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Abstract

This paper deals with the problem of finding the preferred extensions of an argu-
mentation framework by means of a bijection with the naive extensions of another
framework. First we consider the case where an argumentation framework is naive-
realizable: its naive and preferred extensions are equal. Recognizing naive-realizable
argumentation frameworks is hard, but we show that it is tractable for frameworks
with bounded in-degree. Next, we give a bijection between the preferred extensions
of an argumentation framework being admissible-closed (the intersection of two ad-
missible sets is admissible) and the naive extensions of another framework on the
same set of arguments. On the other hand, we prove that identifying admissible-
closed argumentation frameworks is coNP-complete. At last, we introduce the notion
of irreducible self-defending sets as those that are not the union of others. It turns
out there exists a bijection between the preferred extensions of an argumentation
framework and the naive extensions of a framework on its irreducible self-defending
sets. Consequently, the preferred extensions of argumentation frameworks with some
lattice properties can be listed with polynomial delay and polynomial space.

Keywords: argumentation framework, preferred extensions, naive extensions, re-
casting, irreducible self-defending sets.

1 Introduction
For the last few years, argumentation frameworks have become a major research trend
within the field of artificial intelligence [4, 27, 28]. In his pioneering work [10], Dung defines
an argumentation framework as a set of arguments connected together by a binary attack
relation. To estimate the relevance (or the acceptability) of a group of arguments, he also
introduces semantics and extensions. More precisely, a semantic is a collection of criteria
and the extensions of a semantic are the sets of arguments meeting its requirements.

Extensions and semantics are at the core of numerous decision and search problems
revolving around argumentation frameworks. Unfortunately, most of these problems are
hard to solve for several argumentation semantics [15, 18, 23]. Nevertheless, these hardness
results have motivated the search for tractable classes of argumentation frameworks among
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which we quote the frameworks being without even cycles [12], symmetric [7] or bipartite
[11].

In this context, our paper draws inspiration from the work of Dunne et al. [13] on
realizability and recasting problems for argumentation frameworks. More precisely, we
seek to express the set of preferred extensions of a given framework using a bijective corre-
spondence with the naive extensions of another argumentation framework. For example,
symmetric argumentation frameworks admit a bijection between their naive and preferred
extensions [7]. The benefit of our approach is to obtain polynomial delay and polynomial
space algorithms enumerating the preferred extensions of an argumentation framework.
On this purpose, we obtain the following contributions:

1. Naive-realizable argumentation frameworks (Section 3). An argumentation
framework is naive-realizable if its naive extensions are equal to its preferred extensions.
For instance, symmetric argumentation frameworks are naive-realizable [7]. We give an
exact characterization of naive-realizable argumentation frameworks. We deduce an algo-
rithm to recognize this class of argumentation frameworks, running in polynomial time in
frameworks with bounded in-degree. In contrast, we prove that this recognition problem
is coNP-complete in general.

2. Naive-recasting and admissible-closed argumentation frameworks (Sec-
tion 4). An argumentation framework is naive-recasting if its preferred extensions are
the naive extensions of an other argumentation framework. This class of argumentation
framework has been introduced by Dunne et al. [13], and studied in a series of works
[2, 14, 21, 26]. In particular, the authors in [13] show that deciding whether a given argu-
mentation framework is naive-recasting is coNP-hard. In our contribution, we introduce
admissible-closed argumentation frameworks. An argumentation framework belongs to
this class if its admissible sets are closed under intersection. Using implicational systems
[17, 5], we show that admissible-closed argumentation frameworks are naive-recasting.
Eventually, we prove that recognizing admissible-closed argumentation frameworks is a
coNP-complete problem.

3. Irreducible self-defending sets (Section 5). Using the lattice structure of
self-defending sets [8, 10] we introduce irreducible self-defending sets. A self-defending
set is irreducible if it cannot be obtained as the union of other self-defending sets. We
construct a bijection between the preferred extensions of an argumentation framework
and the naive extensions of another framework on its irreducible self-defending sets. We
deduce that when an argumentation framework meets some lattice properties, it is possible
to enumerate its preferred extensions with polynomial delay and polynomial space.

2 Background
All the objects considered in this paper are finite. Let A be a set. If S is a subset of A,
we write S̄ The complement of S in A, that is S̄ = A \ S. The complementary set of a
set family F over A is the set system defined F̄ by F̄ = {S̄ | S ∈ F}.

Argumentation frameworks We follow [10]. An argumentation framework is a pair
F = 〈A,R〉 where A is a set of arguments, and R (attacks) is a binary relation on A, i.e.
R ⊆ A×A. A pair (x, y) in R depicts an attack of the argument x against the argument
y. We can represent an argumentation framework F by a directed graph G = (A,R),
known as the attack graph of F . Given a subset S of arguments, we denote by S+ the
set of arguments attacked by S, i.e. S+ = {x ∈ A | ∃y ∈ S, (y, x) ∈ R}. Likewise,
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the set of arguments that attack at least one argument of S is denoted by S−, that is
S− = {x ∈ A | ∃y ∈ S, (x, y) ∈ R}. Finally, we put Γ(S) = S+ ∪ S−.

All extensions in argumentation frameworks are based on two important concepts:
being acceptable or conflict-free. Let S ⊆ A. An argument x ∈ A is acceptable with
respect to S if for each y ∈ A, (y, x) ∈ R implies that (z, y) ∈ R for some z in S. We say
that S is conflict-free (an independent set in graph theory’s terminology) if S ∩ S+ = ∅.
We denote by CF(F ) the family of all conflict-free sets of F . We call S(F ) the set of
all self-attacking arguments, that is S(F ) = {x ∈ A | (x, x) ∈ R}. The inclusion-wise
maximal conflict-free subsets of A are called naive extensions in [6] (maximal independent
set in graph theoretic terms). The family of all naive extensions of F is denoted by
NAIV(F ). A set S ⊆ A is self-defending if S− ⊆ S+. The family of all self-defending
sets of F is denoted by SD(F ). Using conflict-free and acceptable sets, Dung [10] defines
several extensions. A conflict-free set S ⊆ A is admissible if S− ⊆ S+. The family of
all admissible sets of F is denoted by ADM(F ). The inclusion-wise maximal admissible
subsets of A are called preferred extensions, and the family of all preferred extensions of
F is denoted by PREF(F ). We refer the reader to Baroni et al. [1] for more discussion
on semantics.

Closure systems and implicational systems A closure system over a set A is a
family of subsets of A closed under intersection and containing A. When ordered by
inclusion, a closure system (or its complement) forms a lattice. An implication over A
is an expression of the form X → y where X ⊆ A and y ∈ A. In X → y, X is the
premise and y the conclusion of the implication. An implicational system Σ over A is a
set of implications over A. For more details on implicational systems, see [5, 29]. Let
Σ = {X1 → x1, . . . , Xn → xn} be an implicational system on a set A and let S ⊆ A. The
Σ-closure of S, denoted SΣ, is the inclusion-wise minimal set containing S and satisfying:

Xj ⊆ SΣ =⇒ xj ∈ SΣ for every 1 ≤ j ≤ n

The family FΣ = {SΣ | S ⊆ A} is a closure system. The sets in FΣ are the closed sets of
Σ. In [17], the authors show that the self-defending sets of an argumentation frameworks
coincide with the closed sets of an implicational system.

Theorem 2.1. [17] Let F = 〈A,R〉 be an argumentation framework, and let Σ = {y− →
z | (y, z) ∈ R and (z, y) /∈ R} be its associated implicational system. Then F̄Σ = SD(F ).

Enumeration complexity We use the definitions of [20]. Let A be an algorithm with
input x and output a set of solutions R(x). We denote by |R(x)| the number of solutions in
R(x). We assume that each solution in R(x) has size poly(|x|). The algorithm A is running
in output-polynomial time if its execution time is bounded by poly(|x| + |R(x)|). If the
delay between two solutions output and after the last one is poly(|x|), A has polynomial-
delay.

3 Naive-realizable argumentation frameworks
In this section, we show that checking whether the family of preferred extensions of a given
argumentation framework is equal to the family of its naive extensions is a coNP-complete
problem. In contrast, we give a polynomial time algorithm to analyze the bounded in-
degree argumentation frameworks.
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Definition 1. Let F = 〈A,R〉 be an argumentation framework. We say that F is naive-
realizable if NAIV(F ) = PREF(F ).

Lemma 1. Let F = 〈A,R〉 be an argumentation framework and let Σ be its associated
implicational system, obtained with Theorem 2.1. If ∅Σ * S(F ), then F is not naive-
realizable.

Proof. The result follows from the fact that an argument x ∈ ∅Σ \ S(F ) belongs to at
least one conflict-free set in F and not to any admissible set in F .

An argument x in ∅Σ cannot appear in a self-defending set. In particular, it is not
contained in any admissible set. Thus, adding the self-attack (x, x) to R does not change
ADM(F ). Therefore, an argumentation framework where ∅Σ * S can be transformed in
polynomial time to an argumentation framework satisfying ∅Σ ⊆ S without changing the
admissible and preferred extensions. This is done by adding a self-attack to each argument
x in ∅Σ. The next theorem characterizes naive-realizable argumentation frameworks.

Theorem 3.1. Let F = 〈A,R〉 be an argumentation framework and let Σ be its associated
implicational system, obtained with Theorem 2.1. Suppose that ∅Σ ⊆ S(F ). Then F is
naive-realizable if and only if for each x, y ∈ A such that (y, x) ∈ R and (x, y) /∈ R, there
does not exist a subset S ⊆ Γ(y−) satisfying S ∪ {x} ∈ CF(F ) and S ∪ {z} /∈ CF(F ) for
every z ∈ y−.

Proof. We begin with the only if part. We use contrapositive. Let x, y ∈ A such that
(x, y) ∈ R and (y, x) /∈ R and suppose that there exists S ⊆ Γ(y−) such that S ∪ {x} ∈
CF(F ) and for all z ∈ y−, S ∪ {z} /∈ CF(F ). Then, there exists a naive extension S′ such
that S ∪{x} ⊆ S′ and S′ ∩ y− = ∅. It follows that S′ is not self-defending and hence that
it is not preferred either.

Now we prove the if part. Suppose that for all x, y ∈ A such that (x, y) ∈ R and
(y, x) /∈ R, there does not exist S ⊆ Γ(y−) such that S∪{x} ∈ CF(F ) and S∪{z} /∈ CF(F )
for every z ∈ y−. If S is a conflict-free set of F such that x ∈ S, there must exist z ∈ y−

such that S∪{z} is a conflict-free set of F . However, a naive extension is an inclusion-wise
maximal conflict-free set. Thus, if S′ is a naive extension of F and x ∈ S′, S′ ∩ y− 6= ∅
must hold. Therefore, every naive extension of F is also self-defending. We deduce that
the family of naive extensions of F equals the family of its preferred extensions, concluding
the proof.

Now we consider the problem of recognizing naive-realizable argumentation frame-
works. Formally, The problem reads as follows:

Naive-realizable argumentation framework recognition (NAF)
Input: An argumentation framework F = 〈A,R〉.
Question: Is F naive-realizable?

On the basis of Theorem 3.1, we deduce the following strategy to solve NAF: for each
x, y ∈ A such that (y, x) ∈ R and (x, y) /∈ R, check whether there exists a conflict-free
set S ⊆ Γ(y−) such that S ∪ {x} is a conflict-free set of F and for all z ∈ y−, S ∪ {z} is
not a conflict-free set of F . Return "No" if such a S exists and "Yes" otherwise. Quite
clearly, this algorithm has exponential-time complexity. Yet, it runs in polynomial time
if the in-degree of F is bounded by a constant.

Proposition 1. Let F = 〈A,R〉 be an argumentation framework. If the in-degree of F
is bounded by a constant, there exists a polynomial time algorithm (in the size of F ) to
check whether F is naive-realizable.
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Proof. By assumption, the sizes of y− and Γ(y−) are bounded by a constant. Thus, for
each x ∈ A, the condition of Theorem 3.1 can be verified by testing a constant number
of subsets of A. Since A is given in the input, the whole procedure runs in polynomial
time as required.

For the general case, we settle the hardness of NAF in the subsequent theorem.

Theorem 3.2. The problem NAF is coNP-complete.

Proof. The proof is a reduction from 3-SAT. Let C =
∧m

i=1 Ci be a CNF formula, where
each clause Ci is a disjunction of three literals from {x1, ..., xn,¬x1, ...,¬xn}. Let F be
the argumentation framework 〈A,R〉 where (see also Figure 1):

A ={x, y} ∪ {Ci | 1 ≤ i ≤ m}
∪ {xj ,¬xj | 1 ≤ j ≤ n};

R ={(y, x)} ∪ {(Ci, y), (y, Ci) | 1 ≤ i ≤ m}
∪ {(xj , Ci), (Ci, xj) | xj occurs in Ci}
∪ {(¬xj , Ci), (Ci,¬xj) | ¬xj occurs in Ci}
∪ {(xj ,¬xj), (¬xj , xj) | 1 ≤ j ≤ n}.

The construction of F is done in polynomial time in the size of C. We show that F has a
non-admissible naive extension if and only if C is satisfiable. Let S be a naive extension
of F . We have two cases. First, y ∈ S. Then, S is a conflict-free extension of the sub-
argumentation framework F|x = 〈A\{x},R\{(y, x)}〉. Since F|x is symmetric and x+ = ∅,
each subset of A \ {x} is self-defending in F (see [7]). In particular, every conflict-free
set of F|x is admissible in F . Therefore, S must be admissible in F . The second case is,
y /∈ S. Then, x ∈ S and S is not admissible in F if and only if S ∩ {C1, . . . , Cm} = ∅. By
construction of F , it follows that S is not admissible if and only if for each Ci, 1 ≤ i ≤ m,
there exists some 1 ≤ j ≤ n such that `j ∈ Ci and `j ∈ S with `j ∈ {xj ,¬xj}. As
(xj ,¬xj) ∈ R for each 1 ≤ j ≤ n and S is conflict-free, {xj ,¬xj} ⊆ S cannot hold. We
deduce that S is not admissible if and only if C is satisfiable, concluding the proof.

y

x1

¬x1

xn

¬xn

C1

C2

Cm

x
Ci

Figure 1: Attack graph of F .

4 Naive-recasting and admissible-closed argumentation
frameworks

In this section, we study the class of argumentation frameworks whose preferred extensions
are the naive extensions of another argumentation framework. This class of argumentation
frameworks is called naive-recasting.

5



Definition 2. Let F = 〈A,R〉 be an argumentation framework. We say that F is naive-
recasting if there exists an argumentation framework F ′ = 〈A′,R′〉 such that PREF(F ) =
NAIV(F ′).

Dunne et al. [13] show that it is coNP-hard to recognize naive-recasting argumentation
frameworks. This problem is defined as follows:

Naive-recasting argumentation framework recognition (NRAF)
Input: An argumentation framework F = 〈A,R〉.
Question: Is F naive-recasting?

Theorem 4.1. [13] The problem NRAF is coNP-hard.

Let F = 〈A,R〉 be an argumentation framework. We prove that F is naive-recasting
in the restricted case where ADM(F ) is closed under intersection. First, we formally
define this class of argumentation frameworks.

Definition 3. Let F = 〈A,R〉 be an argumentation framework. We say that F is
admissible-closed if its admissible sets are closed under intersection.

Lemma 2. Let F = 〈A,R〉 be an admissible-closed argumentation framework. Then,
there exists a family of self-defending sets SD′(F ) ⊆ SD(F ) closed under union and
intersection such that SD′(F ) ∩ CF (F )= ADM(F ).

Proof. Let SD′(F ) be the set system obtained from ADM(F ) after closing under union,
that is SD′(F ) = {

⋃
I | I ⊆ ADM(F )}. Since self-defending sets are closed under

union [10] and ADM(F ) ⊆ SD(F ), SD′(F ) ⊆ SD(F ) readily holds. Then, the fact that
SD′(F ) ∩ CF(F ) = ADM(F ) follows from ADM(F ) ⊆ SD′(F ) ⊆ SD(F ) and SD(F ) ∩
CF(F ) = ADM(F ).

It remains to prove that SD′(F ) is closed under intersection. Let S1, S2 ∈ SD′(F ). We
show that S1 ∩ S2 ∈ SD′(F ). By construction of SD′(F ), S1 =

⋃k
i=1 Ai and S2 =

⋃`
j=1 Bj

with Ai, Bj ∈ ADM(F ) for every 1 ≤ i ≤ k and every 1 ≤ j ≤ `. Therefore, we have:

S1 ∩ S2 =
(

k⋃
i=1

Ai

)
∩

⋃̀
j=1

Bj

 =
k⋃

i=1

⋃̀
j=1

(Ai ∩Bj)

However, ADM(F ) is closed under intersection by assumption. Consequently, Ai ∩ Bj ∈
ADM(F ) for every 1 ≤ i ≤ k and every 1 ≤ j ≤ `. We deduce that S1 ∩ S2 ∈ SD′(F ) as
required.

Theorem 4.2. Every admissible-closed argumentation framework is naive-recasting.

Proof. Consider an admissible-closed argumentation framework F = 〈A,R〉. According
to Lemma 2, there is a collection of self-defending sets SD′(F ) ⊆ SD(F ) which completely
includes ADM(F ). Since SD′(F ) is closed under union and intersection, it is possible to
represent the closure system 〈SD′(F ),⊆〉 by an implicational system Σd with singleton
premises, as shown in [29]. Let S∗ be the inclusion-wise maximal set of SD′(F ). Consider
now the argumentation framework F ′ = 〈A,R′〉 constructed from F , Σd and S∗, by
extending R to R′ with the following rules:

Rule 1: if x ∈ A \ S∗, then add (x, x) to R′.

Rule 2: if x→ z ∈ Σd and y ∈ Γ(z), then add (x, y) and (y, x) to R′.
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To show that F is naive-recasting, it is sufficient to prove NAIV(F ′) ⊆ ADM(F ) ⊆
CF(F ′).

We begin with the first inclusion. Let S ∈ NAIV(F ′). Since R ⊆ R′, S ∈ CF(F ) is
clear. By Rule 1, S ⊆ S∗. We show that S is closed for Σd and hence that S is self-
defending in F , in virtue of Lemma 2. Let x→ z be an implication of Σd such that x ∈ S.
Since S is conflict-free in F ′, Rule 2 implies that S ∩ Γ(z) = ∅. Thus, S ∪ {z} is also
conflict-free in F ′. As S is an inclusion-wise maximal conflict-free set of F ′, we deduce
that z ∈ S. Therefore, S is a closed set of Σd so that S ∈ SD(F ) holds. Consequently, we
have S ∈ ADM(F ) as required.

We move to the second inclusion. Let S ∈ ADM(F ). We show that S ∈ CF(F ′). By
assumption on F , S ⊆ S∗ and S is a closed set of Σd. Suppose for contradiction that
S is not conflict-free in F ′. Since S is conflict-free in F and S ⊆ S∗, it must be that S
contains a pair (x, y) of R′ which has been added by Rule 2. Consequently, there exists
an implication x → z in Σd such that x ∈ S and y ∈ Γ(z). However, S is a closed set of
Σd by assumption on F and by construction of Σd. Therefore, x ∈ S implies z ∈ S so
that {y, z} ⊆ S also holds. As y ∈ Γ(z) in F , this contradicts S ∈ CF(F ). We deduce
that S ∈ CF(F ′), which concludes the proof.

In the following result, we show that it is coNP-complete to recognize admissible-closed
argumentation frameworks.

Admissible-closed argumentation framework recognition (ACAF)
Input: An argumentation framework F = 〈A,R〉.
Question: Is F admissible-closed?

Theorem 4.3. The problem ACAF is coNP-complete.

Proof. The proof is a reduction from 3-SAT. Let C =
∧m

i=1 Ci be a CNF formula, where
each clause Ci is a disjunction of three literals from {x1, ..., xn,¬x1, ...,¬xn}. Let F be
the argumentation framework 〈A,R〉 where (see also Figure 2):

A ={x, y, z1, z2} ∪ {Ci | 1 ≤ i ≤ m}
∪ {xj ,¬xj | 1 ≤ j ≤ n}

R ={(xj , Ci), (Ci, xj) | xj occurs in Ci}
∪ {(¬xj , Ci), (Ci,¬xj) | ¬xj occurs in Ci}
∪ {(z1, y), (z2, y), (z1, z2), (z2, z1), (y, x)}
∪ {(Ci, z1) | 1 ≤ i ≤ m}
∪ {(xj ,¬xj), (¬xj , xj) | 1 ≤ j ≤ n}

The construction of F can be done in polynomial time in the size of C. Using the same
reasoning as in Theorem 3.2, we can show that F has an admissible set S with {x, z1} ⊆ S
if and only if C is satisfiable. It remains to show that F is admissible-closed if and only
if such a S does not exist.

We prove the only if part using contrapositive. Assume that there exists an admissible
set S such that {z1, x} ⊆ S. Since (z1, z2) ∈ R and S is admissible, z2 /∈ S. As {x, z2}
is also admissible, we have that S ∩ {x, z2} is not self-defending as x ∈ S ∩ {x, z2} and
Γ(y) ∩ S = ∅. Hence, F is not admissible-closed.

We move to the if part. Suppose that S does not exists. By assumption, an admissible
set which contains x also contains z2. Moreover, y− = {z1, z2} and (z1, z2) ∈ R so that no
admissible set in F contains y. Thus, the family of admissible sets of F is not closed under
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intersection if and only if there exists two admissible sets S1, S2 ⊆ B = A \ {x, y, z1, z2}
such that their intersection S1 ∩ S2 is not an admissible set of F . However, there is no
attack from {x, y, z1, z2} to B and the sub-argumentation framework F ′ = 〈B,R∩(B×B)〉
is symmetric (see, [7]). Therefore, each conflict-free set of F ′ is admissible in F . As the
intersection of two conflict-free sets is conflict-free, we deduce that for every admissible
sets S1, S2 ⊆ B, S1 ∩ S2 is also admissible. As a consequence, F is admissible-closed,
concluding the proof.

x1

¬x1

xn

¬xn

C1

C2

Cm

y
x

Ci

z2

z1

Figure 2: Attack graph of F .

To conclude this section, let F be an admissible-closed argumentation framework.
According to Theorem 4.2, we can build an argumentation framework F ′ (on the same
set of arguments) such that NAIV(F ′) = PREF(F ). Thus, we can compute PREF(F )
with polynomial delay from F ′ using the algorithm of Johnson et al. [20]. However,
whether we can find F ′ in polynomial time in the size of F is open.

Open problem Let F be an admissible-closed argumentation framework and let F ′ be
an argumentation framework such that NAIV(F ′) = PREF(F ). Is it possible to find F ′

in polynomial time from F?

5 Irreducible self-defending sets and preferred extensions
In this section we introduce the irreducible self-defending sets of an argumentation frame-
work. They are those self-defending sets that cannot be obtained as the union of other
self-defending sets. In lattice theoretic terms [8], they are the join-irreducible elements
of the lattice of self-defending sets [10]. Using these irreducible elements, we construct a
new argumentation framework whose naive extensions are in a one-to-one correspondence
with the preferred extensions of the input framework. We deduce an algorithm to list the
preferred extensions of an argumentation framework using its irreducible self-defending
sets. This algorithm has polynomial-delay and polynomial space when the irreducible sets
are given. First, we formally define irreducible self-defending sets.

Definition 4. Let F = 〈A,R〉 be an argumentation framework. A self-defending set
S ∈ SD(F ) with S 6= ∅ is irreducible if for every S1, S2 ∈ SD(F ), S = S1 ∪ S2 implies
S = S1 or S = S2. We denote by IRR(F ) the family of irreducible self-defending sets of
F .

Remark 1. The initial admissible sets [30] are irreducible self-defending sets. A set
of arguments is an initial admissible set if it is an inclusion-wise minimal non-empty
admissible set.
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Let F = 〈A,R〉 be an argumentation framework. The family SD(F ) can be generated
from IRR(F ) by taking the union of all possible subsets of IRR(F ), that is SD(F ) =
{
⋃
I | I ⊆ IRR(F )}, see [8]. Since a self-defending set in IRR(F ) cannot be obtained

by union, IRR(F ) is in fact the most compact representation of SD(F ) by self-defending
sets. For a given S ∈ SD(F ), we put IRR(S) = {S′ ∈ IRR(F ) | S′ ⊆ S}. We have
S =

⋃
IRR(S).

Remark 2. This representation by irreducible elements is common in several fields of
computer science. It is used for instance in: posets of irreducible elements of lattices
[25], (reduced) contexts in Formal Concept Analysis [19], characteristic models of a Horn
function [22], bases of knowledge spaces [9], Armstrong relations in database theory [24].

Example 1. Let F be the argumentation framework on the left of Figure 3. On the right,
we represent the family SD(F ) ordered by inclusion. The irreducible self-defending sets
are highlighted. We have IRR(F ) = {1, 2, 14, 24}. On the other hand, 12 is not irreducible
as 12 = 1 ∪ 2.

1

2

3
4

∅

124

12

F 〈SD(F ),⊆〉

1

14

2

24

IRR(F )

Figure 3: An argumentation framework F , its self-defending sets SD(F ) with IRR(F )
highlighted

Let F = 〈A,R〉 be an argumentation framework. We construct an argumentation
framework FIRR = 〈IRR(F ),RIRR〉 from which PREF(F ) can be easily recovered with
NAIV(FIRR). We start with the following lemma.

Lemma 3. Let F = 〈A,R〉 be an argumentation framework. A self-defending set S is
not admissible if and only if there exists S1, S2 ∈ IRR(S) such that S1 ∪ S2 is not an
admissible extension of F .

Proof. The if part is clear. Let S ∈ SD(F ) with S /∈ ADM(F ). By definition, S contains
some pair (x, y) such that (x, y) ∈ R. Since S =

⋃
IRR(S), there exist S1, S2 ∈ IRR(S)

such that x ∈ S1 and y ∈ S2 (possibly S1 = S2). Thus, S1 ∪ S2 is a self-defending set
which is not admissible, concluding the proof.

In the next lemma, we use Lemma 3 to devise an argumentation framework FIRR on
IRR(F ) and show the relationship between NAIV(FIRR) and PREF(F ).

Lemma 4. Let F = 〈A,R〉 be an argumentation framework. Let FIRR = 〈IRR(F ),RIRR〉
be a new argumentation framework where RIRR = {(S1, S2) | S1, S2 ∈ IRR(F ) and S1 ∪
S2 /∈ ADM(F )}. Then, the following equality holds and it is moreover a bijection between
PREF(F ) and NAIV(FIRR):

PREF(F ) =
{⋃
I | I ∈ NAIV(FIRR)

}
9



Proof. First we show the equality. Let FIRR be the argumentation framework defined in
the lemma. We begin with the ⊆ part of the equality. Let S ∈ PREF(F ) and consider
IRR(S). We show that IRR(S) is a naive extension of FIRR. Since S is admissible, IRR(S)
is a conflict-free extension of FIRR by Lemma 3 and by construction of FIRR. If IRR(S) =
IRR(F ), then it is clearly the unique naive extension of FIRR. Suppose now there exists
S′ ∈ IRR(F ) such that S′ /∈ IRR(S) and consider the set S′′ = S′ ∪

⋃
IRR(S) = S′ ∪ S.

Since the union of two self-defending set is self-defending, S′′ is a self-defending set of F .
Moreover, we have S ⊂ S′′ by definition of IRR(S). Since S ∈ PREF(F ) and S ⊂ S′′,
we have S′′ /∈ ADM(F ). Thus, there exists a pair (x, y) in R such that {x, y} ⊆ S′′

while {x, y} * S. As S is admissible and S′′ = S ∪ S′ we deduce that either x ∈ S′ or
y ∈ S′. If both x and y belong to S′, then IRR(S) ∪ {S′} is not a conflict-free extension
of FIRR. Assume now that x ∈ S′ but y /∈ S′, without loss of generality. Observe that we
must have y ∈ S as otherwise {x, y} ⊆ S′′ would not hold. Because S =

⋃
IRR(S) and

y ∈ S, we deduce that there exists T ∈ IRR(S) such that y ∈ T . Hence, {x, y} ⊆ S′ ∪ T
which entails that (T, S′) ∈ RIRR and IRR(S) ∪ {S′} is not a conflict-free extension of
FIRR. Consequently, for every S′ ∈ IRR(F ) \ IRR(S), we have that IRR(S)∪ {S′} is not
a conflict-free extension of FIRR. Together with the fact that IRR(S) is conflict-free, we
conclude that IRR(S) is a naive extension of FIRR as expected.

We move to the ⊇ part. Let I ∈ NAIV(FIRR). Let S =
⋃
I. We show that

S ∈ PREF(F ). Since IRR(F ) generates SD(F ), S ∈ SD(F ) readily holds. Assume
for contradiction that S /∈ ADM(F ). Then, there exists (x, y) ∈ R such that {x, y} ⊆ S.
Since S =

⋃
I, there exists S1, S2 ∈ I such that {x, y} ⊆ S1 ∪ S2. In particular, it must

be that (S1, S2) ∈ RIRR by construction of FIRR so that I is not a conflict-free extension
of FIRR, a contradiction. Thus, S ∈ ADM(F ) must hold. Now let S′ ∈ IRR(F ) such that
S′ /∈ I. If such a S′ does not exist, the result S ∈ PREF(F ) is clear. Otherwise, we have
two cases. First, {S′} /∈ CF(FIRR). Then S ∪S′ is not admissible in F by construction of
FIRR. Second, {S′} ∈ CF(FIRR). Since I ∈ NAIV(FIRR), we have that S ∪ {S′} contains
some pair of RIRR and hence that S ∪ S′ /∈ ADM(F ) again by construction of FIRR.
In both cases, we deduce that S ∪ S′ /∈ ADM(F ). As S ∈ ADM(F ), we deduce that
S ∈ PREF(F ) as expected. This concludes the ⊇ part of the proof, and the equality of
the lemma holds.

Now we show this equality defines a bijection between PREF(F ) and NAIV(FIRR).
As IRR(S) is uniquely defined for every S ∈ SD(F ), it is sufficient to prove that for
every I ∈ NAIV(FIRR), I = IRR(S) for some S ∈ PREF(F ). Let I ∈ NAIV(F ) and let
S =

⋃
I. By previous discussion S ∈ PREF(F ). Moreover, I ⊆ IRR(S) by definition of

IRR(S). To prove that I = IRR(S), we show that S′ /∈ I implies S′ /∈ IRR(S), for every
S′ ∈ IRR(F ). First, observe that if I = IRR(F ), the implication is clear. Now assume
there exists some S′ in IRR(F ) \ I. We show that S ∪ S′ 6= S. Because I ∈ NAIV(F )
and S =

⋃
I, it follows from the construction of FIRR that S ∪ S′ /∈ ADM(F ). As

S ∈ ADM(F ), we deduce that S∪S′ 6= S must hold. Thus, S′ /∈ IRR(S) for every S′ /∈ I.
We obtain I = IRR(S), concluding the proof.

Example 2. Let F be the argumentation framework represented on the top of Figure
4. We give the family SD(F ) on the bottom of the same figure. We have PREF(F ) =
{1234, 4xyz} and IRR(F ) = {4, 124, 134, 23, xyz}. In Figure 5, we give the argumentation
framework FIRR from Lemma 4. It is symmetric by construction. We have NAIV(FIRR) =
{{4, xyz}, {4, 124, 23, 134}}. Then 4 ∪ xyz = 4xyz and 4 ∪ 124 ∪ 23 ∪ 134 = 1234, corre-
sponding to PREF(F ) as proven in Lemma 4.

We use Lemma 4 to find PREF(F ). If IRR(F ) is given, FIRR can be computed in
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Figure 4: An argumentation framework and its family of self-defending sets (ordered by
inclusion).
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124
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Figure 5: The argumentation framework FIRR.

polynomial time in the size of F and IRR(F ). Applying the algorithm of Jonhson et al.
[20], we derive:

Corollary 1. Let F = 〈A,R〉 be an argumentation framework. Then, PREF(F ) can be
computed with polynomial delay and space in the size of IRR(F ) and F .

Proof. We describe the algorithm. First, we construct the argumentation framework
FIRR = 〈IRR(F ),RIRR〉 in polynomial time in the size of IRR(F ) and F . Then, we use
the algorithm in [20] to list NAIV(FIRR). However, instead of outputting a subset I of
IRR(F ), we compute the set

⋃
I. Due to Lemma 4, each preferred extension of F will

be given exactly once. As computing I is done in polynomial time in the size of IRR(F )
and F , the polynomial delay and space of the whole algorithm follows.

We conclude by mentioning cases where IRR(F ) can be computed in polynomial time
in the size of F . In general, this problem is open and relates to hypergraph dualization
[16, 22]. Yet, there are types of argumentation frameworks where the irreducible self-
defending sets can be computed in polynomial time. When F is symmetric, the lattice
〈SD(F ),⊆〉 is Boolean. In this case, the irreducible self-defending sets are singleton
elements and they can be computed in polynomial time. Using implicational systems [17]
and previous results rooted in lattice theory [3, 29], we can compute the irreducible self-
defending sets in polynomial time for argumentation frameworks with prescribed lattice
properties such as distributivity and meet-semidistributivity.
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