Pairing cells of different sizes in a microfluidic device for immunological synapse monitoring - Archive ouverte HAL
Article Dans Une Revue Lab on a Chip Année : 2022

Pairing cells of different sizes in a microfluidic device for immunological synapse monitoring

Résumé

Analyzing cell–cell interaction is essential to investigate how immune cells function. Elegant designs have been demonstrated to study lymphocytes and their interaction partners. However, these devices have been targeting cells of similar dimensions. T lymphocytes are smaller, more deformable, and more sensitive to pressure than many cells. This work aims to fill the gap of a method for pairing cells with different dimensions. The developed method uses hydrodynamic flow focusing in the z-direction for on-site modulation of effective channel height to capture smaller cells as single cells. Due to immune cells' sensitivity to pressure, the proposed method provides a stable system without any change in flow conditions at the analysis area throughout experiments. Paired live cells have their activities analyzed with calcium imaging at the immunological synapse formed under a controlled environment. The method is demonstrated with primary human T lymphocytes, acute myeloid leukemia (AML) cell lines, and primary AML blasts.
Fichier principal
Vignette du fichier
Faruk Azam Shaik_2022_LOC_d1lc01156a.pdf (4.01 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-03565627 , version 1 (14-10-2022)

Licence

Identifiants

Citer

Faruk Azam Shaik, Clara Lewuillon, Aurélie Guillemette, Bahram Ahmadian, Carine Brinster, et al.. Pairing cells of different sizes in a microfluidic device for immunological synapse monitoring. Lab on a Chip, 2022, 22 (5), pp.908-920. ⟨10.1039/d1lc01156a⟩. ⟨hal-03565627⟩
114 Consultations
59 Téléchargements

Altmetric

Partager

More