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. Our result is an improvement of that in Ignatova-Vicol [9] from the almost global existence to the global existence and an extension of that in Paicu-Zhang [21] from the two dimensional case to the three dimensional axially symmetric case.

Introduction

The main purpose of this paper is to study the well-posedness of the initial-boundary value problem for the three dimensional axially symmetric Prandtl boundary layer equations in the domain {(t, x, y, z) ∈ R 4 ; t > 0, (x, y) ∈ R 2 , z > 0}.

The general three dimensional Prandtl boundary layer equations read as follows,

          
∂ t ũ + ũ∂ x + ṽ∂ y + w∂ z ũ + ∂ x p = ∂ 2 z ũ, ∂ t ṽ + ũ∂ x + ṽ∂ y + w∂ z ṽ + ∂ y p = ∂ 2 z ṽ, ∂ x ũ + ∂ y ṽ + ∂ z w = 0, (ũ, ṽ, w) z=0 = 0, lim z→+∞ (ũ, ṽ) = (U(t, x, y), V(t, x, y)), (1.1) where (U(t, x, y), V(t, x, y)) and p(t, x, y) are the tangential velocity fields and pressure of the Euler flow, satisfying ∂ t U + U∂ x U + V∂ y U + ∂ x p = 0, ∂ t V + U∂ x V + V∂ y V + ∂ y p = 0.

(1.2)

1
Here we write ũ = (ũ, ṽ, w) and U = (U(t, x, y), V(t, x, y)).

The Prandtl equations was proposed by Prandtl [START_REF] Prandtl | Über Flüssigleitsbewegung bei sehr kleiner Reibung[END_REF] in 1904 in order to explain the mismatch between the no slip boundary condition of the Navier-Stokes equations and the corresponding Euler equations when the vanishing viscosity limit ν → 0. Reader can see [START_REF] Oleinik | Mathematical models in boundary layer theory[END_REF] and references therein for more introductions on the boundary layer theory and check [START_REF] Guo | A note on Prandtl boundary layers[END_REF] for some recent development on this topic.

Since the Prandtl equations (1.1) has no tangential diffusion and the advection term will cause one order tangential derivative loss when we perform finite-order energy estimates. Local in time well-posedness of the Prandtl equations in Sobolev spaces for general data without structure assumptions is still an open question.

For data in Sobolev spaces, under the monotonic assumption on the tangential velocity of the outflow, Oleinik and Samokhin [START_REF] Oleinik | Mathematical models in boundary layer theory[END_REF] proved the local existence and uniqueness by using Crocco transform for the two dimensional Prandtl equations. Recently, by introducing a nice change of variable in [START_REF] Alexandre | Well-posedness of the Prandtl equation in Sobolev spaces[END_REF] and [START_REF] Masmoudi | Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods[END_REF], the cancellation property of the bad term are discovered and local wellposedness in Sobolev spaces was proved by direct weighted energy estimates. Ill-posedness in Sobolev spaces for the Prandtl equations around non-monotonic outflow can be found in E and Engquist [START_REF] Engquist | Blowup of solutions of the unsteady Prandtl's equation[END_REF], Gerard-Varet and Dormy [START_REF] Gérard-Varet | On the ill-posedness of the Prandtl equation[END_REF], and Gerard-Varet and Nguyen [START_REF] Gérard-Varet | Remarks on the ill-posedness of the Prandtl equation[END_REF]. For the three dimensional Prandtl equations, Liu, Wang and Yang [START_REF] Liu | A well-posedness theory for the Prandtl equations in three space variables[END_REF] proved the local wellposedness of solutions in Sobolev spaces under some constraints on the flow structure in addition to the monotonic assumption. While this flow structure is violated, in [START_REF] Liu | On the ill-posedness of the Prandtl equations in threedimensional space[END_REF], they showed the ill posedness of the 3D Prandtl equations in Sobolev spaces, which indicates that the monotonicity condition on tangential velocity fields is not sufficient for the well-posedness of the three-dimensional Prandtl equations.

As for the long time behavior of the Prandtl equations in Sobolev spaces, Oleinik and Samokhin [START_REF] Oleinik | Mathematical models in boundary layer theory[END_REF] shows global regular solutions exist when the tangential variable belongs to a finite interval with the amplitude being small. Xin and Zhang [START_REF] Xin | On the global existence of solutions to the Prandtl's system[END_REF] proved the global existence of weak solutions under an additional favorable sign condition on the pressure p. Xu and Zhang [START_REF] Xu | Long time well-posedness of Prandtl equations in Sobolev space[END_REF] proved that the lifespan of the solution is O(ln 1 ) if the initial data is a small perturbation around the monotonic shear flow in Sobolev spaces. All the above results are discussed in the two dimensional spaces.

For data in analytical spaces, Sammartino and Caflisch [START_REF] Sammartino | Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations[END_REF] established the local well-posedness in both tangential and normal variables by using the abstract Cauchy-Kowalewski theorem. The analyticity on the normal variable was removed in [START_REF] Lombardo | Well-posedness of the boundary layer equations[END_REF]. Later in [START_REF] Kukavica | On the local existence of analytic solutions to the Prandtl boundary layer equations[END_REF], Kukavica and Vicol gave an energy-based proof of the local well-posedness result with data analytical only with respect to the tangential variable. The above results are both valid for the two and three dimensional Prandtl equations. To relax the analyticity condition is not easy. In the case where the data has a single non-degenerate critical point in the normal variable at each fixed tangential variable point, Gérard-Varet and Masmoudi [START_REF] Gerard-Varet | Well-posedness for the Prandtl system without analyticity or monotonicity[END_REF] proved the local well-posedness of the two dimensional Prandtl equations in Gevrey class 7/4 with respect to the tangential variable, which was extended to Gevrey class 2 in [START_REF] Li | Well-posedness in Gevrey function spaces for the Prandtl equations with nondegenerate critical points[END_REF] for data that are small perturbations of a shear flow with a single non-degenerate critical point for the three dimensional Prandtl equations. Note that this exponent 2 is optimal in view of the instability mechanism of [START_REF] Gérard-Varet | On the ill-posedness of the Prandtl equation[END_REF]. Recently, Dietert and Gérard-varet [START_REF] Dietert | Well-posedness of the Prandtl equations without any structural assumption[END_REF] improved the well-posedness to Gevrey class 2 by removing the hypothesis on the number and order of the critical points for the two dimensional Prandtl equations, which was extended to the three dimensional case in Li, Masmoudi and Yang in [START_REF] Li | Well-posedness in Gevrey function space for 3D Prandtl equations without Structural Assumption[END_REF].

For the long time existence of the Prandtl equations with analytical data, the first result appeared in Zhang and Zhang [START_REF] Zhang | Long time well-posedness of Prandtl system with small and analytic initial data[END_REF] where authors there proved that the lifespan of the tangentially analytical solution is O( -4/3 ) if the data is an size and the outflow is of size 5/3 for the two and three dimensional Prandtl equations. Later, an almost global existence result was proved in [START_REF] Ignatova | Almost global existence for the Prandtl boundary layer equations[END_REF] in two dimensional case, where a good unknown combining the tangential component of the velocity and its derivative on the normal variable is introduced to extend the existence time. This result was extended to the three case in [START_REF] Lin | Almost global existence for the 3D Prandtl boundary layer equations[END_REF]. Most recently, Global existence of tangentially analytical solutions with small data was proved in [START_REF] Paicu | Global existence and the decay of solutions to the Prandtl system with small analytic data[END_REF] for the two dimensional Prandtl equations. This result was improved to the optimal Gevrey class 2 in [START_REF] Wang | On the global small solution of 2-D Prandtl system with initial data in the optimal Gevrey class[END_REF]. As far as the authors know, there isn't any results concerning on the global existence of tangentially analytical solutions for the three Prandtl equations.

The main purpose of this paper is to study the global existence of tangentially analytical solutions for the three dimensional axially symmetric Prandtl equations. The novelty of our work lies in the followings: First, inspiring by the tangentially analytical energy functional in Ignatova-Vicol [START_REF] Ignatova | Almost global existence for the Prandtl boundary layer equations[END_REF], we will construct a similar energy functional with the main difference being that the analytical energy constructed in our results involves in a polynomial weight on the tangential variables, which results from the special structure of the axially symmetric Prandtl equations and mainly set to overcome the order mismatch between the tangentially radial velocity, u r , and the normal velocity, u z , with respect to the distance to the symmetric axis, r, when we use the divergence free condition to connect them each other. Second, the unknown acted on by the energy functional is specially designed, which is a combination of the tangentially radial velocity, u r , and its primitive one in the normal variable. This quantity has a sufficiently fast decay-in-time rate for our constructed weighted analytical energy, which ensures the positive lower bound of the analytical radius for any time. Its two dimensional originality can be traced to Paicu-Zhang [START_REF] Paicu | Global existence and the decay of solutions to the Prandtl system with small analytic data[END_REF].

2 Reformation of the problem and the main theorem

Reformation of the equations

In the following, we give a derivation of the three dimensional axially symmetric Prandlt equations in cylindrical coordinates (r, θ, z), i.e., for x = (x, y, z) ∈ R 3 ,

r = x 2 + y 2 , θ = arctan y x ,
a solution of (1.1) and (1.2) are said to be an axisymmetic solution, if and only if ũ = ũr (t, r, z)e r + ũθ (t, r, z)e θ + ũz (t, r, z)e z , U = U r (t, r, z)e r + U θ (t, r, z)e θ , p = p(t, r), satisfy the system (1.1) and (1.2), separately, where the components of ũ and Ũ in cylindrical coordinates are independent of θ and the basis vectors e r , e θ , e z are e r = x r , y r , 0 , e θ = -y r , x r , 0 , e z = (0, 0, 1).

Then in cylindrical coordinates, system (1.1) and equations (1.2) satisfy

                     ∂ t ũr + (ũ r ∂ r + ũz ∂ z ) ũr - (ũ θ ) 2 r + ∂ r p = ∂ 2 z ũr , ∂ t ũθ + (ũ r ∂ r + ũz ∂ z ) ũθ + ũθ ũr r = ∂ 2 z ũθ , ∂ r (r ũr ) r + ∂ z ũz = 0, (ũ r , ũθ , ũz ) z=0 = 0, lim z→+∞ (ũ r , ũθ ) = (U r , U θ ), (2.1) 
and

       ∂ t U r + U r ∂ r U - U 2 θ r + ∂ r p = 0, ∂ t U θ + U r ∂ r U θ + U r U θ r = 0.
Now we consider that the flow is swirl free, which means u θ = U θ ≡ 0. Also we consider the simple case of the outflow U r ≡ 0, which indicates that ∂ r p ≡ 0. Then (2.1) is simplified to

         ∂ t ũr + (ũ r ∂ r + ũz ∂ z ) ũr -∂ 2 z ũr = 0, ∂ r (r ũr ) r + ∂ z ũz = 0, (ũ r , ũz )| z=0 = 0, lim z→+∞ ũr = 0. (2.2)
This simplified axially symmetric boundary layer equations (2.2) has appeared in [START_REF] Oleinik | Mathematical models in boundary layer theory[END_REF]Chapter 4.1]. If the axially symmetric velocity ũ = ũr (t, r, z)e r + ũθ (t, r, z)e θ + ũz (t, r, z)e z is smooth and divergence free, we can deduce that ũr r=0 = ũθ r=0 ≡ 0.

See [START_REF] Liu | Characterization and regularity for axisymmetric solenoidal vector fields with application to Navier-Stokes equation[END_REF]. Then there isn't singularity for the quantity ũr /r at r = 0. Set the new unknowns (u r , u z ) := ( ũr r , ũz ), which satisfy the following new formation of axially symmetric Prandtl boundary layer equations

       ∂ t u r + (ru r ∂ r + u z ∂ z ) u r -∂ 2 z u r + (u r ) 2 = 0, r∂ r u r + 2u r + ∂ z u z = 0, (u r , u z ) z=0 = 0, lim z→+∞ u r = 0. (2.3)

The linearly good unknown

We assume u r , u z decay sufficiently fast at z infinity and define φ(t, r, z) := -+∞ z u r (t, r, z)dz, (2.4) which also decays sufficiently fast at z infinity. By integrating (2.3) 1 on [z, +∞] with respect to z variable, we have

             ∂ t φ -∂ 2 z φ -u r u z + ∞ z (u r ) 2 dz -2 ∞ z ∂ z u r u z dz = 0, ∂ z φ z=0 = 0, lim z→+∞ φ = 0, φ t=0 = φ 0 = ∞ z u r (0, r, z)dz.
And (u r , u z ) is obtained from φ as

u r = ∂ z φ, u z = -r∂ r φ -2φ.
Inspired by the good unknown in [START_REF] Paicu | Global existence and the decay of solutions to the Prandtl system with small analytic data[END_REF], we define

g := ∂ z φ + z 2 t φ = u r + z 2 t φ, (2.5) 
which satisfies

                     ∂ t g + (ru r ∂ r + u z ∂ z )g -∂ 2 z g + 1 t g + (u r ) 2 - 1 2 t u z ∂ z (zφ) + z t u r φ + z 2 t ∞ z (u r ) 2 dz - z t ∞ z ∂ z u r u z dz = 0, g z=0 = 0, lim z→+∞ g = 0, g t=0 = g 0 = u r (0, r, z) + z 2 φ 0 (r, z).
(2.6)

The introduced g can control the velocity u r and u z nicely with a lower order time weight which leads to the possibility of closing our energy functional defined below for any t > 0. This good unknown g can be viewed as a lift of that in [START_REF] Ignatova | Almost global existence for the Prandtl boundary layer equations[END_REF], where the type of good unknown g = ∂ z u r + z 2 t u r are introduced to prove the almost global existence of tangentially analytical solutions.

Energy functional spaces and the main result

Set θ(t, z) := exp z 2 8 t . For λ ∈ R, set θ λ (t, z) = exp λz 2 8 t .
Then for any λ, µ ∈ R,

θ λ+µ = θ λ • θ µ . Denote M n = (n + 1) 4 n! , ∂ α h = ∂ α 1 x ∂ α 2 y , α = (α 1 , α 2 ) ∈ N 2 , and r = (r 2 + 1) 1/2 = x 2 + y 2 + 1, t = (t + 1), (x, y) ∈ R 2 , t ≥ 0.
For a positive time-dependent function τ := τ(t), we introduce the Sobolev weighted semi-norms

X n = X n (g, τ) = |α|=n θ r n ∂ α h g L 2 τ n M n , n ∈ N; D n = D n (g, τ) = |α|=n θ r n ∂ α h ∂ z g L 2 τ n M n = X n (∂ z g, τ), n ∈ N; Y n = Y n (g, τ) = |α|=n θ r n ∂ α h g L 2 τ n-1 nM n , n ∈ (N/{0}).
(2.7)

We consider the following functional space that is real-analytic in x h = (x, y) and lies in a weighted L 2 space with respect to z,

X τ = ∀α ∈ N 2 , r |α| ∂ α h g(t, r, z) ∈ L 2 R 3 + ; θ 2 dxdydz : g X τ < ∞ where g X τ = n 0 X n (g, τ).
Remark 2.1. In our definition of the element (2.7) 1 , there is a weight r n for the tangential nth order derivative, which is set to match and control the term r∂ r g appeared in the equation (2.6).

We also define the semi-norm

g Y τ = n 1 Y n (g, τ),
which encodes the one-derivative gain in the analytic estimates. Note that for β > 1, we have

g Y τ τ -1 g X βτ sup n 1 nβ -n C β τ -1 g X βτ .
The gain of a z derivative shall be encoded in the dissipative semi-norm

g D τ = n 0 D n (g, τ) = ∂ z g X τ .
Having introduced the functional spaces in our paper and before presenting the main results, we give a definition of solutions to the reformulated Prandtl equation (2.6). Definition 2.2 (Classical in tangential variables and weak in normal variable). For a fixed time t > 0, let H be the closure of the set of functions

f (t, x, y, z) ∈ C ∞ c (R 2 × [0, +∞)); f | z=0 = 0 under the space norm f (t) 2 H := |α|≤3 R 3 + |∂ α h f (t, x, y, z)| 2 exp z 2 4 t dxdydz.
For T > 0, we say a function g is a classical in x, y and weak in z solution of (2.6) if

g(t) H ∈ L ∞ ([0, T )) and ∂ z g(t) H ∈ L 2 ([0, T )),
and (2.6) holds when tested by

C ∞ c ([0, T ) × R 2 × [0, +∞)).
Theorem 2.3. Let g 0 (r, z) be tangentially analytical with radius of analyticity being τ 0 > 0. Then, for any 0 < δ ≤ 1 4 , there exists a 0 , depending only on δ and τ 0 , such that for any ≤ 0 , if

g 0 X τ 0 ≤ , then (2.6 
) has a globally in-time solution g, which is tangentially analytical with the radius of analyticity τ(t) ≥ 1 2 τ 0 and for any t > 0, it satisfies Remark 2.5. The construction of the energy functional X τ is inspired by that in [START_REF] Ignatova | Almost global existence for the Prandtl boundary layer equations[END_REF]. The main difference is that there is a weight r n for the tangential nth order derivative due the appearance of the operator r∂ r in the transport term of the equation (2.6) 1 .

t 5 4 -δ g(t) X τ(t) + δ 12 t 0 s 1 4 -δ g(s) X τ(s) + s 3 4 -δ g(s) D τ(s) ds + C 0 t 0 s 5 4 -δ τ 2 (s) g(s) X τ(s) + s 1/4 g(s) D τ(s) g(s) Y τ(s) ds ≤ g 0 X τ 0 ≤ 0 . ( 2 
Remark 2.6. In the model (2.2), we only consider the case that the outflow U r ≡ 0. Actually the proof can be also applied to the case that U r = r f (t), where > 0 is sufficiently small and f (t) decays sufficiently fast as t → +∞. The computation will be more elaborated and complicated. For simplicity and convenience of presenting the main idea, we omit this extension and leave it to the interested reader.

Remark 2.7. Here we only consider the the axially symmetric Prandtl equation, extensions of Theorem 2.3 to the axially symmetric MHD boundary layer system and in the tangential Gevrey spaces will be considered in our future work.

For a function f (t, x, y, z) and 1 ≤ p, q ≤ +∞, define

f (t) L p h L q z := +∞ 0 R 2 | f (t, x, y, z)| p dxdy q/p dz 1/q
.

If p = q, we simply write it as f L p and besides, if p = q = 2, we will simply denote it as f . Throughout the paper, C a,b,c,... denotes a positive constant depending on a, b, c, ... which may be different from line to line. We also apply Theorem 3.1 (Theorem 3.1 of [START_REF] Kukavica | On the local existence of analytic solutions to the Prandtl boundary layer equations[END_REF] with the outflow being zero in three dimensional spaces). Fix the constant ν > 1/2 and denote z := 1 + z. For a function f (t, x, y, z) and τ(t) > 0, define

A a,b,c,••• B to denote A ≤ C a,b,c,... B. For a two dimensional multi-index α = (α 1 , α 2 ) ∈ N 2 , we write ∂ α h = ∂ α 1 x ∂ α 2 y and ∂ k h = {∂ α h ; |α| = k}. For a norm • , we use ( f, g, • • • ) to denote f + g + • • • .

A priori estimates and proof of the main theorem

f (t) 2 Xτ(t) := n≥0 |α|=n z ν ∂ α x,y f (t, x, y, z) 2 L 2 (R 3 
+ ) τ 2n (t)M 2 n .
Then, for τ 0 > 0, if the solution in (1.1) with the outflow U being zero satisfies (ũ, ṽ)| t=0 := (ũ 0 , ṽ0 ) ∈ Xτ 0 , then there exists a T * = T * (ν, τ 0 , (ũ 0 , ṽ0 ) Xτ 0 ) > 0, such that the three dimensional Prandtl equations (1.1) have a unique real-analytical solution in [0, T * ) satisfying for any t ∈ [0, T * ), τ(t) > 0 and (ũ, ṽ)(t) Xτ(t) < +∞.

Based on the above local well-posedness result of the three dimensional Prandtl equations, The proof of Theorem 2.3 is simplified to the following a prior estimate, stated as Proposition 3.2, and continuity argument. Proposition 3.2. For T > 0, let g be the tangentially analytical solution of (2.6) and g 0 (r, z) be tangentially analytical with radius of analyticity being τ 0 > 0. Then, for any 0 < δ ≤ 1 4 , there exists a 0 , depending only on δ and τ 0 such that for any ≤ 0 , if g 0 X τ 0 ≤ , then for any 0 < t < T , the solution g satisfies

t 5 4 -δ g(t) X τ(t) + δ 12 t 0 s 1 4 -δ g(s) X τ(s) + s 3 4 -δ g(s) D τ(s) ds + C 0 t 0 s 5 4 -δ τ 2 (s) g(s) X τ(s) + s 1/4 g(s) D τ(s) g(s) Y τ(s) ds ≤ g 0 X τ 0 ≤ 0 ,
and the tangentially analytical radius τ(t) ≥ 1 2 τ 0 . Before proving Proposition 3.2, we give two lemmas which concern on bounds of u r , u z , φ in terms of g.

3.1 Bounding of u r , u z , φ in terms of g Lemma 3.3. Let (u r , u z ) be the solution of (2.3), φ and g be the functions defined in (2.4) and (2.5). For any n ∈ N, |α| = n and 0 ≤ λ < 1, we have

θ λ r n ∂ α h φ λ θ λ-1 t 1 4 θ r n ∂ α h g L 2 z , (3.1) 
θ λ r n ∂ α h u r λ θ λ r n ∂ α h g + z t 3/4 θ λ-1 θ r n ∂ α h g L 2 z , (3.2) 
and

θ λ r n ∂ α h ∂ z u r λ z t θ λ r n ∂ α h g(z) + θ λ r n ∂ α h ∂ z g + 1 t + z 2 t 2 θ λ-1 t 1 4 θ r n ∂ α h g L 2 z . (3.3) 
Proof. We only show the proof of that n = 0 since the case n > 0 follows the same line. From (2.3) 2 , we have

r∂ r ∞ 0 u r dz + 2 ∞ 0 u r dz = - ∞ 0 ∂ z u z dz = u z (t, r, 0) = 0, which indicates that r ∞ 0 u r dz = 0.
Since when r > 0, the above equality implies that ∞ 0 u r dz = 0 for r > 0, then continuity of u r indicates that ∞ 0 u r dz ≡ 0.

By the definition of φ and g in (2.4) and (2.5), we have

   ∂ z φ + z 2 t φ = g, φ z=0 = 0. (3.4)
Solving the ODE, we get

φ(t, r, z) = exp - z 2 4 t z 0 g(t, r, z) exp z2 4 t dz. (3.5) 
For any 0 ≤ λ < 1, by multiplying the above equality with θ λ , we have

θ λ φ = θ λ-1 (z) z 0 θ(z)g(z) exp 1 8 t (z 2 -z 2 ) dz. (3.6) 
Differentiating (3.5) on z gives that

u r (t, r, z) = ∂ z φ = - z 2 t exp - z 2 4 t z 0 g(t, r, z) exp z2 4 t dz + g. (3.7) 
Multiplying (3.7) by θ λ gives that

θ λ u r =θ λ g - z 2 t θ λ-1 (z) z 0 θ(z)g(z) exp 1 8 t (z 2 -z 2 ) dz. (3.8) 
Differentiating (3.7) on z and multiplying the resulted equation by θ λ give that

θ λ ∂ z u r =θ λ ∂ z g - z 2 t θ λ g - 1 2 t - z 2 4 t 2 θ λ-1 z 0 θ(z)g(z) exp 1 8 t (z 2 -z 2 ) dz. (3.9) 
Using the fact that for any β ≥ 0, sup

ζ 0 ζ β e -ζ 2 ≤ C β , we have z √ t β θ λ-1 ≤ C λ,β .
Moreover, by considering 0 ≤ ζ ≤ 1 and ζ > 1, it is not hard to check that

e -ζ 2 ζ 0 e ζ2 d ζ ≤ 2 1 + ζ .
Then a change of variable indicates that

z 0 exp 1 4 t (z 2 -z 2 ) dz ≤ C 1 + ζ t . (3.10) 
In (3.6), by using Hölder inequality on z, we have

|θ λ φ| θ λ-1 (z) θg L 2 z z 0 exp 1 4 t (z 2 -z 2 ) dz 1/2 θ λ-1 θg L 2 z t 1/4 (1 + ζ) -1/4 θ λ-1 θg L 2 z t 1/4 , (3.11) 
which is (3.1) for n = 0. In (3.8), by using Hölder inequality and (3.10), we have

|θ λ u r | |θ λ g| + z t θ λ-1 θg L 2 z z 0 exp 1 4 t (z 2 -z 2 ) dz 1/2 |θ λ g| + z t 3/4 θ λ-1 θg L 2 z ,
which is (3.2) for n = 0. In (3.9), by using Hölder inequality and (3.10), we have

|θ λ ∂ z u r | λ z t |θ λ g| + |θ λ ∂ z g| + 1 t + z 2 t 2 θ λ-1 t 1 4 θg L 2 z (1 + ζ) -1/2 λ z t |θ λ g| + |θ λ ∂ z g| + 1 t + z 2 t 2 θ λ-1 t 1 4 θg L 2 z ,
which is (3.3) for n = 0. By applying r n ∂ α h to (3.6), (3.8) and (3.9), the above derivation from (3.11) also stand by replacing φ, u r , ∂ z u r and g by r n ∂ α h φ, r n ∂ α h u r , r n ∂ α h ∂ z u r and r n ∂ α h g, respectively. Based on the rough estimates in Lemma 3.3, we have the following much more subtle integration controls of u r , u z and φ in terms of the weighted L 2 norm of g. Lemma 3.4 (Bounding of u r , u z , φ in terms of g). For any n ∈ N, |α| = n and 0 ≤ λ < 1, we have the following estimates

θ λ r n ∂ α h φ L 2 z λ t 1/2 θ r n ∂ α h g L 2 z , (3.12 
)

θ λ r n ∂ α h u r L 2 λ θ r n ∂ α h g L 2 , (3.13) |α|=n θ λ r n ∂ α h u r L ∞ h L 2 z λ (n + 1) 2 n+2 |α|=n θ r |α| ∂ α h g L 2 , (3.14) 
θ λ r n ∂ α h u r L 2 h L ∞ z λ θ r n ∂ α h (g, ∂ z g) L 2 , (3.15) |α|=n θ λ r n ∂ α h u r L ∞ h L ∞ z λ (n + 1) 2 n+2 |α|=n θ r |α| ∂ α h (g, ∂ z g) L 2 , (3.16 
)

θ λ r n ∂ α h u z L 2 h L ∞ z λ t 1/4 θ r n ∂ α h (r∂ r g, g) L 2 , (3.17) |α|=n θ λ r n ∂ α h u z L ∞ h L ∞ z λ (n + 1) 2 t 1/4 n+2 |α|=n θ r |α| ∂ α h (r∂ r g, g) L 2 , (3.18) 
θ λ r n ∂ α h ∂ z u r L 2 λ t -1/2 θ r n ∂ α h g L 2 + θ r n ∂ α h ∂ z g L 2 , (3.19) |α|=n θ λ r n ∂ α h ∂ z u r L ∞ h L 2 z λ (n + 1) 2 n+2 |α|=n t -1/2 θ r |α| ∂ α h g L 2 + θ r |α| ∂ α h ∂ z g L 2 .
(3.20)

Proof. From (3.1), we have

θ λ r n ∂ α h φ L 2 z λ θ λ-1 L 2 z t 1 4 θ r n ∂ α h g L 2 z λ t 1 2 θ r n ∂ α h g L 2 z
, where we have used the fact that when λ -1 < 0,

θ λ-1 L 2 z λ t 1/4 .
Hence, we have obtained (3.12).

From (3.2), we have

θ λ r n ∂ α h u r L 2 λ θ λ r n ∂ α h g L 2 + z t 3/4 θ λ-1 L 2 z θ r n ∂ α h g L 2 λ θ r n ∂ α h g L 2 , (3.21) 
which is (3.13).

Using the two dimensional Sobolev inequality

f L ∞ h f L 2 h + ∂ 2 h f L 2 h , we have θ λ r n ∂ α h u r L ∞ h L 2 z θ λ r n ∂ α h u r L 2 h L 2 z + θ λ ∂ 2 h r n ∂ α h u r L 2 h L 2 z . (3.22)
It is easy to show that for n ∈ N/{0}, 

∂ 2 h r n ∂ α h u r (n + 1) 2 r 2 2 |γ|=0 | r n+|γ| ∂ α+γ h u r |. ( 3 
θ λ r n ∂ α h u r L ∞ z θ λ r n ∂ α h g L ∞ z + z t 3/4 θ λ-1 L ∞ z θ r n ∂ α h g L 2 λ θ λ r n ∂ α h g L ∞ z + t -1/4 θ r n ∂ α h g L 2 .
(3.25)

Using one dimensional Sobolev embedding

θ λ r n ∂ α h g L ∞ z θ λ r n ∂ α h g 1/2 L 2 z ∂ z θ λ r n ∂ α h g 1/2 L 2 z θ λ r n ∂ α h g 1/2 L 2 z θ λ r n ∂ α h ∂ z g L 2 z + z t θ λ r n ∂ α h g L 2 z 1/2 λ θ r n ∂ α h g L 2 z + θ r n ∂ α h ∂ z g L 2 z .
Inserting the above inequality into (3.25), we can have

θ λ r n ∂ α h u r L ∞ z λ θ r n ∂ α h (g, ∂ z g) L 2 z . (3.26) 
The bound (3.15) follows by taking L 2 norms in x, y variables of the above inequality (3.26). The same as (3.24), we can have 

|α|=n θ λ r n ∂ α h u r L ∞ h L ∞ z (n + 1) 2 n+2 |α|=n θ λ r |α| ∂ α h u r L 2 h L ∞ z . ( 3 
u z (z) = - ∞ z ∂ z u z (z)dz = ∞ z (r∂ r u r + 2u r )(z)dz, then we can get θ λ r n ∂ α h u z L ∞ z ≤ θ λ r n ∂ α h (r∂ r u r + 2u r ) L 1 z λ θ r n ∂ α h (r∂ r u r + 2u r ) L 2 z θ λ-1 L 2 z λ t 1/4 θ r n ∂ α h (r∂ r u r + 2u r ) L 2 z .
(3.28) From (3.2), we have

θ λ r n ∂ α h (r∂ r u r + 2u r ) L 2 z λ θ λ r n ∂ α h (r∂ r + 2)g L 2 z + z t 3/4 θ λ-1 L 2 z θ r n ∂ α h (r∂ r + 2)g L 2 z λ θ r n ∂ α h (r∂ r + 2)g L 2 z
. The same as (3.24), we can have Inserting the above inequality into (3.28) and then integrating the resulted equation in the tangential variables implies that

|α|=n θ λ r n ∂ α h u z L ∞ h L ∞ z λ (n + 1) 2 n+2 |α|=n θ λ r |α| ∂ α h u z L 2 h L ∞ z . ( 3 
θ λ r n ∂ α h u z L 2 h L ∞ z λ t 1/4 θ r n ∂ α h (r∂ r + 2)g L 2 ,
which corresponds to (3.17).

Then the same as (3.24) and using the estimate (3.17), we can get (3.18). From (3.3), we can get

θ λ r n ∂ α h ∂ z u r L 2 λ z t θ λ-1 L ∞ z θ r n ∂ α h g L 2 + θ r n ∂ α h ∂ z g L 2 + 1 t + z 2 t 2 θ λ-1 L 2 z t 1 4 θ r n ∂ α h g L 2 λ t -1/2 θ r n ∂ α h g L 2 + θ r n ∂ α h ∂ z g L 2 .
which is (3.19).

Then almost the same as (3.24), we can get

|α|=n θ λ r n ∂ n h ∂ z u r L ∞ h L 2 z λ (n + 1) 2 n+2 |α|=n θ λ r |α| ∂ α h ∂ z u r L 2 h L 2 z λ (n + 1) 2 n+2 |α|=n t -1/2 θ r |α| ∂ α h g L 2 + θ r |α| ∂ α h ∂ z g L 2 .
which is (3.20).

Weighted energy estimates for the good unknown g

Now we perform the weighted energy estimates for the good unknown g. Rewrite (2.6) 1 as

       ∂ t g -∂ 2 z g + 1 t g = -(ru r ∂ r + u z ∂ z )g -(u r ) 2 + 1 2 t u z ∂ z (zφ) - z t u r φ - z 2 t ∞ z (u r ) 2 dz + z t ∞ z ∂ z u r u z dz.
(3.30)

Let n ≥ 0 and |α| = n. Applying r n ∂ α h to (3.30) and multiplying the resulted equation with θ 2 r n ∂ α h g, and then integrating over

R 3 + to give 1 2 d dt θ r n ∂ α h g 2 L 2 + θ r n ∂ α h ∂ z g 2 L 2 + 3 4 t θ r n ∂ α h g 2 L 2 = -θ r n ∂ α h (u r r∂ r g)θ r n ∂ α h g -θ r n ∂ α h (u z ∂ z g)θ r n ∂ α h g -θ r n ∂ α h (u r ) 2 θ r n ∂ α h g + 1 2 t θ r n ∂ α h (u z ∂ z (zφ)) θ r n ∂ α h g - 1 t zθ r n ∂ α h (u r φ)θ r n ∂ α h g - 1 2 t zθ ∞ z r n ∂ α h (u r ) 2 dzθ r n ∂ α h g + 1 t zθ ∞ z r n ∂ α h (∂ z u r u z )dzθ r n ∂ α h g := 7 j=1 I α j .
Here for a function f (t, x, y, z), we have denoted

R 3 + f (t, x, y, z)dxdydz simply by f if no confusion is caused.
Dividing the above equality by θ r n ∂ α h g L 2 and multiplying the resulted equation by τ n (t)M n , then by summing for |α| = n, we can get, for n ≥ 0,

d dt X n + |α|=n θ r n ∂ α h ∂ z g 2 L 2 θ r n ∂ α h g L 2 + 3 4 t X n = τ(t)Y n + |α|=n τ n (t)M n θ r n ∂ α h g L 2 7 j=1 I α j , (3.31) 
where when n = 0, we set Y 0 = 0.

Here we present a lemma to characterize the quantitative relation between θ

r n ∂ α h g 2 L 2 and θ r n ∂ α h ∂ z g 2 L 2 .
Lemma 3.5. Let g be a smooth enough function in x, y variables and belong to H 1 in z variable, which decays to zero sufficiently fast as z → +∞. Then we have

1 2 t θ r n ∂ α h g 2 L 2 ≤ θ r n ∂ α h ∂ z g 2 L 2 . (3.32)
The inequality (3.32) is a special case of Treves inequality that can be found in [START_REF] Hörmander | The analysis of linear partial differential operators. III. Pseudodifferential operators[END_REF]. Proof of Lemma 3.5 can be found in [START_REF] Paicu | Global existence and the decay of solutions to the Prandtl system with small analytic data[END_REF]Lemma 3.1]. See also [START_REF] Ignatova | Almost global existence for the Prandtl boundary layer equations[END_REF]Lemma 3.3]. Here, we omit the details.

Using (3.32), we can obtain from (3.31)

d dt X n + 1 √ 2 t D n + 3 4 t X n ≤ τ(t)Y n + |α|=n τ n (t)M n θ r n ∂ α h g L 2 7 j=1 I α j .
(3.33)

Proof of Proposition 3.2 and the main theorem

First, we state a proposition concerning on the estimates of the nonlinear terms in (3.33).

Proposition 3.6 (Estimates of the nonlinear terms). For the nonlinear terms in (3.33), we have the following estimate

n 0 |α|=n τ n (t)M n θ r n ∂ α h g L 2 7 j=1 I α j ≤Cτ -2 (t) g X τ + t 1/4 g D τ g Y τ + Cτ -2 (t) g X τ + t 1/4 g D τ g X τ .
We postpone the proof of Proposition 3.6 in Section 4 and continue to prove the a priori estimate in Proposition 3.2.

Proof of Proposition 3.2

From (3.33), by summing on n ≥ 0, we get for a uniform constant C 0 ,

d dt g X τ + 1 √ 2 t g D τ + 3 4 t g X τ ≤ τ + C 0 τ -2 (t) g X τ + t 1/4 g D τ g Y τ + C 0 τ -2 (t) g X τ + t 1/4 g D τ g X τ .
(3.34) By using (3.32), for any small δ 1 > 0, we have

1 √ 2 t g D τ = δ 1 √ 2 t g D τ + (1 -δ 1 ) √ 2 t g D τ ≥ δ 1 √ 2 t g D τ + (1 -δ 1 ) 2 t g X τ ≥ δ 1 √ 2 t g D τ + δ 1 t g X τ + 1 -3δ 1 2 t g X τ .
Inserting the above inequality into (3.34), we obtain that

d dt g X τ + 5 4 -3 2 δ 1 t g X τ + δ 1 t g X τ + δ 1 √ 2 t g D τ ≤ τ + C 0 τ -2 (t) g X τ + t 1/4 g D τ g Y τ + C 0 τ -2 (t) g X τ + t 1/4 g D τ g X τ .
For δ ∈ (0, 1/4], by choosing δ 1 = δ/3, we have

d dt g X τ + 5 4 -1 2 δ t g X τ + δ 6 1 t g X τ + 1 √ t g D τ ≤ τ + C 0 τ -2 (t) g X τ + t 1/4 g D τ g Y τ + C 0 τ -2 (t) g X τ + t 1/4 g D τ g X τ .
(3.35) Now, we assume the a prior assumption that for any t > 0, t Using this a priori assumption (3.36) and by choosing suitable τ(t) and sufficiently small 0 , depending on τ 0 and δ, we will show that

t 5 4 -δ g X τ ≤ 0 , τ(t) ≥ 1 2 τ 0 . (3.37) 
Then continuity argument insure that (3.37) stands for any t > 0. First, inserting (3.36) into (3.35), we have

d dt g X τ + 5 4 -1 2 δ t g X τ + δ 6 1 t g X τ + 1 √ t g D τ ≤ τ + C 0 τ -2 (t) g X τ + t 1/4 g D τ g Y τ + 32 0 C 0 τ 2 0 t 5/4-δ g X τ + t 1/4 g D τ .
By choosing 0 such that 32 0 C 0 τ 2 0 < δ 12 , then we can have

d dt g X τ + 5 4 -δ t g X τ + δ 12 1 t g X τ + 1 √ t g D τ ≤ τ + C 0 τ -2 (t) g X τ + t 1/4 g D τ g Y τ .
(3.38)

We choose τ(t) such that

τ + 2C 0 τ 2 (t) g X τ + t 1/4 g D τ = 0. (3.39) Then (3.38) indicates that d dt t 5 4 -δ g X τ + δ 12 t 1 4 -δ g X τ + t 3 4 -δ g D τ + C 0 t 5 4 -δ τ 2 (t) g X τ + t 1/4 g D τ g Y τ ≤ 0. (3.40) 
Integrating (3.40), we can have

t 5 4 -δ g X τ + δ 12 t 0 s 1 4 -δ g X τ + s 3 4 -δ g D τ ds + C 0 t 0 s 5 4 -δ τ 2 (s) g X τ + s 1/4 g D τ g Y τ ds ≤ g 0 X τ 0 ≤ 0 , (3.41) 
which implies that

t 0 s 1 4 -δ g X τ + s 3 4 -δ g D τ ds ≤ 12 δ 0 .
Then from (3.39), we see that

τ 3 (t) =τ 3 0 -6C 0 t 0 g X τ + s 1/4 g D τ ds ≥τ 3 0 - 72C 0 0 δ ≥ 1 2 τ 0 3
, by choosing small 0 . Then by choosing small 0 , depending on τ 0 and δ, we obtain (3.37) and (3.41), which finishes the proof of Proposition 3.2.

End Proof of Theorem 2.3

Combining the local existence and uniqueness of the tangentially analytical solutions in Theorem 3.1 and continuity argument, we can obtain the validity of Theorem 2.3.

Technical estimates of the nonlinear terms

In this section, we give the technical estimates for the nonlinear terms on the righthand of (3.33).

When summing over n ≥ 0, we can get the following tangentially analytical estimates for the nonlinear terms.

Lemma 4.1 (Estimates of the nonlinear terms separately). We have the following estimates for the the nonlinear terms on the righthand of (3.33).

n≥0 |α|=n |I α 1 |τ n (t)M n θ r n ∂ α h g L 2 τ -2 g X τ + g D τ g Y τ , (4.1) 
n≥0 |α|=n |I α 2 |τ n (t)M n θ r n ∂ α h g L 2 τ -2 t 1 4 g X τ + g Y τ g D τ , (4.2) 
n≥0 |α|=n |I α 3 |τ n (t)M n θ r n ∂ α h g L 2 + n≥0 |α|=n |I α 6 |τ n (t)M n θ r n ∂ α h g L 2 τ -2 g X τ + g D τ g X τ , (4.3) 
n≥0 |α|=n |I α 4 |τ n (t)M n θ r n ∂ α h g L 2 τ -2 t -1/4 |g X τ + g Y τ g X τ , (4.4 
)

n≥0 |α|=n |I α 5 |τ n (t)M n θ r n ∂ α h g L 2 τ -2 g X τ + g D τ g X τ , (4.5) 
n≥0 |α|=n |I α 7 |τ n (t)M n θ r n ∂ α h g L 2 τ -2 t -1/4 g X τ + t 1/4 g D τ g X τ + g Y τ . (4.6) 
Proof. Before the proof, we give the following simple claim. Claim. For any k ∈ N, 1 ≤ p, q ≤ +∞,

|α|=k θ r k ∂ α h (r∂ r g) L p h L q z |α|=k+1 θ r k+1 ∂ α h g L p h L q z + k |α|=k θ r k ∂ α h g L p h L q z . (4.7)
Proof of the claim. Without loss of generality, we assume k ≥ 1, since the claim is obviously stand for k = 0. We write r∂ r = x∂ x + y∂ y := x h ∂ h . Then using Leibniz formula, we have

r k ∂ α h (r∂ r g) = r k ∂ α h (x h ∂ h g) = r k x h ∂ α h ∂ h g + β≤α,|β|=1 r k α β ∂ α-β h ∂ h g∂ β h x h ≤ r k+1 |∂ α h ∂ h g| + 2k r k |∂ α h g|. (4.8) 
Then from (4.8), we can easily obtain (4.7).

In later calculations, for multi-indices α, β with β ≤ α, we will frequently use

α β ≤ |α| |β| , |α|=n |β|=k,β≤α a β b α-β = |β|=k a β |γ|=n-k b γ (4.9)
for all sequences {a β } and {b γ }. Now we are ready to prove Lemma 4.1. Estimate for term I 1 . For the term I 1 , by using (4.9), we have

|α|=n |I n 1 |τ n (t)M n θ r n ∂ α h g L 2 ≤τ n (t)M n [n/2] k=0 n k |γ|=n-k r n-k ∂ γ h u r L 2 h L ∞ z |β|=k θ r k ∂ β h (r∂ r g) L ∞ h L 2 z + τ n (t)M n n k=[n/2]+1 n k |γ|=n-k r n-k ∂ γ h u r L ∞ |β|=k θ r k ∂ β h (r∂ r g) L 2 .
Then by using (3.15) and (3.16), and noting that

M n n k = (n+1) 4 (n-k)!k! , we have |α|=n |I n 1 |τ n (t)M n θ r n ∂ α h g L 2 [n/2] k=0 (X n-k + D n-k ) τ k k! |β|=k θ r k ∂ β h (r∂ r g) L ∞ h L 2 z + τ -2 n k=[n/2]+1 2 i=0 (X n-k+i + D n-k+i ) τ k (k + 1) 4 k! |β|=k θ r k ∂ β h (r∂ r g) L 2 . (4.10) 
Then by the same Sobolev embedding estimate as in (3.24) and using (4.7), we can get

|β|=k θ r k ∂ β h (r∂ r g) L ∞ h L 2 z (k + 1) 2 k+2 |β|=k θ r |β| ∂ β h (r∂ r g) L 2 (k + 1) 2 k+3 |β|=k+1 θ r |β| ∂ β h g L 2 + (k + 1) 2 |β| k+2 |β|=k θ r |β| ∂ β h g L 2 .
Then it is not hard to check that

τ k k! |β|=k θ r k ∂ β h (r∂ r g) L ∞ h L 2 z τ -2 3 i=0 Y k+i , (4.11) 
where, when k = i = 0, we have set Y 0 = 0. Also by using (4.7), we can obtain

τ k (k + 1) 4 k! |β|=k θ r k ∂ β h (r∂ r g) L 2 Y k + Y k+1 , (4.12) 
where we used that τ ≤ τ 0 since later we will chosen τ(t) to be a decreased function of t .

Inserting (4.11) and (4.12) into (4.10), we can get

|α|=n |I α 1 |τ n (t)M n θ r n ∂ α h g L 2 ≤τ -2 n k=0 2 i=0 (X n-k+i + D n-k+i ) 3 i=0 Y k+i . (4.13) 
Then by using the following inequality

n≥0 n k=0 a n-k b k ≤ k≥0 a k j≥0 b j , (4.14) 
we can get from (4.13),

n≥0 |α|=n |I α 1 |τ n (t)M n θ r n ∂ α h g L 2 τ -2 k≥0 (X k + D k ) k≥0 Y k = τ -2 g X τ + g D τ g Y τ ,
which is (4.1) for term I 1 .

Estimate for term I 2 . Now we come to estimate term I 2 . By using (4.9), we have

|α|=n |I α 2 |τ n (t)M n θ r n ∂ α h g L 2 ≤τ n (t)M n [n/2] k=0 n k |γ|=n-k r n-k ∂ γ h u z L 2 h L ∞ z |β|=k θ r k ∂ β h ∂ z g L ∞ h L 2 z + τ n (t)M n n k=[n/2]+1 n k |γ|=n-k r n-k ∂ γ h u z L ∞ |β|=k θ r k ∂ β h ∂ z g L 2 .
(4.15)

Then by using (3.17) and (3.18), and noting that

M n n k = (n+1) 4 (n-k)!k! , we have |α|=n |I α 2 |τ n (t)M n θ r n ∂ α h g L 2 t 1 4 τ n (t) [n/2] k=0 (n -k + 1) 4 (n -k)!k! |γ|=n-k r n-k ∂ γ h (r∂ r g, g) L 2 |β|=k θ r k ∂ β h ∂ z g L ∞ h L 2 z + t 1 4 τ n (t) n k=[n/2]+1 (k + 1) 4 (n -k + 1) 2 (n -k)!k! n-k+2 |γ|=n-k r |γ| ∂ γ h (r∂ r g, g) L 2 |β|=k θ r k ∂ β h ∂ z g L 2 .
(4.16)

Noting that by using Sobolev embedding, we have

1 k! θ r k ∂ β h ∂ z g L ∞ h L 2 z (k + 1) 2 k! k+2 |β|=k θ r |β| ∂ β h ∂ z g L 2 τ -2 2 i=0 D k+i . (4.17) 
Inserting (4.17) into (4.16), we obtain

|α|=n |I α 2 |τ n (t)M n θ r n ∂ α h g L 2 t 1/4 τ -2 [n/2] k=0 τ n-k (n -k + 1) 4 (n -k)! |γ|=n-k r n-k ∂ γ h (r∂ r g, g) L 2 2 i=0 D k+i + t 1/4 n k=[n/2]+1 τ n-k (n -k + 1) 2 (n -k)! n-k+2 |γ|=n-k r |γ| ∂ γ h (r∂ r g, g) L 2 D k . (4.18) 
We have that

τ n-k (n -k + 1) 4 (n -k)! |γ|=n-k r n-k ∂ γ h (r∂ r g, g) L 2 X n-k + Y n-k+1 + Y n-k , (4.19) 
τ n-k (n -k + 1) 2 (n -k)! n-k+2 |γ|=n-k r |γ| ∂ γ h (r∂ r g, g) L 2 ≤ X n-k + τ -2 3 i=0 Y n-k+i . (4.20) 
Inserting the above two inequalities into (4.18), we can obtain

|α|=n |I α 2 |τ n (t)M n θ r n ∂ α h g L 2 t 1/4 τ -2 n k=0 X n-k + 3 i=0 Y n-k+i 2 i=0 D k+i . (4.21) 
Summing (4.21) over n ≥ 0 and using (4.14), we can obtain (4.2). Estimate for term I 3 . Now we come to estimate term I 3 . By using (4.9), we have

|α|=n |I α 3 |τ n (t)M n θ r n ∂ α h g L 2 ≤ τ n (t)M n [n/2] k=0 n k |γ|=n-k θ 1/2 r n-k ∂ γ h u r L 2 h L ∞ z |β|=k θ 1/2 r k ∂ β h u r L ∞ h L 2 z + τ n (t)M n n k=[n/2]+1 n k |γ|=n-k θ 1/2 r n-k ∂ γ h u r L ∞ |β|=k θ 1/2 r k ∂ β h u r L 2 . (4.22) 
Then by using (3.13) to (3.16), and noting that Estimate for term I 4 . For the terms I n 4 , from (3.4) 1 , we first have

M n n k = (n+1) 4 (n-k)!k! , we have |α|=n |I α 3 |τ n (t)M n θ r n ∂ α h g L 2 τ -2 [n/2] k=0 (X n-k + D n-k ) 2 i=0 X k+i + τ -2 n i=[n/2]+1 2 i=0 (X n-k+i + D n-k+i ) X k τ -2 n k=0 2 i=0 (X n-k+i + D n-k+i ) 2 i=0 X k+i .
∂ z (zφ) = (1 - z 2 2 t )φ + zg.
Then from (3.12), we have, for |α| = k,

θ λ r k ∂ α h ∂ z (zφ) L 2 z ≤ θ λ r k ∂ α h φ L 2 z + θ λ z 2 t r k ∂ α h φ L 2 z + θ λ z r k ∂ α h g L 2 z ≤ t θ λ r k ∂ α h g L 2 z + θ 1+λ 2 α r k ∂ α h φ L 2 z + t θ 1+λ 2 r k ∂ α h g L 2 z ≤ t θ r k ∂ α h g L 2 z . (4.24) 
Now we come to estimate term I 4 . By using (4.9) and (4.24), we have

|α|=n |I α 4 |τ n (t)M n θ r n ∂ α h g L 2 ≤ t -1/2 τ n (t)M n |α|=n β≤α |β|≤[n/2] α β θ 1/2 r n-|β| ∂ α-β u z L 2 h L ∞ z θ r |β| ∂ β h g L ∞ h L 2 z + t -1/2 τ n (t)M n |α|=n β≤α |β|>[n/2] α β θ 1/2 r n-|β| ∂ α-β u z L ∞ θ r |β| ∂ β h g L 2 .
Then almost the same estimate as in (4.15) 

First

  , we state a simple version of the local well-posedness result on the three dimensional Prandtl equations in tangentially analytical spaces. See [10, Theorem 3.1 and Remark 3.3].

  .29) Inserting (3.17) into (3.29), we can get(3.18).

(4. 23 )

 23 Summing (4.23) over n ≥ 0 and using (4.14), we can obtain (4.3) for term I 3 .

  by replacing ∂ z g with g indicates a similar estimate as (4.21) as follows. Summing (4.25) over n ≥ 0 and using (4.14), we can obtain (4.4). Estimate for term I 5 . It is easy to see that, from (3.12), Summing (4.28) over n ≥ 0 and using (4.14), we can obtain (4.5). Estimate for term I 6 . First, we have The rest is the same as I α 3 in (4.22) by replacing 1/2 with 7/8 which indicates (4.3) for term I α 6 . Estimate for term I 7 . Repeating the proof for (4.29), we can get |α|=n |I α 7 |τ(t)M n θ( r ∂ r ) n g L 2 ≤τ(t)M n |α|=n θ 7/4 (z) r n ∂ α h (u z ∂ z u r ) L 2 . |γ| ∂ γ h (r∂ r g, g) L 2 t -1/2 X k + D k .

	Then by using (3.15) and (3.16), and noting that M n	n k = (n+1) 4 (n-k)!k! , we have
			|I α 5 |τ n (t)M n					
	|α|=n By using (4.9), we have θ r n ∂ α h g L 2					
	[n/2] k=0	(X n-k + D n-k ) |I α 7 |τ n (t)M n τ k k! |β|=k |α|=n θ r n ∂ α h g L 2	θ r k ∂ β h g L ∞ h L 2 z + τ -2	n k=[n/2]+1	2 i=0	(X n-k+i + D n-k+i ) X k .	(4.27)
	By using Sobolev embedding, it is easy to check that ≤ τ n (t)M n [n/2] k=0 n θ 7/8 r n-k ∂ γ h u z k |γ|=n-k τ k k! |β|=k θ r k ∂ β h g L ∞ h L 2 z + τ n (t)M n n k=[n/2]+1 n |γ|=n-k k θ 7/8 r n-k ∂ γ L 2 h L ∞ z τ -2 h u z |β|=k 2 i=0 L ∞	θ 7/8 r k ∂ β h ∂ z u r X k+i . |β|=k θ 7/8 r k ∂ β h ∂ z u r L ∞ h L 2 z	L 2 .
	Inserting the above inequality into (4.27), we can obtain Then by using (3.17) to (3.20), and noting that M n n k = (n+1) 4 (n-k)!k! , we have
	|α|=n	|α|=n |I α 7 |τ n (t)M n |I α 5 |τ n (t)M n θ r n ∂ α h g L 2 θ r n ∂ α h g L 2			t -1/2 τ -2	n k=0	2 i=0	(X n-k+i + D n-k+i )	2 i=0	X k+i .	(4.28)
				[n/2]						2
		t	1 4 τ -2						r n-k ∂ γ h (r∂ r g, g) L 2	t -1/2 X k+i + D k+i
								|γ|=n-k	i=0
	|I α 6 | θ r n ∂ α h g L 2 n (n -k + 1) 2 τ n-k ≤ 1 t zθ(z) = k=[n/2]+1 (n -k)! 1 t zθ -1/2 (z)θ 3/2 (z) ∞ z r n ∂ α h (u r ) 2 (z)dz L 2 ∞ n-k+2 |γ|=n-k z r n ∂ α h (u r ) 2 (z)dz L 2 Then using (4.19) and (4.20), we obtain 1 4 + t
	|α|=n	|α|=n 7 |τ n (t)M n |I α 4 |τ n (t)M n θ r n ∂ α h g L 2 ≤ 1 t t -1/4 θ 3/2 (z) t -1/4 τ -2 zθ -1/2 (z) L ∞ n k=0 h L 2 z θ 3/2 (z) X n-k + ∞ z r n ∂ α h (u r ) 2 (z)dz L 2 3 i=0 Y n-k+i ∞ z r n ∂ α h (u r ) 2 (z)dz L 2 2 i=0 X k+i . h L ∞ z h L ∞ z . |I α n 3 2 θ r n ∂ α k=0 i=0 i=0 h g L 2 t 1 4 τ -2 X n-k + Y n-k+i t -1/2 X k+i + D k+i .	(4.25) (4.30)
	While				∞			
				θ λ r k ∂ α h (zφ) L 2 z θ 3/2 (z) z		λ r n ∂ α h (u r ) 2 (z)dz t θ 1+λ r k ∂ α h φ L 2 z 2 L ∞ z	λ t θ r k ∂ α h g L 2 z .	(4.26)
	By using (4.9) and (4.26), we have |I α 5 |τ n (t)M n ≤ sup z≥0 θ3 2 (z)	z	∞	θ -7 2 (z)dz	1/2	θ 7/4 (z) r n ∂ α h (u r ) 2	L 2 z
				|α|=n ≤ t 1/4 θ 7/4 (z) r n ∂ α θ r n ∂ α h g L 2 h (u r ) 2	L 2 z .
	Then			τ n (t)M n |α|=n |I α [n/2] k=0 6 |τ(t)M n n k θ( r ∂ r ) n g L 2 |γ|=n-k ≤τ(t)M n r n-k ∂ γ h u r |α|=n θ 7/4 (z) r n ∂ α L 2 h L ∞ z |β|=k θ r k ∂ β h g L ∞ h L 2 z h (u r ) 2 L 2 .	(4.29)
				+ τ n (t)M n	n k=[n/2]+1	n k	|γ|=n-k	r n-k ∂ γ h u r	L ∞	|β|=k	θ r k ∂ β h g L 2 .

k=0 (nk + 1) 4 τ n-k (nk)! r

Summing (4.30) over n ≥ 0 and using (4.14), we can obtain (4.6).

-δ g X τ ≤ 2 0 , τ(t) ≥ 1 4 τ 0 . (3.36) 
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