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Abstract.
Digital holography is an imaging process that encodes the 3D information of objects

into a single intensity image. In recent years, digital holography has been used to detect
and count various microscopic objects and has been applied in submersible equipment
to monitor the distribution of plankton. To count and classify plankton, conventional
methods require a holographic reconstruction to decode the hologram and identify ob-
jects. To avoid this iterative and time consuming reconstruction, we demonstrate an
object detection based approach that simultaneously performs the detection and classi-
fication of all plankton within raw holograms. The proposed method achieved a mean
Average Precision (AP@.5) score of 0.981 with 13 plankton species on 512x512 holo-
grams with an inference time of 14 ms per image. Our method can be implemented to
detect and count other microscopic objects in raw holograms.

1 Scientific Background
The observation and statistics of marine plankton are essential to measure the health

of our oceans. In recent years, several submersible equipment [1] (ISIIS, LISST-Holo,
eHoloCam) have been deployed as part of large-scale campaigns to acquire in situ im-
ages of plankton. Some of these systems use digital holography, a method that enable
high resolution images acquisition over a large water column and at high flow rates.
Since a hologram encodes the 3D information of all plankton as a single intensity image,
a decoding process, called holographic reconstruction, is required to retrieve the sample
image from its hologram. Unfortunately, the methods used to process holograms and
then count and classify the species are still very time-consuming and manual.

With the multiplication of collected images, various efforts have been made to ac-
celerate and improve the holographic reconstruction, for instance, by adopting a con-
volutional neural network (CNN) to automatically find the focus [2] or to reconstruct
a de-focused hologram without performing an auto-focusing or phase recovery rou-
tine [3, 4]. Even though those approaches greatly accelerate the holographic recon-
struction, the classification and detection of the objects need to be performed after-
wards. As a result, some research works have focused on classifying objects directly
on raw holograms, thus avoiding iterative and time-consuming operations required for
reconstruction. In [5] a CNN is trained to perform a classification on cropped simulated
holograms with 16 different plankton species but a preliminary detection is necessary
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to determine the regions of interest (ROIs). [6] use a sliding window detection method
with a CNN that performs a binary classification to detect and count cells. However, all
the proposed methods often perform a single task on raw holograms, either a detection
or a classification. Object detection methods such as [7] Faster-RCNN, YOLO, SSD or
RefineDet, offer an alternative by performing real-time localization and classification
of all objects within an image in one pass. By labeling the detected objects within a
hologram with rectangular bounding boxes, a detection model could greatly improve
the application efficiency of digital holography.

The aim of the paper is to show that the classification and localization of plankton
can be simultaneously performed on raw holograms with an object detection model. For
that purpose, a dataset of labeled in-line holograms will be simulated with 13 different
plankton species. The paper is organized as follows. In Section two, the generation
of holographic datasets and the object detection models are described. Section three
show the performances of the models. Conclusions and perspectives are given in the
last section.

2 Materials and Methods
2.1 Hologram Formation

Figure 1: In line-holography.

For an in-line configuration (see Fig. 1), the reference and object waves share the
same optical axis and an object can be described by a complex transmission function [8]
at a given z plane:

tz(x, y) = exp[−a(x, y)] exp[iφ(x, y)] (1)

where a(x, y) describes the absorption of the object and φ(x, y) is the phase distribution.
The transmission function can be used to calculate the wavefront just behind the object
Uz+(x, y):

Uz+(x, y) = tz(x, y)Uz−(x, y) (2)

where Uz−(x, y) is the incident wave that can be either plane or spherical.
Considering that the object is located at z = 0, the exit wave given by Eq. 2 can be
rewritten as U0+(x, y) = t0(x, u)U0−(x, y) and is propagated to the detector/hologram
plane which is located at z = z2 along the optical axis. This propagation is simulated
by the angular spectrum method by calculation of the following transformation:

Uz2(X, Y ) = TF−1

[
TF (U0+(x, y))× exp

(
2πiz2
λ

√
1− (λu)2 − (λv)2

)]
(3)

where λ is the wavelength and (u, v) are the Fourier domain coordinates. TF−1 and
TF denoted the inverse Fourier transform and the direct Fourier transform, respectively.
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Note that Eq. 3 is often expressed as Uz2(X, Y ) = R(X, Y ) + O(X, Y ) where R and
O are the reference and the object waves that interfere at the surface of the recording
medium. The recorded hologram at z = z2 is the intensity calculated by:

Hz2(X, Y ) = |Uz2(X, Y )|2 = Uz2(X, Y )U∗
z2
(X, Y ) (4)

where ∗ denotes the complex conjugate. As a result, a hologram can be simulated once
λ, z2, U0−(x, y) and t0(x, y) are known or set.

2.2 Transmission Function Simulation
To generate a dataset of labeled holograms for an object detection task, the com-

plex transmission function t0(x, y) of several objects in a plane (x, y, z = 0) must be
simulated first. In that case, two labeled datasets of plankton images will be used as
objects. The first dataset consists of shadow images collected by the In Situ Ichthy-
oplankton Imaging System (ISIIS) which was the subject of a competition on Kag-
gle 1. This open source dataset consists of 121 marine plankton species among which
10 species with a number of images greater than 1000 were selected for our simula-
tions. The second dataset (custom) consists of optical microscopy images of 3 phyto-
plankton species from New Caledonia (noted P1, P16 and P17). The plankton was
imaged with a brightfield microscope at ×10 magnification. The images were thresh-
olded, segmented into (ROIs) and manually labeled. Fig. 2 presents the number of
images per species. Note that for each datasets, the ROI segments are labeled and saved
as grayscale images where the background has an uniform value equal to 1. As a result,
an image I(x, y) can be converted into an absorption a(x, y) = −1× I(x, y)+1 so that
t0(x, y) = exp[−a(x, y)] exp[iφ(x, y)] inside the object support and t0(x, y) = 1 where
there is no object. In the latter situation, the incident wave remains undisturbed.

To simulate t0(x, y) with various objects, the transmission functions of several plank-
ton images can be randomly placed on aN×N empty (all-ones) image. By doing so, the
(x, y)-axis coordinates of the bounding boxes are randomly set. Moreover, the plankton
images are already saved as ROIs so that the bounding boxes width and height are the
images dimensions. Since the images are classified per species, the labels of a simu-
lated t0(x, y) for an object detection task (classes and bounding boxes coordinates) can
be completely set.

Figure 2: Number of images per species.

1https://www.kaggle.com/c/datasciencebowl/
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2.3 Hologram Simulation
Before simulating the t0(x, y) and the holograms, the plankton images from the two

presented datasets were randomly split, per class, in a 80:20 ratio for training and test-
ing, respectively. We have considered that the plankton are pure amplitude objects so
that φ(x, y) = 0. The simulation of t0(x, y) proceeds as follows. First, for each simu-
lated t0(x, y), 13 plankton images (one per species) are randomly selected. The images
are then randomly rotated and flipped with 4 possible rotations (0◦,90◦,180◦ or 270◦)
and 3 possible flips (None, horizontal or vertical). Then, the transmission functions are
individually modified so that tplankton(x, y) = exp[−C × a(x, y)] where C is a random
constant and C ∈ [0.5, 1]. Next, the 13 transmission functions are randomly placed
without overlapping on a 512× 512 empty image to generate t0(x, y). Finally,the holo-
gram Hz2(X, Y ) is simulated with Eq. 3 and Eq. 4. Both the holograms and the t0(x, y)
are normalized between 0 and 1 and saved.

For the simulations, we have considered λ = 530nm (green), z2 = 0.8mm and
an incident plane wave U0−(x, y) = 1. 8000 and 2000 holograms were simulated for
training and testing, respectively. Fig. 3 presents an example of a simulated and labeled
t0(x, y) and its corresponding hologram.

Figure 3: Simulation example. 13 plankton images are used to generate a labeled hologram.

2.4 Object Detection Models
To perform object detection on raw holograms, we chose two YOLOv5 [9] mod-

els that were pre-trained on the COCO dataset, namely YOLOv5s 2 (the smallest) and
YOLOv5x (the largest) with 7.3M and 87.7M parameters, respectively. The models
were trained on 8000 holograms during 400 epochs with a batch size of 8 and tested
on 2000 holograms. The SGD optimizer was used with an initial learning rate equal
to 0.01. To further evaluate the object detection performances on raw holograms, two
models were also trained on the transmission functions t0(x, u) with the same hyperpa-
rameters.

The experiments were carried out on a 2.9 GHz Intel Core i7 PC with 64 GB of RAM
and a Nvidia GTX 2060 GPU. The training took 8 hours for the small model and 2 days
for the larger one.

3 Results
In this section, we report the object detection performances with the well-known

average precision (AP) metrics [7]. We recall that the AP@.5 and AP@.75 are the av-
erage precision computed with an intersection over union (IoU) threshold t = 0.5 and
t = 0.75, respectively. The AP@[.5:.95] is reported by computing the mean AP@ with
10 different IoU thresholds [.5:.05:.95]. The mean inference time was evaluated on 2000

2https://github.com/ultralytics/yolov5
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holograms and was carried out on a GTX 2060 GPU. It includes FP16 inference, post-
processing and non-maximum suppression. The Tab. 1 summarizes the performances
of the object detection tasks performed on the raw holograms and on the transmission
functions.

Table 1: Performances.

Model Inputs AP@.5:.95 AP@.5 AP@.75 Speed

YOLOv5s
Holograms 0.820 0.976 0.928

4 ms
t0(x, y) 0.967 0.985 0.985

YOLOv5x
Holograms 0.855 0.981 0.955

14 ms
t0(x, y) 0.980 0.993 0.989

For the models trained on the holograms, the AP@.5 are 0.976 and 0.981 for YOLO-
v5s and YOLOv5x, respectively. For the models trained on the transmission functions,
the AP@.5 are slightly better with 0.985 and 0.993 for YOLOv5s and YOLOv5x, re-
spectively. The AP@[.5:.95] are significantly higher on t0(x, y) than on holograms (eg.
0.980 vs. 0.855 for YOLOv5x) but the AP@.75 are still high on holograms (0.928 and
0.955 for YOLOv5s and YOLOv5x, respectively). Those results suggest that the de-
tectors trained on the holograms are efficient for a IoU threshold ≤ .75 but that their
performances start to decline at a higher threshold.

Fig. 4 shows the confusion matrix of YOLOv5x at IoU.5 on the test holograms and
one of its predictions. One can notice that the diffraction pattern of an object spreads
beyond its bounding box. In fact, the further away the object is from the camera, the
more this effect will be visible on the hologram. Because of this and the lack of sharp
edge, a detector trained on holograms was expected to have difficulty in determining
the object boundaries with a high IoU. Although the models trained on t0(x, y) perform
better than those on holograms, the performances are still promising: the species and lo-
cation of all the plankton within a 512x512 hologram can accurately be determined with
a true positive rate between 91% and 100% for the 13 classes. Moreover, the prediction
can be performed in real-time (4 ms for YOLOv5s and 12 ms for for YOLOv5x).

Figure 4: Confusion matrix at IoU.5 and model predictions (blue : ground-truth , red : predicted).

4 Conclusion
In this paper, we have generated a simulated and labeled holograms dataset from

optical and shadow plankton images for an object detection task. 13 different species
were considered. Two versions of YOLOv5 are trained on the holograms and on the
transmission functions, respectively. Even though the AP of the models trained on the
holograms are lower than those trained on the transmission functions, the difference
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in AP@.5 is less than 1.2%. With a AP@.5 score of 0.981, a YOLOv5x model can
perform detection and classification of all plankton within a 512x512 raw holograms
in a single pass in 14ms. Although this method was validated with plankton images,
it can be implemented to localize, count and identify other microscopic objects in raw
holograms.

While the results on simulated holograms are promising, it is often complicated and
time consuming to put together a large dataset of real labeled holograms to train a de-
tector. When a small labeled dataset is available, it might be beneficial to pre-train a
detector with a large amount of simulated holograms and then use a transfer learning
method to fine tune the model on the small dataset. Another approach would be to rely
on an intensive data augmentation. Some works in the literature use de-focused back-
propagated holograms as inputs of a deep learning model rather than raw holograms. By
back-propagated the holograms on several planes near the the correct global focus, the
dataset could be significantly enlarged. For future work, we intend to study the object
detection performances on a de-focused holograms dataset in which we will address the
problem of overlapping objects.
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