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Abstract

A high-order numerical algorithm is proposed for the solution of one-dimensional arterial pulse wave
propagation problems based on use of an accelerated “Fourier continuation” (FC) methodology for accu-
rate Fourier expansion of non-periodic functions. The solver provides high-order accuracy, mild Courant-
Friedrichs-Lewy (CFL) constraints on the time discretization and, importantly, results that are essentially
free of spatial dispersion errors—enabling fast and accurate resolution of clinically-relevant problems re-
quiring simulation of many cardiac cycles or vascular segments. The left ventricle-arterial model that is
employed presents a particularly challenging case of ordinary differential equation (ODE)-governed bound-
ary conditions that include a hybrid ODE-Dirichlet model for the left ventricle and an ODE-based Windkessel
model for truncated vasculature. Results from FC-based simulations are shown to capture the important
physiological features of pressure and flow waveforms in the systemic circulation. The robustness of the
proposed solver is demonstrated through a number of numerical examples that include performance studies
and a physiologically-accurate case study of the coupled left ventricle-arterial system. The results of this
paper imply that the FC-based methodology is straightforwardly applicable to other biological and physical
phenomena that are governed by similar hyperbolic partial differential equations (PDEs) and ODE-based
time-dependent boundaries.

Keywords: Fourier continuation, hemodynamic wave simulation, mathematical physiology, high-order
methods

1. Introduction

Fourier continuation (FC) methods [1, 2, 3, 4, 5, 6] broaden the applicability of Fourier-based partial
differential equation (PDE) solvers by resolving the well-known Gibbs “ringing” phenomenon to enable
high-order convergence of Fourier series approximations of non-periodic functions. This is accomplished by
constructing an interpolating Fourier series representation via a discrete periodic extension that approximates
a given function to high-order and renders it periodic on a slightly larger domain. FC-based PDE solvers
have already been introduced for a number of problems including the classical wave and diffusion equations
with constant and variable coefficients [1, 2, 4, 7]; the nonlinear Burgers system [8]; the Euler equations [9,
10]; the 2D compressible Navier-Stokes equations [3, 11, 6]; and the 3D elasticity equations with variable
coefficients [5]. These solvers maintain the well-established qualities of other spectral solvers for time-domain
equations including accuracy by means of coarse discretizations and a faithful preservation of dispersion
characteristics of the underlying continuous problems. Additionally, although classical spectral solvers can
include restrictive Courant-Friedrichs-Lewy (CFL) conditions on time discretizations as well as restrictions
to periodic geometries, explicit FC-based solvers—like the one presented in this paper—rely on equispaced
Cartesian grids (which can be extended to curvilinear formulations [3, 5]) that lead to mild, linear CFL
constraints on the timestep while treating physically-realistic non-periodic domains.

The objective of this work is to introduce a new stable high-order algorithm for the numerical solution
of one-dimensional (1D) arterial pulse wave problems based on this Fast Fourier Transform (FFT)-speed FC
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methodology. In particular, the physical model employed represents the most complicated case found in wave
propagation models of the cardiovascular system: an arterial segment governed by a hyperbolic PDE whose
left boundary is governed by a complex hybrid ordinary differential equation (ODE)-Dirichlet condition for
the left ventricle (LV) and whose right boundary is governed by a Windkessel ODE. The former boundary
condition, in particular, is “non-stationary” in the sense that the time at which the ODE-governed condition
transitions to a Dirichlet condition is itself determined by the solution of the PDE. This complex nonlinear
system is representative of the myriad formulations of governing equations that have been constructed to
reasonably capture the complete physics of pressure and flow propagation in the cardiovascular system;
hence the numerical methodology herein can be easily extended to other cases including those utilizing
simpler boundary conditions (e.g., a given inflow function, junction-matching conditions or one-sided lumped
terminal models). The method described in this paper enables fast, accurate and essentially dispersionless
resolution of arterial wave propagation systems, ultimately yielding errors within a prescribed tolerance
using a fixed number of points per wavelength for increasingly large problems and yielding stable simulation
for metrics that require information over a large number of cardiac cycles. Such a fast and dispersionless
method may also be suitable for feedback regulatory models necessitating long-time simulations as well as
for iteratively solving inverse problems related to arterial wave reflections.

One-dimensional arterial models are noted for their relatively inexpensive computational complexity when
compared to 3D models. Several numerical methodologies have been constructed for the various formulations
(e.g., area-velocity, area-flow, pressure-flow). These include characteristic methods [12] as well as finite
element (FE) [13, 14, 15, 16, 17], finite volume (FV) [18] and finite difference (FD) [19, 20, 21, 22, 23]
methods. A number of these tools have been successfully utilized for blood flow analysis and are well-
established. Some of these methods, however, can have restrictive spectral radii resulting in very fine
timesteps relative to spatial mesh sizes. Additionally, FE/FV/FD-based methods have been well-known
for a long time to suffer from high numerical dispersion [24]: phase errors of a solution can accumulate
over subsequent periods of a propagating wavetrain, requiring an ever-increasing numbers of points per
wavelength to resolve larger problems within a given accuracy. For excellent reviews of the derivations
and implementation of both analytical and numerical models used in 1D arterial propagation, the reader is
referred to [25, 26, 27].

For hemodynamics applications, fast and accurate 1D solvers are necessary to explore all possible dy-
namics that result from changes brought about by diseases. Stable and high-order resolution can extend
the applicability of reduced-order systems towards more sophisticated models (e.g., that of this paper) and
towards multi-dimensional coupling (e.g., 1D-3D coupling) in an ultimate effort to improve physiological
relevancy and utility. Robust methods are also essential for maintaining cost reductions promised by 1D
formulations; large numbers of simulations may be required to study, for example, alterations in geometric
and elastic properties of the arterial tree, or PDE-constrained optimization problems [28]. To this end,
the FC-based methodology proposed in what follows is a competitive approach for forward problems. In
Section 2, the full governing equations are presented for the LV-arterial system. Section 3 describes the full
solver including a detailed presentation of the construction of Fourier continuations as well as a full summary
of the overall algorithm and implementation of the complex boundary ODEs. Section 4 provides a variety
of illustrative numerical experiments attesting to high-order convergence, limited numerical dispersion and
long-time stability. Section 5 presents a case study that simulates waveforms from physiologically-accurate
data by an LV-arterial system model; comparisons with a finite difference solver are also provided. Conclud-
ing remarks are ultimately discussed in Section 6.

2. The theoretical model

One-dimensional arterial pulse wave models have been demonstrated to capture important features of
pressure, flow and area wave propagation in large arteries, and have been demonstrated to illustrate many
features of circulation under both normal and diseased conditions. The problem of propagation of pressure
and flow waves in an arterial system is often modeled by decomposing the domain into segments of elastic
tubes of given lengths whose properties can be described by single axial coordinates [29, 19, 21, 30, 31].
A number of equivalent formulations exist [25, 26, 27]: those in terms of cross-sectional area of the aorta
A(x, t), pressure P (x, t) and axial velocities U(x, t) (the so-called AU formulations); those in terms of the
area and the flow rate Q(x, t) = AU (the so-called AQ formulations); as well as formulations in terms of
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Figure 1: The coupled LV-arterial model consisting of a linear transmission tube of length ` (aorta); the input boundary
condition (left ventricle) modeled as a time-varying compliance; and the outflow boundary modeled as a terminal load impedance
represented by a three-element Windkessel [19]. The parameters Z0, Cc and Rc define the characteristic impedance, the
compliance and the resistance of the eliminated vascular network, respectively.

pressure and flow rates (the so-called PQ formulations). All of these versions are constructed to account
for the fluid-structure interaction of the problem and can be solved with similar numerical strategies. This
paper is concerned with a coupled PQ formulation for purposes of modeling the LV-arterial system illustrated
by Figure 1. This system represents a most complicated configuration found in modeling segments in an
arterial system (a hyperbolic PDE coupled to a complex hybrid ODE-Dirichlet boundary condition for the
left ventricle and a Windkessel ODE for truncated vasculature). This simplified LV-arterial model has been
shown to capture physiologically-relevant characteristics of the systemic circulation [19]. The numerical
methodology subsequently described in Section 3 can be also applied to other formulations.

2.1. Governing equations

In the PQ formulation [29, 19, 31, 32], the pressure P (x, t) and flow Q(x, t) in a single uniform elastic
tube of a given length ` (e.g., the aorta in Figure 1) can be governed by∂P

∂t (x, t)

∂Q
∂t (x, t)

 = −

 1
C
∂Q
∂x (x, t)

1
L
∂P
∂x (x, t) + R

LQ(x, t)

 , 0 ≤ x ≤ `, t ≥ 0, (1)

with initial conditions P (x, t = 0) and Q(x, t = 0) prescribed at some initial time t = 0 (and evolved for a
given number of cardiac cycles of period Tper). The system (1) derives from the assumptions that 1) blood
fluid is Newtonian (described by linearized Navier-Stokes equations); 2) that velocity fields are axisymmetric;
and 3) that the tube walls displace elastically. Material parameters are specified by the fluid inductance
L ∈ R+, the hydraulic resistance R ∈ R+ and the vessel compliance C ∈ R+. The pulse wave velocity
(needed for the CFL condition of the explicit solver presented in Section 3) can be approximated as

cPW =
1√
LC

. (2)

2.2. Inlet boundary conditions

The inlet (left) boundary condition at x = 0 represents the dynamics of the left ventricle in Figure 1 and
can be accurately modeled as a time varying compliance Cv(t) [19, 33, 34] defining a relationship between
the pressure Pv(t) inside the left ventricle and the corresponding LV-volume Vv ∈ R+ as

Vv(t)− Vdead = Cv(t)Pv(t). (3)

The constant Vdead, known as the dead volume, defines the limit for pressure generation: a ventricle whose
volume falls below this value can no longer generate any pressure [35]. Recalling that the flow into the aorta
is defined in terms of this volume as Q(x = 0, t) = −∂Vv/∂t, differentiating equation (3) with respect to t
yields the corresponding differential equation for the pressure in the ventricle as

∂Pv

∂t
(t) = − 1

Cv(t)

[
∂Cv

∂t
(t)Pv(t) +Q(x = 0, t)

]
, t ≥ 0. (4)
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Name Variable Units
Tube (domain) length ` cm
Tube (domain) compliance C ml/(mmHg cm)
Tube (domain) inductance L mmHg sec2/cm4

Tube (domain) resistance R mmHg sec/cm4

Terminal load compliance Cc ml/mmHg
Terminal load resistance Rc mmHg sec/ml

LV end diastolic volume (preload) LV EDV ml
LV dead volume Vdead ml
LV compliance Cv(t) ml/mmHg
Period of a cardiac cycle Tper sec

Table 1: A summary of the physical parameters for the LV-arterial model that includes the left ventricle and the terminal
compliance chamber. The end diastolic volume LV EDV and period of the cardiac cycle Tper are additional physiological input
parameters that are used to fully describe the physical model.

Hence once the pressure Pv(t) in the ventricle is greater than that of the tube boundary P (x = 0, t), the
valve opens and P (x = 0, t) = Pv(t) with the corresponding flow condition given naturally by the governing
arterial wave equation (1). Once the inflow reaches zero (or, numerically, the time at which Q(x = 0, t) ≤ 0
or Pv(t) ≤ P (x = 0, t)), the valve closes and the left boundary condition remains Q(x = 0, t) = 0 (a Dirichlet-
type condition). Generally, Cv(t) is given by clinical parameters either through a closed-form approximation
to data or a look-up table [19, 33, 34].

2.3. Outlet boundary conditions

At the “terminal boundary” x = ` (right boundary in Figure 1), the physical structure approximates the
effect of the eliminated peripheral vessels. This effect can be reasonably modeled using a zero-dimensional
lumped parameter model, known as a Windkessel, that couples to the vessel governed by equation (1) through
a matched impedance that is related to the vessel parameters by [19]

Z0 =

√
L

C
, (5)

for fluid inductance L and vessel compliance C. This circuit-like Windkessel model relates the pressure and
the flow at the outflow boundary. The pressure Pc in the terminal compliance chamber is related to the
aortic pressure P (x = `, t) at the outlet of the vessel via the ODE given by

∂Pc

∂t
(t) =

1

CcZ0
P (x = `, t)− Rc + Z0

CcRcZ0
Pc(t) (6)

for effective compliance Cc ∈ R+, characteristic impedance Z0 ∈ R+ (approximated by equation (5)) and a
total peripheral resistance Rc ∈ R+—all chosen so that the load is matched to the domain (tube) at high
frequencies [19]. The corresponding outflow Q(x = `, t) at the terminal boundary is given by

Q(x = `, t) =
1

Z0
(P (x = `, t)− Pc(t)) . (7)

The solver implementation of this complex boundary condition—and that of the inlet dictacted by equa-
tion (4)—is described in detail in Section 3.5.

2.4. A summary of the physical parameters

The physical parameters (often given by clinical data) that are necessary for the complete model—
including the boundary ODEs—are summarized in Table 1.
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3. The numerical model

This section describes the proposed FC-based arterial pulse wave solver, including the construction of
continuations and their subsequent spatial differentiation; a corresponding explicit treatment for temporal
derivatives; and a spectral filter design that eleminates growth of high-frequency errors without unduly
deteriorating accuracy. The general principles of Fourier continuation are presented in Section 3.1 and a
relatively detailed summary for constructing (accelerated) Fourier continuations is presented in Section 3.2.
The implementation of the complex boundary conditions for the inlet and outlet is also presented (Section 3.5)
along with a pseudo-code of the full algorithm (Section 3.6).

3.1. The Fourier continuation approach

Considering a uniform discretization xi = i∆x, i = 0, . . . , N−1, ∆x = 1/(N−1) and corresponding point
values f(xi) of a given smooth function f(x) : [0, 1] → R, the FC method constructs a rapidly-convergent
interpolating Fourier series representation fcont : [0, b]→ R on a region [0, b] that is slightly larger than the
given physical domain [0, 1]. This representation is given by

fcont =

M∑
k=−M

ake
2πikx
b s.t. fcont(xi) = f(xi), i = 0, ..., N − 1, (8)

where M = (N + Ncont)/2 is the bandwidth for an Ncont (defined as the number of points added to the
original domain such that b = (N + Ncont)∆x). The Fourier continuation function fcont approximately
renders the original function f periodic, i.e., fcont approximates f to high-order in the original domain [0, 1]
and is periodic on the slightly larger domain [0, b], b > 1. Spatial derivatives in the governing equations
of (1) can then be produced by exact termwise differentiation of the series (8) as

∂fcont
∂x

(x) =

M∑
k=−M

(
2πik

b

)
ake

2πikx
b . (9)

This ultimately provides the numerical derivatives of f to high-order by restricting the domain of ∂fcont/∂x
to the original unit interval. Hence the approximation rests in the construction of (8) from which the compu-
tation of the derivative (9) can be facilitated by the Fast Fourier Transform (FFT). Note here that f has been
defined on [0, 1] without loss of generality: it is easily extended to any interval by affine transformations [1].

3.2. Accelerated Fourier continuation: FC(Gram)

The coefficients ak of (8) are found in the simplest treatment [36, 37] through solving the least squares
system

min
ak

N−1∑
i=0

|fcont(xi)− f(xi)|2 (10)

by the Singular Value Decomposition (SVD). This can become rather costly for time-dependent solutions of
complex boundary-valued PDEs such as equation (1) (each timestep requires application of the corresponding
SVDs). In order to reduce this computational expense, accelerated techniques have been introduced [1, 2, 3].
Known as FC(Gram), they rely on use of small vectors of only a handful of function values near the left and
right endpoints at x = 0 and x = 1 which are projected onto a Gram polynomial basis whose continuations
are precomputed through solving the corresponding least squares problem (10) by means of a high-precision
SVD. More precisely, the accelerated FC(Gram) method uses a subset of the given function values on small
numbers d` and dr of matching points {x0, .., xd`−1} and {xN−dr , ..., xN−1} contained in small subintervals
on the left and right ends of the interval [0, 1] to produce a discrete periodic extension of size Ncont. This
is accomplished by projecting these end values onto a Gram basis up to degree d` − 1 (resp. dr − 1)
of polynomials (producing a polynomial interpolant) whose FC extensions are precomputed and whose
orthogonality is enforced by the natural discrete scalar product defined by the discretization points. This
effectively forms a “basis” of continuation functions with which to rapidly extend the given function f and
provide a smooth transition from f(x = 0) to f(x = 1) over the interval [0, b].
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In particular, this work employs a “blend-to-zero” version of FC(Gram) [3, 5] in order to obtain the
additional Ncont values. The strategy takes the function values defined at the matching points on the left
(resp. the right) and provides a smooth transition to the left (resp. the right) that terminates in zero values
at the the discrete points {x−Ncont−dr , ..., x−Ncont−1} (resp. {xN+Ncont

, ..., xN+Ncont+d`−1}). The sum of the
leftward and rightward extensions (to zero) provides the needed complete Fourier continuation. Each blend-
to-zero transition is precomputed on a Gram polynomial basis (to interpolate the left d` and right dr values
of f) by solving the corresponding minimization problems via SVD. This basis can be constructed for the
left matching problem, for example, by orthogonalizing the Vandermonde matrix

M =


1 x0 (x0)2 ... (x0)d`−1

1 x1 (x1)2 ... (x1)d`−1

...
...

...
...

...
1 xd−1 (xd−1)2 ... (xd`−1)d`−1

 (11)

of point values at the discrete points {x0, ..., xd`−1} of the monomials {x0, x1, .., xd`−1} (the right-matching
problem uses a substitution of 1 − x). Orthogonalization is performed via a stabilized Gram-Schmidt or-
thogonalization (M = QR) in high-precision arithmetic and with the monomial basis oversampled (see [3, 5]
for details). This ultimately produces the left and right projection operators Q` and Qr to determine the
coefficients in the polynomial basis used in interpolating the left and right matching values of the function
f . Each basis has its corresponding blend-to-zero continuation precomputed.

Defining the vector of matching points for the left and right as

f` = (f(x0), f(x1), ..., f(xd`−1))
T
, fr = (f(xN−dr ), f(xN−dr+1), ..., f(xN−1))

T
, (12)

the continuation operation can hence be expressed in a block matrix form as

fcont =

[
f

A`Q
T
` f` +ArQ

T
r fr

]
, (13)

where f = (f(x0), . . . , f(xN−1))T is a column vector containing the discrete point values of f ; fcont is a
vector of the N + Ncont continued function values; I is the N ×N identity matrix; and A`, Ar contain the
corresponding Ncont values that blend the left and the right bases to zero. Again, the columns of Q`, Qr
contain the d`, dr point values of each element of the corresponding Gram polynomial basis and, for d` = dr,
differ only by column-ordering (and A`, Ar by row-ordering). As in other FC-based solvers, a number of
d`, dr = 5 matching points are used for all simulations in this paper with a periodic extension comprised of
Ncont = 25 points. The matrices A`, Ar, Q` and Qr need to be computed only once and stored in file for
use each time the Fourier continuation of a given function is constructed. Further technical details on the
construction of the blend-to-zero continuations employed in this paper can be found in [1, 3, 5].

In summary, the FC(Gram) algorithm appends Ncont values to a given discretized function in order
to form a periodic extension in [1, b] that transitions smoothly from f(xN−1) back to f(x0). Figure 2
illustrates an example Fourier continuation of a non-periodic function: the original discretized function on
[0, 1] is translated by a distance Ncont∆x with the subsequent interval filled-in by the sum of leftward and
rightward blend-to-zero continuations that ultimately renders the function periodic. Hence the resulting
continued vector fcont can be seen as a set of discrete values of a smooth and periodic function that can be
approximated to high-order via FFT on an interval of size (N +Ncont)∆x.

Remark 3.1. Since the computation of derivatives for continued functions are spectrally accurate, the error
of a Fourier continuation-based solver is dominated by the polynomial approximation used to project the
end function values onto the blend-to-zero basis. Hence for the choices of d`, dr = 5 matching points that
are used throughout this paper, the corresponding fourth-order interpolating Gram polynomial basis results
in essentially fifth-order convergence in space.

3.3. Explicit integration in time

For marching forward-in-time, the explicit Adams-Bashforth scheme of order four (AB4) is employed
similarly to other FC-based solvers [3, 5]. Other explicit timesteppers can be used, including the fourth-order
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Figure 2: An example Fourier continuation of a non-periodic function. The original function on [0, 1] is translated by a distance
of length Ncont∆x whose values are filled-in by the sum of the blend-to-zero continuations (dashed lines) in order to render the
function periodic. Green triangles and circles represent the discrete d`, dr = 5 matching points, and the blue squares represent
the discrete Ncont = 25 continuation points that comprise the extension.

Runge-Kutta (RK4) method. Both methods provide adequate regions of absolute stability [38, 39], but each
timestep for RK4 entails four evaluations of the right-hand-side. For 1D problems, this is not particularly
burdensome; however, enforcement of boundary conditions at intermediate RK steps may be problematic,
especially for time-dependent boundary conditions [40, 41] which are often utilized for hemodynamics models.

The system defined by the governing PDE in equation (1) and the governing boundary ODEs of equa-
tions (4) and (6) can be written as

∂

∂t


Pv(t)

P (x, t)

Q(x, t)

Pc(t)

 = −


1

Cv(t)

[
∂Cv

∂t (t)Pv(t) +Q(x = 0, t)
]

1
C
∂Q
∂x (x, t)

1
L
∂P
∂x (x, t) + R

LQ(x, t)

− 1
CcZ0

P (x = `, t) + Rc+Z0

CcRcZ0
Pc(t)

 =


F1(Pv, Q, t)

F2(P,Q, x, t)

F3(P,Q, x, t)

F4(Pc, P, t)

 . (14)

Integration in time is performed on the basis of the explicit AB4 discretization with uniform timestep ∆t > 0.
The resulting discrete equations for a time t+ ∆t are given by

Pv(t + ∆t)

P (x, t + ∆t)

Q(x, t + ∆t)

Pc(t + ∆t)

 =


Pv(t)

P (x, t)

Q(x, t)

Pc(t)

+
∆t

24

55


F1(t)

F2(t)

F3(t)

F4(t)

− 59


F1(t− ∆t)

F2(t− ∆t)

F3(t− ∆t)

F4(t− ∆t)

+ 37


F1(t− 2∆t)

F2(t− 2∆t)

F3(t− 2∆t)

F4(t− 2∆t)

− 9


F1(t− 3∆t)

F2(t− 3∆t)

F3(t− 3∆t)

F4(t− 3∆t)



 ,

(15)

with the notational license F1(Pv, Q, t) = F1(t), etc., for clarity. The boundary conditions calculated on the
basis of the ODEs for Pv, Pc are then injected after each timestep t→ t+ ∆t; the resulting boundary values
at time t+ ∆t are then used to produce the FC approximations needed to evaluate the right hand sides at
the next iteration for time t+ ∆t. For all simulations in this paper, a timestep of

∆t ≤
√

2

2

1

cPW
∆x (16)

has provided absolute stability in all cases, including runs of hundreds of thousands of timesteps.
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3.4. Filtering in frequency-space

Similarly to other spectral solvers, a spatial filter [3, 5] is employed to control the growth of the error in

unresolved modes. This is applied in Fourier space on a function f(x) with Fourier coefficients f̂k by

N
2∑

k=−N
2

f̂k exp(ikx) −→
N
2∑

k=−N
2

exp (−α (2k/N)
p
) f̂k exp(ikx), (17)

where p is a positive integer that determines the rate of decay of the coefficients, and where the real valued
α > 0 determines the level of suppression such that highest-frequency modes are multiplied by e−α. For all
numerical examples that follow, a mild choice of parameters inspired by [5, 7] is used and is given by

(p, α) = (8,−DcPW∆t/∆x ln(10−2)), (18)

where cPW = 1/(
√
LC) is the approximate pulse wave velocity and where ∆x is the spatial step size used

in the computational domain. In general, a choice of D ≈ 1 provides absolute stability, including for
those boundary conditions employed in Section 5 that result in possibly discontinuous-in-time solutions.
Larger (stronger) values of α in equation (18) have been demonstrated to still maintain the convergence and
dispersion characteristics promised by FC-based solvers (e.g., the choice of α = 16 log(10) in [3] eliminates
the highest modes completely). However, the milder, CFL-based value chosen in (18) ensures that the highest
frequency terms aren’t entirely eliminated and that the filter approaches unity as ∆t → 0 for a fixed ∆x
(see [5, 7] for comparisons and more detailed discussions).

3.5. Implementation of the complex boundary conditions

The complex boundary conditions described in Sections 2.2 and 2.3 are governed by an ODE for the
left ventricle (and at times a Dirichlet condition) and an ODE for the eliminated vasculature, respectively.
At the inlet in particular, the ODE solution is only used when the valve is open, i.e., the pressure inside
the ventricle is larger than the pressure at the inlet of the aorta. When the valve is closed, the boundary
condition is simply given as a null inflow Q(x = 0, t) = 0. The corresponding valve condition must be tracked
by a binary variable indicating whether the valve is open or closed. A summary of the implementation for
the boundary updates governed by the inlet and outlet ODEs is given by the diagram of Figure 3.

3.6. Solver summary

The complete solver for the LV-arterial system is summarized in the pseudo-code of Algorithm 1.

4. Numerical performance: convergence, accuracy, dispersion and stability

4.1. Convergence and accuracy

Similarly to other verification procedures that have been used in literature (e.g., [42, 43] for hemodynamics
and [5, 44, 45, 46] for higher-dimensional PDE systems), the method of manufactured solutions (MMS) can
be employed to verify the implementation and numerical accuracy of the proposed FC-based methodology. In
MMS, one postulates a smooth solution and algebraically derives the corresponding right-hand forcing terms
and boundary conditions to render the proposed function an exact solution of the PDE. For the following
experiment, solutions to the pressure P (x, t) and flow Q(x, t) are postulated as(

P
Q

)
=

(
P0 sin(k1x− ω1t) cos(k2x− ω2t)
Q0 sin(k2x− ω2t) cos(k1x− ω1t)

)
, (19)

for P0 = 1/2, Q0 = 3/2, k1 = 2.5, k2 = 6.5 and temporal frequencies ω1 = 420Hz and ω2 = −ω1. The
domain considered is an elastic tube of length ` = 21cm with fluid parameters C = 0.0221ml/(mmHg·cm),
L = 0.000256mmHgs2/cm4 and R = 0.000024mmHg s/cm2. Figure 4 presents a snapshot of the solutions
for both pressure P (x, t) and flow Q(x, t) at an arbitrarily chosen time. Using discretizations sizes that are
integer multiples of the coarsest one used (N = 128 points), the simulation is advanced for 50 000 timesteps
in all cases at a fine timestep size of ∆t = 2 ·10−4s so that errors are dominated by the spatial discretization.
The maximum absolute errors over all space and for all timesteps are displayed in Figure 5 for both P and
Q. The overlaid slopes in the plots illustrate the expected fifth-order accuracy of the Fourier continuation
parameters employed in this paper (see Remark 3.1).
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Input: the valve condition and solutions P,Q at t, x = 0 ≤ x ≤ `

Advance the PDE by one timestep (lines 4-9 in Algorithm 1)
Output: P (x, t+ ∆t) and Q(x, t+ ∆t), x = 0 ≤ x ≤ `

Advance boundary ODEs (4) and (6) by one timestep
Output: Pv(t+ ∆t) and Pc(t+ ∆t)

Solve for outflow via equation (7)
Output: Q(x = `, t+ ∆t)

(Dirichlet condition)
if valve is closed then
Q(x = 0, t+ ∆t) = 0
if Pv(t + ∆t) > P (x = 0, t + ∆t)

then
P (x = 0, t+ ∆t) = Pv(t+ ∆t)
valve is open

end if
end if

(coupled ODE condition)
if valve is open then
P (x = 0, t+ ∆t) = Pv(t+ ∆t)
if Q(x = 0, t+ ∆t) < 0 then
Q(x = 0, t+ ∆t) = 0
valve is closed

end if
end if

Output: the valve condition and solutions P,Q at t+ ∆t, x = 0 ≤ x ≤ `

Figure 3: A summary of the implementation for the complex boundary updates governed by the hybrid ODE-Dirichlet condition
at the inlet and the Windkessel ODE at the outlet.
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Algorithm 1 Summary of the FC-based solver for the LV-arterial system model.

Input aorta parameters L,C,R, `
Input left boundary parameters Cv(t), LV EDV, Vdead
Input right boundary parameters Cc, Rc

Input size of discretization N
Input number of cardiac cycles to simulate ( =⇒ final time tf )

1: Initialize the pressure P (x, 0) and flow Q(x, 0) // initial time t = 0

2: while t < tf do
3: Construct the continuations Pcont(x, t), Qcont(x, t) // via eq (13)

4: Compute Discrete Fourier Transforms of Pcont, Qcont

5: Apply the filter and compute termwise spatial derivatives // via eq (9)

6: Invert the transforms to obtain ∂Pcont

∂x (x, t), ∂Qcont

∂x (x, t)

7: Restrict the functions to the original interval // ∂P
∂x

:= ∂Pcont
∂x

∣∣∣
{xi}

, etc.

8: Advance the solution including the boundary to t+ ∆t // via eqs (15)

9: Advance the boundary ODEs/PDEs (if they exist) to t+ ∆t
10: Update the boundary values on P (x, t), Q(x, t) to t+ ∆t
11: end while

Output the numerical solutions of P (x, t), Q(x, t) on 0 ≤ t ≤ tf , x = 0 ≤ x ≤ `

Figure 4: The numerical values at the indicated snapshot in time of the the solutions P (x, t) and Q(x, t) produced by the right
hand side derived from solution (19).
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Figure 5: The maximum (L∞) errors over all time and space after 50 000 timesteps for both P (x, t) and Q(x, t). Errors are
calculated by comparison with the exact solution (equation (19)) and with the timestep fixed finely so that the errors are
dominated by spatial convergence. The overlaid slopes illustrate the fifth-order convergence expected from employing d`, dr = 5
matching points to construct Fourier continuations.

Figure 6: The numerical values at the indicated snapshop in time of the solution (20) for Nλ = 5 (left) and Nλ = 25 (right)
wavelengths.

4.2. Dispersion and stability

Dispersion and stability characteristics of the proposed method can be studied by considering test prob-
lems for which waves propagate over long distances or long times. This is accomplished by considering a
domain of size ` = 1cm and a number Nλ of wavelengths across the plate for the MMS wave solution of
period 1s given by (

P
Q

)
=

(
sin(2πNλ(x− ct))
sin(2πNλ(x− ct))

)
. (20)

The parameter c = 1/
√
LC is taken to be the pulse wave velocity and the physical domain is defined by

C = 0.0221ml/(mmHg·cm), L = 0.000256mmHgs2/cm4 and R = 0.000024mmHg s/cm2. Even though the
given solution in equation (20) is periodic, the FC solver still extends the domain and creates a new periodic
extension. Examples of the corresponding solutions for Nλ = 5 and Nλ = 25 are presented in Figure 6.

Simulation of propagation over long distances can be achieved by increasing the numberNλ of wavelengths
across the complete domain. With a timestep chosen small enough so that numerical errors are dominated
by those arising from the spatial discretization, Figure 7 presents maximum numerical errors in the FC-
based simulations of P and Q (labeled “FC”) over all time and space as functions of the number Nλ of
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Figure 7: The maximum numerical errors (FC and second-order FD) over all space and over one full temporal cycle (defined
as the time required for one peak to travel the length ` of the aorta) for a plane wave solution with increasing number of
wavelengths Nλ.

wavelengths. Each wavelength is discretized by a fixed density of dλ = 10 and dλ = 15 points per wavelength.
Overlaid in the figures are the corresponding maximum errors from the same solutions computed by a stable
finite-difference solver (second-order central differences in space, explicit AB4 integration in time) using
fixed densities dλ = 75 and dλ = 200 (labeled “FD”). Clearly, a (linear) degradation in accuracy of the
FD solution is seen as Nλ grows: even for low numbers Nλ of wavelengths, larger and larger densities
dλ would be necessary in order to produce reasonable experimentally-relevant accuracies. By contrast,
the accuracy resulting from the FC algorithms remains essentially constant as Nλ grows: the errors are
effectively independent of frequency when the density dλ of points per wavelength is kept constant in the
spatial discretization (that is, virtually no numerical dispersion). Similar results have been presented for
other FC-based solvers in [3, 7, 2, 11, 5] when compared to high-order Padé schemes, (up to eighth-order)
FD schemes or various orders of finite-volume methods (including hybrids with Discontinuous Galerkin
methods). The advantages of FC demonstrated in all these cases result from their mild CFL restrictions or
their ability to accurately approximate the dispersion characteristics of the underlying continuous operators
at FFT speeds—a distinct advantage in modeling arterial pulse waves for hemodynamics research.

Stability can be studied by additionally considering solutions over several temporal cycles (long times),
where the length of a cycle is the time required for any one crest to travel through the entire physical
domain. Figure 8 presents the maximum numerical errors over all time and space resulting from an Nλ = 25
wavelength solution of equation (20) with a cycle discretized by 5 300 timesteps (for a total of 80 000 timesteps
in the simulation). As can be observed, the maximum error remains constant for arbitrarily long times and
hence demonstrates long-term stability of the FC-based arterial wave solver.

5. FC-based simulations of the LV-arterial model and physiological relevancy

A number of factors influence the pumping ability of the left ventricle, including those related to the direct
coupling between the left ventricle and the arterial system [19, 31, 32]. The complexity of the dynamics
that result from the interactions between these two elements can affect blood pressure, blood flow and
pumping load. The theoretical model addressed in this paper (Section 2) has been selected not only for its
physiological relevancy, but for its particular ability to capture these non-stationary and nonlinear dynamics
of the complex coupling (which manifests as, alternatingly, boundary conditions determined by an ODE
given by (4) during systole, and a zero-valued Dirichlet-type boundary condition during diastole when the
aortic valve is closed). The resulting wave reflections within the coupled system play an important role in
pressure and flow dynamics as well as certain diagnostic metrics.

For the simulations that follow, Table 2 presents the input values and corresponding physical dimensions
for the LV-arterial system governed by equations (1), (4) and (6). These parameters are determined for their
physiological relevance. The empirically given time-varying compliance Cv(t) of the left ventricle (whose
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Figure 8: The numerical errors for FC solutions considered over many temporal cycles (where one cycle spans 5 300 timesteps)
for a tube Nλ = 25 wavelengths in size, demonstrating long-time stability for both P (x, t) (left) and Q(x, t) (right).

Name Variable Value Units
Tube (domain) length ` 21 cm
Tube (domain) compliance C 0.0221 ml/(mmHg cm)
Tube (domain) inductance L 0.000256 mmHg sec2/cm4

Tube (domain) resistance R 0.000024 mmHg sec/cm4

Terminal load compliance Cc 1.05 ml/mmHg
Terminal load resistance Rc 1.47 mmHg sec/ml

LV end diastolic volume (preload) LV EDV 112 ml
LV dead volume Vdead 4 ml
LV compliance Cv(t) Figure 9 ml/mmHg
Period of a cardiac cycle Tper 0.8 sec

Table 2: Input parameters for the simulations constructed by the LV-arterial system solver in Section 5.

reciprocal is the corresponding elastance) is shown in Figure 9, and it can be determined by an analytical
approximation to clinical data [33, 34]. Figures 10 and 11 demonstrate the physiological accuracy of the
simulated results produced by the FC method applied to the LV-arterial model governed by the hyperbolic
PDE in equation (1) and the boundary conditions defined by the ODEs in equations (4) and (6). These
simulations are computed on a discretization composed of N = 64 points. The figures illustrate expected
physiological features including the equality between the aortic pressure P (x = 0, t) and the ventricular
pressure Pv(t) during the systolic phase in the absence of a diseased valve (Figure 10). Additionally, the
simulations capture the expected pulse pressure amplification as the pressure wave propagate downstream
(Figure 11(a)) and the expected decrease of the flow amplitude as the flow wave propagates downstream
through the vessel (Figure 11(b)).

Figure 12 compares numerical values of pressure and flow at the aorta (inlet) for the FC-based arterial
wave solver (labeled “FC”) with a second-order central difference scheme in space (“FD”) for N = 30 dis-
cretization points in the spatial domain. The numerical noise from the finite difference scheme is apparent
in the provided inlet figures. This noise is particulary evident in the spurious non-physical numerical re-
flections that begin from the indicated time t = Td of the “dichrotic notch”. The location of this notch
represents the point of a small and brief increase in arterial pressure caused by the closing of the aortic
valve. Accurate identification of the notch is important for advanced hemodynamics analysis such as those
related to the buckberg index [47] as well as the recently-introduced cardiovascular Intrinsic Frequency (IF)
method [28, 48].
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Figure 9: The time-varying left ventricular compliance Cv(t) employed in this section.

Figure 10: Aortic input pressure P (x = 0, t) (blue circles) and left ventricular pressure Pv(t) (yellow) produced by the FC-based
method using N = 64 discretization points. As expected, for a non-diseased aortic valve, the aortic pressure is equal to the
ventricular pressure during the systolic phase (the time between the opening and the closing of the aortic valve).

The information contained in one cycle (of approximate length Tper) of the the aortic pressure P (x = 0, t)
and flow Q(x = 0, t) at the inlet (e.g., Figure 12) is of particular interest in hemodynamics research and
clinical practice since global cardiovascular indices such as the left ventricular pulsatile power and stroke
work can be computed from these waveforms. Pulsatile power can be computed for a cardiac cycle of period
Tper from the numerical data by the expression

pulsatile power :=
1

Tper

∫
Tper

P (x = 0, t)Q(x = 0, t)dt− P (x = 0, t)Q(x = 0, t), (21)

where P and Q represent the mean pressure and flow in the cycle. The left ventricular stroke work is defined
as

stroke work := −
∫ V (Tper)

V (0)

Pv(t)dVv =

∫
Tper

Pv(t)Q(x = 0, t). (22)

Another clinically-important quantity related to global LV function is the ejection fraction (EF). EF is the
ratio of the volume pumped out of the left ventricle during each cardiac cycle to the volume of LV at the
end diastole. Although EF is a geometric ratio, it is a surrogate for the LV contractility and is the most
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(a) (b)

Figure 11: (a) Pressure at the left and right boundaries (x = 0 and x = `, respectively) capturing the expected amplification
as the waves propagate downstream through the vessel. (b) The corresponding flow at the left and right boundaries that
demonstrate the expected decrease in amplitude as the flow wave propagates downstream.

Figure 12: Numerical values of pressure (left) and flow (right) at the inlet from a simulation computed by Fourier continuation
and a (central) finite difference scheme. The numerical noise from the finite difference scheme is evident in the inset.
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Figure 13: The numerical values of the stroke work (left) and the pulsatile power (right) computed for each period of a thirty
cycle simulation.

common index used in measuring LV systolic function in clinical practice (e.g., a low value of EF that is
< 0.4 is indicative of heart failure). The ejection fraction is defined as

ejection fraction :=
Vv(t)

LV EDV
=

∫
Tper

Q(x = 0, t)dt, (23)

for time-varying ventricle volume Vv(t) and preload LV end diastolic volume LV EDV .
Figure 13 presents the numerical values of pulsatile power (left) and stroke work (right) comparing FC

solutions (of sizes N = 48 and N = 64) with second-order (central) finite differences (of sizes N = 128 and
N = 144). As is well-known, these values must be derived from the steady-state oscillatory dynamics of
the underlying PDE (reached after approximately ten cycles in these simulations). Figure 13 additionally
demonstrates that the measurements from finite differences are not reliable for many more preliminary cycles
when compared to FC: the steady-state is numerically achieved several cycles after that of the FC-based
solutions. This renders the FC method competitive for robustness of values for an arbitrary number of
simulated cycles; these values stay relatively even for both N = 48 and N = 64 discretization points. In
contrast, finite difference based solutions do not achieve reliable values (if at all) for many more cycles. This
is important for feedback regulatory models requiring long-time simulations as well as for solutions to inverse
problems related to arterial wave reflections. Figure 14 additionally presents the ejection fractions computed
during each cycle for FC and FD. As is the case with the stroke work and pulsatile power, the steady state
in values is achieved far earlier and remains stable for both discretizations of the FC-based simulations. This
indicates that after the 11th or 12th cycle, EF is robustly calculated. In contrast, the finite difference method
oscillates around the mean, leading to uncertainty in the computed EF as a function of cycle.

6. Conclusions

This work introduces a new high-order Fourier continuation-based method for resolving 1D arterial wave
propagation problems in hemodynamics applications. The methodology is based on the Fourier continua-
tion approach for resolving the Gibbs phenomenon, providing fast and accurate solutions with mild linear
CFL constraints for stability and with effectively no numerical dispersion. This enables robust and pre-
cise solutions for long-time or many wavelength simulations that are required in the study of pressure and
flow waveforms in the mammalian circulatory system. These unique advantages are particularly important
when considering feedback regulatory models that require long-time simulations and when considering in-
verse problems (by iterative techniques) that are related to arterial wave reflections. A variety of numerical
tests, including a demonstration of the physiological accuracy of the LV-arterial model (with complex hybrid
ODE-Dirichlet boundary conditions), demonstrates the efficacy and versatility of the proposed solver.
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Figure 14: The numerical values of the ejection fraction computed for each period of a thirty cycle simulation.

The methodology described herein can be easily extended to other 1D hemodynamics formulations includ-
ing those with variable coefficients (e.g., localized changes to arterial wall compliance) and those exhibiting
the nonlinear phenomena inherent to flow dynamics in large arteries. These features can be captured in a
manner similar to other FC-based methods that have treated them successfully, including previous work by
co-authors of this paper on spatially-varying material parameters for elastodynamic equations [5] as well as
by others on nonlinear Burgers systems [8] and nonlinear Euler equations [9, 10]. This manuscript also repre-
sents a first step towards future work entailing coupling with 3D and multiphysics PDEs (e.g., mass transport
equations) as well as building towards the 1D hemodynamic modelling of the entire circulation [25, 49]. The
corresponding challenges, which include treatment of multiple segments (branching) and the subsequent
numerical representation of their boundary conditions, may be possibly addressed by the domain decompo-
sition strategies that have been developed for FC-based solvers and that have been shown to have negligible
artificial reflections at interfaces (e.g., junctions) [3, 5, 6]. Additionally, in certain diagnostic metrics, it has
been suggested that proper consideration of the geometry of the vasculature may be very important [50];
future work also entails the extension of the proposed methodology to curved elastic tube domains with
curvilinear formulations of FC-based PDE solvers that are similar to [3, 5, 6]. Furthermore, the results
of this paper imply that the FC-based methodology is straightforwardly applicable to other biological and
physical phenomena that are governed by hyperbolic PDEs with nonlinear, highly-complex time-dependent
boundary ODEs.
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