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Abstract:
Methane emissions from oil and gas (O&G) production and transmission represent a significant
contribution to climate change. These emissions comprise sporadic releases of large amounts of
methane during maintenance operations or equipment failures not accounted for in current
inventory estimates. We collected and analyzed hundreds of very large releases from atmospheric
methane images sampled by the TROPOspheric Monitoring Instrument (TROPOMI) over 2019
and 2020 to quantify emissions from O&G ultra-emitters. Ultra-emitters are primarily detected
over the largest O&G basins of the world, following a power-law relationship with noticeable
variations across countries but similar regression slopes. With a total contribution equivalent to
8-12% of the global O&G production methane emissions, mitigation of ultra-emitters is largely
achievable at low costs and would lead to robust net benefits in billions of US dollars for the six
major producing countries when incorporating recent estimates of societal costs of methane.

One Sentence Summary: Ultra-emitters from oil and gas production amount 8-12% of the
global oil and gas methane emissions, offering actionable and cost-effective means to mitigate
the contribution of methane to climate change.

Intro:

As the second-most important contributor to global warming, methane (CH4) has
continued to accumulate in the atmosphere by 50Tg.yr-1 over the last two decades, primarily due
to increases in agricultural activities, waste management, coal, and Oil and Gas (O&G)
production (Saunois et al., 2020; Jackson et al., 2020). Large discrepancies between atmospheric



inversions, bottom-up inventories and biogeochemical models remain largely unexplained
(Kirschke et al., 2013; Nisbet et al., 2014; Saunois et al., 2016, 2020). This complicates
attribution of the recent global rise in atmospheric methane to an anthropogenic or biogenic
source or a possible decline in the atmospheric OH radical sink (Rigby et al., 2017; Zhao et al.,
2020) and/or to changes in biogenic and anthropogenic sources (Nisbet et al., 2019). Evidence of
a large under-estimation of the fossil sources was suggested by the recent analysis of 14CH4

isotopic ratios (Hmiel et al., 2020). Representing a quarter of anthropogenic emissions alone,
emissions from O&G production activities have increased from 65 to 80 TgCH4.yr-1 in the last
20 years (IEA, 2020). This rapid increase imperils the success of the Paris Agreement (Nisbet et
al., 2020). Anthropogenic emissions trends are partly explained by the increase in shale gas
production in the US, which is soon to be followed by large shale reserves currently
under-exploited in China, Africa, and South America (IEA, 2013). While O&G emissions from
national inventories have been widely underestimated by conventional reporting (Alvarez et al.,
2018), airborne imagery surveys have confirmed the omnipresence of intermittent emissions,
distributed according to a power law (Frankenberg et al., 2016; Duren et al., 2019; Cusworth et
al., 2021) with a right-hand tail caused by very large O&G leaks, unintended or not, often
referred to as super-emitters (Zavala-Araiza et al., 2015).

Until recently, observation-based CH4 emission quantification efforts were restricted
regionally to short duration (few weeks) aircraft surveys (Karion et al., 2015), or the deployment
of in situ sensor networks (Lyon et al., 2020). Global efforts were limited by the sparse sampling
of coarse-resolution CH4 column retrievals, such as the GOSAT mission (Maasakkers et al.,
2019). More routine and higher spatially-resolved emission quantification was made possible by
the ESA Sentinel 5-P satellite mission carrying the TROPOspheric Monitoring Instrument
(TROPOMI, launched 2018; Veefkind et al. 2012). TROPOMI samples daily CH4 column mole
fractions over the whole globe at moderate resolutions (5-7 km) revealing multiple individual
cases of unintended very large leaks (e.g. Pandey et al., 2019) and regional basin-wide anomalies
(Schneising et al., 2020; Barré et al., 2021). Here, we systematically examine this unique dataset
over the globe, which represents the first opportunity to statistically characterize visible
ultra-emitters of CH4 from O&G activities across various basins. By nature, reducing these
ultra-emitters using Leak Detection and Repair (LDAR) strategies provides an actionable and
cost-efficient solution to emission abatement (Mayfield et al., 2017).

Detectable CH4 enhancements from single point sources is limited by the TROPOMI
instrument sensitivity (5-10ppb; Hu et al., 2018), by the overlap of multiple plumes from
closely-located natural gas facilities (e.g. in the Permian basin), and by complex spatial gradients
from remote sources affecting background conditions (cf. Supp. Info.). Rapidly varying
meteorological conditions require sufficiently robust approaches, especially with curved CH4

plume structures for which common mass balance methods are too simplistic (Varon et al.,
2018). We addressed this problem by applying an automated plume detection algorithm and
quantified the associated emissions using the Lagrangian particle model HYSPLIT (Stein et al.,
2015) driven by meteorological reanalysis products for each detected plume enhancement (>25



ppb averaged over several pixels, cf. Supp. Info.) over the whole globe. The detection threshold
is adjusted to only capture statistically significant enhancements within highly variable
backgrounds (cf. Supp. Info.). Finally, we estimated the potential reductions along with
abatement costs for various countries, to determine effective gains at national levels.

Results:
The number of detections of large XCH4 enhancements around the world, each associated

with an ultra-emitter, totals more than 1,800 single observed anomalies over two years
(2019-2020), a large fraction of them located over Russia, Turkmenistan, the United States
(excluding the Permian basin where regional enhancements comprise many small to medium
emitters), the Middle East and Algeria (Fig. 1). Detections vary in magnitude and number
between 50 to 150 per month, most of them corresponding to O&G production facilities (about
two thirds of the detections, or ~1,200) while ultra-emitters from coal, agriculture and waste
management only represent a relatively small fraction (33%) of the total detections (cf. SI).
Ultra-emitters attributed to O&G infrastructures appear along major pipelines and over most of
the largest O&G basins representing more than 50% of the total onshore natural gas production
over the globe (IEA, 2021). Offshore emissions remain invisible to TROPOMI, hence excluded
from our analysis (cf. Supp. Info.).



Figure 1: Global map of the ~1,200 O&G detections from TROPOMI over the years 2019 and 2020
(upper panel), zoomed-in over Russia and Central Asia (lower left panel) and over the Middle East (lower
right panel) including the main gas pipeline (dark grey). Circles are scaled according to the magnitude of
the ultra-emitters. Undetermined sources are indicated in blue. Map credit: MapBox.

Estimated emissions from O&G ultra-emitters rank highest for Russia with 1.5
MtCH4.yr-1, followed by Turkmenistan, the United States (excl. Permian basin), Iran, Kazakhstan



and Algeria (Fig. 2a.). As leak duration varies while S5-P provides only snapshots, each leak
duration was determined either based on observed duration as implied by the plume length
(advection time) or setting a 24-hour duration when consecutive images confirmed the presence
of the same anomaly over multiple days (Fig. 2a). Leaks lasting several days are adjusted by
coverage loss, hence set to 24 hours (cf. Supp. Info.). Two additional scenarios were constructed
to define the upper and lower bounds of durations using i) a systematic 24-hour duration, or ii)
based on the length of the observed plumes (cf. Supp. Info.). The loss of coverage due to clouds
albedo or aerosols was quantified by adjusting for the number of observed days compared to the
full period length (cf. Supp. Info.). Uncertainties were quantified by a negative binomial
probability function (Student, 1907; cf. Supp. Info.). We illustrate this adjustment in (Fig. 2a),
large for some countries (e.g. Russia), by subsampling the coverage over Turkmenistan
(originally 118) with the lowest coverage observed over a country (i.e. 22). After adjustment,
estimated emissions fall within 2% of the original estimate and estimated uncertainty (1.26
MtCH4) matches the full statistical test on the interval 0.96-1.6 MtCH4 (Fig. 2 e.). Based on
adjusted emissions, O&G ultra-emitter estimates represent 8-12% of O&G CH4 emissions from
national inventories (fig. 2b), a contribution not included in current inventories (Alvarez et al.,
2018).

As one of the largest natural gas reserves of the world (~20 trillion cubic meters, ranking
4th in the world based on IEA), Turkmenistan is likely to see its O&G CH4 emissions double
simply because of ultra-emitters (Fig 2b.). Ultra-emitters are also relatively large in Russia, Iran,
Kazakhstan and Iran representing between 10 to 20% of annual reported emissions. The United
States revealed fewer ultra-emitters (5% of the annual inventory emissions) but we excluded the
Permian basin (about 10% of the US natural gas production) due to the large basin-wide XCH4

enhancement which obscures single detections (de Gouw et al., 2020). A recent study estimated
at 2.7 TgCH4.yr-1 the O&G emissions from the Permian using TROPOMI (Zhang et al., 2020),
which represents 35% of the US O&G production emissions from the whole-US top-down
estimate (Alvarez et al., 2018). Assuming infrastructure and maintenance operations are similar
over the Permian and the rest of the US, the relatively small fraction of ultra-emitters should
remain valid for the entire country. Middle Eastern countries like Iraq or Kuwait correspond to
even fewer detections (31) possibly thanks to fewer accidental releases and/or more stringent
maintenance operations. The detection limit of ultra-emitters is around 25 tCH4.h-1 while the
largest events reach several hundred tons per hour with associated plumes spanning hundreds of
kilometers. However, ultra-emitters from any oil and gas basin of the world follow unequivocally
a power-law distribution (Fig. 2d.) which implies that if the power-law coefficients are
well-defined, ultra-emitters scale directly with smaller emitters. To establish this relationship
over a broader range of emissions, the power-law of smaller emitters (from 0.1 to 10tCH4.h-1)
observed in high-resolution airborne spectrometer images with AVIRIS-NG (Duren et al., 2019)
was combined with the one of S5-P emitters revealing similar regression parameters (slope of
1.9-2.3; Fig. 2 c.). The actual number of ultra-emitters varies by country (Fig. 2 d.) but the
relationship between the number of sources and their magnitudes remains similar in the range of



0.1 to 300 tCH4.h-1 over two gas basins of the US. Very small leaks (<100 kgCH4.h-1) mostly
caused by nominal operations (i.e. pneumatic devices) might fall onto a different relationship
(Omara et al., 2016), while larger leaks are mostly accidental or related to specific maintenance
operations (Conley et al., 2016). Overall, the total fraction of CH4 emissions from ultra-emitters
remains difficult to quantify accurately due to the lack of observations of smaller emitters, but
their relative contribution compared to known sources is non-negligible and thus offers a
cost-efficient and actionable opportunity to reduce CH4 emissions while natural gas production
increases steadily by about 3% per year (IEA data).

a. b.

c. d. e.

Figure 2: Country-level emissions from O&G ultra-emitters over the years 2019-2020 observed and
estimated (adjusted for leak duration and coverage loss) together with two extreme leak duration
scenarios (panel a.); Relative fraction of the estimated ultra-emitters to two national-scale methane
inventories, EDGAR 5.0 and EPA (panel b.); Distribution of super-emitters from AVIRIS-NG and GAO
campaigns over 2 years in California and two months in Texas (Duren et al., 2019; Cusworth et al., 2021)



and from 2-year Sentinel 5-P data (log-log scale; panel c.); same for S5-P only over four different
countries (panel d.); and distribution of estimated emissions from sub-sampled S5-P detections compared
to estimated emissions from full set for Turkmenistan (panel e.). EPA emissions (panel b) correspond to
the latest 2012 global inventory extrapolated to 2020, except for the US (most recent EPA annual GHG
inventory for 2019 (EPA, 2021)). Permian basin emissions were removed following the same
methodology as in Zhang et al., 2020 (~1Mt/y).

We evaluate the industry spending required to eliminate those methane emissions based
on analyses of mitigation costs recently produced by several groups: the International Energy
Agency (IEA, 2021), the US Environmental Protection Agency (US EPA, 2019), and the
International Institute for Applied Systems Analysis (IIASA; Höglund-Isaksson et al., 2020). All
costs are evaluated in 2018 US$ per tonne methane. Briefly, we first analyze marginal abatement
cost curves developed by these groups at the national level (regional level for IIASA) and
excluding valuation of environmental impacts. As large emissions are expected to be related to
upstream operations or long-distance transport of fuels, we exclude local distribution networks in
the IIASA analysis which separates those sources. The IEA analysis provides separate cost
estimates for high emission sources, whereas the other two do not. Those sources are expected to
be more cost-effective to mitigate than average sources, however, and indeed the IEA estimates
for our six countries of interest show costs ~$110-300 less than the average cost of mitigation in
the O&G sector in those countries. We therefore evaluate average mitigation costs within the
O&G sector for EPA and IIASA analyses screening for the subset of measures costing less than
$600 per tonne. This same threshold was recently used to define ‘low cost’ controls
(UNEP/CCAC, 2021), and would correspond to ~US$ 21 per tonne of carbon dioxide equivalent
if converted using the IPCC Fifth Assessment Report’s GWP100 value of 28 that excludes
carbon-cycle feedbacks). Averaged across these mitigation analyses, spending is net positive in
Iran (~$60 per tonne), whereas it is net negative in all other high-emitting countries with net
savings of around $100-150 per tonne in Russia, Kazakhstan and Turkmenistan, about $250 per
tonne in the US, and $400 per tonne in Algeria, though values vary greatly across the available
analyses (Fig. 3a).

Examining the total spending required to eliminate the high emission sources in each
country, there is a large spread across the available analyses. The analyses show the largest
average expenditure in Iran, at $16 million, but a range of -$30 to 95 million across the analyses.
Results for the US are more robust in that all show a net savings, but the values still vary
markedly ranging from $19 to $217 million. The IIASA values are the most favorable (lowest) in
5 of the 6 countries, but the least favorable in Iran (though IIASA provides averages across the
Middle East, which may affect that result). The IEA values are typically the least favorable with
the US EPA values in the middle, except for Russia and Kazakhstan where the EPA values are
the highest. Averaging across the three analyses, the largest total benefits (a function of costs and
emissions magnitude) appear to lie in Turkmenistan, with net savings of ~$200 million, followed
by Russia and the US, with net savings of ~$100 million each.



We also evaluate societal costs when accounting for the monetized environmental
impacts. We incorporate the recently described valuation from the Global Methane Assessment
(UNEP/CCAC, 2021) that assigns a value of $4400 per tonne methane accounting for the
manifold impacts of methane on climate and surface ozone, both of which affect human health
(mortality and morbidity), labor productivity, crop yields, and other climate-related impacts.
Including those impacts, controlling high emitters in the six countries highlighted here leads to
robust net benefits of ~$6 billion for Turkmenistan, ~$4 billion for Russia, ~$1.6 billion for the
US, ~$1.2 billion for Iran, and ~$400 million each for Kazakhstan and Algeria. The range across
the three mitigation cost analyses is small in this case at ~10% (Fig. 3b).

Figure 3: Estimated mitigation costs per tonne for high emissions in the oil and gas sector based on the
indicated cost analyses (a) and net societal benefits of mitigation of high emitters including monetized
environmental impacts (b).

Discussion



Based on the power-law distribution of emitters, we derived a detection threshold of 25
tCH4.h-1, in agreement with Varon et al. (2019) using a cross-sectional flux approach to estimate
the leakage rates of a major leak in Turkmenistan. For lower emission rates, the number of
emitters invisible to TROPOMI far surpasses visible ultra-emitters as suggested by airborne
surveys over the Central Valley in California, the Four Corners region, and the Permian basin in
Texas (Duren et al., 2019; Frankenberg et al., 2016; Cusworth et al., 2021). High resolution
satellite imagery from Sentinel-2 (Varon et al., 2021) or from PRISMA and GHGSat (Cusworth
et al., 2021) depict turbulent XCH4 plume structures enabling facility attribution and
quantification of leaks above 50 ktCH4.yr-1. These imagers offer limited coverage (tasking mode
over small regions) which suggests a combined use with TROPOMI is necessary to achieve
monitoring needs. Additional satellite instruments are planned to launch in the near future (e.g.,
EnMAP, Carbon Mapper, MethaneSAT, SBG, EMIT, CHIME) offering high-resolution images
(30m resolution) over selected high-priority areas, precursors to full constellations of imagers
covering the globe daily. Until then, and given the robust power-law distribution of CH4

ultra-emitters, the link between intermittent high-resolution imagery and regular low-resolution
images from TROPOMI can help fill the gap in coverage. Attribution to specific facilities or
operations remains critical to support the development of robust national emissions inventory as
defined by the United Nations Framework Convention on Climate Change (UNFCCC), to inform
gas operators of accidental releases, and to help regulators on progress in CH4 emission trends.

References

Barré, J., Aben, I., Agustí-Panareda, A., Balsamo, G., Bousserez, N., Dueben, P., Engelen, R.,
Inness, A., Lorente, A., McNorton, J., Peuch, V.-H., Radnoti, G., and Ribas, R.: Systematic
detection of local CH4 anomalies by combining satellite measurements with high-resolution
forecasts, Atmos. Chem. Phys., 21, 5117–5136, https://doi.org/10.5194/acp-21-5117-2021, 2021.

Beucher, Serge & Mathmatique, Centre. (2000). The Watershed Transformation Applied To
Image Segmentation. Scanning. Microsc.. 6.

Buades, A., B. Coll, J.-M. Morel: A review of image denoising algorithms, with a new one.
Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, Society for Industrial
and Applied Mathematics, 2005, 4 (2), pp.490-530. ffhal-00271141

CONLEY, S., G. FRANCO, I. FALOONA, D. R. BLAKE, J. PEISCHL, and T. B. RYERSON:
Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA, Science, 18 Mar
2016, 1317-1320, 2016.

Cusworth, D. H., Jacob, D. J., Varon, D. J., Chan Miller, C., Liu, X., Chance, K., Thorpe, A. K.,
Duren, R. M., Miller, C. E., Thompson, D. R., Frankenberg, C., Guanter, L., and Randles, C. A.:
Potential of next-generation imaging spectrometers to detect and quantify methane point sources



from space, Atmos. Meas. Tech., 12, 5655–5668, https://doi.org/10.5194/amt-12-5655-2019,
2019.

Cusworth, D. H., Duren, R. M., Thorpe, A. K., Pandey, S., Maasakkers, J. D., Aben, I., et al.
(2021). Multi Satellite imaging of a gas well blowout enables quantification of total methane
emissions. Geophysical Research Letters, 48, e2020GL090864. https://doi.
org/10.1029/2020GL090864

de Gouw, J.A., Veefkind, J.P., Roosenbrand, E. et al. Daily Satellite Observations of Methane
from Oil and Gas Production Regions in the United States. Sci Rep 10, 1379 (2020).

Frankenberg, C., A. K. Thorpe, D. R. Thompson, G. Hulley, E. A. Kort, N. Vance, J. Borchardt,
et al. 2016. “Airborne methane remote measurements reveal heavy-tail flux distribution in Four
Corners region.” Proceedings of the National Academy of Sciences 113, no. 35 (August):
9734–9739. https://doi.org/10.1073/pnas.1605617113.

Hilbe, Joseph M. Negative binomial regression. Cambridge University Press, 2011.

Höglund-Isaksson, L., Gómez-Sanabria, A. Klimont, Z., Rafaj, P. and Schöpp, W. (2020).
Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050
timeframe –results from the GAINS model. Environ. Res. Comm., 2, 025004.

Hu, H., Landgraf, J., Detmers, R., Borsdorff, T., Aan de Brugh, J., Aben, I., et al. (2018). Toward
global mapping of methane with TROPOMI: First results and intersatellite comparison to
GOSAT. Geophysical Research Letters, 45, 3682– 3689. https://doi.org/10.1002/2018GL077259

IEA report: "Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of
137 Shale Formations in 41 Countries Outside the United States". Analysis and projections.
United States Energy Information Administration. 13 June 2013.

IEA (2021). Methane Tracker. International Energy Agency, Paris, France.
https://www.iea.org/reports/methane-tracker (accessed 26 Apr 2021).

Karion, A., C. Sweeney, E. A. Kort, P. B. Shepson, A. Brewer, M. Cambaliza, S. A. Conley, K. J.
Davis, A. Deng, M. Hardesty, S. C. Herndon, T. Lauvaux, T. Lavoie, D. Lyon, T. Newberger, G.
Pétron, C. Rella, M. Smith, S. Wolter, T. I. Yacovitch, and P. Tans: Aircraft-Based Estimate of
Total Methane Emissions from the Barnett Shale Region, Environmental Science & Technology,
49 (13), 8124-8131, DOI: 10.1021/acs.est.5b00217, 2015.

Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, et al.: Three
decades of global methane sources and sinks, Nat. Geosci., 6, 813–823,
https://doi.org/10.1038/ngeo1955, 2013.

Lujala, Päivi; Jan Ketil Rød & Nadia Thieme, 2007. ‘Fighting over Oil: Introducing A New Dataset’,
Conflict Management and Peace Science 24(3), 239-256.)

https://doi
https://doi.org/10.1073/pnas.1605617113
https://doi.org/10.1002/2018GL077259
https://doi.org/10.1038/ngeo1955


Lyon, D. R., Hmiel, B., Gautam, R., Omara, M., Roberts, K., Barkley, Z. R., David, K. J., Miles,
N. L., Monteiro, V. C., Richardson, S. J., Conley, S., Smith, M. L., Jacob, D. J., Shen, L., Varon,
D. J., Deng, A., Rudelis, X., Sharma, N., Story, K. T., Brandt, A. R., Kang, M., Kort, E. A.,
Marchese, A. J., and Hamburg, S. P.: Concurrent variation in oil and gas methane emissions and
oil price during the COVID-19 pandemic, Atmos. Chem. Phys. Discuss.,
https://doi.org/10.5194/acp-2020-1175, in review, 2020.

Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Scarpelli, T. R., Nesser, H., Sheng, J.-X., Zhang,
Y., Hersher, M., Bloom, A. A., Bowman, K. W., Worden, J. R., Janssens-Maenhout, G., and
Parker, R. J.: Global distribution of methane emissions, emission trends, and OH concentrations
and trends inferred from an inversion of GOSAT satellite data for 2010–2015, Atmos. Chem.
Phys., 19, 7859–7881, https://doi.org/10.5194/acp-19-7859-2019, 2019.

Mayfield, E. N., A. L. Robinson, and J. L. Cohon: System-wide and Superemitter Policy Options
for the Abatement of Methane Emissions from the U.S. Natural Gas System, Environmental
Science & Technology, 51 (9), 4772-4780, DOI: 10.1021/acs.est.6b05052, 2017.

Nisbet, E. G., E. J. Dlugokencky, and P. Bousquet: Methane on the Rise - Again, Science, 31 Jan
2014 : 493-495.

Nisbet, E. G.,  Manning, M. R.,  Dlugokencky, E. J., Fisher, R. E.,  Lowry, D.,  Michel, S. E., et
al. (2019).  Very strong atmospheric methane growth in the 4 years 2014–2017: Implications for
the Paris Agreement. Global Biogeochemical Cycles, 33,  318– 342.
https://doi.org/10.1029/2018GB006009

Nisbet, E. G., Fisher, R. E., Lowry, D., France, J. L., Allen, G., Bakkaloglu, S., et al. (2020).
Methane mitigation: methods to reduce emissions, on the path to the Paris agreement. Reviews
of Geophysics, 58, e2019RG000675. https://doi.org/10.1029/2019RG000675

Omara, M., Sullivan, M. R., Li, X., Subramanian, R., Robinson, A. L., and Presto, A. A.:
Methane Emissions from Conven- tional and Unconventional Natural Gas Production Sites in the
Marcellus Shale Basin, Environ. Sci. Technol., 50, 2099–2107,
https://doi.org/10.1021/acs.est.5b05503, 2016.

Pandey, S., Ritesh Gautam, Sander Houweling, Hugo Denier van der Gon, Pankaj Sadavarte,
Tobias Borsdorff, Otto Hasekamp, Jochen Landgraf, Paul Tol, Tim van Kempen, Ruud
Hoogeveen, Richard van Hees, Steven P. Hamburg, Joannes D. Maasakkers, Ilse Aben: Satellite
observations reveal extreme methane leakage from a natural gas well blowout, Proceedings of
the National Academy of Sciences Dec 2019, 116 (52) 26376-26381;
DOI:10.1073/pnas.1908712116.

Price-Whelan, A. M., B. M. Sipöcz, H. M. Günther, P. L. Lim, S. M. Crawford, S. Conseil, D. L.
Shupe,M. W. Craig, N. Dencheva, and et al. The astropy project: Building an open-science

https://doi.org/10.5194/acp-19-7859-2019
https://doi.org/10.1029/2018GB006009
https://doi.org/10.1029/2019RG000675
https://doi.org/10.1021/acs.est.5b05503


project and status of the v2.0 core package.The Astronomical Journal, 156(3):123, Aug 2018.
ISSN 1538-3881.doi: 10.3847/1538-3881/aabc4f, http://dx.doi.org/10.3847/1538-3881/aabc4f.

Rigby, M., S. A. Montzka, R. G. Prinn, J. W. C. White, D. Young, S. O’Doherty, M. F. Lunt, A.
L. Ganesan, A. J.Manning, P. G. Simmonds, P. K. Salameh, C. M. Harth, J. Mühle, R. F. Weiss,
P. J. Fraser, L. P. Steele, P. B. Krummel, A. McCulloch, and S. Park: Role of OH in recent
methane growth, Proceedings of the National Academy of Sciences May 2017, 114 (21)
5373-5377; DOI:10.1073/pnas.1616426114.

Schneising, O., Buchwitz, M., Reuter, M., Vanselow, S., Bovensmann, H., and Burrows, J. P.:
Remote sensing of methane leakage from natural gas and petroleum systems revisited, Atmos.
Chem. Phys., 20, 9169–9182, https://doi.org/10.5194/acp-20-9169-2020, 2020.

Stein, A.F., Draxler, R.R, Rolph, G.D., Stunder, B.J.B., Cohen, M.D., and Ngan, F., (2015).
NOAA's HYSPLIT atmospheric transport and dispersion modeling system, Bull. Amer. Meteor.
Soc., 96, 2059-2077, http://dx.doi.org/10.1175/BAMS-D-14-00110.1

Student. "On the Error of Counting with a Haemacytometer." Biometrika 5, no. 3 (1907):
351-60. doi:10.2307/2331633.

United Nations Environment Programme and Climate and Clean Air Coalition (UNEP/CCAC)
(2021). Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions.
Nairobi: United Nations Environment Programme.

US EPA. (2019). Global Non-CO2 Greenhouse Gas Emission Projections & Mitigation
Potential: 2015-2050. United States Environmental Protection Agency, Washington, DC, US.
EPA 430-R-19-010.

Varon, D. J., Jacob, D. J., McKeever, J., Jervis, D., Durak, B. O. A., Xia, Y., & Huang, Y. (2018).
Quantifying methane point sources from fine‐scale satellite observations of atmospheric
methane plumes. Atmospheric Measurement Techniques, 11, 5673–5686.
https://doi.org/10.5194/amt‐11‐5673‐2018

Varon, D. J., McKeever, J., Jervis, D., Maasakkers, J. D., Pandey, S., Houweling, S., et al.
(2019). Satellite discovery of anomalously large methane point sources from oil/gas production.
Geophysical Research Letters, 46, 13,507–13,516. https://doi.org/10.1029/2019GL083798

Varon, D. J., Jervis, D., McKeever, J., Spence, I., Gains, D., and Jacob, D. J.: High-frequency
monitoring of anomalous methane point sources with multispectral Sentinel-2 satellite
observations, Atmos. Meas. Tech., 14, 2771–2785, https://doi.org/10.5194/amt-14-2771-2021,
2021.

Veefkind, J., et al.: TROPOMI on the ESA Sentinel-5 Precursor: A GMES Mission for Global
Observations of the Atmospheric Composition for Climate, Air Quality and Ozone Layer

http://dx.doi.org/10.3847/1538-3881/aabc4f
http://dx.doi.org/10.1175/BAMS-D-14-00110.1
https://doi.org/10.5194/amt%E2%80%9011%E2%80%905673%E2%80%902018
https://doi
https://doi.org/10.5194/amt-14-2771-2021


Applications. Remote Sensing of Environment, 120, 70-83,
https://doi.org/10.1016/j.rse.2011.09.027, 2012.

Williams, J. H.: Guide to the expression of uncertainty in measurement(the gum), in Quantifying
Measurement, 2053-2571, pp. 6–1 to 6–9, Morgan Claypool Publishers, 2016.

Zavala-Araiza, D., D. R. Lyon, R. A. Alvarez, K. J. Davis, R. Harriss, S. C. Herndon, A. Karion,
E. A. Kort, B. K. Lamb, X. Lan, A. J. Marchese, S. W. Pacala, A. L. Robinson, P. B. Shepson, C.
Sweeney, R. Talbot, A. Townsend-Small, T. I. Yacovitch, D. J. Zimmerle, S. P. Hamburg:
Reconciling oil and gas methane emission estimates, Proceedings of the National Academy of
Sciences Dec 2015, 112 (51) 15597-15602; DOI: 10.1073/pnas.1522126112.

Zhao, Y., Saunois, M., Bousquet, P., Lin, X., Berchet, A., Hegglin, M. I., Canadell, J. G.,
Jackson, R. B., Dlugokencky, E. J., Langenfelds, R. L., Ramonet, M., Worthy, D., and Zheng, B.:
Influences of hydroxyl radicals (OH) on top-down estimates of the global and regional methane
budgets, Atmos. Chem. Phys., 20, 9525–9546, https://doi.org/10.5194/acp-20-9525-2020, 2020.

ESA 2020 S5P Mission Performance Centre Methane [L2__CH4___] Readme,
S5P-MPC-SRON-PRF-CH4, V01.04.00 (2020).

Data access

Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth generation of ECMWF
atmospheric reanalyses of the global climate . Copernicus Climate Change Service Climate Data
Store (CDS), date of access. https://cds.climate.copernicus.eu/cdsapp#!/home

Global Forecast System (GFS), Environmental Modeling Center, National Centers for
Environmental Prediction, National Weather Service, NOAA, U.S. Department of Commerce,
NCEI DSI 6182, gov.noaa.ncdc:C00634

Global Data Assimilation System (GDAS), Environmental Modeling Center, National Centers
for Environmental Prediction, National Weather Service, NOAA, U.S. Department of
Commerce, NCEI DSI 6172, gov.noaa.ncdc:C00379

GDAL/OGR contributors (2021). GDAL/OGR Geospatial Data Abstraction software Library.
Open Source Geospatial Foundation. URL https://gdal.org

https://doi.org/10.1016/j.rse.2011.09.027
https://doi.org/10.5194/acp-20-9525-2020
https://cds.climate.copernicus.eu/cdsapp#!/home
https://gdal.org


ESRI. "World Imagery" [basemap]. Scale ~1:591M to ~1:72k. "World Imagery Map". April 2021.

OGI http://www.oilandgasinfrastructure.com/home

COAL https://globalenergymonitor.org/projects/global-coal-mine-tracker/tracker-map/

http://www.oilandgasinfrastructure.com/home
https://globalenergymonitor.org/projects/global-coal-mine-tracker/tracker-map/


Materials and Methods:

The Supplementary Information is structured as follows:
1. Details on the TROPOMI data used in this study
2. Supplementary methods for plume detection, flow rate quantification, and country-level

ultra-emitters estimates
3. Uncertainty analysis and measures validation
4. Plumes dataset

These sections include supplementary figures S1 to S16.

1. TROPOMI data
1.1 General information

We use total column CH4 bias corrected measurements (XCH4 bias corrected) from the spaceborne
Tropospheric Monitoring Instrument (TROPOMI). TROPOMI is in polar sun‐synchronous orbit and
provides global mapping of atmospheric methane columns on daily overpasses at about 13:30 local solar
time with 7 x 7 km nadir pixel resolution (7 x 5.5 km since June 2019). The mission performance report
for Sentinel-5 Precursor Level 2 Methane product (ESA 2020) states that the average bias for the
comparison against 22 TCCON (Total Carbon Column Observing Network) sites is -0.8% and -0.31% for
the standard and bias corrected XCH4 product respectively.

Sentinel-5P data products are released in the netCDF format and the footprints have an irregular
geometry. For ease-of-use reasons when applying computer vision algorithms and matching Sentinel-5P
observation with HYSPLIT simulations, Sentinel-5P images are reprojected on a regular geometry using
the GDAL library prior to any other processing (GDAL, 2021).

The XCH4 bias corrected is a Level 2 data product released by the European Space Agency (ESA),
expressed in parts per billion (ppb), derived from the Level 1 data product (radiance and irradiance
measurements). In our analysis, we do not use Level 1 data and only rely on Level 2 data. However, we
also use the Level 2 data quality (qa_value) product. To ensure robustness in our results, we exclusively
take into account pixels for which qa_value > 75.

Our analysis is based on data sensed over two full years between the 1st of January, 2019 to the 31th of
December, 2020, extracted continuously 2 to 5 days after sensing.

1.2. Sentinel-5 Precursor observations availability

Sentinel-5 Precursor has a daily revisit time, but observations are incomplete. For various reasons (clouds,
humidity, albedo, etc) a significant fraction of the pixels are missing (see figure S1). On average in 2019,
on a 0.05 0.05 degree regular grid, S5P successfully retrieved a XCH4 measure for 7% of daily onshore×
pixels. The distribution of missing pixels is not homogeneous however, as some places (e.g. equatorial
zones) are essentially missing whereas some drier places have more than 100 measures per year.
Considering only onshore pixels with at least 10 valid XCH4 measures in 2019, the daily proportion of
covered pixels increases to 13%. TROPOMI does not provide any reliable measure offshore at this time.



Figure S1: Sentinel-5P coverage for Level 2 XCH4 data product in 2020. The value of each pixel corresponds to the
number of days for which Sentinel-5P provided at least one valid (after quality filtering,[ESA, 2020]) measurement,
for the corresponding area during year 2019.  Note that 80 is a hard threshold set for clarity; some pixels exceed this
value.

2. Supplementary methods for plume detection, flow rate quantification,
and country-level ultra-emitters estimates

The general framework used here is the following:
1) detect ultra emitters using an automated algorithm and human labeling
2) quantify their flow rate using Forward Concentration simulations,
3) aggregate and adjust emissions for coverage and leak duration,
4) perform a country-scale cost/benefit analysis.

We now describe the procedure and evaluate each step including associated uncertainties.

2.1. Plume detection

2.1.1. Background estimation and plume detection algorithm

At every orbit, Sentinel-5P produces 13 to 14 images (or tiles) from the South Pole to the North Pole with
a 2600km swath width. Each tile is processed with a plume detection procedure as follows.

1. The image is first denoised using Gaussian filters (Buades et al., 2010).
2. Local standard deviation and background values are computed dynamically as follows. In the

literature, background methane on S5P images is estimated by either taking the value of the pixel
in the vicinity of a detected plume in the upwind direction or by taking the median of the image
(Pandey et al., 2019, Varon et al., 2019). As we want to estimate background before identifying



methane plume, we cannot apply the first method. The second is also a poor match in this case,
as we process large tiles on which methane background is not homogeneous. Here instead, for
each pixel, we consider the 11 by 11 pixels patch centered around it and compute standard
deviation at this pixel as the standard deviation of the patch. The background value at this pixel is
computed as

if𝑚𝑒𝑑𝑖𝑎𝑛 𝑚𝑒𝑎𝑛−𝑚𝑒𝑑𝑖𝑎𝑛
𝑠𝑡𝑑 >  0. 3

otherwise𝑙 × 𝑚𝑒𝑑𝑖𝑎𝑛 −  (𝑙 − 1) × 𝑚𝑒𝑎𝑛

where , and denote respectively the median, mean and standard deviation of𝑚𝑒𝑑𝑖𝑎𝑛 𝑚𝑒𝑎𝑛 𝑠𝑡𝑑
the patch. This method is commonly used for robust background estimation in noisy astronomical
images analysis (cite Astropy, A. M. Price-Whelan et al., 2018). The background value is
computed as to be robust to the influence of plume pixels in𝑙 × 𝑚𝑒𝑑𝑖𝑎𝑛 −  (𝑙 − 1) × 𝑚𝑒𝑎𝑛
background estimates, where is typically equal to 2.5 (cf. Section 2.1.2). If the pixel distribution𝑙
is strongly skewed, the difference between the mean and the median would have a significant
impact on the background estimate, which might introduce a bias in our background estimate.

Thereby, if the condition holds, the background is the median of the patch.𝑚𝑒𝑎𝑛−𝑚𝑒𝑑𝑖𝑎𝑛
𝑠𝑡𝑑 >  0. 3

3. Plumes are then segmented. An anomaly map is defined as

𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑀𝑎𝑝 =  𝐼𝑚𝑎𝑔𝑒 −  𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 − 𝑘 × 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

where and maps refer to those computed at step 2. On this𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
anomaly map, contiguous groups of positive pixels are selected as plume candidates, setting

.𝑘 = 3

4. Contiguous but distinct plumes (i.e. 2 or more plumes that are emitted by distinct source but
whose footprints overlap) are then separated (see figure S2). A sharpening kernel is applied to the
whole background-corrected denoised image to tackle the edge vanishing issue implied by
Gaussian denoising (Buades et al., 2010), and contiguous plumes are separated using watershed
segmentation (Beucher et al., 2000).

5. Any detected plume is discarded if the average of the XCH4 enhancement of the pixels in the
plume is below or the number of pixels with a QA higher than 75 is below𝑎𝑣𝑔𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡

. We typically use and .𝑚𝑖𝑛𝑞𝑎𝑝𝑖𝑥𝑒𝑙𝑠 𝑚𝑖𝑛𝑝𝑖𝑥𝑒𝑙𝑠 = 5 𝑎𝑣𝑔𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 = 25
6. For all plumes that have not been discarded at step 5, a first estimation of the source location is

obtained by following the upwind direction from the centroid of the plume. The last pixel found
within the plume polygon is then chosen as the source location. This source location estimate is
then going to be refined by human labelling (see section 2.2. Flow rate quantification).



Figure S2: major steps of the detection algorithm. The two methane plumes visible on the XCH4 image (top)
originate from two nearby sources on a Russian pipeline (probably routine maintenance where leaks come in pairs).
The methane anomaly detection output (bottom left) is a contiguous set of pixels. After the deblending step, the
algorithm retrieves two contiguous but distinct plumes (bottom right).

2.1.2. Parameters estimates

The algorithm includes several predefined parameters used in the Gaussian denoising filter (kernel size
and standard deviation) and the sharpening filter (intensity of the central pixel of the kernel with respect
to its neighbors) that must be optimized, as well as the parameters described above (cf. section 2.1.1): , ,𝑘 𝑙

, , and . These parameters have been set such that the𝑚𝑖𝑛𝑞𝑎𝑝𝑖𝑥𝑒𝑙𝑠 𝑚𝑖𝑛𝑝𝑖𝑥𝑒𝑙𝑠 𝑎𝑣𝑔𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡
algorithm successfully retrieves some relatively well-known methane emissions, including leaks in
Turkmenistan [Varon et al., 2019], or confirmed events (without official quantification) in the vicinity of
Hassi Messaoud oilfield in Algeria [Private Communication, Sonatrach]; and along Russian pipelines (see
figure S2)). The set of parameters has also been defined to limit the number of false positives (around
95% accepted) when labelling the detections manually. This rate is sufficiently large so that new plumes
with lower flow rates have been discovered, while controlling the number of false positives.

2.1.3. Individual plume labelling

All plume candidates identified at step 6 of the algorithmic procedure are submitted to a human labeler.
The human labeler looks for evidence that the candidate plume is a false positive detection (hence should
be rejected) according to the following criteria:



● The plume direction is inconsistent with the wind direction from the ECMWF-ERA5 reanalysis
product (100m u- and v-wind components) (Copernicus Climate Change Service, 2017). The
plume is discarded if its direction diverges from the wind direction at the round hour before
sensing. Figure S3 illustrates the empirical angles distribution for both accepted and discarded
plumes; it highlights that there is a posteriori an empirical acceptance threshold around 30
degrees (above which unambiguous methane plumes are still accepted).

● The plume spatial distribution correlates with spatial gradients in the Surface Albedo SWIR
product provided by Sentinel-5P. Biases induced by the albedo in the XCH4 retrievals from
Sentinel-5P are well-known but not properly removed in the official L2 product (ESA 2020). We
discarded all the detected plumes with a strong correlation with the surface albedo to avoid false
positives (Fig. S4).

● Similar to the correlation with surface albedo, we removed from our analysis all plume candidates
matching spatial patterns visible in optical images (ESRI World Imagery). The rationale behind
this removal is the same as for the previous item (Fig. S4).

At this stage, the labelling includes the attribution of the detection to an activity sector, or is labelled
“Other human activity” for undefined plume origins. This category can be either “Oil and Gas”, “Coal”,
or “Other human activity”. This decision is based on the knowledge of methane-emitting activities on the
ground, derived from geospatial  data sources such as Oil and Gas Infrastructure and Petrodata v1.2
“Other human activity” refers to methane emissions from complex areas where multiple source candidates
are present (i.e. large metropolitan areas) or when geospatial data includes no potential known source of
CH4. Large metropolitan areas where large anomalies were detected, such as Karachi, Lahore, Delhi, or
Dhaka, often include landfills and waste management facilities, large natural gas city networks, or coal
stockpiles that could all emit large amounts of CH4.

Figure S5 illustrates various plumes detected around the world by the algorithm and validated by the
human labeller.



Figure S3: Distribution of the angles between methane plumes direction and ERA5 100m wind direction, for
plumes accepted (left) and rejected (right) by the human labeller. The direction of the detected plumes is computed
as the first principal component in the singular value decomposition of the vertices of the plume polygon. Note that
false positive plumes may have been rejected either for wind direction or for e.g. albedo pattern matching. The false
positives histogram is based on a random sample of 500 false positive plumes.

Figure S4: examples of false positive detections discarded by the human labeler. Sentinel-5P XCH4 bias corrected
images(left column); corresponding S5P SWIR albedo images (middle column); optical images (right column). On
all images, red arrows represent the wind data. In row (1), the pattern detected on the XCH4 image (red polygon) is
also visible in the albedo SWIR image and on the optical image. In addition, the wind direction does not match the
direction of the detection: this detection must be discarded. Likewise, in row (2), the detected pattern is visible on
both albedo SWIR and optical image. Even if the wind direction matches the major axis of the detected pattern, it
must be discarded. Image credit: ESRI.



Figure S5: Examples of detected plumes validated by human labelling in various tiles from the L2 XCH4
TROPOMI retrievals. Clouds and ocean pixels are shown in white. For readability, all available pixels are shown
here, without  applying the qa_value filter.

2.2. Plume modeling and flow rate quantification

This step aims at quantifying the emission flow rate of all the plumes that have been detected by the
algorithm and validated by the human labeller. The methodology is similar to the mass balance approach
from Pandey et al. (2019).

2.2.1. Atmospheric modeling

For each detected plume, we simulated the observed enhancement using the Lagrangian particle
dispersion model HYSPLIT (A. F. Stein et al., 2015) in forward mode. We run the HYSPLIT model in
concentration mode on a 0.01 0.01 degree grid, significantly higher than the resolution of Sentinel-5P.×
The particles representing an air mass containing a fixed amount of CH4 are released continuously
assuming a wind-following Gaussian puff in the horizontal, with particles mixing vertically over the
prescribed Planetary Boundary Layer (provided by the meteorological input fields). The number of
elements released at each hourly cycle is 2500. Assuming that the observed plumes are in steady state, the
start of release is set 7 hours before sensing time which is sufficient to model the visible enhancements for
67% of the detections. If the observed plume extends beyond the simulated plume, new simulations are



performed with earlier release times until the plume length matches the observed one. The particles are
released at 10 meters above ground level to account for high-pressure injection heights. The
meteorological data used for the HYSPLIT simulations come from the Global Forecast System (GFS) by
the National Centers for Environmental Prediction (NCEP) at 0.25-degree and hourly resolutions. When
GFS is not available on the NOAA FTP server, we use the Global Data Assimilation System (GDAS)
meteorological data from NCEP at 1-degree and hourly resolutions. The model simulates plumes
originating from the source location estimated at the previous section (cf. section 2.1.1. step 6.).
Simulated plumes are reprojected on the observed Sentinel-5P geometry.

2.2.2. Flow rate quantification

A mask is formed from HYSPLIT plumes by selecting all methane-enhanced pixels in the simulated
plume whose enhancement is bigger than 10% of the most intense pixel enhancement (i.e. removing the
edges of the plume represented by too few particles). Observed Sentinel-5P enhancements are calculated
as the difference between XCH4 values and background (cf. section 2.1.1). The emission rate Q is then
quantified by comparing TROPOMI-observed and HYSPLIT-simulated XCH4 enhancement restricted to
the area described by the HYSPLIT mask, projected on Sentinel-5P’s geometry, with

𝑄 = 𝑄
ω

𝑋/𝑋
ω

where, X and are the XCH4 enhancements (in parts per billion) for TROPOMI and HYSPLIT plumes𝑋
ω

respectively, and is the constant emission rate used in the HYSPLIT simulation. Several factors bring𝑄
ω

uncertainty to the estimated flow rate . Refer to Section 3.1. of the Supplementary Information for an𝑄
analysis of the uncertainty of the estimated flow rates.

Similar to the detection stage, quantification results are manually checked by a human labeler. In
particular, we discard false positives when the simulated plume direction diverges significantly (a
posteriori, the empirical threshold is 30 degrees, see figure S6) from the observed plume direction. Wind
direction mismatch indicates that the GFS or GDAS weather data is not consistent with the observed
plume direction. Figure S6 quantifies the angle between simulation and observation when the
quantification is rejected for direction divergence. Another option for the human labeller is to state that
the flow rate of detection is impossible to quantify. This can be due to a multi-source environment for
which our method is not suited, or a small wind velocity (i.e. a compact plume with no well-defined
direction) setup in which quantification methods do not apply (Varon et al., 2018). For a limited number
of detected plumes, an ensemble of HYSPLIT simulations were performed using different simulation
durations and source locations to improve the fit between observed and simulated plumes, evaluated
following the same steps as described above. Figure S7 shows HYSPLIT for both accepted (top and
middle rows) and rejected (bottom row) flow rate quantifications. In summary, 518 plume quantifications
have been rejected and 702 accepted out of 1,220 detections related to oil and gas during the timeframe of
our study (2019-2020).



Figure S6: Angles between detected and simulated plumes, in the case where flow rate quantification is rejected
because of a mismatch between detected and simulated plume directions. Most of the plumes in this case form an
angle with simulated plumes that is bigger than 30 degrees.



Figure S7: TROPOMI images (left column), plumes detection overlayed on TROPOMI images (middle column),
associated HYSPLIT simulations (right column). On top and middle rows, simulated plumes lengths and directions
match the observed plumes; these quantifications have been accepted by the human quantifications checking. On the
bottom row, there is a mismatch between observed and simulated plume directions; this quantification is rejected by
human checking. On the top row, two plumes are shown on the same simulation for completeness, but they are
handled independently in the quantification algorithm.

2.3. Country-Level Ultra-Emitters Aggregation

From detections and quantifications, we derive aggregated figures to estimate methane emissions from
ultra-emitters at national scale. Three key figures are provided for each area of interest and time period in
addition to the leak duration for each observed plume:

1. Observed emissions, which are the sum of emissions due to detected leaks.
2. Coverage, i.e. the number of actual measurements during the selected period, of sufficient quality

to detect a methane plume. This quantity is a positive floating number with a maximum equal to
the number of days over the observing period. Details on this metric are given in section 2.3.1
below.

3. Leak duration, i.e. the actual duration of any observed events. Three scenarios are presented (cf.
section 2.3.4) to account for the full duration of any detection based on continuity (leaks visible
on consecutive images) and length of observed plumes.

4. Estimated emissions, i.e. an estimate of the emissions that would have been observed given
perfect coverage. Details on how we adjust for coverage are given in section 2.3.2 below.

2.3.1. Coverage

Coverage quantifies the number of valid readings provided by Sentinel-5P during a selected time interval.
We compute coverage indicators by splitting each region into elementary patches. On each patch, a
logistic regression model detailed below predicts if it would have been possible to detect a methane plume
given atmospheric conditions and quality assurance data (the patch is then marked as “valid”). The ratio
of valid patches over all patches for a given day represents daily coverage. Daily coverage is then
aggregated by adding up daily coverages into monthly, quarterly and yearly coverage numbers. The
coverage for a given period is a number between zero and the number of days in the period.

Estimating emissions due to ultra-emitters in an area of interest (AOI) requires estimating “coverage”, i.e.
quantifying the number of days for which ultra-emitters could be detected in the area using Sentinel-5P
images. To compute this number, we use the following algorithm.

1. Split the AOI into patches. The dimensions of each patch is 120*120km. Each patch overlaps
with half of its right, left, top and bottom neighbors, to ensure that a pixel that is at the edge of
some patch is also at the center of another patch.



2. For each patch, apply a logistic regression model whose output is 1 if the quality of the patch is
good enough for the detection algorithm to detect a methane plume, 0 otherwise. Details on the
training of this logistic regression model are given below.

3. For a given day and a given AOI, the coverage is defined as a floating number equal to the
number of valid patches divided by the total number of patches in the area of interest.

4. For a given period, the coverage is the sum of daily coverage for the period.

To define the dimensions of the patches, we plot the distribution of the length of the detected plumes
(figure S8). As the 80% quantile of this distribution is 60km, this means using 120x120km patches
ensures that most plumes are entirely included in at least one patch.

Figure S8: Histogram of the length of the detected plumes (left). Histogram of the number of days between two
consecutive detections in the same patch (right); 14 days corresponds to the end of the fat tail of this histogram and
is above the 95th percentile.

To train the logistic regression model mentioned in the preceding paragraph, we first build a dataset of
positive and negative observations based on the image mask (i.e. missing pixels due to weather, albedo,
etc.), using the following process for each detected methane plume. Note that the input of the logistic
regression model is not the XCH4 pixel values, but the distribution of the QA values of the pixels. To
build this dataset, we use a subset of 300 detected methane plumes, and apply the following process:

1. Crop a 120*120km patch containing a detected methane plume.
2. Downsample the patch image using a mask sampled at another random location in an S5P image.
3. If the plume detection algorithm still detects the methane plume, the mask is given label 1,

otherwise 0.
4. The process is repeated until we obtain a balanced dataset with 10,000 observations.

Logistic regression is then trained on this dataset to discriminate between valid (label 1) and invalid (label
0) patches. We then apply this model daily on each patch to determine if detection is possible or not on
each particular date and patch. These classification results are then aggregated into our measure of
coverage.



2.3.2. Observed and Estimated Emissions

We estimate total emissions by scaling observed emissions as follows.

Adjusting for coverage loss:

To adjust for coverage, for each AOI over each time period, we first compute the number of observed𝑛
𝑜𝑏𝑠

emission events, and the coverage c described in section 2.3.1 above, i.e. the number of days for which
S5P images were complete enough for ultra-emitters to be detected.. We then estimate the total number of
emission events over the period as

𝑛
𝑑𝑎𝑦𝑠

𝑐 𝑛
𝑜𝑏𝑠

by scaling the number of observed events, where is the number of days and is the coverage in the𝑛
𝑑𝑎𝑦𝑠

𝑐

period. Total emissions for the period are then estimated from observed emissions using the same
𝑛

𝑑𝑎𝑦𝑠

𝑐
scaling factor. This implicitly assumes that emission events and rates are independent from weather
patterns over the period, which might not be true in Russia in winter. If leaks are more common, it would
result in an under-estimatation.

Quantifying uncertainty due to coverage.

We use a negative binomial model to quantify the uncertainty introduced by these adjustments for
coverage. This can be traced as far back as the work of (Student 1907), see also (Hilbe 2011) for a more
recent discussion. Each area of interest and time period is treated independently in the following way.

1. Compute coverage c for the AOI during the given period.
2. Estimate the number of leaks that would have been detected given full coverage during this

period, as
𝑛

𝑒𝑠𝑡
〜𝑁𝐵(𝑛

𝑜𝑏𝑠
,  𝑝)

Here is the estimated number of leaks, is the observed number of leaks, ,𝑛
𝑒𝑠𝑡

𝑛
𝑜𝑏𝑠

𝑝 =  𝑐 / 𝑛
𝑑𝑎𝑦𝑠

where is the number of days and is the coverage in the period, and stands for the𝑛
𝑑𝑎𝑦𝑠

𝑐 𝑁𝐵

negative binomial probability distribution. For a given number of observed events detected𝑛
𝑜𝑏𝑠

in a fraction of all the observations, is the distribution of the number of events that𝑝 𝑁𝐵(𝑛
𝑜𝑏𝑠

,  𝑝)

would have been detected in the full period assuming emission events are independent𝑛
𝑑𝑎𝑦𝑠

identically distributed Bernoulli random variables with probability p. The mean of this probability

distribution is , and its variance is . Note that while the mean μ of thisµ =
𝑛

𝑜𝑏𝑠

𝑝 σ2 =
𝑛

𝑜𝑏𝑠 
(1−𝑝)

𝑝2

distribution matches the estimated total number of emission events used in the previous



paragraph, this model allows us to produce confidence bounds and show 90% symmetric
confidence intervals.

3. Estimate the distribution of total emissions in the AOI after adjusting for coverage. The aim here
is to estimate the distribution of total emissions from observed and non observed sources. This
distribution is sampled as follows.

● Pick an estimated number of leaks: 𝑛
𝑒𝑠𝑡
〜𝑁𝐵(𝑛

𝑜𝑏𝑠
,  𝑝)

● For , take the quantified detection among those observed in the AOI𝑖 ∈{1,...,  𝑛
𝑜𝑏𝑠

} 𝑖𝑡ℎ

during the period, write its rate as , and sample an emission rate𝑞
. The rationale for this choice is that the median relative𝑟

𝑖
∼𝑁(𝑞,  𝑞 ⨉ 0. 45 / 1. 96)

uncertainty on the estimation of emission rates is 45% (cf. SI section 3.1.).
● For , randomly pick a quantified detection among those in the AOI𝑖 ∈{𝑛

𝑜𝑏𝑠
+ 1,...,  𝑛

𝑒𝑠𝑡
}

during the period, write its rate as , and sample an emission rate𝑞
.𝑟

𝑖
∼𝑁(𝑞,  𝑞 ⨉ 0. 45 / 1. 96)

● Sample total methane emissions as

𝐸 =  
𝑖 = 1

𝑛
𝑒𝑠𝑡

∑ 𝑟
𝑖 

× 𝐻
𝑒𝑚𝑖𝑡, 𝑖

where is the estimated duration of emission (which depends on the duration𝐻
𝑒𝑚𝑖𝑡, 𝑖

𝑖

scenario; cf. section 2.3.4).
● Repeat times to sample the distribution of total emissions, and compute Monte Carlo𝑁

sampling confidence bounds.

Because the mean μ of the negative binomial distribution matches the estimated total number of emission
events, and because emission rates are sampled independently, the sample mean of total emissions
obtained using this procedure converges to the scaled total computed from observed emissions in the
previous paragraph, given enough samples. The sampling approach however allows us to compute
confidence intervals on coverage adjusted emissions.

2.3.3. Leak duration scenarios

As the satellite revisit time is about 24 hours (except for places near the equator and polar regions), the
exact duration of each detected emission event is unknown so we build three scenarios to estimate
emission duration .𝐻

𝑒𝑚𝑖𝑡

- The first scenario is a “lower bound”. Each quantified detection is matched with a HYSPLIT
simulation with a duration ranging between 2 and 10 hours. In this lower bound scenario,𝐻

𝑠𝑖𝑚

where we assume that emissions only started on the same day, and set . In a𝐻
𝑒𝑚𝑖𝑡

= γ ×  𝐻
𝑠𝑖𝑚

simple model where satellite overpass is at noon, emission start time is uniformly distributed over
24h and methane remains above the detection threshold for nine hours, true emission duration is
proportional to 2.1 times observed plume duration, so we set = 2.1 here.γ



- The second scenario is the “intermittency estimation” framework. It takes into account the fact
that some emissions last for a few hours while others last for several days. For each detected
event, based on data availability and detections in its neighborhood in the previous and next days,
we assess whether the emission lasted for several days or not (details on the methodology are
given below). In the first case, we set , in the second one, . We do𝐻

𝑒𝑚𝑖𝑡
= 24ℎ 𝐻

𝑒𝑚𝑖𝑡
= γ × 𝐻

𝑠𝑖𝑚

not define leak durations beyond 24 hours because the adjustment for loss of coverage
compensates for days without observations, hence compensating for leaks lasting several days.

- The third scenario assumes “continuous emission”, meaning that each detected source is supposed
to last 24 hours. Although this scenario represents an “upper bound” to the duration of an
individual leak, the satellite is likely to miss intermittent emissions outside of overpass time,
which will bias our observations downwards.

The intermittent scenario represents the most physically plausible scenario of the three and is therefore
selected as our reference in the comparison to the inventories and the cost-gain analysis. To clarify how
we applied it to estimate the emission duration, we describe here the process for each detected plume in
more details:

1. Find all the patches intersecting the plume footprint (the definition of the patch is the same as in
SI 2.3.3.)

2. Find the nearest date in the past and the nearest date in the future for which at least one of these
patches is valid (the definition of a valid patch uses the same logistic regression model as in the
coverage definition). We set a hard threshold to 14 days: if there is no valid patch 14 days before
and after the plume detection, then the plume is considered as intermittent. The choice of 14 days
is shown in figure S8 (right panel), 14 days corresponding to the end of the fat tail of the
histogram.

3. If either the next or the previous valid patch contains at least one detection, then the plume is
considered as a continuous leak. Otherwise, it is considered intermittent.

4. We take for continuous emissions and for intermittent emissions.𝐻
𝑒𝑚𝑖𝑡

= 24ℎ 𝐻
𝑒𝑚𝑖𝑡

= γ × 𝐻
𝑠𝑖𝑚

Figure S9: mean release duration in the HYSPLIT simulation associated with the flow rate estimates in each
country (left); percentage of plumes categorized as “continuous” in the intermittent scenario in each country (right).



Countries with the most continuous plumes are also those in which the release durations in the HYSPLIT
simulations are longer.

2.3.4. Validation of the coverage loss
The adjustment for the loss of coverage depends on the sampling rate for a given country. To evaluate the
robustness of our estimated emissions when only a limited number of detections is available (e.g. over
Russia or Iran), we performed the following experiment: we subsampled S5P images from one of the
countries with the most complete observation set (e.g. Turkmenistan) to match the number of observations
from one of the countries with the lowest coverage (e.g. Iran). By repeating this subsampling procedure,
we can estimate the error due to a low number of detections, and in parallel, evaluate our uncertainty
estimate. Following this procedure, we estimated the emissions from Turkmenistan (where coverage is
high - around 118 in yearly average) by subsampling the available images. We randomly censored
observations until the yearly mean coverage reaches 22 which corresponds to the coverage over Iran, the
smallest among the studied countries. We then apply the aggregation algorithm detailed in SI 2.3.2 to the
censored data to calculate the estimated emissions, and we repeated the process 100 times to produce a
statistical distribution of the subsampling. The results are shown on figure 2.e. in the main text. The mean
of the 100 estimates based on censored data for Turkmenistan is 1.26Mt (associated 90% confidence
interval: 0.87Mt to 1.64Mt) whereas the estimate based on full data is 1.28Mt (90% confidence interval:
1.15Mt to 1.41Mt). Furthermore, the dispersion of the estimated emissions based on subsampled data fits
the associated confidence intervals.

2.3.5. Areas used for country-level emissions estimation

In the USA, the Permian basin contains a large number of methane anomalies which are detected by our
algorithm. These detections consist of multiple overlapping plumes from numerous small to medium
sources, hence not from single emitters. For that reason, we chose to remove the detections over the
Permian basin from our analysis (cf. figure S15). All our estimates and comparisons to the national US
inventory estimates exclude the Permian, as explained in the main text.

In several countries, we also limited our observed area to the most active zones in terms of O&G
production and transmission activities. We excluded the areas with high coverage loss who are very
unlikely to contain large oil and gas related to methane leaks because they neither contain major
midstream nor upstream infrastructures, and might introduce a negative bias when their coverage is very
low (over-estimation of data loss; for example is Russia, the excluded area has a rate of valid measures
50% smaller that the areas taken into account in 2020, see figure S1). For these reasons, we chose to
remove sub-regions from the polygons used in our analysis, in Russia, Kazakhstan, Iran and Algeria (cf.
figure S10). The regions we remove in Iran are not major O&G producing areas and have a very low
coverage due to rough terrain and mountains; they contain only three detections presumably related to oil
and gas activities. The regions we removed in other countries do not contain any detection. The map on
figure S10 shows the polygons taken into account in our analysis.



Figure S10: polygons taken into account for estimating country-level ultra-emitters methane emissions.

3. Uncertainty analysis and measures validation

3.1. Analysis of the uncertainty and sensitivity to model parameters

3.1.1. Method

Uncertainty in source rate estimation mainly stems from uncertainty in the model input parameters. We
use a methodology similar to Pandey et al. 2019 to estimate the uncertainty of the flow rates we compute.
Estimations can vary greatly depending on:

- uncertainty on the Sentinel-5 Precursor measurements,
- errors in meteorological data driving our HYSPLIT simulations,
- uncertain background quantification,
- uncertain longitude and latitude of the source location.

In order to evaluate the magnitude of these variations, we ran a sensitivity analysis on 200 plumes
randomly selected among the methane plumes assigned to oil and gas activities we detected in 2019-2020.
For each parameter bringing uncertainty to the flow rate estimate, we build an ensemble of simulation
with different values for the concerned parameter. The uncertainty associated with the parameter is taken
as the standard deviation of the ensemble. For each methane plume detected, input parameters iterate over
the following scenarios.



- latitude and longitude with one reprojected Sentinel-5 Precursor pixel variation around the
estimated source, to evaluate uncertainty from source location. This leads to a set of 9 flow rate

estimates for each plume, whose standard deviation is thereafter noted σ
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

- Two meteorological driver data sources: GFS 0.25 degree, GDAS 1 degree, to represent the

transport model uncertainty. The standard deviation of these two measures is noted σ
𝑤𝑒𝑎𝑡ℎ𝑒𝑟

- Simulation start time offset by ± 2 hours - with an hourly sampling - around the estimated optimal
start time (determined by the human labeler), to take into account the influence of the release

duration. The standard deviation of the five estimates derived thereby is noted σ
𝑜𝑓𝑓𝑠𝑒𝑡 ℎ𝑜𝑢𝑟

- Four different background estimation methods are tested - all detailed in the dedicated paragraph

below. The standard deviation of these estimates is noted .σ
𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

- For each image, the measurement error from TROPOMI is given as a dataset named
methane_mixing_ratio_precision; which we propagate in our flow rate estimation algorithm to

obtain a measure uncertainty , (Pandey et al., 2019).σ
𝑚𝑒𝑎𝑠𝑢𝑟𝑒

Once we know the uncertainty linked to each parameter, given these parameters are all independent, we
can apply the law of propagation of uncertainty (Williams, 2016, Pandey et al., 2019) and compute the
combined uncertainty by summing these errors in quadrature

σ
𝑡𝑜𝑡𝑎𝑙

=  σ2
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

 + σ2
𝑚𝑒𝑎𝑠𝑢𝑟𝑒

+ σ2
𝑤𝑒𝑎𝑡ℎ𝑒𝑟

+ σ2
𝑜𝑓𝑓𝑠𝑒𝑡 ℎ𝑜𝑢𝑟

+ σ2
𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

3.1.2. Background Estimation Scenarios

The choice of the method used to compute the background is crucial, since all the estimations we perform
are based on methane enhancement, itself linked to the background estimation. In our framework, we let
aside the methods in the literature which required manual estimation of the background. This includes for
example the choice of a pixel located upwind (Pandey et al., 2019, Varon et al., 2019). Instead we
compute the background automatically from the median of the pixels in a bounding box of 1x1 degree
around the source locations. The enhancement of the image is then obtained by subtracting the median to
the pixel values and setting negative values to 0. This simple method tends to introduce a one-side bias
due to the noise in the pixel values. Therefore we derived a second method, where we set to zero the
pixels below one standard deviation of the image. This correction is meant to avoid misinterpreting the
noise in the S5P image as CH4 concentration variations, which could introduce a negative bias in the
emission rates. Analogously, we derive a local version of these two methods, which uses the background
estimation method explained at section SI 2.1., to yield more robust estimates in case of partially
degraded observations. This leads to four methods to compute the enhancements: median of the
neighborhood, the method explained in the section SI 2.1., and a version of these two methods in which
the smallest pixels are set to 0.



3.1.3. Results

The results of the uncertainty analysis are displayed on figure S11. The median of the total relative
uncertainty is 45%. The parameter responsible for the largest uncertainties is the source location (26%). In
comparison, background estimation method and error propagated from Sentinel-5P XCH4_precision data
product have a limited impact on the uncertainty with relative standard deviations respectively of 10%
and 9%.

Figure S11: a. Distribution of the total relative uncertainty on a sample of 200 plumes (median = 45%); b.
distribution of the standard deviations relative to source location variations (median = 26%); c. distribution of the
standard deviations relative to release duration variation (median = 17%); d. distribution of the standard deviations
relative to weather data variation (median = 6%); e. distribution of the errors propagated from S5P XCH4_precision
(median = 9 %); f. distribution of the standard deviations relative to background estimation variations (median =
10%).

In addition to the uncertainty analysis described above, we ran HYSPLIT simulation and quantification
algorithms on 100 randomly selected plumes using different values for the parameters controlling the
mixed layer height (KMIXD; obtained either from input weather data (0) or from modified Richardson
number (3)) and the vertical mixing strength (KZMIX; either none (0) or derived from Vertical diffusivity
in Planetary Boundary Layer single average value (1)). These two parameters have a potential impact on



the vertical distribution of CH4 concentrations near the surface, hence affecting the shape of the plumes in
the horizontal. The comparison of the flow rates quantification when these parameters vary is shown at
figure S12. We concluded that the impact of these parameters were very limited and we ran the
uncertainty analysis without taking them into account.

Figure S12: Histogram of the relative changes in the flow rate quantification flow by varying the HYSPLIT
parameters controlling the mixed layer height (KMIXD) (left panel) and the vertical mixing strength (KZMIX)
(right panel).

3.2. Validation: compressor station leak in Turkmenistan

To validate our flow rate quantification process, we compared our results with those of Varon et
al. (2019) on a recently published case study. Using a combination of images from GHGSat and
TROPOMI, Varon et al. detected and quantified methane emissions, likely originating from a compressor
station of the Korpezhe pipeline in Turkmenistan. Their measurements demonstrate recurring leaks
throughout the year 2018 and in January 2019. We compared our detections and quantifications with
theirs when both studies overlap (i.e. January 2019). These results are shown on figure S13. During the
month of January 2019, the average of our measures is 83t/h (± 27t/h), while the average of the flow rates
measured by Varon et al. is around 80t/h (± 35t/h) using TROPOMI and 47t/h (± 29t/h) using GHGSat (on
different periods). Our TROPOMI measurement days do not match all measurements from Varon et al. for
various reasons: on January 13th, the methane enhancement in the vicinity of the compressor station is too
low to be detected by our plume detection algorithm (due to a second large anomaly visible in the area);
on January 27th, the detection is filtered out by our robustness flags (see algorithm item 5., SI 2.1.1.), on
January 24h, our algorithm detected the methane plumes quantified by Varon et al. but the HYSPLIT
simulation does not match the observed plume; the quantification has therefore not been accepted by the
human labelling process.



Figure S13: Comparison of Varon et al. and this study’s flow rate quantifications at Korpezhe compressor station.
Daily estimates (left) and monthly averages (right). The uncertainty on the flow rates have been computed following
the process described in SI 3.1.; the uncertainty on weather data is not taken into account here as the GFS weather
data is unavailable on the NOAA’s FTP server.

4. Plumes dataset

The dataset with all the detected plumes contains for each plume the date (date) at which the plume has
been observed, the estimated longitude (source_longitude) and latitude (source_latitude) of the source,
and the quantification of the emission flow rate (emission_rate) (if the quantification stage has been
successful). The longitude and latitude of the source is either the longitude and latitude of the HYSPLIT
simulation that best fitted the detected plume or (if the quantification failed) the longitude and latitude
estimated at first during the plume detection stage.

The dataset also contains an “event_id” field. In most of the cases, an event id is associated with a unique
plume. However, some plumes are detected twice, on images from two consecutive orbits from the
satellite. This only happens in high latitudes as the orbits are sun-synchronous and near polar: S5P images
overlap near the poles. In this case, the two plumes detected are given the same event_id to indicate that
they are distinct detections of the same emission on the same day. Figure S16 illustrates this.



Figure S14 compiles a few statistics on the plumes dataset. Figure S15 is a zoom-in on detections over
Algeria and the USA. It is a complement to figure 1. To be consistent with the country-level estimates in
the USA, we intentionally removed the detections of anomalous methane concentrations over the Permian
basin, which are visible on the world map in figure 1. The Permian basin is indeed not suited for the
analysis developed in the paper, because the detections herein do not result from ultra-emitters, but rather
from clusters of smaller leaks.

This dataset is available from the authors upon request, for non-commercial use.

Figure S14: Descriptive statistics on the plumes dataset. a. Monthly number of oil and gas detections; b. monthly
S5P onshore coverage (as defined in SI 1.) worldwide; c. Monthly number of oil and gas detection divided by S5P
onshore coverage worldwide; d. number of detections in the 5 countries with the biggest number of detected O&G
ultra-emitters; e. distribution of the ultra-emitters categories in the dataset; f. histogram of the estimated flow rates.



Figure S15: detections over the USA (left) and Algeria (right).

Figure S16: same emission detected on two consecutive orbits.


