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Moving Object Detection by 3D Flow Field
Analysis

Cansen Jiang, Danda Pani Paudel, David Fofi, Yohan Fougerolle, and Cédric Demonceaux

Abstract—Map-based localization and sensing are one of the
key components in autonomous driving technologies, where high
quality 3D map reconstruction is fundamentally utmost impor-
tant. However, due to the highly dynamic and uncontrollable
properties of real world environment, building a high quality
3D map is not straightforward and requires several strong
assumptions. To address this challenge, we present a complete
framework, which detects and extracts the moving objects from a
sequence of unordered and texture-less point clouds, to build high
quality static maps. To accurately detect the moving objects from
data acquired with a possibly fast moving platform, we propose
a novel 3D Flow Field Analysis approach in which we inspect
the motion behaviour of the registered point sets. The proposed
algorithm elegantly models the temporal and spatial displacement
of the moving objects. Thus, both small moving objects (e.g.
walking pedestrians) and large moving objects (e.g. moving
trucks) can be detected effectively. Further, by incorporating the
Sparse Subspace Clustering framework, we propose a Sparse
Flow Clustering algorithm to group the 3D motion flows under
both the constraints of motion similarity and spatial closeness.
To this end, the static scene parts and the moving objects
can be independently processed to achieve photo-realistic 3D
reconstructions. Finally, we show that the proposed 3D Flow Field
Analysis algorithm and the Sparse Flow Clustering approach
are highly effective for motion detection and segmentation, as
exemplified on the KITTI benchmark, and yield high quality
reconstructed static-maps as well as rigidly moving objects.

Index Terms—Motion Flow Detection, Motion Segmentation,
Dynamic Scene Analysis, 3D Map Reconstruction

MAP-based localization and sensing are one of the
key components in autonomous driving technolo-

gies [Levinson et al., 2007; Lu et al., 2019; Magnusson et al.,
2007], where high quality 3D map reconstruction is fundamen-
tally utmost important [Seif and Hu, 2016]. However, due to
the highly dynamic and uncontrollable properties of real world
environment, building a high quality 3D map is never easy.
In literature, there are significant amount of research on 3D
map reconstruction problems, representatively, the traditional
image-based Structure-from-Motion [Pollefeys et al., 2008]
technique, the depth-image-based Truncated Signed Distance
Function [Newcombe et al., 2011] approach, and the lidar-
based Localization and Mapping [Wen et al., 2019; Zhang
and Singh, 2018] method. Generally, such approaches achieve
very nice results for nearly static environments, while the
3D reconstruction quality significantly degrades when facing
highly dynamic and crowded environments, see Fig. 1 for
example.
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Unfortunately, practical scenarios (e.g. streets or markets)
are very often highly dynamic, the scene modelling and the
camera localization can become very challenging tasks, mainly
due to the numerous dynamic scene parts which yield artefacts
and poor localization. Our previous work Jiang et al. [2016]
shows that high quality scene modelling and precise camera
localization can be achieved by detecting and removing the
dynamic parts. We therefore introduce our method for the
robust, accurate and efficient detection of dynamic objects with
high quality reconstruction of the static scene.

Fig. 1. 3D reconstruction using Lidar Odometery and Mapping
(LOAM) [Zhang and Singh, 2016] technique: top image shows a decent
quality 3D map of a static campus environment, while the mapping result
(bottom image) of the plaza is quite unsatisfactory due to the "ghost" artefacts
(see the zoom-in area of red boxes) caused by moving objects.

Given a mobile camera-lidar platform, both the foreground
and the background observations are observed as moving due
to the camera’s ego-motion. It is natural for human beings
to identify the real moving objects due to their capability
of visual object segmentation and tracking, such task is
especially complex for machines and often relies on strong
assumptions (sizes and velocities of the moving objects, for
instance). To tackle this challenge, the Background Modelling
and Subtraction-based methods Jung and Sukhatme [2004];
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Fig. 2. Overview of the proposed system to detect and segment the dynamic scene parts and to reconstruct the static scene (Block 5). Given a short registered
3D point cloud sequence (Block 1), for each point of the center frame, we compute a Smooth Flow Vector (SFV) representing its motion behaviour (Block 2,
Section III-A). Then, an Infinite Enclosing Cylinder is determined to bound the inlier neighbourhood with similar motions (Block 3 up, Section III-B). The
drift effect that corresponds to the principal motion is obtained from the analysis of the histogram of the projections of the cloud of points onto the SFV
(Block 3 down, Section III). The Sparse Flow Clustering algorithm then regroups the motion flows, as detailed in Section IV.

Sheikh et al. [2009]; Yun et al. [2017]; Zhou et al. [2012]
are proposed by compensating the camera ego-motion and
thus, the moving objects can be detected by applying the
background subtraction operation. Such methods are highly
relying on the accuracy of ego-motion estimation and the
lighting consistency. In a more robust manner, the Object-
based Detection, Segmentation and Tracking approaches [Cho
et al., 2014; Leibe et al., 2008; Menze et al., 2018; Rashed
et al., 2019; Ray and Chakraborty, 2019] are object-level
motion detection by using super-pixels or object models. The
moving objects are discriminated by comparing their motion
trajectories versus the camera ego-motion trajectory. Such ap-
proaches are usually accurate and not sensitive to noise, while
they require precise object appearance modelling and accurate
object trajectory estimation. Instead, the Motion Trajectory
Analysis-based techniques Brox and Malik [2010]; Elhamifar
and Vidal [2013]; Vidal et al. [2008] directly segment the
object’s feature trajectory according to their motion subspaces,
which is mathematically more elegant. Nevertheless, such
approaches usually prefer continuous feature tracking and is
not robust to occlusions.

In real-world scenarios, the situations are more complicated
due to the lack of prior knowledge of the objects, such as their
sizes, their appearances, their positions, their velocities, etc.
The above mentioned approaches are insufficient to perform
correct and accurate moving object detection and segmenta-
tion, especially in crowded or night-time environments. Facing
this challenge, we propose a solely 3D point cloud-based mov-
ing object detection approach taking into account the merits of
3D lidar (e.g. large field of view, precise measurement, night
vision ability, etc).

Therefore, to address the problems of dynamic object de-
tection and motion behaviour analysis, we propose a novel
framework by using the 3D Flow Field Analysis, see Fig. 2.
Firstly, by compensating the sensor ego-motion (e.g. by using
LOAM [Zhang and Singh, 2016], LO-Net [Li et al., 2019]),
there exist continuous displacements of point sets of moving
objects, while the point sets of static scene parts have no
displacement. Therefore, the static scene parts should over-
lay together while the dynamic scene parts should not. By

connecting the points of moving objects according to their
temporal and spatial displacement, they become a set of
motion vectors. In this regard, we propose a 3D Vector Field
Analysis approach which identifies the static flows and the
motion flows. After compensating the camera ego-motion, for
every point in the previous frame, a flow vector is established
by subtracting its nearest neighbour in the current frame. The
flow vector encodes the motion direction and velocity of the
objects. By exploiting these properties, the flow vectors of
moving objects, so-called the motion flows, can be detected
and classified into their independent motions. Moreover, a 3D-
based Sparse Flow Clustering (3D-SFC) algorithm is proposed
to cluster the detected motion flows. Such 3D-SFC can ro-
bustly group the motion flows by measuring their temporal
motion similarity and spatial closeness. To this end, both
the static scene parts and the moving rigid objects can be
reconstructed independently. In brief, the proposed framework
for motion discrimination and scene reconstruction consists of
four main steps, namely the Smooth Flow Vector Estimation,
the Motion Flow Estimation, the Sparse Flow Clustering, and
the Scene Modelling.

Firstly, the Smooth Flow Vector Estimation step aims to
compute the motion of each 3d point between two successive
frames. Fundamentally, a 3d point’s motion can be expressed
as a 3d Flow Vector representing its motion speed and direc-
tion, and estimated by the subtraction of the corresponding
points between two consecutive frames. Roughly, these 3d
point correspondences can be efficiently established by apply-
ing naive nearest neighbour search from the current frame to
the next frame. Unavoidably, the estimated 3d flow vectors can
easily be contaminated by the noisy observations. Therefore,
under the local motion consistency assumption, the smooth
flow vector is simply estimated as the locally dominant flow
vector within a local neighbourhood, such as a 3D bounding
box for instance.

Secondly, the Motion Flow Identification step identifies the
flow vectors corresponding to the moving objects by analysing
the objects’ temporal and spatial displacement along their
motion directions. For each flow vector, an enclosing cylinder
is adapted to select the most representative neighbour points
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which preserve a persistent geometric structure. The projec-
tions of those points onto the current flow vector are stored
in a histogram because the motion flows can be identified by
detecting the shifts within the concatenated histogram from all
the frames, as detailed in Section III-D.

Thirdly, the Sparse Flow Field Clustering step groups
the detected motion flows into their motion subspaces. Our
approach is based on the distinctiveness of both motion
directions and spatial distributions. We seek for the sparse self-
representation of motion flows from their motion subspace,
which forms a sparse similarity graph. The motion flows
can then be separated into independent motions by applying
spectral clustering on the similarity graph.

Lastly, the 3D Scene Modelling step builds the photo-
realistic 3d models of the dynamic outdoor environments.
To densely segment the dynamic scene parts, the 3D region
growing approach is applied by taking the detected motion
flows as seeds. To this end, the reconstruction of the static
scene is achieved by registering only the static scene parts,
while the rigidly moving objects, such as moving cars, are
individually reconstructed from their registered dynamic parts.

This article is an extended version of our previous
work [Jiang et al., 2017c] and our contribution can be sum-
marized as follows:
• We propose a robust and efficient framework for the

detection and the segmentation of moving objects as
well as the reconstruction of the static map from highly
dynamic outdoor scenes.

• We present a novel algorithm for moving object detection
using 3D vector flow analysis which outperforms the
state-of-the-art methods.

• We propose a new Sparse Flow Clustering model based
on sparse subspace self-representation and spatial close-
ness of the flow vectors.

I. LITERATURE REVIEW

Moving Object Detection (MOD) has been a long-lasting
open problem raised by [Limb and Murphy, 1975] who aimed
to estimate the velocity of moving objects in images from
television stream. From then on, MOD becomes a very popular
research field over the past few decades due to the wide
ranges of applications, such as video surveillance [Reilly
et al., 2010], object discovery [Pont-Tuset et al., 2017], scene
modeling [Heikkila and Pietikainen, 2006], etc. Considering
the system setup, there are two major branches of research:
the Stationary Camera-based MOD approaches as extensively
reviewed in [Benezeth et al., 2010; Elhabian et al., 2008;
Joshi and Thakore, 2012], and the Moving Camera-based
MOD techniques being profoundly discussed by [Jiang, 2017;
Yazdi and Bouwmans, 2018]. In this article, we focus on
the most related research work using moving camera setups,
and discuss their positive/negative aspects comparing to the
proposed algorithms.

A. Image-based MOD

Feature Trajectory Analysis-based Approaches: feature
trajectories are the one of the most important clues of object

motions. In this context, Motion Segmentation (MS) tech-
niques, such as the Generalized Principal Component Anal-
ysis (GPCA) [Vidal et al., 2005], RANSAC-based MS [Yan
and Pollefeys, 2007], and Agglomerative Subspace Cluster-
ing [Rao et al., 2010], are proposed to group the feature trajec-
tories according to the objects’ motion subspaces. The GPCA
is the representative approach that offers an algebro-geometric
solution to the MS problem without the knowledge of subspace
number and dimension, by representing the subspaces with a
set of homogeneous polynomials. As claimed by the authors,
the GPCA also provides a robust initialization to iterative
techniques such as K-subspaces or Expectation Maximization
algorithms. However, the determination of number of clusters
and their dimensions only works for noise free data in practice.

Differently, [Elhamifar and Vidal, 2013] proposed the
groundbreaking Sparse Subspace Clustering (2D-SSC) algo-
rithm relying on the self-representation property of the affine
motion subspace. The 2D-SSC assumes that one feature
trajectory can be represented by other feature trajectories
from the same motion subspace. By incorporating the sparsity
constraint on the relaxed `1 optimization, the 2D-SSC offers a
robust solution to MS with outliers and achieves significantly
better performances. However, the computational complexity
of the 2D-SSC is proportional to the cubic of the problem
size, and is therefore expensive for large scale data. As
inspired, [Hu et al., 2014] proposed a SMooth Representation
(2D-SMR) clustering model which outperforms the existing
methods in literature by enforcing the grouping effects of
the motion subspaces from image feature trajectories. To
overcome the perspective projection problem of the image
feature trajectories, [Jiang et al., 2016] proposed a 3D data-
based Sparse Subspace Clustering (3D-SSC) algorithm which
achieves comparative performances against its 2D counterparts
without affine motion constraint. This algorithm relies on the
consistency of the tracked trajectories and is therefore sensitive
to lost tracking situations and partial occlusions. To improve its
robustness, [Jiang et al., 2017b] proposed a 3D-SMR algorithm
which jointly benefits from the 2D-SMR in scalable feature
size and tracking correspondence. In a more sophisticated
manner, [Keuper et al., 2018] incorporate the low-level feature
trajectory and high-level object recognition cues to achieve
better performance. Inherently, feature trajectory construction
is sensitive to image noise and environment change, making
such approaches limited to slow camera motion and temporally
consistent lighting conditions.

Motion Flow Analysis-based Approaches: the motion
flow, which encodes the motion magnitude and direction of
the image pixel, is widely used in moving object discovery by
analyzing the flow field discontinuities, such as [Huang et al.,
2018; Mémin and Pérez, 2002; Yokoyama and Poggio, 2005].
The piecewise-smooth flow field are segmented by using
Hierarchical [Mémin and Pérez, 2002], Level-set [Mitiche and
Sekkati, 2006], or Graph-cut [Wedel et al., 2009] segmentation
algorithms. More recently, [Ma et al., 2019; Menze et al.,
2018] intended to detect and analyze the rigidly moving
objects as Object Scene Flow (OSF) using stereo vision set-
up. Inspired by OSF [Menze and Geiger, 2015], Kochanov et
al. [Kochanov et al., 2016] proposed to detect and segment the
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moving objects by propagating the OSF output to construct the
static-map. The OSF-based approaches usually achieve more
precise results, however, they are sensitive to the environment
changes and require precise object motion model estimations.

B. Lidar-based MOD
2D Lidar-based Approaches: 2D lidar sensors (or single

layer laser scanner) are widely used in industrial robots [Wang
et al., 2015] or ADAS applications [Ziebinski et al., 2017] for
object detection and tracking. Traditional approaches [Mertz
et al., 2013; Wang et al., 2007, 2015] proposed to detect and
track the moving objects along side with the simultaneous
localization and mapping (SLAM) framework. The moving
objects are detected by discriminating their temporal and
spatial displacement. However, such method is limited to 2D
laser scanner with the assumption of flat ground plane and a
specific height range of moving object.

3D Lidar-based Approaches: 3D lidar (or multi-layered
laser scanner) are very popular in autonomous driving applica-
tions [Levinson et al., 2011] nowadays. Taking the advantage
of precise 3D point clouds, [Steinhauser et al., 2008; Sualeh
and Kim, 2019; Wang et al., 2012; Ye et al., 2016] proposed
to detect the possible moving objects (e.g. cars or pedestrians)
and track them as motion candidates. Such approaches are
trivial but require precise classifiers or feature descriptors
([Dewan et al., 2016]) for object recognition, which is usually
impractical due to the sparse point cloud and object occlusions.
Apart from the above geometrical analysis-based approaches,
[Börcs et al., 2017; Engelcke et al., 2017] applied the deep
learning techniques resulting in more precise object recog-
nition capability. Without relying on the object knowledge,
[Asvadi et al., 2015; Azim and Aycard, 2012] utilized the
occupancy grid map to statically predict and track the moving
objects. Nonetheless, designing the occupancy grid size and
the selection of statistical model are empirically difficult.

Recently, Deep Learning -based approaches [Behl et al.,
2019; Fan and Yang, 2019; Liu et al., 2019a,b] presented
interesting results on 3D scene flow estimation thanks to
the recent advances in computational resources and large-
scale training dataset. In particular, [Fan and Yang, 2019]
proposed a series of point-based recurrent neural networks,
i.e. the PointRNN, the PointGRU, and the PointLSTM, for
dynamic point cloud forecasting via flow predicting. Such
approaches adopt the spatio-temporally-local correlation to
aggregate the point features and their states according to the
point coordinates. [Liu et al., 2019a] focus on 3D action
recognition, dynamic point cloud segmentation, and scene flow
estimation with multiple frames. The proposed FlowNet-based
methods apply an end-to-end model for both point feature
association and flow estimation. Other approaches [Cho et al.,
2014; Takabe et al., 2016] intended to fuse the image and
lidar observations for MOD using photometric and depth con-
sistencies. [Rashed et al., 2019] made use of both the camera
and lidar for robust MOD in low-light autonomous driving
environments. Although the deep learning-based approaches
show promising results, it is difficult to collect massive training
data and to have heavy computational resources during the
training process.

To summarize, unlike the above discussed methods, the
proposed algorithms neither rely on feature tracking across
the frame sequence contributing to their robustness to oc-
clusions, nor require exhaustive machine learning training
process making them being handy and easy to implement.
Our MOD algorithm directly detects and segments the motion
flows using raw 3D point cloud sequence without texture
information. Although a rough 3D point cloud registration step
is required for ego-motion compensation, the traditional ICP-
based registration techniques [Fitzgibbon, 2003] are sufficient.
Moreover, our method is very generic in detecting moving
objects in terms of size, speed and direction.

II. FUNDAMENTAL DEFINITIONS AND NOTATIONS

Let X = {x1, · · · , xm}, where xi ∈ R3, be a 3D point set
(cloud). And let W = {w1, · · · ,wm}, where wi ∈ R3, be
the set of flow vectors associated to X. The 3D vector field
Ω defined by X and W is notated as Ω : X → W. Given
a sequence of point sets from a dynamic scene, we define
S = {Xt, t = 1, . . . , n} as the collection of multiple observed
point sets that evolve over time t. Likewise, Z = {Wt, t =
1, . . . , n− 1} is the collection of flow vectors associated to S.

For two 3D point sets A and B, the vector field Ω : A→W
can be obtained by the element-wise subtraction between
the two point sets. We define the element-wise subtraction
operation A	B as

A	B = {wi := xi − yi, ∀xi ∈ A}, (1)

where xi is an element of A, and yi = N (xi,B) is the closest
point of xi in B. The subtraction xi−yi defines the flow vector
wi. The closest point function N (x,B) is defined as

N (x,B) = argmin
y∈B

‖x− y‖. (2)

In a similar manner, the nearest neighbourhood set of points
centred at x within a radius r is given by

N (x,B, r) = {y ∈ B : ‖x− y‖ ≤ r}. (3)

We also define P(S,w), the projection of set S on the flow
vector w (similarly, P(x,w) for point x), such that

P(S,w) = {p : p = wᵀx, x ∈ S}. (4)
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Fig. 3. Illustration of the histogram of 3D point projections: Left image
shows a set of 3D points S (the black dots) and their projections P(S,w)
(the color-coded dots encoded by their projection values) along the 3D vector
w (the red arrow which corresponds to the largest principle axis of S). A
20-bin 1D histogram is then constructed by using the projection values of
P(S,w).
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We refer the illustrative examples of Eq. (4) to Fig. 3 and
Fig. 4. In Fig. 3, a set of 3D points are projected onto the
given 3D vector and the projection values are statistically
represented as an n-bin one dimensional histogram. Similarly,
in Fig. 4, two 3D points x1, x2 are projected onto wc as two
blue dots p1, p2. Note that the projection of a three dimensional
point to the given 3D vector axis corresponds to its foot of
perpendicular to the 3D vector, but we only take into account
its scalar abscissa p on the axis. The origin of the axis is a
specified 3D point, e.g. the mean values of the 3D point set.
Since the mathematical representation of a 3D point is similar
to a 3D vector, the projection of one 3D vector to the given
3D vector can be performed in a similar manner.

Furthermore, let Θ ⊂ S be the points within an infinite
cylinder centred at xc, of radius r and axis wc, given by

Θ(xc,S,wc, r) = {x : ‖x− xc‖2 −P(x,wc)
2 ≤ r2, x ∈ S}.

(5)
In other words, Eq. (5) rejects the points which have point-

to-axis distances larger than the cylinder radius r, see Fig. 4
as an example.

Fig. 4. Interpretation of an enclosing cylinder centred at xc and axis wc.
Two 3D points x1, x2 are projected onto the cylinder axis wc as p1 and p2.
And the distances from points x1, x2 to p1, p2 are notated as d1 and d2,
respectively. Since d12 = ‖xc − x1‖2 − P(x1,wc)2 ≤ r2, x1 ∈ Θ is
considered as inside the cylinder. In contrast, x2 /∈ Θ is outside the cylinder.

Hereafter, we define some notations for matrix operation.
Let A = (aij) be the element-wise representation of an m×n
-sized matrix. Its column-wise representation is notated as A =
[a1, · · · aj , . . . an] where aj is an m-dimensional vector. A � 0
means that A is a symmetric and positive semi-definite matrix.

III. FLOW FIELD ANALYSIS

We intend to identify the moving objects, i.e. moving cars
and cyclists, from a sequence of 3D point clouds. Essentially,
a moving object should fulfil the criteria that a certain spatial
displacement occurs within a certain time period, which can be
described by a set of motion flows. To analyse, we propose the
3D Flow Field Analysis model based on the local motion con-
sistency assumptions. Refer to the optical flow estimation Horn
and Schunck [1981] and the 3D scene flow estimation Vedula
et al. [2005], two assumptions are made:

i. the motion behaviours of the optical flows within a small
neighbourhood are similar;

ii. the local geometric structure does not change rapidly.

A. Smooth Flow Vector Estimation

Let a collection of n-consecutive point sets be S = {Xt, t =
1, . . . , n}. For t = 1, . . . , n − 1, we compute the point-wise

flow sets Z = {Wt, t = 1, . . . , n − 1} which represent the
motion of points over time t, as follow:

Wt = Xt+1 	 Xt. (6)

Recall the definition of Eq. (1) and Eq. (2), the element-wise
subtraction is performed to estimate the motion flows between
frame t and frame t+1. Due to the noisy observation of point
set and the incorrect point-pair association, see Fig. 2 Block 2,
the estimated motion flow using Eq. (6) can be incorrect.
Therefore, by taking the locally homogeneous assumption of
neighbouring flow vectors, we perform the smoothing of vector
field by updating each wi ∈Wt as

v∗i = argmax
v∈R3

∑
w∈Ω(N )

wᵀv s.t. ‖v‖ = 1 , (7)

where v∗i is the desired smooth flow vector to replace wi.
Refer to Eq. (2), N = N (xi,Xt, r) is the neighbourhood
(within the radius r) that defines the local flow field Ω(N ).
Actually, Eq. (7) finds the consensus flow v∗i which minimizes
the overall distances between v∗i and the flows within Ω(N ).
The problem of Eq. (7) can be solved efficiently as an
eigen-decomposition problem. Its solution can be obtained by
computing the eigenvectors of the covariance matrix WTW,
where the rows of W are wᵀ for all w ∈ Ω(N ). The desired
smoothed flow vector corresponds to the eigenvector of the
largest eigenvalue. Note that, all the w ∈ Ω(N ) are normalized
to unit vectors to obtain the optimal solution.

B. Motion Flow Discrimination

Recall the second assumption that the structure of the local
point sets (Θt = Θ(x,Xt,w, r), t = 1, . . . , n) is preserved
within a short time period t. Thus, the measurements of a
local point set Θt moving along w from Eq. 7 are homo-
morphic. Therefore, the shape of distribution of projections
Pt = P(Θt,w) remain unchanged over time interval [1, t].
Let Ht be a k-bin 1D histogram of projections Pt at time
t. The motion state of the point sets can be described by the
following equation:

Ht+1(b) = Ht(b+ α(t)), (8)

where b is one bin of the histogram, and α(t) = βt in
which β corresponds to the displacement of the histogram (or
projections) from t to t+1. Eq. (8) implies that the histogram
is replicated from t = 1, . . . , n thanks to the temporal local
structure and velocity consistency.

Given a sequence of histograms Ht(b), t = 1 . . . , n, our
task is to estimate β and b such that Eq. (8) is satisfied
for all t. Mathematically, it can be modelled as the followed
minimization problem:

argmin
β,b

n−1∑
t=1

||Ht+1(b)−Ht(b+ βt)||. (9)

To efficiently solve problem (9), the n-frame 1D histograms
Ht are sequentially concatenated into a 2D histogram M =
[H1, · · · ,Hn] with size k×n, as illustrated in the third column
of Fig. 5. Let a line L in the 2D histogram be defined by
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Fig. 5. Motion and static flow analysis: Row 1 and Row 2 are the graphical representations of the flow field analysis of a moving object and a static object,
respectively. In comparison, Col. 1 shows the enclosing cylinder preserving the local structure. Col. 2 shows the 20-bin 1D histograms of cylinder-point
projections of each frame. Remarkably, the histograms of motion flow (upper) are shifted along the flow direction, while the histograms of static flow (lower)
are overlaid together. In Col. 3 are the concatenated all-frame histograms from Col. 2. The motion line L∗ (solid red line) is estimated using the Radon
transform in Col. 4 according to the criteria of Eq. (11).

L(t) = βt+ b, with slope β and offset b. Note that the sought
line L goes through the centres of the n-frame 1D histograms.
In this regards, the optimal parameters β∗ and b∗ are obtained
by

L∗ = argmax
β,b

∫
Ht(L(t)) dt. (10)

Thanks to the Radon transform Deans [2007], which com-
putes the volumetric integration in different angles at different
positions in a continuous manner, problem (10) can be solved
efficiently and globally by applying the Radon transform on M,
as illustrated in the last column of Fig. 5. Three measurements
are made along the line L∗ to categorize the point sets as static
or dynamic. Firstly, the slope β∗ represents the magnitude
of the motion speed, β∗ of a static point set is very small
accordingly. Further, let st = Ht(L∗), t = 1, . . . , n be the
values Ht(b) on the line L∗, two measurements are defined:

S =

n∑
t=1

st and E = −
n∑
t=1

stlog(st). (11)

Where S and E measure the strength and distribution
homogeneity, respectively. A point set is considered to be
static, if β∗, S and E values are below their respective
thresholds. Otherwise, the point set is assumed to be dynamic.

C. Dynamic Neighbourhood Search

Practical scenarios, in which the sizes and the speeds of
objects may significantly vary (i.e. from pedestrians to trucks),
impose to the scene analysis in a dynamic manner. A default
size of the local bounding box may cover only a small (or
respectively too large) part of the object. This problem can be
effectively addressed by taking a relatively large bounding box
with a radius-variance enclosing cylinder, where the cylinder
radius is inversely proportional to the number of points within
the enclosing cylinder.

Our analysis algorithm is mostly driven by three parame-
ters, namely the size of bounding box, its location, and the
radius of the enclosing cylinder. To point out, we apply the

bounding box (rather than an ellipsoid) for fast neighbourhood
searching of Eq. (7) on the local flow field estimation. These
three parameters can be reduced to two by taking a fix-
sized bounding box with the radius as a ratio of its size.
A motion is considered as "slow" when the sequential point
sets S are totally bounded by the pre-defined bounding box.
Consequently, the slow motions are not problematic because
the corresponding point sets remain in the same bounding
box. Otherwise, the bounding box is translated along the
motion flow direction to obtain a larger coverage. As soon
as the consecutive frames have led to a coherent motion,
the local neighbourhood is updated, as illustrated in Fig. 6.
In this figure, the bounding box is supposed to cover 9
consecutive frames for the object’s motion analysis, however,
only 5 consecutive frames are covered within the given sized
bounding box due to the large displacement of the moving
object. In order to achieve a larger coverage, the bounding
box is translated along the motion flow direction. Followed
by, the enclosing cylinder is applied for the object’s motion
behaviour study. Regarding to the parameter reduction, it is
sufficient to choose a radius that is 20% smaller than the size
of the bounding box according to our experiments. Moreover,
this radius is proportionally adapted to the distance between
the object and the camera.

Formally, we use a dynamic searching strategy along the
flow direction. Let B = {Bt, t = 1, . . . , f} be the assembly
of f frames of point sets within a local bounding box.
When a fast motion occurs, the bounding box (centred at
xc) covers f frames with f < n, where n is the objective
frame length for motion analysis. Let Pt(Bt,w), t = 1, . . . , f
be the projections of B along the motion direction w, and
δt = median(Pt), t = 1, . . . , f be the median values
of projections of Pt. The bounding box is translated to
xt = xc + δtw, until all n frames are covered.

D. Implementation Details and Discussions

Starting with the camera ego-motion compensation, the ICP-
based point cloud registration algorithms are applied to register
the given n consecutive frames of point sets. Notably, robust
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Fig. 6. Dynamic local neighbourhood search of a fast moving object: Left
image shows that the fix-sized bounding box covers only 5 consecutive frames.
By translating the bounding box along the flow direction, 9 consecutive frames
are covered, see the middle image. To this end, the enclosing cylinder with
all neighbouring frames are applied for accurate motion analysis, as shown
in the right image.

ICP algorithms Fitzgibbon [2003]; Zhang and Singh [2016]
are preferred to obtain precise camera motion estimation.
According to our expertise, ICP registration on edge and plane
feature points generally yields satisfactory results, similarly to
Zhang and Singh [2016]. Taking the registered point sets as
input, Algo. 1 is applied to discriminate the static and the dy-
namic points, and to estimate the motion flows of the dynamic
points. For the sake of computational efficiency, the points
from ground plane are detected and removed beforehand. Note
that the detection of ground plane for the data acquired by a
ground-vehicle is an almost solved problem [Douillard et al.,
2011; Zermas et al., 2017]. In step 4, the enclosing cylinder
radius is defined as r = 0.4(1 + d/D), where d is the object
to camera distance and D is the camera’s maximum data
acquisition distance (e.g. D = 100 meters for Velodyne HDL-
64 [Lidar, 2016] 3D laser scanner). In step 7, τS is defined as
40% of the total number of neighbours within the enclosing
cylinder (also known as the sum value of the 2D histogram M).
τβ = 0.175 denotes that the slope of L∗ is 10 degree. τE = 1.8
is empirically studied and used for all our experiments.

We recall that the Radon transform calculates the volumetric
integration in both angular and positional domains. Thus, its
maximum response complies to the sought optimal solution
of problem (10). In Fig. 5 Col. 2, the 1D histograms from
dynamic scene part have shifting effects along the flow direc-
tion, as expected. Differently, these histograms tend to overlap
with each other for the static scene parts. These phenomena
lead to the different properties (refer to the above discussions
in Section III-B) of the motion line L∗ of static and dynamic
points.

Algorithm 1: Motion Flow Identification.
Data: Point sets S = {X1, · · · ,Xn}, where the centre point set at

t = n
2

is noted as X. The size of local neighbourhood is
notated as N .

1 Setting: n = 9, k = 20, bounding box size 4m× 4m× 4m,
τβ = 0.175, τS = 0.4N , τE = 1.8.

2 for xi ∈ X do
3 Place a 3D bounding box at xi for local flow field estimation

(W) using Eq. (6), and perform eigen-decomposition:
[V,D] = eigen(WTW) to obtain the dominant flow
v = V(:, 3).

4 Fit an enclosing cylinder Θ(xi,X, v, r).
5 Project cylinder points to axis v using Eq. (4), and compute

histograms Ht, t = 1, . . . , n to construct M.
6 Compute the slope β∗ of L∗ using Radon transform on M,

motion strength S and stability E using Eq. (11).
7 If β∗ < τβ , S < τS and E < τE , reject static point xi.

Result: Detected motion flow set Ω.

IV. 3D SPARSE FLOW CLUSTERING

In this section, we introduce our 3D SFC algorithm to
further analyse the object’s motion behaviour. By obtaining
a set of dynamic points and their corresponding motion flows,
as discussed in the above Section III, the 3D SFC intends to
cluster them into multiple subsets w.r.t. their motion properties,
i.e. similar motion speed, alike motion direction, and small
spatial distance. Our clustering process uses the information
from space subset S as well as their corresponding assignment
vectors Z. On the one hand, we rely on the assumption that
the vectors from one cluster are self-expressive. In other
words, a flow vector can be closely approximated by the linear
combination of the other flow vectors from the same cluster.
On the other hand, we ensure that the clustered vector fields
have bounded space subset within the predefined radius.

Let X = [x1, . . . xj , . . . xn] and W = [w1, . . .wj , . . .wn] are
3 × n matrices of the point set and the corresponding flow
vectors, the self-expressive sparse representation (similar to
Elhamifar and Vidal [2013]) can be written as

W = WC, (12)

where the sparse n × n matrix C = [c1, . . . cj , . . . cn] with
cjj = 0 to avoid trivial solutions, for all j = 1, . . . n. Similarly,
for a predefined squared radius bound εr (where the sparsity
comes from), the bounded space subset is ensured by enforcing
the constraint

‖xj − Xcj‖22 ≤ εr,∀j. (13)

Therefore, the sparsity-constraint relaxed optimization prob-
lem for flow clustering can be written as

minimize
C

‖C‖1,1 ,

subject to W = WC, diag(C) = 0,

‖xj − Xcj‖22 ≤ εr, ∀j.

(14)

This is a convex problem, whose optimal solution can be
found by using the second order cone programming Boyd and
Vandenberghe [2004]. In fact, its equivalent problem as the
semi-definite programming is given by

minimize
C,S

m∑
i=1

n∑
j=1

sij

subject to W = WC, diag(C) = 0,

− sij ≤ cij ≤ sij , ∀{i, j},(
I xj − Xcj

(xj − Xcj)
ᵀ εr

)
� 0, ∀j,

(15)
where sij are the elements of S.

A. Influence of Noise and Outliers

In practical scenarios, the flow data might be contaminated
by noise or outliers. Let

wj = w0
j + ej , (16)
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where ej ∈ IR3 is the noise or outlier entry of noise free data
w0
j . Replacing Eq. (12) with Eq. (16), we have

W = WC + E. (17)

Due to the local structure persistence and temporal flow
speed consistency assumptions, the sought sparse representa-
tion from the current frame is valid for the neighbor frames.
Therefore, the sparse subspace clustering problem of Eq. (15)
can be reformulated as:

minimize
C,Ex,Ew,

‖C‖1,1 + Ew + Ex,

subject to ‖wj −Wtcj‖22 ≤ εw, ∀j, cjj = 0, t = 1, · · · , n,
‖xj − Xtcj‖22 ≤ εx, ∀j, cjj = 0, t = 1, · · · , n,

(18)
where Xt and Wt are the 3D points and their flow vectors
at frame t, respectively. In Eq. (18), Ew = λ1

∑n
j=1 ew and

Ex = λ2

∑n
j=1 ex are energy terms with weight parameters

λ1 and λ2 to control the influence of spatial (i.e. the 3D point
coordinate) and temporal (i.e. the motion flow) factors, and we
simply set λ1 = 1 and λ2 = 1. Note that the squared radius
bound εw and εx are constrained to be non-negative, but not
predefined. Similarly, Eq. (18) can be solved as a semi-definite
programming problem.

Algorithm 2: Sparse Flow Clustering.
Data: 3D point sets

⋃n
t=1 Xt and flows

⋃n
t=1 Wt.

Result: k clustered subspaces.
1 Sparse flow representation using Equation (18).
2 Sparse similarity graph construction: G = |C∗|+ |C∗|T.
3 K-mean spectral clustering on G.

B. Spectral Clustering

Getting the sparse subspace representation matrix C, a
sparse symmetric similarity graph, which stands for the con-
nectivity among the flows, can be constructed as G = |C| +
|C|T. To group the flows into their corresponding motions, a
spectral clustering approach [Atev et al., 2010; Ng et al., 2002]
can be applied on G to segment the motion flows into their
individual groups, see Fig. 7.

In this figure, the top-left image shows a sequence of
registered 3D point clouds where several moving objects exist,
specifically two moving cars, three walking pedestrians, and
a cyclist. The bottom-left image is the zoom-in view of the
detected motion flows on a moving car. The middle image
demonstrates a clustered connectivity graph G which reveals
the relationship between each 3d flow. Note that G is derived
from the sparse representation matrix C, it is expected that
each independent motion forms one diagonal block with sparse
non-zero entries. The size of the diagonal block is determined
by the cluster’s element number relating to the object’s size
and the density of point set. To this end, the right image shows
the color-coded motion cluster in a more illustrative manner.

Fig. 7. Sparse Flow Clustering Illustration: the left image show the detected
motion flows of 6 different moving objects of various sizes and velocities;
the middle image shows the block-diagonal clusters corresponding to their
motion subspaces; the right image are the color-coded motion flows.

C. Implementation Details and Discussions

The SFC algorithm consists of three major steps (see
Algo. 2) which are implemented based on the CVX Grant
and Boyd [2008] optimization toolbox. In the sparse op-
timization step, a point to point distance graph Gs =
[g1, · · · gj , · · · , gn] ∈ IRn×n is applied to enforce the spatial
closeness of the selected sparse representation elements, such
that Eq. (18) becomes

W = W(C ·G)+E, ∀Gij > τd,Gij = 1, else Gij = 0. (19)

Where operator (·) stands for the dot product, and τd is the
point-to-point spatial distance threshold. Two major remarks
on spatial distance constraint can be made: a) It is more
meaningful to use sparse representation only on the local
neighbourhood. b) Exploiting the sparsity of C improves the
algorithm’s robustness and computational efficiency.

In step 2 of Algo. 2, a sparse symmetric similarity graph
G = |C∗|+ |C∗|T is constructed. Since G encodes the con-
nectivity information among the flows, a K-mean spectral
clustering is employed to group the flow clusters. In fact, K
can be determined by finding the number of graph components
via the analysis of the eigenspectrum of the Laplacian matrix
of G [Von Luxburg, 2007]. However, other model selection
techniques [Brox and Malik, 2010] should be employed when
there are connections between points in different subspaces. In
the following experiments, we provide the number of motions
as an input to all the algorithms for fair comparison.

To emphasize, the proposed SFC does not rely on feature
tracking and feature trajectory construction (unlike [Elhamifar
and Vidal, 2013; Hu et al., 2014; Jiang et al., 2016]), making
it more appropriate for highly dynamic environment motion
analysis. Moreover, the SFC algorithm, which is proposed
under the robust sparse subspace representation framework,
offers new research perspectives for vector field analysis.

V. EXPERIMENTS

We evaluate the proposed algorithms by conducting exten-
sive experiments on the challenging real-world KITTI bench-
mark Geiger et al. [2013] with rapidly changing environments.
The seven representative datasets (namely Campus, Cola
Truck, Junction, Market, Pedestrian, Red Light, and Station)
have been carefully selected to cover a wide range of moving
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Sequence # Frms. # Objs.
2D-SSC 3D-SSC 2D-SMR J1 2D-SMR J2 3D-MOD

Sens. Spec. Time Sens. Spec. Time Sens. Spec. Time Sens. Spec. Time Sens. Spec. Time

Campus 60 4 0.858 0.994 31.84 0.871 0.947 33.02 0.854 0.986 0.032 0.856 0.991 0.036 0.914 0.982 5.43
ColaTruck 50 2 0.940 0.306 21.93 0.845 0.949 52.39 0.356 0.808 0.032 0.360 0.749 0.038 0.798 0.966 5.05
Junction 90 3 0.908 0.820 24.08 0.892 0.943 38.40 0.768 0.937 0.039 0.774 0.920 0.042 0.983 0.997 5.68
Market 100 6 0.735 0.929 21.33 0.770 0.920 37.31 0.861 0.823 0.053 0.826 0.883 0.043 0.913 0.994 5.07
Pedestrian 140 6 0.900 0.896 32.57 0.927 0.918 35.12 0.908 0.905 0.039 0.870 0.914 0.047 0.928 0.974 6.01
Red Light 120 4 0.937 0.999 33.25 0.941 0.985 31.40 0.928 0.921 0.036 0.918 0.976 0.042 0.916 0.985 5.22
Station 50 5 0.866 0.963 39.50 0.850 0.964 45.09 0.916 0.814 0.041 0.908 0.847 0.051 0.862 0.993 6.50
Average 87 4 0.878 0.893 29.32 0.874 0.949 38.79 0.799 0.876 0.039 0.793 0.897 0.043 0.901 0.985 5.57

TABLE I
MOTION OBJECT DETECTION PERFORMANCE QUANTIFICATION ON THE KITTI BENCHMARK: COL. 1-3 ARE THE SEQUENCE NAME, FRAME LENGTH AND

AVERAGE MOVING OBJECT NUMBER, RESPECTIVELY. THE REST COLUMNS SUMMARIZE THE SENSITIVITY, SPECIFICITY AND PROCESSING TIME (IN
SECOND UNIT) OF THE COMPARED ALGORITHMS ON SEVEN DIFFERENT DATASETS, WHILE THE LAST ROW AVERAGES THEIR OVERALL PERFORMANCES.

THE HIGHLIGHTED VALUES ARE THE BEST PERFORMANCES.

objects in terms of quantity, size, speed, shape, occlusion, etc.
To test the flexibility of the algorithms in terms of camera
motion, the Campus, Pedestrian and Station sequences are
acquired from a static camera set-up, while the other sequences
are acquired when the camera is moving. The detailed results
are synthesized in Table I Col. 2-3 and Table III Col. 2-5. The
performances with the state-of-the-art methods are assessed by
using the Sensitivity and Specificity metrics [Fawcett, 2006],
defined as follows:

Sensitivity =
True Positives

True Positives + False Negatives
, (20)

Specificity =
True Negatives

True Negatives + False Positives
. (21)

For comparison with MS-based methods, the misclassifi-
cation rate metric suggested by Elhamifar and Vidal [2013];
Hu et al. [2014] is adopted. All the experiments have been
conducted on a machine with Intel Quad Core i7-2.7GHz,
32GB Memory using MATLAB.

A. Motion Detection Evaluation

We compare the proposed 3D-based Moving Object De-
tection algorithm (3D-MOD) against the four representative
algorithms available in the literature. Remind that the 2D-
SMR, 2D-SSC and 3D-SSC are feature-based motion seg-
mentation algorithms cluster the feature trajectories into their
corresponding motions. We define: True Positive – if only a
motion trajectory is NOT classified as background motion, and
True Negative – when a background trajectory is classified as
background motion. Here, we consider the feature trajectories
belong to the static scene parts as background motion. When
several motions are involved, although a feature trajectory
might not be correctly classified into its corresponding motion,
it is yet considered as a true positive.

Table I summarizes the quantitative evaluation of 2D-SMR-
J1 Hu et al. [2014], 2D-SMR-J2 Hu et al. [2014], 2D-
SSC Elhamifar and Vidal [2013], 3D-SSC Jiang et al. [2016]
and 3D-MOD on the seven representative datasets by using the
Sensitivity and Specificity metrics. There are several remarks
listed as follows:

a. Both the 2D-SSC and the 3D-SSC algorithms achieve
quite good performances in terms of sensitivity. Mean-
while, the 3D-SSC has much better specificity but rather
low computational efficiency.

b. Although the 2D-SMR based approaches have the worst
performance in both sensitivity and specificity, such ap-
proaches have the best time performance which offers
great potential in real-time applications.

c. Overall, the 3D-MOD accomplishes quite decent perfor-
mances in both sensitivity and specificity. Precisely, the
3D-MOD has a more superior averaged sensitivity, as
well as a remarkably higher averaged specificity.

d. The 3D-based methods (i.e. 3D-SSC and 3D-MOD) ex-
hibit very stable performances, especially much higher
specificity, thanks to their insensitivity to perspective
projection effects.

e. Regarding the computational efficiency, our 3D-MOD
approach provides a compromised solution. In addition,
it can be easily parallelized and boosted if online MOD
is required.

Further, we adopt the mean and median Misdetection Error
metrics defined by

η =
# False Positive + # False Negative

# Features
, (22)

as in Elhamifar and Vidal [2013]; Hu et al. [2014] for MOD
performance evaluation, refer to Table II. Illustratively, the
corresponding box-plot statistical comparisons are provided
as in Fig. 8. Similarly, the 3D-SSC and 3D-MOD have
noteworthy better performances than other methods due to
their persistent high specificity. To point out, the 3D-MOD
outperforms the other methods with clearly lower median
misdetection rate as well as much higher robustness, as shown
in Fig. 8.

Moreover, the 3D-MOD is compared against the Object
Scene Flow (OSF) Menze et al. [2018] algorithm, as concluded
in Table III. Since the OSF method produces pixel-level
dense moving object detection and segmentation, it is more
appropriate to compare their performances in a dense manner.
In this regards, the 3D Region Growing Mühlenbruch et al.
[2006] algorithm, seeded at the motion flows detected by the
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Sequence 2D-SSC 3D-SSC 2D-SMR-J1 2D-SMR-J2 3D-MOD
Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

Campus 0.067 0.063 0.096 0.067 0.071 0.066 0.067 0.064 0.055 0.037
ColaTruck 0.506 0.545 0.092 0.103 0.341 0.373 0.385 0.340 0.095 0.097
Junction 0.116 0.081 0.077 0.050 0.136 0.155 0.148 0.155 0.008 0.007
Market 0.174 0.162 0.139 0.124 0.175 0.148 0.146 0.152 0.032 0.023
Pedestrian 0.114 0.113 0.086 0.044 0.099 0.112 0.125 0.127 0.038 0.033
Red Light 0.037 0.032 0.036 0.033 0.087 0.046 0.064 0.044 0.052 0.014
Station 0.097 0.079 0.086 0.093 0.150 0.167 0.140 0.151 0.102 0.045

TABLE II
QUANTITATIVE EVALUATION ON KITTI DATASET: USING THE MEAN AND MEDIAN VALUES OF MISDETECTION RATE METRICS.

2D-SMR-J1 2D-SMR-J2 2D-SSC 3D-SSC 3D-MOD
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Fig. 8. Box-plot analysis of Misdetection Rate on KITTI dataset.

Sequence Object Size Speed OSF 3D-MOD
Min. Max. Min. Max. Sens. Spec. Time Sens. Spec. Time

Campus 527 17483 0.35 5.56 0.404 0.988 60.8 0.928 0.993 9.31
ColaTruck 3339 29795 4.87 7.22 0.579 0.994 66.1 0.772 0.936 28.8
Junction 1397 10479 3.50 16.7 0.613 0.966 73.9 0.933 0.980 27.2
Market 148 8310 0.35 1.34 0.506 0.962 72.2 0.954 0.944 26.2
Pedestrian 291 15344 0.35 5.56 0.519 0.983 69.5 0.933 0.982 11.6
Red Light 1149 3977 0.36 8.33 0.578 0.987 84.5 0.937 0.987 14.0
Station 4010 45473 0.35 7.12 0.164 0.996 71.3 0.882 0.972 29.2
Average / / / / 0.480 0.982 71.2 0.906 0.971 20.9

TABLE III
QUANTITATIVE EVALUATION ON OSF MENZE ET AL. [2018] AND

3D-MOD: COL. 2-5 INDICATE THE MINIMUM AND MAXIMUM SIZE
(PIXEL) AND SPEED (m/s) OF MOVING OBJECTS, RESPECTIVELY.

3D-MOD, is applied to densely segment the moving objects.
Thus, both the Sensitivity and Specificity are computed by
using dense segmentation of 3D point clouds. From this table,
we observe that the 3D-MOD is not only faster, but also
consistently exhibits a much higher sensitivity with just a
slightly lower specificity.

To conclude, the main reasons that the 3D-MOD surpasses
the state-of-the-art methods are:

a) The 3D-MOD relies on a pre-registration of point clouds,
while the motion segmentation-based methods utilize the raw
feature trajectories without ego-motion compensation.

b) The 3D-MOD interprets the motions by using high
quality 3D data, while the OSF estimates a low-precision 3D
scene structure by using stereo vision techniques.

c) The 3D-MOD analyses the 3D motion behaviours un-
der local flows consistency assumption, which addresses the
problem in essence.

B. Motion Segmentation Evaluation

Quantitatively, we utilize the Misclassification Rate (same
as η) to compare the performances of the different algorithms,
as shown in Fig. 9. In most cases, the 2D-based approaches
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Fig. 9. Quantitative comparison of motion segmentation algorithms: dashed
lines are their averaged misclassification rates.

Fig. 10. Qualitative comparison of different motion segmentation approaches
on Market sequence: left images are image-based motion segmentation results
of 2D-SSC Elhamifar and Vidal [2013], 2D-SMR Hu et al. [2014], and
OSF Menze et al. [2018], respectively. The right images are outcomes of 3D-
based approaches, namely the 3D-SSC [Jiang et al., 2016], the 3D-SMR [Jiang
et al., 2017b] and the proposed 3D-SFC. Red boxes highlight the undetected
or incorrectly segmented motions.

achieve much higher misclassification rate, while the 3D-
based algorithms obtain relatively lower misclassification rate.
Furthermore, our 3D-SFC exceptionally outperforms the com-
pared algorithms on the evaluated datasets.

Qualitatively, Fig. 10 illustrates the motion segmentation
results of the compared algorithms on the Market sequence.
Left column images exemplify that the 2D-based motion
segmentation results are quite unsatisfactory, while the right
column images of the 3D-based approaches manifest much
better outcomes. Particularly, in the bottom-right image, all
the moving objects are detected correctly, including the black
car in the middle of the scene and the walking pedestrian on
the left side. The excellent performance of the proposed 3D-
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Fig. 11. Top image is the full scene 3D reconstruction by using Zhang and Singh [2016] of Market sequence where numerous moving objects occur. The
zoom-in regions show the immense artifacts from the walking pedestrians. Bottom image is our static-map which has distinctively higher quality.

SFC mainly comes from:
a) The 3D-SFC classifies the detected motion flows from

3D-MOD, which contributes to the discard of most back-
ground features.

b)The 3D-SFC is proposed under the sparse representation
framework with extra spatial closeness constraint, which pro-
duces a very reliable similarity graph for spectral clustering.

C. Static-map and Rigid Object Reconstruction

We conducted multiple experiments on the KITTI dataset
and obtained quite better static-maps than the other ap-
proaches, as proved with the detailed tests and measures pre-
sented below. Fig. 11 shows the challenging Market sequence
which contains a large amount of moving objects. The static-
map produced by our framework is of significantly better
quality because our framework is not sensitive to light changes,
occlusions, slow or very fast motions, etc. Remarkably, top
images in Fig. 11 contains serious "ghost" artefacts caused by
the trajectories of moving objects, which not only degrades the
visual quality but also defects the functionality of the recon-
structed 3D map. For instance, these "ghost" artefacts occlude

the ground areas and the lane markings in road surface, making
the automatic or manual labelling in High Definition Map
(HD-Map) production more difficult. Moreover, performances
of map-based localization algorithms [Levinson et al., 2007;
Magnusson et al., 2007; Wan et al., 2018] are expected to
deteriorate due to the heavily-noise corrupted point cloud map.

By applying the proposed framework, the bottom images
in Fig. 11 demonstrate that the 3D point cloud map contains
only the stable objects, so-called static map. Such static map
offers great potentials in applications such as city scene mod-
elling [Babahajiani et al., 2017; Fan et al., 2009], automatic
lane marking extraction in HD-Map production [Guan et al.,
2015; Prochazka et al., 2019], landmark-based localization in
autonomous driving [Lu et al., 2019], etc.

Moreover, the top-row images of Fig. 12 and 13 illustrate
the superior quality of the synthetic images rendered by
projecting the textured 3D point cloud of static maps onto
a virtual camera coordinate. As can be seen from the bottom-
row images of Fig. 12 and 13, many walking pedestrians are
captured by the vehicle’s camera. However, for some specific
applications such as the Google Street View [Anguelov et al.,
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Fig. 12. Synthetic image generation of market sequence by using the reconstructed static map. Top images illustrate the static scene imaginary of the market
area, while the bottom images are "contaminated" by the moving car and the numerous walking pedestrians.

Fig. 13. Synthetic image generation of station sequence: top image is the
rendered static scene imaginary by using the reconstructed static map. By
comparing to the bottom real camera captured image, we notice that large
moving objects (such as the moving car and train) are correctly detected and
removed.

2010; Mao et al., 2011], it is preferable to have a clean
view of the city scene. Noteworthy, the synthetic image
generation is, in essence, a key component of video inpainting
technique [Newson et al., 2014; Zhang et al., 2019]. Moreover,
these synthetic high quality images of static scenes can be used
as reference images to label the moving objects, which makes
the moving object annotation far more efficient and intelligent.

Apart from the static map reconstruction, getting the clus-
tered motion trajectories from our framework, the 3D recon-
struction of moving objects can be obtained by registering
the observed sparse point clouds during their motions. Fig. 14
shows two reconstructed rigidly moving objects. Thanks to the
proposed 3D-SFC, the detected moving objects can be sepa-
rated according to their specific motion subspace. The detected
moving objects are then individually registered with texture
mapping to produce photo-realistic 3D modelling [Jiang et al.,
2017a]. For more experimental results, readers are recom-
mended to view this video (https://youtu.be/LewA8Lhn5Xo).

VI. CONCLUSION

We have proposed an original 3D Flow Field Analysis (3D-
FFA) algorithm for 3D Moving Object Detection (3D-MOD)
under the motion consistency assumption of a local neighbour-
hood. We further present a novel 3D Sparse Flow Clustering

Fig. 14. Photo-realistic 3D reconstructions of individual moving objects.

(3D-SFC) approach based on the self-expressiveness property
of motion flow subspace as well as the spatial closeness
constraint. By integrating the proposed 3D-MOD and 3D-
SFC algorithms, we show that our framework is not merely
robust, efficient and accurate, but also allows photo-realistic
static-map and dynamic object reconstructions by using a 2D-
3D moving camera system. In many aspects, both the 3D-
MOD and 3D-SFC algorithms outperform the state-of-the-
art methods since we have compared all these techniques
on comprehensive highly dynamic real-world KITTI datasets,
for which they consistently exhibit better accuracy, lower
misclassication and misdetection rates, and consequently yield
very high quality 3D reconstructions of static-maps as well as
moving objects. In addition, the proposed framework offers
great potentials in 3D city scene modelling, robot navigation
and many other autonomous driving applications.

As for future perspectives, since the proposed 3D-FFA algo-
rithm makes the assumption of linear motion, it may failed to
detect pure rotation motions. Thus, a complementary algorithm
in dealing with pure rotation motions is preferred. Moreover,
it is interesting to produce higher resolution synthetic image
sequence by incorporating the image inpainting techniques.
Furthermore, recent advances, such as Point FlowNet3D [Behl
et al., 2019; Liu et al., 2019a], achieve very interesting results
in estimating 3D scene flows, which should benefit to a better
performance in motion flow field analysis as long as higher
computational cost is inessential.

https://youtu.be/LewA8Lhn5Xo
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