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Temporal evolution of the Covid19 pandemic reproduction number:
Estimations from proximal optimization to Monte Carlo sampling

Patrice Abry1, Gersende Fort2, Barbara Pascal3, Nelly Pustelnik1

Abstract— Monitoring the evolution of the Covid19 pandemic
constitutes a critical step in sanitary policy design. Yet, the
assessment of the pandemic intensity within the pandemic
period remains a challenging task because of the limited
quality of data made available by public health authorities
(missing data, outliers and pseudoseasonalities, notably), that
calls for cumbersome and ad-hoc preprocessing (denoising)
prior to estimation. Recently, the estimation of the reproduction
number, a measure of the pandemic intensity, was formulated
as an inverse problem, combining data-model fidelity and
space-time regularity constraints, solved by nonsmooth convex
proximal minimizations. Though promising, that formulation
lacks robustness against the limited quality of the Covid19 data
and confidence assessment. The present work aims to address
both limitations: First, it discusses solutions to produce a robust
assessment of the pandemic intensity by accounting for the
low quality of the data directly within the inverse problem
formulation. Second, exploiting a Bayesian interpretation of
the inverse problem formulation, it devises a Monte Carlo
sampling strategy, tailored to a nonsmooth log-concave a
posteriori distribution, to produce relevant credibility interval-
based estimates for the Covid19 reproduction number.

Clinical relevance Applied to daily counts of new infections
made publicly available by the Health Authorities for around
200 countries, the proposed procedures permit robust assess-
ments of the time evolution of the Covid19 pandemic intensity,
updated automatically and on a daily basis.

I. INTRODUCTION

Context. The online and daily surveillance of the Covid19
pandemic intensity has become a critical societal stake and
constitutes a key preliminary step in the implementation of
any counter-measures by public authorities. The evolution
of the pandemic is usually assessed from epidemiological
models fed by daily counts of new infections or death cases,
the core data of any pandemic surveillance strategy. At the
outbreak of the Covid19 pandemic, facing the urgent need for
data to monitor its evolution, significant efforts were devoted
by most national public health authorities to collect such data
and to make them publicly available. However, because of
the emergency and sanitary crisis contexts, the available data
were of low quality, strongly corrupted by missing samples,
outliers and pseudo-seasonalities. More surprisingly, after
two years of pandemic, the data collected by most coun-
tries remain of very limited quality. That low quality of
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the available data combined with the need for online and
regular (ideally daily) monitoring turn the assessment of the
pandemic intensity evolution into a far more difficult task
than when performed once the pandemic is over and with
consolidated data. Further, assessing the confidence that can
be granted to such estimates also provides another critical
and difficult challenge. The within pandemic online and daily
updated estimation, via credibility intervals, of the pandemic
intensity from limited quality data thus constitutes the core
issue of this work.
Related work. Pandemic surveillance can be achieved
with a large variety of tools, different in nature [1]. Esti-
mating retrospectively the pandemic evolution, when it is
over and after the data have been post-processed, is usually
performed with compartmental models [2], [3]. They suffer
yet from heavy computational costs and are of limited ro-
bustness against the low quality of the Covid19 data. Instead,
the pandemic intensity can be measured by the reproduction
number, R, that quantifies the number of second infections
stemming from one same primary infection (cf. e.g., [4], [5],
[6], [7]). It has recently been proposed that relevant estimates
of the time evolution of the reproduction number can be
obtained from nonsmooth convex optimization procedures
[8], with the functional to minimize built from a pandemic
model [7]. Attempts to create credibility intervals from a
Bayesian interpretation of that model complemented with
Monte Carlo sampling schemes were recently reported in [9]
(see also [10]). Though delivering epidemiologically realistic
assessments of the temporal evolution of the pandemic inten-
sity, there is still a significant need to increase the robustness
of these tools against the limited quality of the Covid19 data.
Goals, contributions and outline. Elaborating on [9],
[11], the goal of the present work is to further improve
estimation robustness against the limited quality of the
Covid19 data. To that end, the reproduction number-based
epidemiology model [7] is recalled in Section II-A. Sec-
tion II-B recalls the model-based and regularized inverse
problem formulations for the estimation of R. Sections II-
C and II-D detail how the regularized inverse problem
formulations can be modified to bring robustness against
the Covid19 data limited quality, while remaining close to
the original epidemiological model. Section II-E details the
proposition of a construction of credibility interval-based
estimation of R relying on an original Markov Chain Monte
Carlo sampler, referred to as Metropolis Adjusted Proximal-
Gradient Algorithm, refining classical Metropolis Adjusted
Langevin procedures. Using real Covid19 data described in
Section III, Section IV discusses the performance of the



proposed estimation procedures, for different countries.

II. REPRODUCTION NUMBER MODEL AND ESTIMATION

A. Pandemic model

The pandemic model developed in [7] and used here,
assumes that the count of daily new infections at time t, Zt,
is drawn from a Poisson distribution, conditionally to past
counts Z1:t−1 := {Z1, . . . , Zt−1}. It further postulates that
the Poisson parameter, pt, varies along time, and depends
on past counts Z1:t−1, on the causal serial interval function
Φt and on the reproduction number at time t, Rt: p

(0)
t :=

Rt ×
∑τφ
s=1 ΦsZt−s. The function Φ := (Φt)t≥1 models

the main epidemic evolution mechanism: the random delays
between the onsets of symptoms in a primary and secondary
cases [7], [6], [12], [2]. For the Covid19 pandemic and for
earlier pandemics of same types, it was shown that Φ can
be approximated as a Gamma function, with shape and rate
parameters corresponding to mean and standard deviation of
6.6 and 3.5 days, indicating a high risk of infecting other
persons from 3 to 10 days after the symptoms have appeared
[13], [14], [15].

B. Model-based estimation

Maximum Likelihood estimation. A natural estimation
strategy is based on maximizing the log-likelihood of the
data. Because of the Poisson distribution assumption in
the model above, the negative log-likelihood (also referred
to as the data fidelity term) is essentially a sum in time
of the standard Kullback-Leibler divergence, L(R|p(0)) :=∑T
t=1 dKL(Zt|p

(0)
t ) with dKL(z|p) := z ln z

p + p − z when
z > 0, p > 0, dKL(z|p) := p when z = 0, p ≥ 0 and
dKL(z|p) := +∞ otherwise, leading to:

R̂(0) := argmin
R
L(R|p(0)). (1)

Explicit calculations yield a simple closed-form expression:
R̂

(0)
t := Zt/

∑τφ
s=1 ΦsZt−s. Both because of the low quality

of the data, and of its being ill-conditioned (one new obser-
vation Zt is available to estimate daily Rt), R̂(0) turns out to
be extremely irregular along time (cf. Fig. 1, second rows)
and thus useless for epidemic surveillance.
Penalized Maximum Likelihood estimation. To favor tem-
poral regularity in the estimate of R, it was proposed in
[8] to complement the data fidelity term L(R|p(0)) with a
regularization term based on the L1-norm of the Laplacian
of R, ‖D2R‖1 :=

∑T
t=3 |Rt−2 − 2Rt−1 +Rt|:

R̂(1) := argmin
R
L(R|p(0)) + λR‖D2R‖1, (2)

with λR > 0 a regularization hyperparameter balancing the
regularization term against the data fidelity term.

The use of the Laplacian operator favors a piecewise linear
estimate of R. In addition, the use of the L1-norm imposes
sparsity in the locations where changes in the second deriva-
tive actually occur. While yielding more realistic estimates
than R̂(0), R̂(1) still lacks significant robustness against the
low quality of the data, cf. Fig. 1 and [11].

C. Robust to outlier estimation
A classical approach to address the low quality of the

data would consist in first performing data preprocessing
or denoising step followed by, second, the estimation of R.
This, however, requires to construct a detailed model for data
corruption (missing data and outliers, pseudo-seasonalities
notably). This is a tedious task as such a model is likely
to be specific to each country, and even likely to vary for
one same country with the different stages of the pandemic
(cf. [11]). Instead, it was proposed in [11] to perform both
data denoising and reproduction number estimation within a
single step. The leading thread is to modify the functional
form in (2) to account for outliers while staying as close as
can be from the pandemic model in [7]. The only assumption
on data corruption is that it can be modeled as sparse outliers
Ot, i.e., isolated rather than raws of successive irrelevant
values, of unknown values that need to be estimated in
addition to Rt. Ideally, the epidemic model in [7] should
hence be modified to state that, conditionally to past counts
Z1:t−1 and outliers O1:t−1, the denoised infection counts
Zt − Ot follow a Poisson distribution, with non stationary
parameter p?t := Rt×

∑τφ
s=1 Φs(Zt−s−Ot−s). This however

results in a functional that would not be jointly convex,
which impairs fast and robust minimization [11]. To preserve
convexity, it has instead been proposed in [11] to weaken
the model into: Conditionally to past counts and Outliers
(Z1:t−1,O1:t−1), Zt follows a Poisson distribution, with non
stationary parameter: p(2)t := (Rt ×

∑τφ
s=1 ΦsZt−s) − Ot.

This leads to estimate R and O as,

(R̂(2), Ô(2)) := argmin
R,O

L(R,O|p(2)) + λR‖D2R‖1

+ι≥0(R) + λO‖O‖1, (3)

with λR > 0 and λO > 0, regularization hyperparame-
ters, balancing the strengths of the different constraints one
against each other and against the data fidelity term. The
regularization ‖O‖1 favors sparsity in outliers, the {0,+∞}-
valued indicator function ι≥0(R) ensures non-negativity in
R̂(2). While robust to outliers [11], the approximation leading
to the criterion in (3) is likely to induce a bias in the
estimation of R, leading to the refinement proposed here.

D. Robust to outliers and unbiased estimation
To remove the bias described above and hence to further

improve estimation, it is proposed here, to assume that
conditionally to Z1:t−1 and O1:t−1, Ẑ(D)

t := Zt − Ô
(2)
t

follows a Poisson distribution with parameter

p
(3)
t := Rt ×

τφ∑
s=1

Φs(Zt−s − Ô(2)
t−s), (4)

thus leading to

R̂(3) := argmin
R
L(R|p(3))+ λR‖D2R‖1. (5)

In other words, starting from the daily new infection counts,
Z, minimization in Eq. (3) is first applied to obtain Ô(2),
minimization in Eq. (5) is then applied to the denoised counts
Ẑ(D) = Z − Ô(2) to yield the final estimate R̂(3).



E. Credibility intervals from the Metropolis Adjusted
Proximal-Gradient Algorithm

The above penalized Maximum Likelihood procedure pro-
vides an optimization-based point estimation of R, yet with-
out confidence assessment. To complement it, an estimation
by means of Credibility Intervals is also proposed in this
work. It adopts a Bayesian, hence stochastic, perspective
on Eq. (5) and assumes that R is a random vector, with a
posterior density π(R) written as [9]:

π(R) ∝ exp

(
−
(
L(R|p(3)) + λR‖D2R‖1 + ι≥0(R)

))
. (6)

To produce an estimation of R by means of credibility
intervals, one resorts to Monte Carlo schemes to produce
a sequence of samples {Rn}n≥0 to approximate π. The
most classical ones are referred to as Metropolis samplers,
and combine two steps: Proposition and Accept/Reject, as
sketched in Algorithm 1. When − lnπ is a smooth convex
function, the proposition step relies on Langevin dynam-
ics [16], [17], whose key idea is to drive the proposition
with the gradient ∇ of lnπ, as

µ(Rn) := Rn + γΓ∇ lnπ(Rn), (7)

and to perturb it with an additive correlated Gaussian noise√
2γΓεn+1, where εn+1 ∼ N (0T , IdT ); γ is a positive step

size. The accept/reject step relies on a Metropolis mecha-
nism, cf. Eq. (8). We set q(R,R′) := N

(
µ(R), 2γΓΓ>

)
[R′] .

Algorithm 1: Metropolis Adjusted Proximal-Gradient
Algorithm

Input: Nmax ∈ N?, R0, γ > 0, Γ
Output: {Rn}Nmax

n=0

1 for n = 0, . . . , Nmax − 1 do
2 Step1: Draw Rn+1/2 ∼ µ(Rn) +

√
2γ Γεn+1 ;

3 Step2: Rn+1 = Rn+1/2 with probability

1 ∧ π(Rn+1/2)

π(Rn)

q(Rn+1/2,Rn)

q(Rn,Rn+1/2)
(8)

and Rn+1 = Rn otherwise.

In the case of Eq. (6), because of the regularization terms,
− lnπ is a convex but non smooth function. To preserve the
key intuition of the Langevin scheme (7), the gradient step is
replaced with a proximal-gradient step, a suited extension to
nonsmooth functions. Several developments were conducted
in that line [18], [19], [20], [21]. Recently, we proposed
in [9], a sampling scheme well suited to the structure and
properties of π in Eq. (6). It amounts to write the drift µ in
the Gaussian proposition:

µ(Rn) := D
−1
o ProxγλR‖·‖1

(
DoR

n − γD−>o ∇L(Rn, p(3))
)
(9)

where Do is a T × T invertible matrix obtained by orthog-
onal complementation of the (T − 2) × T Toeplitz matrix
associated with the Laplacian D2 and ProxγλR‖·‖1 is a soft
thresholding operation. Full technical details are provided in
[9], [10].

III. COVID19 DATA

The Johns Hopkins University has developed and
maintains a remarkable Covid19 data repository,
https://coronavirus.jhu.edu/, impressively started with
the outbreak of the pandemics. It notably collects on a
daily basis new infection and death counts, as produced by
the National Health Authorities of around 200 countries or
autonomous territories, and makes them publicly available
in a consistent setting. This constitutes an exceptional source
of data for the Covid19 pandemic monitoring and intensity
assessment, as data are made available in (quasi-)real time
and within the pandemics. Because the present work focuses
on the reproduction number, daily new infection counts
only are used here. Figs. 1 and 2 (top plots) illustrate the
time evolution of such counts for several countries.

IV. REPRODUCTION NUMBER ESTIMATION

Outcomes of the proposed estimation procedures are il-
lustrated for a few countries for space reasons. Yet, pro-
cedures are operational for any country. Daily updated
estimations are automatically made available at perso.ens-
lyon.fr/patrice.abry/ and www.math.univ-toulouse.fr/gfort/.
Following [9], [11], the hyperparameter are set to λ0 = 0.05,
λR = 3.5× std(Z)/4 with std(Z) the standard deviation of Z.
Inverse problem estimation. Fig. 1 reports (top row) raw (Z)
and denoised (Ẑ(D)) daily counts of new infections for the
full period of the pandemic. Fig. 1 compares (bottom row)
the different estimates proposed here: R̂(0), R̂(1), R̂(2), R̂(3),
leading, for all countries, to the following conclusions: The
crude estimator R̂(0) yields estimates that are far too irregular
in time to be useful by epidemiologists. The time regularized
estimator R̂(1) consists of piecewise linear estimates of
R and thus provides far more regular and hence realistic
assessments of the pandemic intensity evolution. Yet, Fig. 1
also shows that R̂(1) lacks robustness against outliers and
missing counts in the raw Z. Further, (3) jointly provides
estimates of outliers Ô(2) and piecewise linear estimates
R̂(2) of R that are robust to irrelevant counts in Z, and
thus of far greater interest to epidemiologists. Yet, a careful
examination of the approximation made in the outlier mod-
eling to maintain the convexity of the functional suggests a
possible overestimation in R̂(2). Finally, R̂(3), obtained from
the denoised counts Ẑ(D), provides the most relevant and
useful estimation of R, with smooth (piecewise linear) and
accurate estimations of R, permitting notably the detection
of the occurrences of changes between pandemic growth and
regression phases.
Credibility interval estimation. Fig. 2 focuses on the most
recent five weeks of the pandemic. It reports raw (Z) and de-
noised (Ẑ(D)) new infection daily counts for other countries
(top raw). It shows (middle row) the estimated median (50%-
quantile) of the posterior distribution sampled by the strategy
described in Section II-E and the corresponding centered
95% credibility intervals, obtained from the 2.5% and 97.5%-
quantiles and after subtraction of the 50%-quantile (bottom
row), leading for all countries, to the following conclusions:
The credibility intervals are extremely narrow (around a few

https://coronavirus.jhu.edu/
https://perso.ens-lyon.fr/patrice.abry/
https://perso.ens-lyon.fr/patrice.abry/
https://www.math.univ-toulouse.fr/~gfort/


Fig. 1. Reproduction number estimations for the entire pandemic
period, for four different countries. Top: Raw (Z, black) and de-
noised (Ẑ(D), red) daily new infection counts. Bottom: estimates for R,
R̂(0)(black), R̂(1)(blue), R̂(2)(red), R̂(3)(cyan).

Fig. 2. Credibility interval estimation for the reproduction number
estimations for the 35 last days and four different countries. Top: Raw
(Z, black) and denoised (Ẑ(D), red) daily new infection counts. Middle: a
posteriori median (50%-quantile) estimate for R. Bottom: 95%-credibility
interval estimate for R, reported as the plots of the 97.5% and 2.5%-
quantiles, after subtraction of the 50%-quantile.

%) around the median, and relatively homogeneous along
time, yet with mild increase around the piecewise linearity
change points.

V. CONCLUSIONS AND PERPECTIVES

These results show that both the inverse problem for-
mulations and the Metropolis Adjusted Proximal-Gradient
sampler proposed here yields extremely realistic estimates
for the time evolution of R, that are hence actually usable
by epidemiologists. Notably, these estimation tools have a
double potential value: Retrospectively, they permit to quan-
tify the impacts of given sanitary measures on the pandemic
evolution ; Prospectively, the piecewise linear nature of the
estimation of R permits the short term forecast (the nowcast)
of the evolution of the pandemic intensity. Further, sampling
strategies for Credibility Interval joint estimation for both
the reproduction number R and the Outliers O are being
devised and compared, with several formulations of convex
nonsmooth compliant Proposition steps (cf. [10]).

Finally, these estimation tools are being made publicly

available in a document toolbox, as a contribution to open
science and dedication of science to major societal stakes.
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estimate reproduction numbers for epidemic outbreaks,” BMC Medical
Inform Decis. Mak., vol. 12, pp. 147, 2012.

[7] A. Cori, N. M. Ferguson, C. Fraser, and S. Cauchemez, “A new
framework and software to estimate time-varying reproduction num-
bers during epidemics,” Am. J. Epidemiol., vol. 178, pp. 1505–1512,
2013.

[8] P. Abry et al., “Spatial and temporal regularization to estimate COVID-
19 reproduction number R(t): Promoting piecewise smoothness via
convex optimization,” PLOS One, vol. 15, 2020, e0237901.

[9] H. Artigas, B. Pascal, G. Fort, P. Abry, and N. Pustelnik, “Credibility
interval design for Covid19 reproduction number from nonsmooth
Langevin-type Monte Carlo sampling,” Tech. Rep., hal-03371837,
2021.

[10] G. Fort, B. Pascal, P. Abry, and N. Pustelnik, “Covid19 reproduction
number: Credibility intervals by blockwise proximal monte carlo
samplers,” Tech. Rep., hal-03611079, 2022.

[11] B. Pascal, P. Abry, N. Pustelnik, S. Roux, R. Gribonval, and P. Flan-
drin, “Nonsmooth convex optimization to estimate the Covid-19
reproduction number space-time evolution with robustness against low
quality data,” Tech. Rep., arXiv 2109.09595, 2021.

[12] R.N. Thompson et al., “Improved inference of time-varying reproduc-
tion numbers during infectious disease outbreaks,” Epidemics, vol. 29,
pp. 100356, 2019.

[13] S. Ma et al., “Epidemiological parameters of coronavirus disease 2019:
A pooled analysis of publicly reported individual data of 1155 cases
from seven countries,” Am. J. Epidemiol., vol. 178, no. 9, pp. 1505–
1512, 2020.

[14] F. Riccardo et al., “Epidemiological characteristics of COVID-19 cases
in Italy and estimates of the reproductive numbers one month into the
epidemic,” medRxiv:2020.04.08.20056861, 2020.

[15] G. Guzzetta et al., “The impact of a nation-wide lockdown on COVID-
19 transmissibility in Italy,” arXiv:2004.12338 [q-bio.PE], 2020.

[16] G. Parisi, “Correlation functions and computer simulations,” Nucl.
Phys. B, vol. 180, no. 3, pp. 378–384, 1981.

[17] G. O. Roberts and R. L. Tweedie, “Exponential convergence of
Langevin distributions and their discrete approximations,” Bernoulli,
vol. 2, pp. 341 – 363, 1996.

[18] A. Schreck, G. Fort, S. Le Corff, and É. Moulines, “A Shrinkage-
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