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Abstract

In this paper, we propose a generic approach to perform global sensitivity
analysis (GSA) for compartmental models based on continuous-time Markov
chains (CTMC). This approach enables a complete GSA for epidemic mod-
els, in which not only the effects of uncertain parameters such as epidemic
parameters (transmission rate, mean sojourn duration in compartments) are
quantified, but also those of intrinsic randomness and interactions between
the two. The main step in our approach is to build a deterministic representa-
tion of the underlying continuous-time Markov chain by controlling the latent
variables modeling intrinsic randomness. Then, model output can be written
as a deterministic function of both uncertain parameters and controlled latent
variables, so that it becomes possible to compute standard variance-based
sensitivity indices, e.g. the so-called Sobol’ indices. However, different sim-
ulation algorithms lead to different representations. We exhibit in this work
three different representations for CTMC stochastic compartmental models
and discuss the results obtained by implementing and comparing GSAs based
on each of these representations on a SARS-CoV-2 epidemic model.

Keywords: stochastic compartmental models, continuous-time Markov chains,
epidemic models, global sensitivity analysis, uncertainty quantification.

1 Introduction

In epidemiology, stochastic compartmental models facilitate the prediction and un-
derstanding of spreads of infectious diseases in a host population, such as humans,
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animals, or plants. The outputs of those models depend on numerous uncertain
parameters such as transmission rate, mean sojourn duration in each compart-
ment or transition probabilities. The aim of sensitivity analysis is to identify,
among these parameters, the ones which have the greater impact on the infec-
tion spread [Hanthanan Arachchilage et al., 2023, Goel et al., 2023, Massard et al.,
2022]. This is useful, e.g., to elaborate efficient control strategies [Ngonghala et al.,
2015, Yang et al., 2016] or perform models comparison [Torii et al., 2023]. In the
following, we are interested in the global sensitivity analysis (GSA) of stochastic
compartmental models used in epidemiology [Courcoul et al., 2011]. We focus on
on GSA rather than local sensitivity analysis, as the former is better adapted to
nonlinear models.

Compartmental models [Brauer, 2008] consist in dividing the host popula-
tion into compartments, each containing individuals with a similar health status.
Health statuses of individuals change over time. Transitions between compart-
ments strongly depend on the individuals’ characteristics or the patterns of con-
tacts between them. While in large populations randomness due to individual-to-
individual variability averages out, it has a large impact on the transmission pro-
cess for small populations [Britton, 2009, Bittihn and Golestanian, 2020]. Because
they incorporate stochastic effects related to biological or contact events, stochastic
compartmental models are used to analyze thoroughly the outbreak of infectious
diseases. Throughout, we thus focus on stochastic models, and, more precisely, on
continuous-time Markov chains (CTMC). CTMCs assume that inter-event times
are distributed according to exponential distributions.

GSA aims at determining the extent to which the variability of an input parame-
ter or of a set of input parameters affects the variability of the model’s output (see,
e.g., Saltelli et al. [2000], Marino et al. [2008]). Performing GSA for stochastic
models is more complex as the model output is tainted with two sources of un-
certainty: the intrinsic randomness of the model and the uncertainty on the model
parameters (such as mean sojourn duration in each compartment, transmission rate
and others). So far, different paradigms have been introduced in the literature for
sensitivity analysis of stochastic models.

To do GSAs of stochastic models, a pragmatic approach consists in performing
the analysis on both the expectation and the variance of the model output condi-
tionally on the uncertain parameters. Intrinsic randomness is thereby considered as
noise and is smoothed by the average. The stochastic model is thus reduced to two
deterministic models, for which it is possible to estimate sensitivity indices of the
uncertain parameters, such as Sobol’ indices [Sobol’, 1993]. This approach is of-
ten used in practice in various applications, for instance in: Courcoul et al. [2011]
to identify key parameters of a model describing the spread of an animal disease
in a cattle herd; Rimbaud et al. [2018] for a model describing the spatio-temporal
spread of plant pathogens; Richard et al. [2021] for a SARS-CoV-2 spread model;
Cristancho Fajardo et al. [2021] for a theoretical metapopulation model. However,
such an approach can suffer from inconsistent conclusions. Since GSA is per-
formed separately on the conditional mean and conditional variance, a parameter
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can appear to be important for a quantity and not for the other one. Moreover,
it may be difficult to efficiently estimate first order Sobol’ indices for the condi-
tional mean, as this requires a fine trade-off between explorations and repetitions
[Mazo, 2021]. Often, to avoid computational burdens, GSA is performed on meta-
models. In Marrel et al. [2012], the conditional mean and variance are emulated
by a joint Gaussian process-based model. In Étoré et al. [2020], the conditional
mean or the mean exit time from any compact domain are emulated by polynomial
chaos. A second approach, which avoids the loss of information induced by aver-
aging over intrinsic randomness, has been introduced by Hart et al. [2017]. In this
latter paper, the authors interpret the Sobol’-Hoeffding decomposition (see, e.g.,
Hoeffding [1948], Sobol’ [1993]) as a random decomposition, where the random-
ness is inherited from the intrinsic randomness of the model. From this decom-
position they obtain Sobol’ indices (variance-based sensitivity indices) which are
themselves random variables. More recently, a different point of view was adopted
(see, e.g., Fort et al. [2021], Veiga [2021]). Stochastic models as interpreted as
deterministic models with outputs taking values in some set of probability distri-
butions. Sensitivity indices that measure the sensitivity of the output probability
distribution to variations of the input parameter values are defined. Finally, another
path to handle sensitivity analysis of stochastic models consists in emulating the
output probability distribution (see, e.g., Zhu and Sudret [2021, 2023]).

However, none of the aforementioned approaches enables the possibility of do-
ing a complete GSA, in which not only the effects of the uncertain parameters are
quantified, but also those of intrinsic randomness and the interactions between the
two. The problem of performing a complete GSA for stochastic models is tackled,
e.g., in Le Maître and Knio [2015], Jimenez et al. [2017], Navarro Jimenez et al.
[2016]. In these papers, model outputs are simulated from a stochastic algorithm.
Then the approach consists in reinterpreting this stochastic algorithm as a deter-
ministic one with an augmented set of inputs comprising both the uncertain param-
eters and the latent variables controlling intrinsic randomness, thus allowing for
the application of standard GSA tools to the deterministic algorithm defined in the
augmented input space.

There exist different algorithms to simulate a CTMC. To perform complete
GSAs of CTMC compartmental models, therefore, we investigate three exact sim-
ulation algorithms. The first, Gillespie Direct Method algorithm [Gillespie, 1976],
is the most common in epidemiology. However this algorithm does not allow
us to separate and control the different types of transitions in the model. Thus
we consider two other representations based respectively on Gillespie First Re-
action Method [Gillespie, 1976] and Modified Next Reaction Method [Anderson,
2007]. The latter was used for doing a complete GSA of reaction networks in
Navarro Jimenez et al. [2016]. The underlying idea of Modified Next Reaction
Method is a random time change introduced in Ethier and Kurtz [1986].

Each of the above simulation algorithms leads to a distinct deterministic rep-
resentation of the same stochastic model. But there is no reason for the results of
the corresponding sensitivity analyses to coincide. In the present paper, we aim
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at exploring this issue, which to the best of our knowledge has not been tackled
in the literature yet. Once this issue has been discussed in the general framework
of sensitivity analysis of stochastic models, we investigate which representations
can be introduced for CTMC compartmental models. We discuss the choice of
representations, which depends on the type of results we are interested in.

The paper is organized as follows. We first introduce in Section 2.1 the class
of compartmental models we are interested in, whose mathematical formulation
is a CTMC. Then in Section 2.2 we recall the definition of variance-based Sobol’
indices [Sobol’, 1993] for sensitivity analysis of deterministic models. Then we
explain in Section 3 how it is possible to perform a complete GSA of a stochastic
model if we can represent it as a deterministic function of controlled latent vari-
ables (modeling the intrinsic randomness) and uncertain parameters. We also ex-
hibit in Section 3.2 a toy example showing that such a representation is not unique
and that GSA results depend on the choice of representations. Thus GSA results
have to be interpreted with caution. In Section 4, we propose three deterministic
representations for CTMC stochastic compartmental models based on three differ-
ent simulation algorithms. We illustrate our approach in Section 5 by considering a
parsimonious SARS-CoV-2 spread model as a case study. We compare and discuss
the GSA results obtained with the different representations presented in Section 4.
Finally the main conclusions of our study are recalled in Section 6.

2 Preliminaries

We first recall in Section 2.1 the definition of CTMC stochastic compartmen-
tal models we are interested in. Then in Section 2.2 we recall the definition of
variance-based Sobol’ indices [Sobol’, 1993] used for GSA in the framework of
deterministic models.

2.1 CTMC stochastic compartmental models

Consider a finite, closed (i.e. of constant size over time) population in which each
individual has a health status (susceptible, infectious, and so on) evolving over
time. The set of all possible health statuses is denoted by V. Since those health
statuses induce a partition of the whole population at any given time, the elements
of V are also called compartments. Every time an individual changes compart-
ments, we say that a transition occurs. Only certain types of transitions can occur.
Let E denote the set of all possible types of transitions. By definition, for α, β ∈ V,
an individual can move from α to β if (α, β) ∈ E. The pair (V,E) can be iden-
tified with a directed graph where V is the set of nodes and E is the set of arrows
connecting the compartments between which the individuals can move. Assuming
an ordering of the compartments has been chosen, let us identify the set E with
a subset of R|V| as follows: with each (α, β) ∈ E, associate the vector of length
|V| with components equal to zero except at the positions corresponding to α and
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β, where the components are −1 and 1, respectively. The elements of E seen as a
subset of R|V| are called transition vectors.

For every α ∈ V and a vector of epidemic parameters θ ∈ Θ ⊂ R
d, let W θ

α(t)
be the number of individuals in compartment α at time t. Since the population
is closed, we have that

∑

α∈V W θ
α(t) is constant over time. Denote by W θ =

(W θ
α)α∈V the stochastic process that describes the whole population over time. It

is assumed that W θ is a continuous-time Markov chain with state space E ⊂ N
|V|

and positive rate functions gu(θ, ξ), u ∈ E, ξ ∈ E , given by

Pr(W θ(t+ s) = ξ + u|W θ(t) = ξ) = gu(θ, ξ)s+ o(s) as s→ 0.

The initial state W θ(0) =: ξ0 ∈ E is supposed to be fixed. A description of the
CTMC of the classical SIR model is given in Example 1.

Example 1. The classical SIR model is described as follows. There are three

compartments V = {S, I,R} and two types of transitions: infection (S, I) and

removal (I,R) so that E = {(S, I), (I,R)} = {(−1, 1, 0), (0,−1, 1)}. Infection

is characterized by the transition vector uS,I = (−1,+1, 0) and the rate func-

tion gS,I = β
N
WIWS , where β is some parameter and N is the total size of the

population. Removal has transition vector uI,R = (0,−1,+1) and rate function

gI,R = γWI , where γ is some parameter. The vector of parameters is θ = (β, γ).
The graph of the SIR model is given below:

S I R

β
N
WIWS γIWI

2.2 Global Sensitivity Analysis

In this section, we first recall the definition of variance-based Sobol’ sensitivity
indices introduced in Sobol’ [1993] for deterministic models with scalar outputs.
Following the paradigm of GSA, we model uncertain inputs by a random vector of
independent components X = (X1, . . . ,Xm). Let E1, . . . , Em be subsets of R and
f1 : E1 × . . . × Em → R be some function such that E

(

f1(X)2
)

< +∞. Then
first-order and total Sobol’ indices (see, e.g., Sobol’ [1993], Homma and Saltelli
[1996]) of the ouput Y = f1(X) associated with input Xj, j = 1, · · · ,m, are
respectively defined as:

SXj
=

Var (E [Y | Xj ])

Var (Y )
, (1)

Stot
Xj

= 1−
Var (E [Y | X1, · · · ,Xj−1,Xj+1, · · · ,Xm])

Var (Y )

=: 1−
Var (E [Y | X−j])

Var (Y )
· (2)
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The definition of first-order and total Sobol’ indices can be extended to models
with vectorial or functional outputs (see, e.g., Lamboni et al. [2011], Gamboa et al.
[2014]). Let (Y1, . . . , Yp) := f2(X1, . . . ,Xm) be a vectorial output where f2 :
E1 × . . .× Em → R

p is some function and E
(

‖Y ‖2
)

< +∞, with ‖ · ‖ denoting
the Euclidean norm on R

p. Aggregated first-order and total Sobol’ indices are
defined as:

SXj
=

∑p
k=1 Var (Yk)SXj ,k
∑p

k=1 Var (Yk)
, (3)

Stot
Xj

=

∑p
k=1 Var (Yk)S

tot
Xj ,k

∑p
k=1 Var (Yk)

, (4)

where SXj ,k and Stot
Xj ,k

are the first-order and total Sobol’ indices of the scalar
output Yk associated with the input Xj , for k = 1, . . . , p and j = 1, . . . ,m. If the
output of the model of interest is a function of time, it can be reduced to a vectorial
output through discretization of time. Then aggregated first-order and total Sobol’
indices can be computed using (3) and (4), where the output components Yk would
be the values of the function at the time points of the discretization. Also first-
order and total indices defined in Equations (1) and (2) can be computed at each
time point of the discretization in order to obtain dynamics of Sobol’ indices.

3 Complete GSA for stochastic models

In this section we aim at quantifying partial variances due on one hand to uncer-
tain parameters or groups of uncertain parameters, on the other hand to intrinsic
randomness, and finally to the interaction between arbitrary groupings of uncertain
parameters and intrinsic randomness. We call this a complete GSA. A strategy to
achieve this aim requires controlling the latent variables modeling intrinsic ran-
domness.

3.1 Deterministic representations of stochastic models

Let Y θ denote the random output of some stochastic model with parameters θ ∈
Θ ⊂ R

d. For instance, Y θ might be the stochastic process W θ introduced in
Section 2.1, or any scalar (or vectorial) quantity of interest defined as a func-
tional of the process W θ. Note that distinct values of the parameters encoded in
θ correspond to distinct epidemiological patterns. We thus consider the collection
{Y θ , θ ∈ Θ} and assume mutual indepdence between its members.

As in Section 2.2, uncertain parameters are modeled by a random vector X =
(X1, . . . ,Xd) with independent components. In addition, it is assumed that X
is independent of {Y θ , θ ∈ Θ}. The pair (X, Y X) represents the input/output
pair that an external observer would see should they draw uncertain parameters at
random. The object Y θ is then the output observed conditionally on X = θ.
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It is important to note that in Y X there are two sources of variability (and
hence uncertainty): the one coming from the uncertainty of the parameters (that is,
modeled by vector X), and the one coming from the intrinsic randomness of the
stochastic model (that is, for a fixed θ the variability in Y θ). A complete GSA aims
at separating these two sources of uncertainty and quantifying interactions between
both.

To achieve this aim, it is necessary to control the latent variables modeling in-
trinsic randomness. More precisely, we aim at finding a function f and a latent
or a set of latent variables Z , independent of X, such that the probability distri-
butions of Y θ and f(θ, Z) coincide. Since X is independent of Z and Y θ, we
immediately have that the input/output pairs (X, Y X) and (X, f(X, Z)) are equal
in distribution. The pair (f, Z) is called a deterministic representation (or simply
a representation) of the stochastic model Y θ. Often, the function f is the function
induced by a (deterministic) algorithm which, if the inputs of that algorithm were
drawn from the right distribution, would produce an output statistically equal to the
given stochastic model.

From the viewpoint of GSA, one advantage of constructing a deterministic rep-
resentation of a stochastic model is that standard methods of GSA for deterministic
models can be applied straightforwardly. For instance, we can compute first-order
and total Sobol’ indices by letting m = d + 1 and Xd+1 = Z in (1) and (2) (or
in (3) and (4) if the output is vectorial or functional).

In general, there is no unique deterministic representation of a stochastic model.
The set of latent variables modeling intrinsic randomness Z and the function f
may vary from one representation to the other. More precisely, if Y θ is a stochas-
tic model and (f, Z) a representation of it, there may exist another representation
(f̃ , Z̃) of Y θ such that the laws of (X, f̃(X, Z̃)) and (X, f(X, Z)) coincide. (Here
the probability distribution of Z̃ may be different from that of Z .) An example of
a toy stochastic model with two different representations is provided in Example 2
below.

Example 2. Let Z ∼ U ([0, 1]) independent of (X, Z1, Z2) ∼ N (0R3 , Id3). Con-

sider the stochastic model Y θ ∼ N (θ, 1). This model can be represented by using

f(θ, Z1, Z2) = θ + 1√
2
(Z1 + Z2) or f̃(θ, Z) = θ + Φ−1(Z), where Φ is the

cumulative distribution function of the standard normal distribution.

3.2 How does a complete GSA depend on the chosen representation?

As different representations can be exhibited for a same stochastic model, we can
wonder how the choice of representations affects GSA results. Let us consider
(f, Z) and (f̃ , Z̃) two distinct representations of a same stochastic model with
uncertain parameters X = (X1, · · · ,Xd) and output Y X. We say that an index
SXj

is representation free if SXj
(f, Z) = SXj

(f̃ , Z̃), where here SXj
(f, Z) and

SXj
(f̃ , Z̃) denote the values of the index SXj

based on the representations (f, Z)

and (f̃ , Z̃), respectively.
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Proposition 1. First-order Sobol’ indices associated with uncertain parameters

are representation free.

Proof. From Section 3 we know that

(

X, Y X
)

∼ (X, f(X, Z)) ∼
(

X, f̃(X, Z̃)
)

. (5)

Thus, for j = 1, . . . , d, we have almost surely the following equality:

E [f(X, Z) | Xj ] = E

[

f̃(X, Z̃) | Xj

]

from which we deduce, using (1), that SXj
(f, Z) = SXj

(f̃ , Z̃), where here SXj
(f, Z)

and SXj
(f̃ , Z̃) denote the first-order Sobol’ indices associated with Xj based on

(f, Z) and (f̃ , Z̃), respectively.

Proposition 2. Total Sobol’ indices associated with intrinsic randomness are rep-

resentation free.

Proof. Put X ′
j = Xj , j = 1, . . . , d, X ′

d+1 = Z and m = d + 1 so that X′ :=
(X ′

1, . . . ,X
′
m) = (X, Z). From (5), we deduce the following almost sure equality:

E
[

f(X, Z) | X′
−m

]

= E [f(X, Z) | X] = E

[

f̃(X, Z̃) | X
]

= E

[

f̃(X, Z̃) | X′
−m

]

,

from which we deduce, using (2), that the total Sobol’ indices Stot
Z (f, Z) and

Stot
Z̃
(f̃ , Z̃) associated with intrinsic randomness and based respectively on (f, Z)

and (f̃ , Z̃) are equal.

Proposition 3. First-order Sobol’ indices associated with intrinsic randomness

and total Sobol’ indices associated with uncertain parameters depend on the choice

of representations in general.

To show that Proposition 3 is true, it suffices to exhibit an example where
two distinct representations lead to distinct first-order Sobol’ indices associated
with intrinsic randomness and distinct total Sobol’ indices associated with un-
certain parameters. Before giving the example, let us give some intuition be-
hind Proposition 3. Note that the random variables E [f(X, Z) | (X−j , Z)] and

E

[

f̃(X, Z̃) | (X−j , Z̃)
]

have different probability distributions in general. In-

deed, since (f, Z) 6= (f̃ , Z̃), the way each function f or f̃ combines its (set of)
latent variable(s) Z with input Xj to generate outputs may differ. Thus there is no
reason for total Sobol’ indices associated with uncertain parameters to be repre-
sentation free. Also, there is no reason for the random variables E [f(X, Z) | Z]

and E

[

f̃(X, Z̃) | Z̃
]

to have the same probability distributions and hence the first-

order Sobol’ index associated with intrinsic randomness to be representation free.
This is illustrated on the toy Example 3 below.
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Example 3. Let X be a random variable independent of Z and Z̃ where Z and Z̃
are i.i.d. under N (0, 1). Define two functions: f(X,Z) = XZ and f̃(X, Z̃) =
X2Z̃. If X is distributed such that P (X = −1) = P (X = 1) = 1

2 then (X, f(X,Z)) ∼

(X, f̃(X, Z̃)). Thus, (f, Z) and (f̃ , Z̃) represent the same stochastic model but:

E [f(X,Z) | Z] = 0 while E
[

f̃(X, Z̃) | Z̃
]

= Z̃. Simple calculations then lead to

SZ(f, Z) = 0 while SZ̃(f̃ , Z̃) = 1. Total Sobol’ indices associated to X can easily

be deduced: Stot
X (f, Z) = 1− SZ(f, Z) = 1 and Stot

X (f̃ , Z̃) = 1− SZ̃(f̃ , Z̃) = 0.

We conclude from this section that intrinsic randomness can be modeled in
different manners. GSA results naturally depend on the modeling choice. Different
modelings bring different insights. Thus the choice of representations must be
made with caution, in consultation with epidemiologists. We discuss this point
further on a SARS-CoV-2 spread model in Section 5. In the following section, we
exhibit different meaningful representations for CTMC stochastic compartmental
models, based on different simulation algorithms.

4 Deterministic representations for CTMC stochastic com-

partmental models

Following Section 2.1, let W θ be a CTMC stochastic compartmental model with
uncertain parameters θ. As explained in Section 3, we wish to rewrite the trajecto-
ries of W θ as a function of the uncertain parameters and some set of latent variables
so as to perform a complete GSA. Based on three different exact simulation algo-
rithms, we propose in this section three different deterministic representations for
the same generic CTMC stochastic compartmental model.

One of the first and most basic procedure to simulate the trajectory of a CTMC
is as follows. Given that the chain is at some state W θ(s) = ξ at time s, the hold-
ing time until the next jump is distributed as an exponential random variable with
parameter

∑

u∈E gu(θ, ξ) and then the chain moves to state ξ + u with probabil-
ity gu(θ, ξ)/

∑

u∈E gu(θ, ξ). See, e.g. Karlin and Taylor [1981] for more details.
In epidemiology, this procedure is known as Gillespie Direct Method [Gillespie,
1976].

Algorithm 1 is a slightly modification of Gillespie Direct Method based on
pseudo-random number generators RGj , j = 1, 2. Here each pseudo-random
number generator is seen as an infinite sequence of pseudo-random numbers deter-
mined by the seed of the generator. Thus, to get a deterministic representation of
the stochastic model W θ, we let Z represent the value of the seed and f(θ, z) rep-
resent the output of Algorithm 1 for some specific seed value Z = z. In practice,
the seed values are drawn uniformly over a large number of possible seed values.

We remark that the time-marching method of Algorithm 1 does not require the
storage of holding times. Instead, the sequence of holding times is determined
on the fly using the pseudo random number generator RG1. In the same way the
sequence of types of transition is determined using the random number generator
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RG2. In practice, the sequences of holding times and types of transition are entirely
determined by the seeds initializing the pseudo-random number generators RGj ,
j = 1, 2. Identical sequences of holding times and types of transition are produced
if the same seeds are used. Compared to other algorithms for simulating CTMCs,
the main advantage of Algorithm 1 is its low simulation cost.

Algorithm 1 combines all types of transitions to determine the next holding
time and then the associated type of transition. However, interpretation of intrinsic
randomness in this case is difficult. To overcome this issue, we introduce Algo-
rithm 2 below, which is a slight modification of Gillespie First Reaction Method us-
ing pseudo-random number generators. Contrarily to Algorithm 1, Gillespie First
Reaction Method analyzes the various types of transitions separately.

Although Gillespie Direct Method and Gillespie First Reaction Method are
the most common simulation algorithms in epidemiology, we will compare their
results to those obtained from a last simulation algorithm based on the so-called
random-time change representation introduced in Kurtz [1982] (see also Ethier and Kurtz
[1986]). More precisely, the random state W θ(t) can be expressed, for every t ≥ 0,
through

W θ(t) = W θ(0) +
∑

u∈E
Yu

(
∫ t

0
gu(θ,W

θ(s))ds

)

u,

where {Yu(t), t ≥ 0} are independent unit-rate Poisson processes associated with
the types of transition u ∈ E. Introduced in Navarro Jimenez et al. [2016] as a tool
for doing complete GSAs of chemical reaction network models [Le Maître et al.,
2015], Algorithm 3 below is a slight modification of the Modified Next Reaction
Method proposed by Anderson [2007].
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Algorithm 1: Gillespie Direct Method

Inputs : tend, θ, Z := (RG1, RG2)
Data: ξ0, E, {gu,u ∈ E}
Output: {W θ(s), s ∈ [0, tend]}
Initialization: s← 0, W θ(s)← ξ0;
while s < tend do

Σ←
∑

u∈E gu
(

θ,W θ(s)
)

;
Take r1 from RG1;
∆← − log(r1)/Σ;
for u ∈ E do

pu ← gu
(

θ,W θ(s)
)

/Σ;
end

Divide the interval (0, 1) into |E| sub-intervals of length pu, u ∈ E;
Take r2 from RG2 and let u such that r2 lies within the sub-interval of
length pu;
W θ(s +∆)←W θ(s) + u;
s← s+∆;

end

Algorithm 2: Gillespie First Reaction Method

Inputs : tend, θ, Z := {RGu,u ∈ E}
Data: ξ0, E, {gu,u ∈ E}
Output: {W θ(s), s ∈ [0, tend]}
Initialization: s← 0, W θ(s)← ξ0;
while s < tend do

for u ∈ E do

Take ru from RGu;
au ← gu

(

θ,W θ(s)
)

;

∆u ←
− log(ru)

au

end

u← argmin
u
∆u;

∆← ∆u;
W (s+∆)←W (s) + u;
s← s+∆;

end
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Algorithm 3: Modified Next Reaction Method

Inputs : tend, θ, Z := {RGu,u ∈ E}
Data: ξ0, E, {gu,u ∈ E}
Output: {W θ(s), s ∈ [0, tend]}
Initialization:
for u ∈ E do

Take ru from RGu;
tu ← 0, t+u ← − log(ru);

end

s← 0, W θ(s)← ξ0;
while s < tend do

for u ∈ E do

au ← gu (θ,W (s)); ∆u ←
t+u−tu
au

end

u← argmin
u
∆u;

∆← ∆u;
W (s+∆)←W (s) + u;
s← s+∆;
for u ∈ E do

tu ← tu + au∆
end

Take ru from RGu;
t+
u
← t+

u
− log(ru);

end

In summary, in this section we introduced three deterministic representations
of compartmental models based on CTMCs using three different stochastic simu-
lation algorithms: Gillespie Direct Method (Algorithm 1), Gillespie First Reaction
Method (Algorithm 2) and Modified Next Reaction Method (Algorithm 3). As they
analyze the various types of transitions separately, Algorithms 2 and 3 are more in-
sightful, but they are also more computationally expensive than Algorithm 1.

The aim of Section 5 will be to implement a complete GSA using each of
the above representations on a SARS-CoV-2 spread model. From the theoretical
results of Section 3.2, we expect GSA results to differ from one representation to
the other, with the take home message that the representation must be chosen with
caution and in consultation with epidemiologists.

5 Application to a SARS-CoV-2 spread model

Although our approach for a complete GSA of stochastic compartmental models is
generic, we propose in this section, as a case study, to do a sensitivity analysis of a
parsimonious SARS-CoV-2 spread model, which is a simplified but still resalistic
version of the model introduced in Cazelles et al. [2021]. In this section, we do not
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pretend to provide the most suitable model for the propagation of SARS-CoV-2, we
rather aim at demonstrating the effectiveness of the approach presented in Section
3 for a complete GSA of stochastic compartmental models. In order to illustrate the
statement in Section 3.2 that sensitivity analysis results depend on the determinis-
tic representation chosen for its implementation, we compare the results by using
each of Modified Gillespie Direct Method (Algorithm 1), Modified Gillespie First
Reaction Method (Algorithm 2) and Modified Next Reaction Method (Algorithm
3) for simulations. Recall that these algorithms have been presented in Section
4. In Section 5.1 we describe the considered SARS-CoV-2 model. Then in Sec-
tion 5.2 we introduce the quantities of interest and detail our numerical setting for
sensitivity analysis. Finally in Section 5.3 we present the results of the sensitivity
analyses obtained from the different simulation algorithms of Section 4.

5.1 A SARS-CoV-2 spread model

Recall from Section 2 that each process W θ
α, α ∈ V, counts the number of individ-

uals in compartment α over time. In this section we let V = {S,E,A, I,H,R,D},
where the seven compartments represent seven possible health statuses: an individ-
ual can be susceptible (S), exposed (E) (i.e. infected but not yet infectious), asymp-
tomatic infectious (A), symptomatic infectious (I), hospitalized (H), recovered (R)
or dead (D). There are nine possible types of transition between these compart-
ments, see Figure 1. Note that infection is neglected within hospitals so that hos-
pitalized individuals cannot infect. Moreover, it is assumed that recovered individ-
uals get perfectly immunized so they cannot be susceptible after recovering. The
vector of uncertain parameters is given by θ =

(

β, γE , γA, γI , γH , p(E,A), pC , pD|C , p(H,D)

)

.
The different types of transition and their characteristics (transition vector u and
associated rate function gu) are described in Table 1.
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(WI +WA)WS

γE(1− p(E,A))WE

γI(1− pC)WI

γE · p(E,A)WE

γAWA

γIpC(1− pD|C)WI

γIpCpD|CWI

γH(1− p(H,D))WH

γHp(H,D)WH

Figure 1: Compartmental model of the spread of SARS-CoV-2. The nodes are the
possible health statuses and the arrows connecting them are the possible types of
transition. The labels above the arrows are the corresponding rate functions.

.

14



Transition Type Transition vector u Rate function gu
(S,E) infection (−1, 1, 0, 0, 0, 0, 0) β

N
·WS · (WA +WI)

(E,A)
asymptomatic
infectiousness activation

(0,−1,+1, 0, 0, 0, 0) γE · p(E,A) ·WE

(E, I)
symptomatic
infectiousness activation

(0,−1, 0,+1, 0, 0, 0) γE · (1− p(E,A)) ·WE

(A,R)
recovery of an
asymptomatic

(0, 0,−1, 0, 0,+1, 0) γA ·WA

(I,R)
recovery of a
symptomatic

(0, 0, 0,−1, 0,+1, 0) γI · (1− pC) ·WI

(I,H)
hospitalization
of a symptomatic

(0, 0, 0,−1,+1, 0, 0) γI · pC · (1− pD|C) ·WI

(I,D)
death of a
symptomatic

(0, 0, 0,−1, 0, 0,+1) γI · pC · pD|C ·WI

(H,R)
recovery of a
hospitalized

(0, 0, 0, 0,−1,+1, 0) γH · (1− p(H,D)) ·WH

(H,D)
death of a
hospitalized

(0, 0, 0, 0,−1, 0,+1) γH · p(H,D) ·WH

Table 1: Description of the model transitions between states {S,E,A, I,H,R,D}.

Parameter Description Nominal value Range of variation
β transmission rate 2.175 (0.35, 4)

1/γE mean sojourn duration in E 4.5 days (2, 7)

1/γA mean sojourn duration in A 2 days (1, 3)

1/γI mean sojourn duration in I 4 days (3, 5)

1/γH mean sojourn duration in H 9.5 days (7, 12)

p(E,A)
probability for an exposed to
become asymptomatic

0.5 (0.3, 0.7)

pC
probability for an individual in
compartment I of being in a critical state

0.175 (0.15, 0.2)

pD|C
probability to die without being hospitalized
knowing that the individual is in a critical state

0.175 (0.15, 0.2)

p(H,D) probability for a hospitalized to die 0.0505 (0.001, 0.1)

Table 2: Model parameter nominal values and their range of variation in the sensi-
tivity analysis.

5.2 Setting for sensitivity analysis

We consider a population of N = 2005 individuals including five exposed indi-
viduals at the start of the epidemic t = 0, so that the process W θ has the initial
state
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ξ0 = (WS(0) = 2000,WE(0) = 5,

WA(0) = WI(0) = WH(0) = WR(0) = WD(0) = 0) .

We focus on two quantities of interest (QoIs). First we consider a scalar QoI,
namely the extinction time Y θ

ext of the epidemic, defined as the first instant at which
there are no exposed (E) nor infectious (A or I) individuals anymore:

Y θ
ext = inf{t ≥ 0 : W θ

E(t) +W θ
A(t) +W θ

I (t) = 0}.

Note that for all θ ∈ Θ, Y θ
ext is well-defined, i.e. Y θ

ext < +∞. Indeed, by con-
sidering the compartmental model described in Figure 1, after a finite number of
transitions, the stochastic process will necessarily reach an absorbing state with
empty compartments E,A and I . We display in Figure 2 two hundred indepen-
dent realizations of Y θ

ext for each of the simulation algorithms of Section 4. The
uncertain parameters θ were set to the nominal values given in Table 2. These
values agree with current knowledge and are considered as plausible (see, e.g.,
Knock et al. [2021], Da Veiga et al. [2021]). The three boxplots are similar, which
was expected since the distributions of the processes returned by each of the three
algorithms are the same.
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Figure 2: Boxplot of 200 simulations of Y θ
ext performed with (left, red) Gillespie

Direct Method (middle, green) Gillespie First Reaction (right, blue) Modified Next
Reaction algorithm with uncertain parameters θ set to the nominal values given in
Table 2.

The second QoI we are considering is the dynamic of the number of symp-
tomatic infectious individuals:

Y θ
I = {W θ

I (t), t ∈ [0, tend]},

where tend was set to 60. (The process dies out at around that time, see Figure 3.)
We display in Figure 3 twenty independent realizations of the process Y θ

I for each
of the simulation algorithms of Section 4. The input parameter vector θ was set to
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the nominal values given in Table 2. The three charts in Figure 3 display similar
sample paths for Y θ

I , which was expected since the distribution of the processes
returned by each of the three algorithms is the same.
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Figure 3: 20 independent realizations of t → W θ
I (t), with θ set to nominal values

given in Table 2, from (left) Gillespie Direct Method (middle) Gillespie First Re-
action (right) Modified Next Reaction algorithm.

As expected, for θ fixed to its nominal value, we do not observe on Figure 3 a
significant difference in the simulations run with Algorithm 1, 2 or 3.

In practice, simulations are carried out using the R Statistical Software [R Core Team,
2021]. Sensitivity indices are estimated by using the R package sensitivity [Iooss et al.,
2021]. The function soboljansen() is used for total Sobol’ index estimation while
sobol2007() is used for first-order Sobol’ index estimation. A priori distribu-
tions for model parameters are uniform distributions as described in Table 2 and
the a priori for intrinsic randomness is modeled by seeds uniformly distributed in
{1, · · · , 109}. Sensitivity indices are estimated from two independent designs of
n = 2000 input-output samples, where for each sample a trajectory of W θ is sim-
ulated through either Algorithm 1, Algorithm 2 or Algorithm 3. As the dimension
of the input space is large (at least 7 model parameters plus inputs modeling intrin-
sic randomness whose number depends on the simulation algorithm), we use Latin
Hypercube Sampling (see, e.g., Lin and Tang [2015]). Latin Hypercube Samples
are generated by using the R package DiceDesign [Dupuy et al., 2015].

5.3 Sensitivity analysis results

This section is devoted to the presentation and comparison of sensitivity analysis
results obtained for the algorithms presented in Section 4, namely Gillespie Direct
Method, Gillespie First Reaction Method and Modified Next Reaction Method. In
Section 5.3.1 we present the results for the scalar output of interest, namely the ex-
tinction time of the epidemy Y θ

ext. Then in Section 5.3.2 we present the sensitivity
analysis results for the functional output corresponding to the dynamic of the num-
ber of symptomatic infectious individuals Y θ

I . Finally in Section 5.4 we discuss
the choice of algorithms, depending on the practitioner’s objectives. Recall that in
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all the results presented in this section, sensitivity indices were estimated from two
independent designs of n = 2000 input-output samples, and the estimation was
repeated independently 50 times for the different boxplots.

5.3.1 Sensitivity analysis results for Y θ
ext

We display on Figure 4 boxplots of first-order and total Sobol’ index estimates.
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Figure 4: Boxplots of 50 independent estimates of the (top) first-order and (bot-
tom) total Sobol’ indices for Y θ

ext, each computed with two independent designs of
n = 2000 input-output samples, for each simulation algorithm: (red, left) Gille-
spie Direct Method, (green, middle) Gillespie First Reaction, (blue, right) Modified
Next Reaction.

In accordance with the results stated in Section 3.2, we observe on the top of
Figure 4 that there are no significant differences between the three algorithms for
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the first-order Sobol’ index estimates. The only input parameters with a signifi-
cant first-order effect are β and γE . The sum of the first-order index estimates is
far below 1 which means that interactions are not negligible. We observe on the
bottom of Figure 4 that almost all inputs have a total effect significantly greater
than zero. The interaction strength varies from one simulation algorithm to the
other. This is due to the fact that the modeling of intrinsic randomness depends
on each simulation algorithm. In particular, we observe that the total Sobol’ index
estimates corresponding to the Modified Next Reaction algorithm are never less
than their counterpart computed from the First Reaction Method algorithm. This
reflects a stronger interaction with intrinsic random noise for Modified Next Re-
action algorithm. Finally, as expected from the theoretical results in Section 3.2,
the total index estimates associated with intrinsic randomness do not depend on the
chosen simulation algorithm.

5.3.2 Sensitivity analysis results for Y θ
I

Since Y θ
I is a dynamical process, we can consider the sensitivity of the whole

trajectory or the sensitivity time by time. In the numerical experiments, Y θ
I is dis-

cretized over a regular grid of size 1000 of the interval [0, tend]. The sensitivity of
the whole trajectory consists of computing estimates of the aggregated sensitivity
indices of Section 2.2. These provide a scalar summary for the dynamical evolution
of first-order and total Sobol’ indices. They are displayed in Figure 5. While the
three algorithms show similar first-order Sobol index estimates, they show some
significant differences for the total index estimates. We observe that the total in-
dex estimates for the uncertain parameters γA, γI , γH , pE,A, pC , pD|C and pH,D

are significantly higher for Modified Next Reaction Method, indicating that each
of those parameters interacts more with the variable Z . Then, using Algorithms 2
or 3, it is possible to decompose Z into components that correspond to the different
types of transition. On Figure 6, we plotted first-order and total Sobol’ index esti-
mates associated with each of those components, for both algorithms. While there
were no difference between the three algorithms for total index estimates associ-
ated with the intrinsic noise Z as a whole (see the bottom of Figure 5), the analysis
by type of transition reveals that the total sensitivity estimates of its components
significantly differ from one algorithm to the other (see the bottom of Figure 6).
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Figure 5: Aggregated (top) first-order and (bottom) total Sobol’ index estimates
for Y θ

I . For each input parameter (x-axis), boxplots are displayed for each simu-
lation algorithm: (red,left) Gillespie Direct Method, (green,middle) Gillespie First
Reaction, (blue,right) Modified Next Reaction. Each boxplot represents 50 inde-
pendent index estimates, each of them computed with two independent designs of
n = 2000 input-output samples.
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Figure 6: Aggregated (top) first-order and (bottom) total (b) Sobol’ indices asso-
ciated to each component of Z (each type of transition described in Table 1). For
each type of transition (x-axis), boxplots are displayed for (red,left) Gillespie First
Reaction and (blue,right) Modified Next Reaction. Each boxplot represents 50 in-
dependent index estimates, each of them computed with two independent designs
of n = 2000 input-output samples.

The mean dynamical evolution of first-order and total Sobol’ index estimates
is displayed on Figure 7. Each mean is computed from 50 independent repetitions.
At the beginning of the epidemic, the number of infected individuals is mostly sen-
sitive to Z—that is, to random fluctuations inherent to the model. This confirms
that intrinsic randomness rules the dynamics in the emergence phase of an epi-
demic disease. While the epidemic evolves, the main effect of Z quickly drops and
some uncertain parameters—namely, β, γE and to a less extent pEA—gain more
influence. The uncertain parameter β, in particular, becomes much more important
than any other input and remains so until the end. Notice that, except β, the main
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effect of every input (both the uncertain parameters and intrinsic noise) approaches
zero as the epidemic goes to its end, while the opposite is true for total effects. This
indicates that interactions become more prevalent near the end of the epidemic.

Although the most salient features of the performed sensitivity analyses are
shared between the three algorithms, we do observe some differences in the mean
dynamics across the three algorithms. These differences seem to be significant:
see Figure 9, where the sampling variability of the dynamics of first-order and total
Sobol’ index estimates associated to pEA are displayed with functional boxplots,
namely highest density region (HDR) boxplots, obtained by using the R package
rainbow developed by Hyndman and Shang [2010]. The HDR boxplot is a vizual-
ization tool for functional data based on kernel density estimation of the scores as-
sociated to the two first principal components of the functional data (see Hyndman
[1996] for further details). The picture clearly indicates that the differences in the
mean dynamics obtained from the three different algorithms cannot be attributed to
sample variability alone. As another example, a zoom in the time t = 60 (see Fig-
ure 8) shows significant differences for the total index estimates of the parameters
γI , γH , pC , pDC and pHD, and to a less extent γ1 and pEA.
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Figure 7: Mean dynamical evolution of (left) first-order and (right) total Sobol’ in-
dices for YI with respect to (Figures (a) and (b)) Gillespie Direct Method, (Figure
(c) and (d)) Gillespie First Reaction, (Figures (e) and (f)) Modified Next Reaction
algorithm. The mean is computed from 50 independent repetitions of the estima-
tion procedure performed with two independent designs of n = 2000 input-output
samples.
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Figure 8: Zoom on total Sobol’ indices at time point t = 60.
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Figure 9: Functional HDR boxplots of dynamical total indices associated to param-
eter pE,A, obtained from 50 independent repetitions of the estimation procedure.
(left) Gillespie Direct Method, (middle) Gillespie First Reaction Method, (right)
Modified Next Reaction Method. The 50% HDR is plotted in dark gray, the 100%
HDR in light gray and the modal curve, that is the curve in the sample with the
highest density is represented by a black solid line.

5.4 Some thoughts about the choice of representations

The numerical experiments confirm that the sensitivity analysis results depend on
the choice of the simulation algorithm. An interesting conclusion is that Gillespie
algorithms are less prone to interactions between uncertain parameters and intrin-
sic randomness. It implies that simulations with Gillespie algorithms are more
robust to a local perturbation of uncertain input parameters as we can see below by
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perturbing parameter β.
To plot Figure 10, we first simulate, for each simulation algorithm (Gillespie

Direct Method, Gillespie First Reaction, Modified Next Reaction), 2 000 trajecto-
ries (corresponding to 2 000 different seeds) of the difference between the num-
ber of symptomatic infectious individuals computed with all uncertain parameters
fixed to their nominal value and the number of symptomatic infectious individuals
computed by perturbing only parameter β by 5% from its nominal value. Then in
Figure 10 are plotted highest density region (HDR) boxplots.
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Figure 10: Functional HDR boxplots of differences of the dynamical number of
symptomatic infectious individuals computed with uncertain parameters fixed to
their nominal value and by perturbing parameter β by 5% from its nominal value:
(left) Gillespie Direct Method, (middle) Gillespie First Reaction Method, (right)
Modified Next Reaction Method. The 50% HDR is plotted in dark gray, the 100%
HDR in light gray and the modal curve, that is the curve in the sample with the
highest density is represented by a black solid line. Functional HDR boxplots were
drawn from 2 000 independent realizations.

6 Conclusion

In this work, we proposed a methodology for global sensitivity analysis of stochas-
tic compartmental models described by continuous-time Markov chains. This ap-
proach consists in leveraging exact simulation algorithms of the continuous-time
Markov chain to propose a representation of the stochastic compartmental model as
a deterministic function of the uncertain parameters and controlled latent variables
modeling intrinsic randomness. Our study takehome message is that sensitivity
analysis results depend on the choice of the representation, which, therefore, must
be made with caution and guided by the practitioners’ expertise. We exhibited three
different representations for CTMC compartmental models, based respectively on
Gillespie Direct Algorithm, Gillespie First Reaction Method and Modified Next
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Reaction Method. Gillespie Direct Algorithm is computationally advantageous but
cannot provide a sensitivity analysis by type of transition, contrarily to Gillespie
First Reaction and Modified Next Reaction algorithms. We found that Gillespie
Direct algorithm and Gillespie First Reaction algorithm are more robust to local
perturbations of the uncertain parameters. We applied our approach to a stochastic
compartmental model of SARS-CoV-2 spread.

In the present paper, we considered Markovian models only. However an in-
teresting follow-up would be to extend our results to non-Markovian stochastic
processes by using Sellke’s construction (Sellke [1983]).
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