b /∈ C which contradicts C ∈ C as A! b ∈ Σ. Thus
C1 ∈ C1. A similar reasoning applies to C2, and C ⊆ C1 × C2 holds.

Item (ii). We readily have that C ⊆ C1 × C2 by item (i). For the other inclusion, let C1 ∈ C1

and C2 ∈ C2. We show that C1 ∪ C2 ∈ C. Let A! b be an implication of Σ with A ⊆ C1 ∪ C2.
As Σ[V1, V2] is empty, A! b is either an implication of Σ[V1] or Σ[V2]. As C1, C2 are closed for
Σ[V1], Σ[V2] (resp.), it follows that C1 ∪ C2 ∈ C.

Item (iii). Let C1 ∈ C1. We show that φ(C1) satisfies φ(C1) ∩ V1 = C1. We readily have
that C1 ⊆ φ(C1) ∩ V1. Let C1 = X0 ⊂ X1 ⊂ · · · ⊂ Xk = φ(C1) be the sequence of sets obtained
by applying the forward chaining algorithm on C1 with Σ. We show by induction on 0 ≤ i ≤ k
that Xi ∩V1 = C1. For the initial case X0 = C1, the result is clear. Now assume that the results
holds true for any 0 ≤ i < k and consider Xi+1. Let A! b be an implication such that A ⊆ Xi.
Since (V1, V2) is a split of Σ, either A ⊆ V1 or A ⊆ V2. We have three cases

(1) A ⊆ V2. Then A! b ∈ Σ[V2] and b ∈ V2 so that b /∈ Xi+1 ∩ V1.

(2) A! b is in Σ[V1]. Then, A ⊆ Xi ∩ V1 which equals C1 by inductive hypothesis. Since C1

models Σ[V1] we have that b ∈ Xi ∩ V1 = C1.

(3) A! b is an implication of Σ[V1, V2]. Then A ⊆ V1 and b ∈ V2 since we assumed that
every implication of Σ[V1, V2] has its premise in V1 and its conclusion in V2 . Therefore,
b /∈ Xi+1 ∩ V1.

ConsequentlyXi+1rXi ⊆ V2, from which we deduce thatXi+1∩V1 = C1, finishing the induction.
Applying the result on Xk = φ(C1), φ(C1)∩V1 = C1 follows. So C1 ∈ C : V1 and C1 ⊆ C : V1. The
reverse inclusion holds by item (i). As for C2, we have C2 ⊆ C as A ⊆ V1 for every implication
A! b of Σ[V1, V2].

According to Theorem 3 item (i), every closure system is a subset of the product of its H-
factors closure systems. So the idea is to compute in parallel C1 and C2 for every split (V1, V2)
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in the Σ-tree, and then use the bipartite implicational base Σ[V1, V2] to compute C. But this
strategy is expensive, since the size of C1 and C2 may be exponential in the size of C.
Example 10. Let V = {u1, . . . , uk, x, y} for some k ∈ N and let Σ =

⋃
{{uiuj !x, uiuj ! y} | 1 ≤

i, j,≤ k, i 6= j} ∪ {xy!ui | 1 ≤ i ≤ k}. Clearly, the unique possible split is (V r {x, y}, {x, y}).
Since Σ[V r {x, y}] is empty, its associated closure system is Boolean and has 2k elements.
However, C = {v | v ∈ V }∪{{u, v} | {u, v} ∈ (V r{x, y})×{x, y}}∪{∅, V } so that |C| = 3k+ 4.

However, this exponential reduction cannot occur when the sub-closure systems C1 and C2

appear as traces of C.

∅
∅

∅

∅
1

12

123
123

123

1

3
1 3

1 3

12

2

(a) (b) (c) (d)

Figure 11: Possible H-indecomposable factors.

To conclude this section, we relate H-decomposition to the subdirect product decomposition
[23, 24]. Consider the closure system C over V = {1, 2, 3} in Figure 11(a) encoded by the
implicational base {2! 1, 13! 2}. It is known that it cannot be decomposed using the subdirect
product. Clearly Σ is not premise-connected and V1 = {1, 3} et V2 = {2} is the unique split
where C1 = {∅, 1, 3, 13} and C2 = {∅, 2} are traces. Yet, C is not a sublattice of C1 × C2, since
{1, 3}, the upper bound of 1 and 3 in C1 × C2 is not preserved in C. However, systems of Figure
11(b), (c) and (d) are both subdirectly irreducible and irreducible H-factors. Hence, we end the
section with the following.

Corollary 1. The closure system associated to an implicational base Σ is included in the direct
product of its H-factors.

Proof. This follows from Theorem 3, item (i) and the fact that a closure system is closed under
intersection.

In the next section, we pay more attention to particular splits called acyclic. We show how
they can be applied to the problem of translating between the representations of a closure system.

4 Closure systems with acyclic splits

In this section, we give a characterization of closure systems with acyclic splits. Then, we derive
a recursive expression of their meet-irreducible elements. Finally, we devise an algorithm solving
CCM in the case of acyclic splits. To illustrate our results, we will use the following running
example all along the section.

Example 11 (Running example). Let V = {1, 2, 3, 4, 5, 6} and Σ = {12! 3, 13! 4, 23! 5, 2! 4,
1! 5, 5! 6, 4! 6}. We represent Σ and its associated closure system C in Figure 12.

The bipartition V1 = {1, 2, 3} and V2 = {4, 5, 6} is an acyclic split of Σ and C: every
implications has its premise included in V1 and its conclusion in V2. We have Σ[V1] = {12! 3},
Σ[V2] = {4! 6, 5! 6} and Σ[V1, V2] = {13! 4, 2! 4, 23! 5, 1! 5}.

We formally introduce acyclic split of an implicational base Σ. They are a restriction of
a split (V1, V2) where all implications of Σ[V1, V2] have to go from V1 to V2, i.e. they satisfy
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Figure 12: An implicational base and its associated closure system.

condition (iii) or (iv) of Theorem 3. The definition of acyclic split for implicational bases extend
to closure systems.

Definition 3 (Acyclic split). Let Σ be an implicational base over V and (V1, V2) a split of Σ.
The split (V1, V2) is acyclic if for every A! b ∈ Σ[V1, V2], A ⊆ V1.

Definition 4 (Acyclic split of a closure system). Let C be a closure system over V and let (V1, V2)
be a non-trivial bipartition of V such that V2 ∈ C. Then, (V1, V2) is an acyclic split of C if there
exists an implicational base Σ for C with acyclic split (V1, V2).

4.1 Acyclic split of a closure system

Let Σ be an implicational base over V with acyclic split (V1, V2). Let C be its corresponding
closure system. We first show how to construct C from C1, the closure system associated to Σ[V1],
C2, the closure system of Σ[V2] and the implications Σ[V1, V2].

We draw intuition from the particular case where Σ[V1, V2] = ∅. According to Theorem 3, C
is the direct product of C1 and C2, that is C = {C1 ∪ C2 | C1 ∈ C1, C2 ∈ C2}. Intuitively, C is
obtained by “extending” each closed set of C2 with a copy of C1 (see the left part of Figure 13).
This point of view will be particularly well-suited for us, and naturally leads to the following
definition.

Definition 5. Let C be a closure system over V , (V1, V2) be a non-trivial bipartition of V such
that V2 ∈ C. Let C2 ∈ C, C2 ⊆ V2 and C ∈ C. We say that C is an extension of C2 with respect
to V2 if C ∩ V2 = C2. We denote by Ext(C2) the extensions of C2 in C. The trace Ext(C2) on V1

is written Ext(C2) : V1.

In our definition, V2 is closed. Therefore, for every C ∈ C, C ∩ V2 is also closed. We deduce
that C belongs to the extension of a unique closed set C2 included in V2. As a consequence, we
can write C as the (disjoint) union of its extensions with respect to V2, i.e.

C =
⋃

C2∈C,C2⊆V2

Ext(C2)

This definition of extensions allows to formally express the intuition that the direct product of
C1 and C2 (when Σ[V1, V2] = ∅) is obtained by extending each closed set of C2 with a copy of C1.
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∅
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Σ[V1, V2] = ∅ Σ[V1, V2] 6= ∅

C2

Figure 13: Building of C with an acyclic split: on the left, the case where Σ[V1, V2] = ∅ (direct
product). On the right, the more general case where Σ[V1, V2] 6= ∅ (increasing extensions).

Indeed, we have C =
⋃

C2∈C2 Ext(C2) with the particularity that the trace of Ext(C2) on V1 is
exactly C1 for every C2 ∈ C2. This construction is illustrated on the left of Figure 13.

In the more general case where Σ[V1, V2] is not-empty, we show that the extensions of C2 are
no longer full copies of C1, but increasing copies of ideals of C1, as illustrated on the right side
of Figure 13. We begin with the following proposition, which characterizes extensions with the
bipartite set of implications Σ[V1, V2].

Proposition 5. Let C2 ∈ C2 and C1 ⊆ V1. Then, C = C1 ∪C2 is an extension of C2 if and only
if C1 ∈ C1 and for each implication A! b in Σ[V1, V2], A ⊆ C1 implies b ∈ C2.

Proof. We begin with the only if part. Let C1 be a subset of V1 such that let C1 be a closed
set of C1 such that C1 ∪ C2 is an extension of C2. By Theorem 3, C ⊆ C1 × C2 so that for every
C1 ⊆ V1 such that C1 ∪C2 ∈ C, C1 ∈ C1 holds. Now let A! b ∈ Σ[V1, V2]. If A ⊆ C1, it must be
that b ∈ C2 since we would contradict C1 ∪ C2 ∈ C otherwise.

We move to the if part. Let C1 be a closed set of C1 and C2 a closed set of C2 such that for
each implication A! b in Σ[V1, V2], A ⊆ C1 implies b ∈ C2. We have to show that C1 ∪ C2 is
closed. Let A! b be an implication of Σ with A ⊆ C1 ∪ C2. As (V1, V2) is an acyclic split of
V , we have two cases: either A! b is in Σ[V1, V2] or it is not. In the second case, assume A! b
belongs to Σ[V1]. As A ⊆ C1 ∪C2, we have A ⊆ C1. Furthermore, C1 is closed for Σ[V1]. Hence,
b ∈ C1 ⊆ C1 ∪ C2. The same reasoning can be applied if A! b is in Σ[V2]. Now assume A! b
is in Σ[V1, V2]. We have that A ⊆ V1 by definition of an acyclic split. In particular, we have
A ⊆ C1 which entails b ∈ C2 by assumption. In any case, C1 ∪ C2 already contains b for every
implication A! b in Σ such that A ⊆ C1 ∪ C2. Hence, C1 ∪ C2 is closed.

We readily deduce from Proposition 5 that Ext(V2) : V1 is equal to C1. Proposition 5 is also a
step towards the next proposition. It settles the fact that in an acyclic split, extensions coincide
with ideals of C1.

Proposition 6. Let C1 ∈ C1, C2 ∈ C2. If C1 ∪C2 is an extension of C2, then for every C ′1 ∈ C1

such that C ′1 ⊆ C1, C ′1 ∪ C2 is also an extension of C2.

Proof. Let C1 ∈ C1, C2 ∈ C2 such that C1∪C2 ∈ C. Let C ′1 ∈ C1 such that C ′1 ⊆ C1. As C1∪C2 is
an extension of C2, for each A! b in Σ[V1, V2] such that A ⊆ C1, we have b ∈ C2 by Proposition
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5. Since C ′1 ⊆ C1, this condition holds in particular if A ⊆ C ′1. Applying Proposition 5, we
deduce that C ′1 ∪ C2 is closed.

In fact, the preceding proposition can be further strengthened. Not only extensions of C2

correspond to ideals of C1, but they are increasing. That is, if C1 contributes to an extension of
C2, it will also contribute to an extension of any closed set C ′2 ∈ C2 including C2.

Lemma 1. Let C2, C
′
2 ∈ C2 such that C2 ⊆ C ′2. Then Ext(C2) : V1 ⊆ Ext(C ′2) : V1.

Proof. We need to show that for every C2, C
′
2 ∈ C2 such that C2 ⊆ C ′2, if C1 ∪ C2 ∈ C for some

C1 ⊆ V1, we also have C1∪C ′2 ∈ C. Observe that due to Proposition 5, C1 ∈ C1. As C1∪C2 is an
extension of C2, for every implication A! b of Σ[V1, V2] such that A ⊆ C1, we have b ∈ C2 ⊆ C ′2
by Proposition 5. Therefore, C1 ∪ C ′2 is indeed an extension of C ′2.

Corollary 2. Let C2, C
′
2 ∈ C2 such that C2 ≺ C ′2 and let C1 ∈ C1 such that C1 ∪ C2 ∈ C. Then

C1 ∪ C ′2 ∈ C and C1 ∪ C2 ≺ C1 ∪ C ′2.

Proof. The fact that C1 ∪ C ′2 is closed follows from Lemma 3. By Theorem 3, C ⊆ C1 × C2 so
that any closed set C such that C1 ∪ C2 ⊂ C ⊆ C1 ∪ C ′2 satisfies C ∩ V2 ∈ C2. Since C2 ≺ C ′2 in
C2, C = C1 ∪ C ′2 follows.

Thus, we have shown that if (V1, V2) is an acyclic split of Σ, C can be constructed by extending
each closed set C2 of C2, with an ideal of C1, in an increasing fashion. This construction is
illustrated in Figure 13 and in Figure 15 on an example. In the next theorem, we demonstrate
that this construction by increasing extensions is in fact a characterization of acyclic splits.

Theorem 4. Let C be a closure system over V and (V1, V2) be a non-trivial bipartition of V such
that V2 ∈ C. Let C1 = "V2 : V1 and C2 = #V2. Then, (V1, V2) is an acyclic split for C if and only
if for every C2, C

′
2 ∈ C2 such that C2 ⊆ C ′2, we have Ext(C2) : V1 ⊆ Ext(C ′2) : V1.

Proof. The only if part follows from Lemma 1. To show the if part, we build an implicational
base Σ with the acyclic split (V1, V2). Beforehand, we outline the main ideas:

• Σ should contain an implicational base for C2 as it is an ideal of C;

• Σ should also include an implicational base for C1 since it is a filter of C and Σ must respect
the split (V1, V2);

• Σ must describe, for each C2 ∈ C2, which closed sets of C1 contribute to extensions of C2

or not. The most direct way to express this relationship is to explicitly write it in Σ by
putting implications C1 !φ(C1) ∩ V2, if C1 does not participate in an extension of C2.

Actually, we can readily optimize the last item. Indeed, since the property of not contributing to
an extension is monotone, it is sufficient to put an implication C1 !φ(C1)∩V2 if C1 is a minimal
closed set of C1 which does not yield an extension of C2.

With these ideas in mind, we proceed now to the proof. Let C1 = "V2 : V1 and C2 = #V2.
Observe that both C1 and C2 are closure systems. We aim to construct an implicational base Σ
representing C with acyclic split (V1, V2).

First, we prove that C ⊆ C1×C2. Let C ∈ C and let C1 = C ∩V1 and C2 = C ∩V2. As C and
V2 are closed in C we deduce that C2 ∈ C2 and hence that C ∈ Ext(C2). As C2 ⊆ V2, we have
Ext(C2) : V1 ⊆ Ext(V2) : V1 with Ext(V2) : V1 = C1 by assumption. Hence C1 ∈ C1. We deduce
that C ⊆ C1 × C2.

Now, let Σ[V1] be an implicational base for C1, Σ[V2] an implicational base for C2 and let

Σ[V1, V2] = {C1 !φ(C1) ∩ V2 | C1 ∈ min⊆(C1 r Ext(C2) : V1) for some C2 ∈ C2}
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Finally we put Σ = Σ[V1, V2]∪Σ[V1]∪Σ[V2]. Clearly (V1, V2) is an acyclic split for Σ. We prove
that Σ is an implicational base for C. Let CΣ be the closure system associated to Σ.

To show that CΣ ⊆ C, we prove that C /∈ C entails C /∈ CΣ, for every C ⊆ V . Let C ⊆ V
such that C /∈ C and put C1 = C ∩ V1 and C2 = C ∩ V2. First, assume that C /∈ C1 × C2.
Since C ⊆ C1 × C2, C /∈ C readily holds. Then, C1 /∈ C1 or C2 /∈ C2 so that C fails Σ[V1] or
Σ[V2] and C /∈ CΣ holds. Now assume that C ∈ C1 × C2 but C /∈ C. By construction of C,
we have that C /∈ Ext(C2), or equivalently, C1 /∈ Ext(C2) : V1. Let C ′1 ∈ C1 with C ′1 ⊆ C1 and
C ′1 ∈ min⊆(C1rExt(C2) : V1)). We show that C fails the implication C ′1 !φ(C ′1)∩V2 of Σ[V1, V2].
We have φ(C ′1) ∈ C so that φ(C ′1) ∩ V2 ∈ C2 and C ′1 ∈ Ext(φ(C ′1) ∩ V2) : V1. By assumption, for
every closed set C ′′2 ∈ C2 such that φ(C ′1) ∩ V2 ⊆ C ′′2 , Ext(φ(C1) ∩ V2) : V1 ⊆ Ext(C ′′2 ) : V1.
Therefore, C ′1 /∈ Ext(C2) : V1 implies that φ(C ′1) ∩ V2 * C2. Consequently, C ′1 ⊆ C1 ⊆ C but
φ(C ′1) ∩ V2 * C ∩ V2 = C2. We deduce that C /∈ CΣ, and hence that CΣ ⊆ C.

Now we demonstrate that C ⊆ CΣ. Let C ∈ C and put C1 = C ∩ V1, C2 = C ∩ V2. Recall
that C2 = #V2 and that Σ[V2] is an implicational base for C2. Therefore, C2 ∈ C2 and C is a
model of Σ[V2] since C2 ⊆ C. Now, because C2 ⊆ V2, we have Ext(C2) : V1 ⊆ Ext(V2) : V1 =
C1 by assumption. Moreover, Σ[V1] is an implicational base for C1. Consequently, we obtain
that C1 ∈ C1 and hence that C is a model for Σ[V1]. It remains to show that C also models
Σ[V1, V2]. But this is clear as C = φ(C) and each implication C1 !φ(C ′1) ∩ V2 of Σ[V1, V2]
satisfies φ(C ′1) ∩ V2 ⊆ φ(C ′1) . Hence, C ′1 ⊆ C implies that φ(C ′1) ⊆ C. Consequently, C ⊆ CΣ

and C = CΣ holds, concluding the proof.

Example 12 (Running example). The closure system C1 associated to Σ[V1] = {12! 3} is given
on the left of Figure 14. On the right, we give C2, the closure system of Σ[V2] = {4! 6, 5! 6}.

∅

1

13

2

23

3

123

∅

6

46 56

456

Figure 14: The closure systems C1 and C2.

The construction of C using extensions with respect to C1 and C2 suggested by Theorem 4
is highlighted in Figure 15. For instance, the extensions of 6 are ∅ and 36. Remark that ∅ and
3 also contribute to the extensions 46, 346 of 46. Moreover, 346 is a maximal extension of 46,
along with 246. Finally, the extensions of 456 (that is, V2) coincide with C1.

In the particular case where C is a direct product of C1, C2, the pair (V1, V2) becomes a strong
decomposition pair of [34]. It is worth noticing that Theorem 4 hints a strategy to recursively
compute the meet-irreducible elements of C. This is the aim of the next subsection.

4.2 The meet-irreducible elements of a closure system with acyclic split

Now we use Theorem 4 to obtain a recursive expression ofM, the meet-irreducible elements of C
in terms ofM1 andM2, the meet-irreducible elements of C1 and C2 respectively. We prove that
the decomposition of C with extensions captures the structure ofM. Again, we start from the
case of the direct product. This result has already been formulated in lattice theory, for instance
in [11]. We give a proof in our framework for self-containment.

Proposition 7. Let C1 and C2 be two closure systems over V1 and V2 (resp.) where V1 and V2

are disjoint. Let C = C1 × C2. ThenM = {M1 ∪ V2 |M1 ∈M1} ∪ {M2 ∪ V1 |M2 ∈M2}.
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Figure 15: The closure C constructed from C1 and C2 (black dots are closed set of C2).

Proof. Let M ∈ M, M1 = M ∩ V1 and M2 = M ∩ V2. Since C = C1 × C2, we have M1 ∈ C1

and M2 ∈ C2. As M 6= V1 ∪ V2, either V1 * M or V2 * M . Suppose both statements hold.
Then, there exists C1 ∈ C1 such that M1 ≺ C1 in C1. Similarly, there exists C2 ∈ C2 such that
M2 ≺ C2 in C2. However C = C1 × C2. Hence, M1 ∪ C2 and C1 ∪M2 belong to C. Furthermore,
they are incomparable and we have M ≺M1 ∪C2 and M ≺ C1 ∪M2 which contradicts M ∈M.
Therefore, either V1 ⊆ M or V2 ⊆ M . Assume without loss of generality that V1 ⊆ M . Let M ′

be the unique cover of M in C. Then, V1 ⊆ M ′ and it follows that M2 ≺ M ′ ∩ V2 in C2. As M ′

is the unique cover of M in C, we conclude that M ′ ∩ V2 is the unique cover of M2 in C2 and
M2 ∈ C2.

Let M1 ∈ M1 and consider M1 ∪ V2 ∈ C2. Let M ′1 be the unique cover of M1 in C1. As
C = C1 × C2, we have that M1 ∪ V2 ≺ M ′1 ∪ V2 is in C. Let C be any closed set such that
M1 ∪ V2 ⊂ C. We have C ∩ V2 = V2 and hence M1 ⊂ C ∩ V1. Since C = C1 × C2, we get
C ∩ V1 ∈ C1. As M1 ≺ M ′1 in C1 and M1 ∈ M1, we conclude that M ′1 ⊆ C ∩ V1 and hence that
M ′1 ∩ V2 ⊆ C. Therefore, M1 ∪ V2 ∈M. Similarly, we obtain M2 ∪ V1 ∈M, for M2 ∈M2.

M2

M2 ∪ V1

V = V1 ∪ V2

V2

∅

V1

V = V1 ∪ V2

V2

∅

M2

C1

type (2) : max. ext. of M2

C2

type (2) :

type (1) : M1 ∪ V2

C1

C2

type (1) : M1 ∪ V2

Figure 16: Meet-irreducible elements of C with an acyclic split: on the left, the direct product.
On the right, the case of acyclic splits in general.
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If we adopt the point of view of extensions with respect to C2, as in the previous subsection,
the meet-irreducible elements of C1 × C2 can be partitioned into two classes:

(1) those belonging to extensions of V2, that is {M1 ∪ V2 |M1 ∈M1};

(2) meet-irreducible elements ofM2 which we extended with V1, that is {M2∪V1 |M2 ∈M2}.
Observe that M2 ∪ V1 is the unique inclusion-wise maximal extension of M2, for each
M2 ∈M2.

This construction is illustrated on the left part of Figure 16.
We show next that when C has an acyclic split (V1, V2) but it is not the direct product of C1

and C2, the structure ofM preserves this partitioning:

(1) {M1 ∪ V2 |M1 ∈M1} remains unchanged;

(2) {M2 ∪ V1 | M2 ∈ M2} is adapted to replace M2 ∪ V1 by the possible maximal extensions
of elements ofM2.

This construction is represented on the right of Figure 16. Let C be a closure system with acyclic
split (V1, V2). Again, let C1 = "V2 : V1 and C2 = #V2. We begin with the following two lemmas.

Lemma 2. Let C2 ∈ C2, C2 6= V2 and C1 ∈ C1 such that C1 ∪ C2 is a non-maximal extension of
C2. Then C1 ∪ C2 /∈M.

Proof. Let C2 ∈ C2, C2 6= V2 and C1 ∈ C1 such that C1 ∪ C2 is a non-maximal extension of C2.
As C2 6= V2, there exists at least one closed set C ′2 ∈ C2 such that C2 ≺ C ′2. By Corollary 2
we have that C1 ∪ C2 ≺ C1 ∪ C ′2 in C. Furthermore, C1 ∪ C2 is not a maximal extension of C2.
Therefore, there exists a closed set C ′1 in C1 such that C1 ≺ C ′1 and C ′1 ∪C2 ∈ C. As C ⊆ C1×C2

by Theorem 4 and extensions are increasing by Lemma 1, it follows that C1 ∪ C2 ≺ C ′1 ∪ C2 in
C with C1 ∪ C ′2 6= C ′1 ∪ C2. Therefore, C1 ∪ C2 is not a meet-irreducible element of C.

Lemma 3. Let C2 ∈ C2 such that C2 6= V2 and C2 /∈M2. Then C /∈M for every C ∈ Ext(C2).

Proof. Let C2 ∈ C2 such that C2 6= V2 and C2 /∈ M2. Let C ∈ Ext(C2) and C1 = C ∩ V1. As
C2 /∈ M2, it has at least two covers C ′2, C ′′2 in C2. By Corollary 2, it follows that both C ′2 ∪ C1

and C ′′2 ∪ C1 are covers of C in C. Hence C /∈M.

These lemmas suggest that meet-irreducible elements of C arise from maximal extensions of
meet-irreducible elements of C2. They might also come from meet-irreducible extensions of V2

since Ext(V2) : V1 = C1. These ideas are proved in the following theorem, which characterize the
meet-irreducible elementsM of C according to the two types we described.

Theorem 5. Let C be a closure system over V with acyclic split (V1, V2). Let C1 = "V2 : V1 and
C2 = #V2. Meet-irreducible elements M of C satisfy |M| ≥ |M1| + |M2| and are subject to the
following equality:

M = {M1 ∪ V2 |M1 ∈M1} ∪ {C ∈ max⊆(Ext(M2)) |M2 ∈M2}

Proof. First, {M1 ∪ V2 | M1 ∈ M1} ⊆ M follows from the fact that C1 = "V2 : V1. We prove
that max⊆(Ext(M2)) ⊆M for every M2 ∈M2. Let M2 ∈M2 and let C be a maximal extension
of M2 with C = C1 ∪M2. Since M2 ∈ C2, it has a unique cover M ′2 in C2. By Corollary 2, we get
C ≺M ′2 ∪C1 in C. Let C ′ ∈ C such that C ⊂ C ′. Recall that C ⊆ C1 ×C2 follows from Theorem
4, so that C ′ ∩ V1 ∈ C1 and C ′ ∩ V2 ∈ C2. Furthermore, C ∈ max⊆(Ext(M2)), therefore C ⊂ C ′

implies that M2 ⊂ C ′ ∩ V2 and hence that M ′2 ⊆ C ′ ∩ V2 as M2 ∈ C2. Since C1 ⊆ C ′ ∩ V1, we get
C ≺M ′2 ∪ C1 ⊆ C ′ and C ∈M as it has a unique cover.
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Now we prove the other side of the equation. Let M ∈ M. As C ⊆ C1 × C2 since (V1, V2)
is an acyclic split of C, M ∩ V2 ∈ C2 and we can distinguish two cases. Either M ∩ V2 = V2

or M ∩ V2 ⊂ V2. If M ∩ V2 = V2 then M is a meet-irreducible element of the closure system
"V2. Since "V2 : V1 = C1, we obtain that M ∩ V1 = M1 ∈ M1. Now assume that M ∩ V2 ⊂ V2.
Let M1 = M ∩ V1 and M2 = M ∩ V2. Then by contrapositive of Lemma 2 we have that
M ∈ max⊆(Ext(M2)) as M2 6= V2. Similarly, we get M2 ∈ M2 by Lemma 3. The inequality
|M| ≥ |M1|+ |M2| follows from the description ofM.

Example 13 (Running example). The meet-irreducible elements M1 of C1 are 1, 13, 2 and 23.
Similarly, the meet-irreducible elements of C2 are ∅, 46 and 56. In Figure 17 we highlight the
two types of meet-irreducible elements of C, based on Theorem 5. For instance 23456 is of type
(1) as it is obtained from the meet-irreducible element 23 of C1 and V2. Dually, 356 is of type
(2) because it is a maximal extension of the meet-irreducible element 56 of C2.

∅

6

46 56

456

3

246 346

36

356 156

1345623456

123456

2456 14563456

type (1) : M1 ∪ V2

type (2) : max⊆(Ext(M2))

Figure 17: The two types of meet-irreducible elements in C (black dots are closed sets of C2).

To conclude this section, we briefly discuss another characterization of acyclic splits based on
Theorem 4 and Theorem 5. Because extensions are hereditary, the extensions ofM2 completely
capture extensions of C2. In other words, if C2 ∈ C2 and C1 contributes to an extension of C2,
then C1 ∪M2 is also an extension of M2, for every M2 ∈ M2(C2). Therefore, C1 ∪ C2 results
from the intersection of the closed sets M2∪C1, M2 ∈M2(C2). We illustrate this idea in Figure
18.

Corollary 3. Let C be a closure system over V and (V1, V2) a non-trivial bipartition of V with
V2 ∈ C. Let C1 = "V2 : V1 and C2 = #V2. The pair (V1, V2) is an acyclic split for C if and only if
for every C2 ∈ C2 and C ′2 ∈M2(C2) ∪ {V2}, Ext(C2) : V1 ⊆ Ext(C ′2) : V1.

Proof. The only if part follows from Theorem 4. Let C2, C
′
2 ∈ C2 with C2 ⊆ C ′2. If C2 = V2

or C ′2 = V2, the fact that Ext(C2) : V1 ⊆ Ext(C ′2) : V1 is clear. Assume that C2 ⊆ C ′2 ⊂ V2 so
that M2(C2) and M2(C ′2) are not empty. From C2 ⊆ C ′2, we deduce M2(C ′2) ⊆ M2(C2). Let
C ∈ Ext(C2) with C1 = C ∩ V1. Remark that C1 ∈ C1 holds by assumption. Moreover, for every
M2 ∈M2(C2), we have C1 ∪M2 ∈ Ext(M2). This holds in particular for every M2 ∈M2(C ′2) so
that

⋂
M2∈M2(C′

2)(M2 ∪ C1) = (
⋂

M2∈M2(C′
2)M2) ∪ C1 = C ′2 ∪ C1 ∈ C. Consequently, C1 ∪ C ′2 ∈

Ext(C ′2) holds, concluding the proof.

4.3 Acyclic splits and CCM

We apply Theorem 5 to the problem CCM. Let C be a closure system over V and Σ be an
implicational base for C. We assume that Σ has an acyclic split (V1, V2). According to Theorem
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V = V1 ∪ V2
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Figure 18: Computing extensions of a closed set using extensions of meet-irreducible elements of
C2.

5, computingM fromM1 andM2 requires finding maximal extensions of every meet-irreducible
element M2 ∈M2.

Find Maximal Extensions (MaxExt)

Input: A triple Σ[V1], Σ[V2], Σ[V1, V2] given by an acyclic split of an
implicational base Σ, meet-irreducible elements M1,M2, and
a closed set C2 of Σ[V2].

Output: The maximal extensions of C2 in C, i.e. max⊆(Ext(C2)).

This problem relates to the dualization in closure systems. Let C be a closure system over V
and B−,B+ two antichains of C. We say that B− and B+ are dual in C if #B+ ∪ "B− = C and
#B+ ∩ "B− = ∅. The antichain B+ is referred as the positive border, while B− is the negative
border. Observe that B+ = max⊆({C ∈ C | C /∈ "B−}) and similarly B− = min⊆({C ∈ C | C /∈
#B+}) so that B− is the unique negative border associated to B+, and vice-versa for B+.

We connect maximal extensions of a closed set with dualization. Consider a closure system
C with acyclic split (V1, V2). Let C2 ∈ C2. Since Ext(C2) : V1 is an ideal of C1, the antichain
max⊆(Ext(C2) : V1), we call it B+, has a dual antichain B− in C1. We have B− = min⊆(C1 r
Ext(C2) : V1). In words, B− is the family of minimal closed sets of C1 that are not participating
in extensions of C2.

Proposition 8. Let C2 ∈ C2, and C1 ∈ C1. Then, C1 ∈ B− if and only if C1 ∈ min⊆{φ1(A) |
A! b ∈ Σ[V1, V2], b /∈ C2}.

Proof. We show the if part. We denote by φ1 the closure operator associated to Σ[V1]. Let
C1 ∈ min⊆{φ1(A) | A! b ∈ Σ[V1, V2], b /∈ C2}. We show that for any closed set C ′1 ⊆ C1 in C1,
C ′1 contributes to an extension of C2. It is sufficient to show this property to the case where
C ′1 ≺ C1 as Ext(C2) : V1 is an ideal of C1 by Proposition 6. Hence, consider a closed set C ′1 in
C1 such that C ′1 ≺ C1. Note that such C ′1 exists since ∅ ∈ C1 and no implication A! b in Σ
has A = ∅ so that ∅ ⊂ φ1(A) for any implication A! b of Σ[V1, V2] such that b /∈ C2. Then,
by construction of C ′1, for any A! b in Σ[V1, V2] such that b /∈ C2, we have φ1(A) * C ′1. As

23



φ1 is a closure operator, it is monotone and φ1(A) * φ1(C ′1) = C ′1 entails A * C ′1 for any such
implication A! b. Therefore C ′1 ∈ Ext(C2) : V1 and C1 ∈ B−.

We prove the only if part using contrapositive. Assume C1 /∈ min⊆{φ1(A) | A! b ∈ Σ[V1, V2],
v /∈ C2}. We have two cases. First, for any implication A! b in Σ[V1, V2] such that b /∈ C2,
φ1(A) * C1. Since φ1 is monotone and C1 is closed in C1, we have A * C1 and C1 ∈ Ext(C2) : V1

by Lemma 1. Hence C1 /∈ B−(C2). In the second case, there is an implication A! b with b /∈ C2

in Σ[V1, V2] such that φ1(A) ⊆ C1 which implies C1 /∈ Ext(C2) : V1. If φ1(A) ⊂ C1, then clearly
C1 /∈ B− as φ1(A) ∈ C1 and φ1(A) /∈ Ext(C2) : V1. Hence, assume that C = φ1(A). Since
C1 /∈ min⊆{φ1(A) | A! b ∈ Σ[V1, V2], b /∈ C2} by hypothesis, there exists another implication
A′! b′ ∈ Σ[V1, V2] such that b′ /∈ C2 and φ1(A′) ⊂ C1. Hence φ1(A′) /∈ Ext(C2) : V1 and C1 /∈ B−
as it is not an inclusion-wise minimum closed set which does not belong to Ext(C2) : V1.

We can build B− in polynomial time from Σ using Proposition 5 and Σ[V1, V2]: we compute
φ1(A) for every implication A! b in Σ[V1, V2] and we keep the closed sets (in C1) that are
inclusion-wise minimal. Therefore, the problem MaxExt relates to the following generation
version of dualization.

Lower dualization in closure systems (LDual(α))

Input: A representation α for a closure system C over V , an antichain
B− of C

Output: The antichain B+ dual to B−.

When α is an implicational base Σ or the set of meet-irreducible elements M, the problem
LDual(α) is impossible to solve in output-polynomial time unless P = NP [6, 12]. However, in
MaxExt we have access to both Σ1 andM1 so that the version of LDual we have to consider
is the one where α is both an implicational base and a set of meet-irreducible elements, that is
LDual(Σ,M). This version of LDual is open, even if not harder than SID [6]. When Σ = ∅,
i.e. when the closure system is Boolean, the problem reduces to hypergraph dualization.

Now, we describe an algorithm for solving CCM in the presence of acyclic splits. First, we
have |M| ≥ |M1| + |M2| due to Theorem 5. Furthermore, each M ∈ M arise from a unique
element of M ′ ∈ M1 ∪M2, and each M ′ ∈ M1 ∪M2 is used to construct at least one new
meet-irreducible element M ∈ M. Therefore, the algorithm will output every meet-irreducible
element only once. Furthermore, the space needed to store intermediate solutions is bounded by
the size of the outputM which prevents an exponential blow up during the execution.

The algorithm proceeds as follows. If Σ has no acyclic split, we use routines such as in [36, 7]
to compute M. When V is a singleton, the unique meet-irreducible to find is ∅ and hence no
call to other algorithm is required. Otherwise, we find an acyclic split (V1, V2) of Σ and we
recursively call the algorithm on Σ[V1] and Σ[V2]. Then, we computeM using Σ,M1,M2 and
by solving MaxExt. Observe that it takes polynomial time in the size of Σ and V to compute
an acyclic split, if it exists:

• compute the premise-connected components of Σ;

• construct a directed graph on these components, with an arc from a component C1 to C2

if there is an implication A! b in Σ such that A ⊆ C1 and b ∈ C2;

• then, an acyclic split exists if and only if there are at least two strongly connected compo-
nents, and each non-trivial bipartition of the strongly connected components will represent
an acyclic split.

Thus, the algorithm BuildTree can be adapted to find a decomposition with acyclic splits or
return FAIL if not possible in polynomial time.
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1 2
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∅ ∅

12! 3 4! 6, 5! 6

2! 4, 1! 5,
13! 4, 23! 5

Figure 19: The Σ-tree of Σ.

Example 14 (Running example). First, we compute a decomposition of Σ in terms of acyclic
splits. We obtain the Σ-tree illustrated in Figure 19.

Then, we apply Theorem 5 bottom-up to construct the the setM of meet-irreducible elements
of C. This part is shown in Figure 20. For readability, we highlighted at each step which closed
sets are part of C2 and also the two types of meet-irreducible elements of Theorem 5.
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type (2) : max⊆(Ext(M2))

1 2

4 5

Figure 20: Recursive computation ofM using a decomposition by acyclic splits.

To conclude, we derive a class of implicational bases where our strategy can be applied to
obtain the meet-irreducible elements in output quasi-polynomial time.

Theorem 6. Let Σ be an implicational base over V . Assume there exists a full partition
V1, . . . , Vk of V such that for every implication A! b ∈ Σ, A ⊆ Vi and b ∈ Vj for some
1 ≤ i < j ≤ k. Then CCM can be solved in output-quasipolynomial time.

Proof. Observe that Σ is acyclic in this case. Then, Σ can be hierarchically decomposed by k−1
acyclic splits such that the implicational base on the left of the i-th split is Σ[Vi] = ∅ and the
right-one Σ[

⋃
j>i Vj ]. Then, MaxExt reduces to hypergraph dualization, and we can compute
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M from Σ in output-quasipolynomial time using the algorithm of Fredman and Khachiyan
[21].

The class of closure systems associated to these implicational bases generalizes both distribu-
tive closure systems and ranked convex geometries [13] since an implicational base is ranked
when it further satisfies the condition that A ⊆ Vi implies b ∈ Vi+1.

5 Discussions and open problems

We conclude the paper with some discussions and open questions for future work. Splits and
more notably acyclic splits are decomposition methods based on the syntax of implications.
However, two equivalent implicational bases may not share the same (acyclic) splits. In fact, it
is even possible to find two equivalent implicational bases where one has an acyclic split, and
not the other. This is demonstrated by the following example.

Example 15. Let V = {1, 2, 3, 4} and Σ = {1! 4, 124! 3, 3! 4}. The unique possible split
is (124, 3) which is not acyclic. Observe that Σ is the Duquenne-Guigues base of the closure
system. However, the implicational base Σ′ = {1! 4, 12! 3, 3! 4}, which is clearly equivalent
to Σ has an acyclic split being (12, 34).

Note that the Duquenne-Guigues base is not of interest for finding acyclic splits as it can
hide possible acyclic splits, as suggested by the previous example. In fact, the example suggests
considering only minimum implicational bases whose left-sides are as small as possible. However,
several such bases may exist and finding the right-one might be an expensive task, whence the
following question.

Question 1. Is it possible to decide whether a closure system has an acyclic split in polynomial
time from an implicational base?

A similar question holds for the case of meet-irreducible elements:

Question 2. Is it possible to recognize an acyclic split in polynomial time from a set of
meet-irreducible elements?

In Corollary 3, we give a first step towards a characterization of acyclic splits from meet-
irreducible elements. The statement in Corollary 3 does consider the representation of closed sets
by meet-irreducible elements. Nonetheless, this characterization needs to be checked on every
closed set of C2. In order to recognize an acyclic split from a set of meet-irreducible elements
only, an idea would be to replace the statement by this one:

for every M2,M
′
2 ∈M2 such that M2 ⊆M ′2, Ext(M2) : V1 ⊆ Ext(M ′2) : V1.

Unfortunately, this latter condition is not sufficient, as demonstrated by the next example.

Example 16. Let V1 = {4, 5}, V2 = {1, 2, 3} and consider the closure systems C1 and C2 given in
Figure 21.

/0

1 32

123

/0

4 5

45

Figure 21: The closure systems C1 and C2.
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/0

1 324 5

14 24 123 353425

12351234

12345

Figure 22: The closure system C, failing Corollary 3.

An implicational base for C1 is Σ1 = ∅ and Σ2 = {12! 3, 13! 2, 23! 1} is an implicational
base for C2. We have M1 = {4, 5} and M2 = {1, 2, 3}. Now let V = V1 ∪ V2 and consider the
closure system C of Figure 22 and the pair (V1, V2).

We haveM = {1234, 1235}∪ {14, 24, 25, 34, 35}. AsM2 is an antichain, the condition given
above is satisfied. However, Corollary 3 fails because max⊆(Ext(∅) : V1) * Ext(1) : V1. Hence,
(V1, V2) is not an acyclic split for C.

When (V1, V2) is an acyclic split of C and V2 is a singleton element, the construction of C can
be interpreted as the duplication of an ideal of C1. This puts the light on a possible link between
(acyclic) splits and lower-bounded lattices [22, 3]. In particular, we know from [3] that the non-
left-unit part of the D-base of a lower bounded lattice is acyclic. As left-unit implications play
no role in the existence of splits, there should exist a H-decomposition of the D-base by “almost
acyclic” splits.

Example 17. Let V = {1, 2, 3} and Σ = {12! 3, 3! 1}. The associated closure system is (lower)
bounded. Its D-base is precisely Σ. It has no acyclic split when we consider 3! 1, but it has a
split (12, 3) which becomes acyclic once 3! 1 is removed.

Thus, we are naturally lead to the next question.

Question 3. Can implicational bases of lower-bounded closure systems be characterized by the
existence of a particular Σ-tree?

Answering this question would allow extending Theorem 5 to take into account unitary
implications creating cycles.
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