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GLOBAL TANGENTIALLY ANALYTICAL SOLUTIONS OF THE 3D AXIALLY
SYMMETRIC PRANDTL EQUATIONS

XINGHONG PAN AND CHAO-JIANG XU

ABSTRACT

In this paper, we will prove the global existence of solutions to the three dimensional axially
symmetric Prandtl boundary layer equations with small initial data, which lies in H' Sobolev
space with respect to the normal variable and is analytical with respect to the tangential vari-
ables. Proof of the main result relies on the construction of a tangentially weighted analytic
energy functional, which acts on a specially designed good unknown. The constructed ener-
gy functional can find its two dimensional parallel in Ignatova-Vicol [9] where no tangential
weight is introduced and the specially good unknown is set to control the lower bound of the
analytical radius, whose two dimensional similarity can be traced to Paicu-Zhang [21]. Our
result is an improvement of that in Ignatova-Vicol [9] from the almost global existence to the
global existence and an extension of that in Paicu-Zhang [21]] from the two dimensional case
to the three dimensional axially symmetric case.

Keyworbps: global existence, tangentially analytical solutions, axially symmetric, Prandtl
equations
MatHEMATICAL SUBJECT CLAssIFIcATION 2020: 35Q35, 76D03.

1 INTRODUCTION

The main purpose of this paper is to study the well-posedness of the initial-boundary value prob-
lem for the three dimensional axially symmetric Prandtl boundary layer equations in the domain
{(t,x,y,2) € R* >0, (x,y) € R?,z > 0}.

The general three dimensional Prandtl boundary layer equations read as follows,

Oyt + (0, + 90, + W, it + ,p = 0il,

8,9 + (10, + 90, + Wd,) ¥ + 0,p = 07,

0 i+ 0,v+9.w=0,

(@7, W)| =0, lim @7) = (U(t, %), V(t, %),

(1.1)

where (U(t, x,y), V(t, x,y)) and p(t, x,y) are the tangential velocity fields and pressure of the Euler
flow, satisfying

(1.2)

0,U+Ud,U+Vo,U+0,p=0,
0,V+Ud.V+VoV+o,p=0.
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Here we write & = (i1, 7, w) and U = (U(t, x, ), V(t, x,y)).

The Prandtl equations was proposed by Prandtl [20] in 1904 in order to explain the mismatch
between the no slip boundary condition of the Navier-Stokes equations and the corresponding Euler
equations when the vanishing viscosity limit v — 0. Reader can see [19] and references therein
for more introductions on the boundary layer theory and check [4] for some recent development on
this topic.

Since the Prandtl equations (I.I)) has no tangential diffusion and the advection term will cause
one order tangential derivative loss when we perform finite-order energy estimates. Local in time
well-posedness of the Prandtl equations in Sobolev spaces for general data without structure as-
sumptions is still an open question.

For data in Sobolev spaces, under the monotonic assumption on the tangential velocity of the
outflow, Oleinik and Samokhin [19] proved the local existence and uniqueness by using Crocco
transform for the two dimensional Prandtl equations. Recently, by introducing a nice change of
variable in [1]] and [18]], the cancellation property of the bad term are discovered and local well-
posedness in Sobolev spaces was proved by direct weighted energy estimates. Ill-posedness in
Sobolev spaces for the Prandtl equations around non-monotonic outflow can be found in E and
Engquist [3]], Gerard-Varet and Dormy [5]], and Gerard-Varet and Nguyen [7]. For the three dimen-
sional Prandtl equations, Liu, Wang and Yang [14] proved the local wellposedness of solutions in
Sobolev spaces under some constraints on the flow structure in addition to the monotonic assump-
tion. While this flow structure is violated, in [13]], they showed the ill posedness of the 3D Prandtl
equations in Sobolev spaces, which indicates that the monotonicity condition on tangential velocity
fields is not sufficient for the well-posedness of the three-dimensional Prandtl equations.

As for the long time behavior of the Prandtl equations in Sobolev spaces, Oleinik and Samokhin
[19] shows global regular solutions exist when the tangential variable belongs to a finite interval
with the amplitude being small. Xin and Zhang [24] proved the global existence of weak solutions
under an additional favorable sign condition on the pressure p. Xu and Zhang [25] proved that the
lifespan of the solution is O(In %) if the initial data is a small € perturbation around the monotonic
shear flow in Sobolev spaces. All the above results are discussed in the two dimensional spaces.

For data in analytical spaces, Sammartino and Caflisch [22] established the local well-posedness
in both tangential and normal variables by using the abstract Cauchy-Kowalewski theorem. The
analyticity on the normal variable was removed in [11]. Later in [10], Kukavica and Vicol gave
an energy-based proof of the local well-posedness result with data analytical only with respect to
the tangential variable. The above results are both valid for the two and three dimensional Prandtl
equations. To relax the analyticity condition is not easy. In the case where the data has a single
non-degenerate critical point in the normal variable at each fixed tangential variable point, Gérard-
Varet and Masmoudi [6] proved the local well-posedness of the two dimensional Prandtl equations
in Gevrey class 7/4 with respect to the tangential variable, which was extended to Gevrey class 2 in
[L5]] for data that are small perturbations of a shear flow with a single non-degenerate critical point
for the three dimensional Prandtl equations. Note that this exponent 2 is optimal in view of the
instability mechanism of [5]. Recently, Dietert and Gérard-varet [2] improved the well-posedness
to Gevrey class 2 by removing the hypothesis on the number and order of the critical points for
the two dimensional Prandtl equations, which was extended to the three dimensional case in Li,
Masmoudi and Yang in [12].
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For the long time existence of the Prandtl equations with analytical data, the first result appeared
in Zhang and Zhang [26] where authors there proved that the lifespan of the tangentially analytical
solution is O(e *?) if the data is an € size and the outflow is of size €/? for the two and three
dimensional Prandtl equations. Later, an almost global existence result was proved in [9] in two
dimensional case, where a good unknown combining the tangential component of the velocity
and its derivative on the normal variable is introduced to extend the existence time. This result
was extended to the three case in [16]. Most recently, Global existence of tangentially analytical
solutions with small data was proved in [21]] for the two dimensional Prandtl equations. This result
was improved to the optimal Gevrey class 2 in [23]. As far as the authors know, there isn’t any
results concerning on the global existence of tangentially analytical solutions for the three Prandtl
equations.

The main purpose of this paper is to study the global existence of tangentially analytical solu-
tions for the three dimensional axially symmetric Prandtl equations. The novelty of our work lies
in the followings: First, inspiring by the tangentially analytical energy functional in Ignatova-Vicol
[9]], we will construct a similar energy functional with the main difference being that the analytical
energy constructed in our results involves in a polynomial weight on the tangential variables, which
results from the special structure of the axially symmetric Prandtl equations and mainly set to over-
come the order mismatch between the tangentially radial velocity, ", and the normal velocity, u*,
with respect to the distance to the symmetric axis, r, when we use the divergence free condition
to connect them each other. Second, the unknown acted on by the energy functional is specially
designed, which is a combination of the tangentially radial velocity, ", and its primitive one in the
normal variable. This quantity has a sufficiently fast decay-in-time rate for our constructed weight-
ed analytical energy, which ensures the positive lower bound of the analytical radius for any time.
Its two dimensional originality can be traced to Paicu-Zhang [21]].

2 REFORMATION OF THE PROBLEM AND THE MAIN THEOREM

2.1 Reformation of the equations

In the following, we give a derivation of the three dimensional axially symmetric Prandlt equa-
tions in cylindrical coordinates (r, 6, 7), i.e., for x = (x, y, 7) € R?,

r=1/x*+y? H:arctanz,
X

a solution of (I.1)) and (I.2)) are said to be an axisymmetic solution, if and only if
it = it'(t,1,2)e, + Wt r,2)eg + W, 1, 2)e,
U= U'(t,r,2)e, + U'(t, r,2)eq,
p=pt,r),

satisfy the system (I.I) and (T.2), separately, where the components of & and U in cylindrical
coordinates are independent of 6 and the basis vectors e,, ey, e, are

e, = (E»X’()) ) €y = <_X’ E’O> ’ €, = (O’ 0’ l)
r r

r r
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Then in cylindrical coordinates, system (I.1)) and equations (I.2) satisfy

( (QG)Z
At + (0, + W) i — —+ 8,p = 0%l
~0~r
O, + (0, + o) i’ + —— = o0t o
r ’ .
0,.(rit"
(rit") 00 =0,
r

@, i, ﬁ"’)} =0, lim @, a% =U",U%,
z=0 7+
and

U2
QU +UdU-—L+0,p=0,
r
Uyl

r

o,U + U9, U° + 0.

Now we consider that the flow is swirl free, which means u’ = U? = 0. Also we consider the
simple case of the outflow U” = 0, which indicates that d,p = 0. Then (2.1)) is simplified to

0" + (0, + i°0,) it” — 6%it" = 0,

o, (rit” .
(l’ ) + quz =0, (22)
(@, i), =0, lim i =0.

z—+00

This simplified axially symmetric boundary layer equations (2.2)) has appeared in [19, Chapter
4.1]. If the axially symmetric velocity & = @' (t,r,z)e, + il(t, r,2)eg + i*(t, 1, z)e. is smooth and
divergence free, we can deduce that

~r

r=0 = ~0‘}":0 =0.

See [17]. Then there isn’t singularity for the quantity &"/r at r = 0.
Set the new unknowns

~r

W) = (=, ),
r
which satisfy the following new formation of axially symmetric Prandtl boundary layer equations

ou + (ru'd, + u‘o,)u" — agu’ + W) =0,
rou” +2u" + ou* =0, (2.3)

W, u)|_,=0, limu =0.

7—+00



GLOBAL EXISTENCE OF 3D AXIALLY SYMMETRIC PRANDTL EQUATIONS 5

2.2 The linearly good unknown

We assume u”, u* decay sufficiently fast at z infinity and define

o(t,r,z) = — / u'(t,r,7)dz, 2.4)

which also decays sufficiently fast at z infinity. By integrating (2.3), on [z, +o0] with respect to z
variable, we have

Oip — O2p — ' + / W')’dz -2 / O.u'u'dz = 0,

0:4| _,=0, lim ¢ =0,

7+

\ ¢l _,=do= / u’ (0, r, 7)dz.

And («", u*) is obtained from ¢ as
u =00, u=-rd¢—2p.

Inspired by the good unknown in [21], we define

L . (2.5)

8=00+ 5 0

which satisfies

(

1
0,g + (ru’ 0, + u*d,)g — 0g+—g+(u) -— Z(9(z¢>)+—u¢

@ 20) o
z - ™2 J= ”
< di-~ | duwidz=0,
+u»[(”)z @y ), Gz 2.6)
gl.., =0, lim ¢ =0,

r Z
\g|l‘:0 :g() =u (O,r,Z)+ E(b()(raz)'

The introduced g can control the velocity u” and u* nicely with a lower order time weight which
leads to the possibility of closing our energy functional defined below for any ¢ > 0. This good
unknown g can be viewed as a lift of that in [9], where the type of good unknown g = d,u” + 5=
are introduced to prove the almost global existence of tangentially analytical solutions.

2(t>

2.3 Energy functional spaces and the main result

Set
2
0(t,z) := exp (8(t>>
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For A € R, set

1 2
0,(t,z) = exp (Wzt)) .

Then forany A, u € R, 6., =6, - 6,.

Denote
_(m+ 1

2
Mn T’ Z:azlagz’ a:(a,l’a/Z)EN s

and
N=F+D"= x2+y2+1, O=@+1), (xy)eR*® >0.

For a positive time-dependent function 7 := 7(¢), we introduce the Sobolev weighted semi-norms

Xy = Xu(8.7) = > _16Kr)' 35 gll 27" My, n € N;

lal=n

D, = Dy(g,7) = Y _ 64" 3;0:8ll27" M, = X,(9-8,7), n € N; 2.7)

la|=n

Y, =Yg 1) = Y _ 06" a5 gll et nM,, n e (N/{0D).

lal=n

We consider the following functional space that is real-analytic in x;, = (x,y) and lies in a
weighted L? space with respect to z,

X, = {Va e N2, (r)'“'&ﬁg(t, r,z) € L* (Ri; 92dxdydz) lgllx, < oo}

where

lgllx, =) Xu(g, 7).

n=0

Remark 2.1. In our definition of the element (2.7);, there is a weight (r)" for the tangential nth
order derivative, which is set to match and control the term rd,g appeared in the equation (2.6).

We also define the semi-norm

Iglly, = Yu(g. D).

nx1

which encodes the one-derivative gain in the analytic estimates. Note that for 8 > 1, we have
-1 - -1
lglly, < 7" ligllx,, sup (n8™") < Cut"llgllx,,-
nx1
The gain of a z derivative shall be encoded in the dissipative semi-norm

Igll, = Du(g.7) = l10:8lly, -

n=0

Having introduced the functional spaces in our paper and before presenting the main results,
we give a definition of solutions to the reformulated Prandtl equation (2.6)).
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Definition 2.2 (Classical in tangential variables and weak in normal variable). For a fixed time
t > 0, let H be the closure of the set of functions

{f(t.x,9.2) € CO®R* X [0, +0)); fl.o = 0}
under the space norm

2 . Vo4 2 i
If IR, = ;3 /R 1 09 £(t, x, v, 2)I* exp ( Z m) dxdydz.

For T > 0, we say a function g is a classical in x, y and weak in z solution of (2.6) if

lg®llgc € L¥([0,T)) and (10,80l € L*([0,T)),
and (2.6)) holds when tested by C=([0, T) x R? x [0, +00)).

Theorem 2.3. Let gy(r, z) be tangentially analytical with radius of analyticity being to > 0. Then,
forany 0 < 6 < 1 there exists a €, depending only on & and 1., such that for any € < €, if

<o
lgolly,, < €,

then has a globally in-time solution g, which is tangentially analytical with the radius of

analyticity T(t) > %TO and for any t > 0, it satisfies

X 6 t | 3
mﬂM%m+ﬁ/(wﬂmmmﬁ@W%®M@“
0

(s)it
o T(s)

(2.8)

+Co (eI, + () 1g(Sllp,, ) €Sy, ods < ligollx,, < €.

Remark 2.4. Tt follows from the estimates in Lemma (3.3)) and Lemma (3.4) below that bounds
on g, d.g in (2.8) in X, imply similar estimates on " and u*. So global existence and uniqueness
of tangentially analytical solutions in Theorem indicates global existence and uniqueness of
tangentially analytical solutions for the original system (2.3) and (2.2)). The proof of Theorem
[2.3] mainly consists of a priori estimates (cf. Section [3) and the local well posedness. Since the
local existence and uniqueness of the tangentially analytical solutions has already shown in many
references, e. g. [10, (9] 26]], here we only present the a priori estimate (2.8]).

Remark 2.5. The construction of the energy functional X, is inspired by that in [9]. The main
difference is that there is a weight (r)" for the tangential nth order derivative due the appearance of
the operator rd, in the transport term of the equation (2.6));.

Remark 2.6. In the model (2.2), we only consider the case that the outflow U” = 0. Actually the
proof can be also applied to the case that U" = ref(t), where € > 0 is sufficiently small and f(¢)
decays sufficiently fast as t — +oco. The computation will be more elaborated and complicated. For
simplicity and convenience of presenting the main idea, we omit this extension and leave it to the
interested reader.
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O

Remark 2.7. Here we only consider the the axially symmetric Prandtl equation, extensions of The-
orem[2.3]to the axially symmetric MHD boundary layer system and in the tangential Gevrey spaces
will be considered in our future work.

For a function f(¢, x,y,z) and 1 < p, g < +oo, define

+00 q/p la
WfOllpre = </0 (/ lf( x,, Z)I”dde> dZ) :
R2

If p = g, we simply write it as || f]|.» and besides, if p = g = 2, we will simply denote it as || f]|.
Throughout the paper, C, ;... denotes a positive constant depending on a, b, ¢, ... which may be
different from line to line. We also apply A <, ... Btodenote A < C, .. B. For a two dimensional
multi-index @ = (a1, @,) € N?, we write 37 = 47'9} and 8} = {9}; || = k}. For anorm || - ||, we
use [|(f, g, - -+ )l to denote || f]| + [lgll + - - -.

3 A PRIORI ESTIMATES AND PROOF OF THE MAIN THEOREM

First, we state a simple version of the local well-posedness result on the three dimensional
Prandtl equations in tangentially analytical spaces. See [10, Theorem 3.1 and Remark 3.3].

Theorem 3.1 (Theorem 3.1 of [10] with the outflow being zero in three dimensional spaces). Fix
the constant v > 1/2 and denote (z) := 1 + z. For a function f(t, x,y,z) and 7(t) > 0, define

IFOW,, =D D> K%t x, 3, Dlaes T (OM.

n>0 |a|=n

Then, for to > 0, if the solution in (I.1)) with the outflow U being zero satisfies
(it, ¥)li=0 1= (itg, Vo) € X,

then there exists a T, = T.(v, 7o, ||(@ig, Vo)l| XTO) > 0, such that the three dimensional Prandtl equa-
tions (L.1)) have a unique real-analytical solution in [0, T.) satisfying for any t € [0,T.), 7(t) > 0
and

@ DO, < +oo.

Based on the above local well-posedness result of the three dimensional Prandtl equations, The
proof of Theorem [2.3]is simplified to the following a prior estimate, stated as Proposition and
continuity argument.

Proposition 3.2. For T > 0, let g be the tangentially analytical solution of and go(r, z) be
tangentially analytical with radius of analyticity being Ty > 0. Then, for any 0 < 6 < %, there exists
a €, depending only on 6 and Ty such that for any € < €, if

lgollx,, < e,



GLOBAL EXISTENCE OF 3D AXIALLY SYMMETRIC PRANDTL EQUATIONS 9

then for any 0 < t < T, the solution g satisfies

5 0 ! 1 7
DDl + 15 /0 (e, + ) Ng(ln, ) ds

()i

0 TX)

+ Co (llg(llx..,, + () lg()lln,, ) 18y, ds < ligollx,, < €,

and the tangentially analytical radius t(t) > %To

Before proving Proposition we give two lemmas which concern on bounds of u”", u*, ¢ in
terms of g.

3.1 Bounding of v, u*, ¢ in terms of g

Lemma 3.3. Let (u”, u?) be the solution of (2.3), ¢ and g be the functions defined in (2.4)) and (2.5)).
Foranyn e N, |a| =nand 0 < A1 < 1, we have

0.7 326| <2 11O 6 gz, 3.1)
Z
{9/1(7’)”6;:’1/[‘ <a ’Qﬂ<r>n52g| + m—3/49/1_1||9(r>"(9Zg||L%, (32)

and

|6.:¢rY 0.4 | a% 0.0 82| + |6a(ry'a2d.g|
(3.3)

+ (i + i) 0 t % 0\ O%
o T ) QIO gl

Proof. We only show the proof of that n = 0 since the case n > 0 follows the same line. From

(2.3),, we have
1’6,/ u,dz + 2/ u.dz = —/ 0,u,dz = u,(t,r,0) =0,
0 0 0

which indicates that -
r / u'dz =0.
0

Since when r > 0, the above equality implies that fom u'dz = 0 for r > 0, then continuity of u”

indicates that -
/ u'dz = 0.
0

By the definition of ¢ and g in (2.4)) and (2.5), we have

Z
dp+ —p =g
P8 (3.4)

¢|z:0 =0.
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Solving the ODE, we get

Z2 4 22
o(t,1,7) = exp <—m> /0 g(t,r,7)exp (m) dz.

For any 0 < A < 1, by multiplying the above equality with 6,, we have

i 1
020 = 01-1(2) /0 0(2)(2) exp <%(Z2 - Zz)) dz.

Differentiating (3.5) on z gives that

z 7 ¢ _ 2\ .
u'(t,r,z) = 0,0 = —% exp (—m> /o g(t,r,7)exp (m) dz + g.

Multiplying (3.7) by 6, gives that

A1) 8¢1)
Differentiating (3.7) on z and multiplying the resulted equation by 6, give that

O =0,8 ~ = ~0,.1(2) / 0Z)8(Z) exp (i@z - zz)) dz.
0

, Z
0,0.u" =60,0.8 — %9/18

= =-—— 16, 0@)g@exp| —(7 —2°) | dz.
(2<t> a ) o | eos@exp (@ -2
Using the fact that for any 8 > 0,

supPe? < Cg,
20

(%) o

Moreover, by considering 0 < ¢ < 1 and { > 1, it is not hard to check that

¢
6_42/ egzdg_“é L
0

we have

< Cup.

1+

Then a change of variable indicates that
exp | ——=(Z —2°) | dz < —— /().
e (4<r>( ) EET
In (3.6), by using Holder inequality on z, we have

z 1 12
029 <6:-1(2)1108ll12 ( /O exp (m(zz - z2)> dZ)

<Olfgll o+ o7
<O-1110gllz (',

(3.5)

(3.6)

3.7

(3.8)

(3.9)

(3.10)

(3.11)
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which is (3.1)) for n = 0.
In (3.8), by using Holder inequality and (3.10]), we have

. 1 12
61| 10,81 + 694 11108112 (/ exp (m(z -2 )) )

<1028l + <t>—3/49/1—1||9g||L§,

which is (3.2)) for n = 0.
In (3.9), by using Holder inequality and (3.10), we have

oz
10,0.u"| <a-— 10281 + 16,0.8]

0
+ ( L, = )9 OHOgllz(1 + 2
@ <>2 -1 82
1 2 1
Naa 0281 + 10,0.8] + ) + W O1-1<0)*10gll12,

which is (3.3) for n = 0.

11

By applying (r)"d} to (3.6), (3.8) and (3.9), the above derivation from (3.11) also stand by

replacing ¢, u”, 0.u" and g by (r)"07%¢, (r)"du’, (r)"0;0.u" and (r)"d} g, respectively.

Based on the rough estimates in Lemma [3.3] we have the following much more subtle integra-

tion controls of #”, u* and ¢ in terms of the weighted L? norm of g.

Lemma 3.4 (Bounding of ", u®, ¢ in terms of g). Foranyn € N, || =nand 0 < A < 1, we have

the following estimates

loxrdtigll, <0 [0 D5 2
162(r)" yu’ll 2 < 16Kr)" O 8llr2,

n+2

D 0Ky Ou ez $a (n+ 1 11605l 2,
lal=n |a|=n
[CXGRATY PRI QR AN ]
n+2
D lory du || oy s2 DY (|60 (5,0:9)]
|a|=n la|=n
R PSR RGN ] [P
n+2
D116y | oy Sal+ XY [0 (D8, 9]0
la|=n la|=n

|02y D007 || > <a )V [|6Kry B38| 2 + || XY D028 - »

(3.12)
(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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n+2

> 10w a2+ 12 D (<72 |06 g2 + 0y di0:8] )

lal=n lal=n

Proof. From (3.1), we have

l naa
[62¢rY" 3| 2 Salla-alliz{e) 116rY" gz
<UD IOy gz,
where we have used the fact that when 1 — 1 < 0,

1/4
1,1l <0 (V2.

Hence, we have obtained (3.12).
From (3.2), we have

<

loworaial s oy el + i

a6y dngll,s -
which is (3.13).
Using the two dimensional Sobolev inequality
Il < 11l + 105111z

we have

HH/I(r)"(?Zu’HLZOLg S ||0,1(r>”(9gurHL]21Lg + |02 [¢ry'dfu] HL%L% :

It is easy to show that for n € N/{0},

12 &
< % Z [t eal

r
( [v1=0

|65 [(r)' 9’|

Inserting (3.23)) into (3.22) and sum over |a| = n, we have

n+2

D R AT =GR Vel S (X7 |

lal=n lal=n

Inserting (3.21)) into (3.24)), we obtain (3.14).
Also from (3.2)), we have

< n aa

[0x¢ry" Fu" | o S (104" Fi8 | o + Nl Oamn s 16Cr)" gl

<t>3/4
Sa[[62¢r)" 3y 8| + <Y 16" gl 2

Or-11l2116¢r)" By gll12

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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Using one dimensional Sobolev embedding

12

|y asgll,. < [l6xtrydgs ] |6 (6urags) |

Z n qa
79,1(1”> 0,8

1/2
LJ

[CRCR AT IS IGRZACN I (3.26)

<oy anel, [Hexrwazazg}}@ +
Sul[6ry' s, + |66y 3;9:8]

Inserting the above inequality into (3.25]), we can have

The bound (3.13) follows by taking L? norms in x, y variables of the above inequality (3.26).
The same as (3.24), we can have

n+2
> |jatryau pope S (1) > |y o e (3.27)
lal=n |al=n

Integrating (3.26) on the tangential variables and inserting the resulted inequality into (3.27), we

can get (3.16).

From the incompressible condition (2.3]),, we have
u(z) = — / 0,u*(2)dz = / (rou” + 2u"H(2)dz,
Z Z

then we can get
102(r)" O ulls <I10aCr)" 0 (rd,u” + 2u")| L)
SAllOCry" 85 (rdu” + 2u")1 21101 1l 2 (3.28)
A6y B ro” + 202
From (3.2)), we have

162CrY" 0 (rdu” + 2u")| 12

Sa [|6a(ry" 5 (r0, + 28| +

Z n qga
H<t>—3/49A—1 0<r)" 8, (rd, + 2)glI2
Lz

Sall6<r)" 3 (rd, + 2)gll 2.

The same as (3.24), we can have

n+2
> Heﬂ(r)"aguznw i+ 17 Heﬂ<r>'“'azuZHLﬁL? . (3.29)
lal=n la|=n

Inserting (3.17) into (3.29)), we can get (3.18).



14 X.Pan anp C. J. Xu

Inserting the above inequality into (3.28)) and then integrating the resulted equation in the tan-
gential variables implies that

10:(rY 01l 21 Sa <OV H16CrY" B (1D, + 2812,
which corresponds to (3.17).

Then the same as (3.24) and using the estimate (3.17)), we can get (3.18).
From (3.3), we can get

l6acr

_9/1 1

Sow| Neraiel, + eoyaas],

1 7
(<r> <t>2) i

Sty V2 ||y g . + ||0<r>"a“angLz

<t>%||0<r>"6Zg||Lz

which is (3.19).
Then almost the same as (3.24]), we can get
n+2
Z Héh<r>”6;’, ; 272
lal=n |a|=n
n+2
San+ 12D (7 e angl| . + [l ara.gl ) -
lal=n
which is (3.20). O

3.2 Weighted energy estimates for the good unknown g

Now we perform the weighted energy estimates for the good unknown g. Rewrite (2.6)); as

0,8 — 6g+6 g=—(uo,+ud,)g - (u)+%z’6(z¢)—6

(3.30)
2 roZ s
2<t>/( )dz+— o,u' u*dz.

Let n > 0 and |a| = n. Applying (r)"07 to (3.30) and multiplying the resulted equation with
6*(r)"87g, and then integrating over R? to give
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1d
5 = 6¢r)" 35 gl + 16¢r)" 350.¢ll7- +

S dr 6y d gl

4( )
/ r)" 0, (u'rd,g)6<r)"dy g / ry" 0, (u°0,8)6(r)"d, g

1
/ (r)" 05 (W Y O(r)" O g + ~— 0 / 6(r)" 0y (u°0.(z¢)) &Kr)" 0 g

1
(t) 260(r)" 05 (W' $)O(r)" 07 8 — —— 0 /z@/ "o, )zdze(r)"8Zg
+ 6 z0 / (r)"0,(0.u" u*)dz0(r)" 0, g
7
::ZI;?‘.
j=1

Here for a function f(t, x, y, z), we have denoted fRi f(t, x,y,z)dxdydz simply by f f if no confusion
is caused.

Dividing the above equality by [|6{r)"0} gll;>» and multiplying the resulted equation by 7"(t)M,,
then by summing for |@| = n, we can get, for n > 0,

7

d lecrydrogl. 3 _TOM,
—X > Y, § § , 3.31
a2 gl T T 2 el 2 (30

where when n = 0, we set Yy = 0.

Here we present a lemma to characterize the quantitative relation between [|6(r)" 3} gII , and
16¢rY"370:8lI7..

Lemma 3.5. Let g be a smooth enough function in x,y variables and belong to H' in z variable,
which decays to zero sufficiently fast as z — +oo. Then we have

%H@(N@ hellzz < 116¢r)" 330817 (3.32)

The inequality (3.32)) is a special case of Treves inequality that can be found in [8]. Proof of
Lemma[3.5]can be found in [21, Lemma 3.1]. See also [9, Lemma 3.3]. Here, we omit the details.

Using (3.32)), we can obtain from (3.31)

7

d 1 3 . (M,
—X, + Dy+—X, <t()Y, + ) —F—— 3 . (3.33)
dt V2(t) 4(t) ; l6¢rY" d;8ll.2 ; !

3.3 Proof of Proposition 3.2/ and the main theorem

First, we state a proposition concerning on the estimates of the nonlinear terms in (3.33).
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Proposition 3.6 (Estimates of the nonlinear terms). For the nonlinear terms in (3.33), we have the
following estimate

7

(M, o
2 2 faeragi: Z g

n20 fof=n
<Ct(1) (Ilgllx, + <t>”4llg||of) lglly, + C72(@) (llgllx, + < llgllo, ) llgllx, -

We postpone the proof of Proposition[3.6)in Section[d]and continue to prove the a priori estimate
in Proposition[3.2]

Proof of Proposition

From (3.33), by summing on n > 0, we get for a uniform constant Cy,

d 1 3
< (++Cor*(1) (llglle N (t)1/4||g||1),)) lIglly, + Cot> (@) (llgllx, + <©)'"*ligllp, ) llgllx, -

By using (3.32)), for any small §; > 0, we have

1 _ 0 (1-41)
2<t>”gllﬂr - \/T + m ”g”D
O 1ello, + L0000
2y S0 T gy N8l
01
>y, + <>||g||x,+ = % gllx..

Inserting the above inequality into (3.34), we obtain that

5 3
4 26

ill llx, + Jlgl +( llgll il lgll )
dth‘r 0 8llx, <>8X mg&
< (1 + Cor () (Ilgllx, + <O'"ligllo, ) ) lglly, + Cor™2® (liglix, + (' "llglln,) lgllx. -

For ¢ € (0, 1/4], by choosing 6; = §/3, we have

d 158 0 (_ L L )
a8l + = legll + e { sl + mllgllo, (3.35)
< (++ Cor(®) (llgllx, + liglin,)) liglly, + Cor™(2) (ligllx, + (©"ligllp,) llgllx. -

Now, we assume the a prior assumption that for any ¢ > 0,

5_ 1
O Ngllx, <26, T = 770 (3.36)
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Using this a priori assumption (3.36)) and by choosing suitable 7(¢) and sufficiently small &,
depending on 7 and ¢, we will show that

1
O gllx, < &, T(@) > 570 (3.37)

Then continuity argument insure that (3.3"/]) stands for any ¢ > 0.

First, inserting (3.36) into (3.33), we have

d 2-15 5 1
Ellgllx,+ o llgllx, + —(Ellgllx WIIgI@)

B 32¢C
< (1 + Cor(0) (Iellx. +<0)"“llgllo,)) elly, + = 3575 (gl + 0 lgl,)
0

By choosing €, such that 326"&’ < ﬁ, then we can have

5

(5 1
Ellgllx, ) ||g||x << >||g||x mllgllz») (3.38)
< (t+ Cor2(0) (lgllx, + <r>”“||g||o,)) gl
We choose 7(¢) such that

+ 20 (lgllx, + 0'lgllp,) = 0. (3.39)
Then (3.38) indicates that
d s o 1 3
= (OFNglly, ) + 5 (0 lglhx, + 0 lilln, )
Colty3 (3.40)
0 1/4
— t <0.
+ 20 (llgllx, + <0 ligllo, ) liglly, <
Integrating (3.40), we can have
s [ _ 3_
O lgllx, + 12/ ((Sﬁ “ligllx, + (s)* 6||g||2)7> ds
o (3.41)
(s)i? % 1/4
+ Co 2s) (lgllx, + () llgllo, ) llglly.ds < ligollx,, < €,

which implies that
NS 3 12
/ (9 lgly, + <) gl ) ds < —eo.

0
Then from (3.39)), we see that

t
(1) =13 = 6Co / (lgllx. + )™ llglln,) ds
0

3
g0 (1)

0 2

by choosing small €. Then by choosing small ¢, depending on 7, and §, we obtain (3.37) and
(3.47), which finishes the proof of Proposition[3.2]
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End Proof of Theorem

Combining the local existence and uniqueness of the tangentially analytical solutions in Theorem
and continuity argument, we can obtain the validity of Theorem

4 TECHNICAL ESTIMATES OF THE NONLINEAR TERMS

In this section, we give the technical estimates for the nonlinear terms on the righthand of (3.33).
When summing over n > 0, we can get the following tangentially analytical estimates for the
nonlinear terms.

Lemma 4.1 (Estimates of the nonlinear terms separately). We have the following estimates for the
the nonlinear terms on the righthand of (3.33).

) st < 7 (I, + el el @.1)

Z; ; ”'H’Q’ZZ% 20 (llglx, +llglly,) o 42)

>y et + ) et < 7 (Il + o) el (4.3)
; ; % w207 (Igllx, + llglly,) ligllx. (4.4)

> ”Zg:gﬁ 2 (lglly, +llgllo.) lglx.. 4.5)

22 st < 7 (@7l + 0 el (lele +lell). ()

Proof. Before the proof, we give the following simple claim.
Claim. Forany k € N, 1 < p,g < +0oo,

D N6 050, lipne s D N6 Bgliprs + k> 16y O gllyp e (4.7)
lal=k lal=k+1 lal=k

Proof of the claim. Without loss of generality, we assume k > 1, since the claim is obviously stand
for k = 0. We write 70, = x0, + yd, := x;0;. Then using Leibniz formula, we have

(P 83(r,8)| = [(r)d (xadng))|

= <r>kxhazahg+ Z <”>k (Z) 6Z_ﬁ8hg6‘ﬁxh
B<a,lpl=1
(Y105 0ngl + 2k(r)" 103 8.

Then from (4.8]), we can easily obtain (4.7). O

(4.8)
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In later calculations, for multi-indices a, 8 with 8 < a, we will frequently use

<g> CM> g;w%;w%b*“‘<%zwg (Z;lh> (4.9)

[yl=n—k

for all sequences {ag} and {b,}.
Now we are ready to prove Lemma
Estimate for term /. For the term /;, by using (4.9), we have

(M, (/2] o o
Z ||9<r>na g”L2 (M, Z( ) Z IKr)" "0, u ||L,21Lgo ZIIH(}’) h(”arg)”L;ng

lyl=n—k 1BI=k

+ T (OM, Z (%) <Z ||<r>"—kazu’||m) <Z||9<r>ka§<ra,g>||y).

k=[n/2]+1 lyl=n—k |BI=k

Then by using (3:13) and (3-16), and noting that M, (}) = (D' e have

(k) k1>
i OM, p
L N Xk + Dae ry*d, (ro, @)l
Z ol Z( + Do) M;Cn (r*o,rd, )12
(4.10)
k+ 1)*
S S i+ Dyt % A
k=[n/2]+1 i=0 ’ 18=k
Then by the same Sobolev embedding estimate as in (3.24)) and using (#.7), we can get
k+2
D 6 3,z <tk + DD 10, (r0,9)2
IBl=k IBI=k
k+3 k+2
S+ 12> 16 gl + k+ 1B 16 gl .
IBl=k+1 IBl=k
Then it is not hard to check that
Z 16¢r)* 3 (rd, e S T Z Yeri (4.11)
" Bl=k
where, when k = i = 0, we have set Y, = 0.
Also by using (4.7)), we can obtain
Tk + 1)
— 2D B0l S Vit Vi, (4.12)
' 1BI=k

where we used that 7 < 7 since later we will chosen 7(¢) to be a decreased function of 7 .
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Inserting (@.11)) and (@.12)) into (@.10)), we can get

Z % 2 Z Z (Xoti + Do) Z Yeor. 4.13)

k=0 i=0

Then by using the following inequality

Z Z a,_1by < Z ay Z bj, (4.14)

n20 k=0 k20 20
we can get from (@.13)),
17" ()M, -
S0 e S T Kt DO D = (lll, + o)l
720 lafn "N 7 Oh8 L2 k=0 k=0

which is (@.1)) for term ;.
Estimate for term /,. Now we come to estimate term /. By using (4.9), we have

[n/2]
L"()M,
Z”'wl)ng)g” P OM, Z( ) S I e S 166 gl
L e —
) yl=n—k 1Bl=k 4.15)
n
wroM Y () X el Y16 oo.gl.
k=[n/2]+1 lyl=n—k BI=k

Then by using (3:17) and (3-I8), and noting that M, (}) = (51"_21)32, , we have
Z 1T ()M,
< 1|6Cr)" 0 8ll12
[n/2]

—k+1
< (Byit” (t)Z ,;, k? ||anw"c'»z(ré»g,g)||y % 16¢rY* 00-gll 12 (4.16)
yl=n— =

n—k+2

1 k+ D*n—k+ 1)
caree Y KD Ok DN o, ol 3 10 gl

— V!
k=[n/2]+1 (n — K)!k! lyl=n—k 1BI=k

Noting that by using Sobolev embedding, we have

Laimba? (k+ D’ N gl
16 Fdcgln: < > 6P ano.gle s T ZDk+, (4.17)
' ' 1BI=k

Inserting (@.17)) into (4.16)), we obtain
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Z 51T (OM,
2 T0tryar gl

1/4_-2 iy " —k+ 1) nk qy
<y P > ke )rd,g. )l ZDk+,
k=0 n ) lyl=n—k
"ok — ko 1)
Oy =Y > K] (10,8, )2 Dy
k=[n/2]+1 ’ lyl=n—k
We have that
"% -k + 1)* ek Y
Y > K3 r0,8. @)lli> S Xk + Yook + Yoo
' lyl=n—k
"k —k+1)?2 ' a2
— > K] (10,8, e < Xy + 77 Z Yspei
' [yl=n—k

Inserting the above two inequalities into (4.18]), we can obtain

517" ()M, )
Z ||9<r7>-na v 2llr2 ~<t>1/4 ZZ < n—k t ZYn k+z> ZD/‘“

led=n

Summing (4.21)) over n > 0 and using (4.14)), we can obtain (4.2).
Estimate for term /5. Now we come to estimate term /5. By using (4.9), we have

Z [T ()M,
< 16¢r) 07 8ll.2
[n/2]

<M, Z( I T P S Y o 9%

lyl=n—k |BI=k

ceoM, 3 (3) X2 10y auctee > 1012 o

k=[n/2]+1 lyl=n—k BlI=k

Then by using (3:13) to (3:16), and noting that M, (}) = (51”_21)?;, we have

oM, oS
Z LT DM Z (Xt + D) Z Xeii #7720 Y D K + D) Xi
< 116¢r)" 3 8lI.2 i=[n/2]+1 i=0
ST 2 Z Z (Xn k+i + Dp k+t) ZX/(H
k=0 i=0

Summing (@.23)) over n > 0 and using (4.14)), we can obtain {.3) for term I3.

21

(4.18)

(4.19)

(4.20)

4.21)

(4.22)

(4.23)
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Estimate for term /,. For the terms I}, from (3.4));, we first have
2
d.(zp) = (1 — m)(ﬁ +28.
Then from (3.12)), we have, for |a| =

16,4rY330.zp)lI.z <NN6rY 5 BllL2 + 116 7 ><r>kf9 Bllzz + 1622¢r) I gll.2

< VDK T gllz + 10131, Y Bl + /DB ) gl
<VDI6r 3811z

Now we come to estimate term /;. By using (4.9) and (4.24), we have

(4.24)

Z \Z1T"(OM,
« 16¢r)"d;8ll.2

<P OMY Y ( )||91/2<r>"-w'a“-ﬁu2||Lngo||9<r>w'a‘,ig||L;oLg

laj=n B<a
1BI<[n/2]

+(P M, Y ( ) 1612y 0P| | 0D g o

lal=n Bsa
1B1>[n/2]

Then almost the same estimate as in (4.15]) by replacing d.g with g indicates a similar estimate

as (@.21)) as follows.
|17 (M, 142
~<t> n—k + Yn +i X+z 4.25
Z ||9<7”>"<9 gl Z k Z k Z k (4.25)

Summing (4.25)) over n > 0 and using (#.14)), we can obtain (4.4).
Estimate for term /s. It is easy to see that, from (3.12),

162(rY 3 DMz Sa /OO (YD llz2 <o <MECrY O gl 2. (4.26)

By using (4.9) and (4.26)), we have
Z 517" ()M,
« 16<r)" 958l
[n/2]

< P (OM, Z( ) S K e 110G Tl

[yl=n—k |B1=k

woOM, Y () D K Gl Y 166 Fgle.

k=[n/2]+1 bl=n—k 1Bl=k
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Then by using (3.15)) and (3.16)), and noting that M, (Z) = D' e have

(n—k)!k!?
Z [I§|T"(OM,
< |16(r)"0;8lI12
[n/2] n 2 (427)
< Z KXot + Do) o . Z 6 dhgliore + 772 Y > Kuckei + Do) X
1BI=k k=[n/2]+1 i=0

By using Sobolev embedding, it is easy to check that

Z 16¢ry* gl < 7 Z X

" 1BlI=k

Inserting the above inequality into (4.27)), we can obtain

BIEOM,
2~ t Xon-kri + Dnpsi Xiti. 48
Mz=n ”6<r>nagg||LZ < > ZZ( k k )Z k ( )

k=0 i=0

Summing (@.28)) over n > 0 and using (4.14)), we can obtain (4.5).

Estimate for term /4. First, we have
lI—gL <~ llz6(2) / (rY' (U (Z)dzl| 2
16<r)" 05 gl| 2 < )

= 6||29—1/2(Z)93/2(Z) / (rY' o2zl

| o
56”29—1/2(Z)”L;"L§||93/2(Z) / ("3 ' @zl 3

<0 0322) / PR VO 31

While N
632(2) / BT ATRREY
4 LY
) 1/2N
< suop {Hg(z) </ 6_;(2)612) } ||97/4(Z)<r>"(92(ur)2||L§
<1074 O (V2
Then

lIng(t)Mn naa/. ,r\2
kxlzzn 16673,y'ell <t()M, Z 167,4(2){r)" 8}, (")l 2. (4.29)

The rest is the same as 1§ in (4.22) by replacing 1/2 with 7/8 which indicates (4.3)) for term 7g.
Estimate for term ;. Repeating the proof for (4.29), we can get

la|=n
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\I7|1T7(OM, e
> O <t OM, 3 10X 0D

lal=n lal=n

By using (4.9)), we have
Z 517" ()M,
16<r)" 0}, gll 2
[n/2]

<PM, Y (1) D 16 Ol Y 10 Aol iz

k=0 lyl=n—k 1BI=k

w7 OMy Y () D0 1Y Tl D 65 S0 i

k=[n/2]+1 bl=n—k BI=k

Then by using (3:17) to (3:20), and noting that M, (}) = (ﬁl”_;?;, we have

3 171" (OM,
16<r)" 5 8ll.>

|a|=n

lal=n
[n/2]

1 — k+ D)*pnk 2
sy (nt k;,T S KA d,g. 9l D (7 Xy + Di)
k=0 )

lyl=n—k i=0

n n—k+2

1 —k+ 1)k
st Yo T S K0 ol (07 X+ D).

k=[n/2]+1 lyl=n—k

Then using (4.19) and (4.20)), we obtain

z : 171 1 v 3 2
_ < <l>41 E Xl’l )7 ; < > X i ). ‘
lal=n ” < > C(hglle k IZ 1=k :i ( t k+ + l)k ) (4 30)

Summing (@.30) over n > 0 and using (@.14)), we can obtain (4.6).
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