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REGULAR AUTOMORPHISMS AND CALOGERO-MOSER FAMILIES

by

CÉDRIC BONNAFÉ

Abstract. — We study the subvariety of fixed points of an automorphism of a Calogero-Moser
space induced by a regular element of finite order of the normalizer of the associated complex
reflection group W . We determine some of (and conjecturally all) the C×-fixed points of its unique
irreducible component of maximal dimension in terms of the character table of W . This is in-
spired by the mysterious relations between the geometry of Calogero-Moser spaces and unipotent
representations of finite reductive groups, which is the theme of another paper [Bon3].

If G is a split reductive group over a finite field with q elements Fq with Weyl group W ,
Deligne and Lusztig [DeLu] have defined a particular class of irreducible characters of the
finite group G = G(Fq), called the unipotent characters of G. To W , one can also associate
a Calogero-Moser space Z at equal parameters, which is a complex irreducible normal affine
Poisson variety endowed with a C×-action [EtGi]. The main theme of a previous paper of
the author [Bon3] is the observation that many aspects of the combinatorics of unipotent
characters of G have a conjectural analogue in the geometry of Z, thanks to the Poisson
structure and the C×-action. Here are two examples:

• Unipotent characters have been partitioned by Lusztig [Lus] into families and it has
been conjectured by Gordon-Martino [GoMa] that these families are in bijection with
C×-fixed points of Z. Note that this conjecture has been proved in all cases except type
E6, E7 and E8 (see [GoMa, Bel, BoTh]).

• For d a natural number, Broué-Malle-Michel [BMM1] defined a partition of unipotent
characters into d-Harish-Chandra series (generalizing the classical partition into Harish-
Chandra series, which correspond to d = 1 case). This partition is conjecturally related to
the stratification of Zµd by symplectic leaves (here, µd denotes the group of complex d-
th roots of unity): the reader may find more details in [Bon3, §12.C]. See [Bon3, Part IV]
for a list of cases where this conjecture is proved.

In the second point, whenever d is a regular number in the sense of Springer [Spr], it has been
observed by Broué-Malle-Michel [BMM2, Rem. 4.21] that the families of unipotent characters
which meet the principal d-Harish-Chandra series are characterized by a property involving
character values of W (again, more details may be found in [Bon3, Ex. 12.9]). If one be-
lieves in the analogy between unipotent characters and geometry of Z, this suggests [Bon3,
Conj. 7.5] a conjectural characterization of C×-fixed points meeting the unique irreducible
component of Zµd of maximal dimension in terms of the character table of W . The proof of
one direction of this conjecture is the theme of the present paper.

The author is partly supported by the ANR: Projects No ANR-16-CE40-0010-01 (GeRepMod) and ANR-18-CE40-
0024-02 (CATORE)..
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Note that the conjecture [Bon3, Conj. 7.5] involves only the Calogero-Moser space and can
be studied without any reference to unipotent characters. Moreover, since Calogero-Moser
spaces are defined for any finite complex reflection group (and not only for Weyl groups) and
for a bigger family of parameters, this conjecture is somewhat more general than what has
been explained above in this introduction, which can be seen as a motivation for the results
obtained here. Therefore, from now on, we will work in this more general context of complex
reflection groups. Let V be a finite dimensional complex vector space and let W be a finite
subgroup of GLC(V ) generated by reflections (i.e. automorphisms of V whose fixed points
space is an hyperplane). To some parameter k, Etingof and Ginzburg [EtGi] have associated
a normal irreducible affine complex variety Zk = Zk(V,W ) called a (generalized) Calogero-
Moser space. If τ is an element of finite order of the normalizer of W in GLC(V ) stabilizing
the parameter k, it induces an automorphism of Zk.

We denote by Vreg the open subset of V on which W acts freely, and we assume that
V τ
reg ̸= ∅ (then τ is called regular). In this case, there exists a unique irreducible component

(Zτ
k )max of Zτ

k of maximal dimension (as it will be explained in Section 2). Recall that Zk
is endowed with a C×-action and that we have a surjective map Irr(W ) → ZC×

k defined by
Gordon [Gor] (induced by the action of the center of a rational Cherednik algebra on baby
Verma modules) whose fibers are called the Calogero-Moser k-families of W . Here, Irr(W ) is the
set of irreducible characters ofW . If p ∈ ZC×

k , we denote by Fp its associated Calogero-Moser
k-family. It is a natural question to wonder which C×-fixed points of Zτ

k belong to (Zτ
k )max.

The aim of this note is to provide a partial answer in terms of the character table of W :

Theorem A. — Assume that V τ
reg ̸= ∅. Let p ∈ ZC×

k be such that τ(p) = p. If there exists χ in Fτp
such that χ̃(τ) ̸= 0, then p ∈ (Zτ

k )max.

In this statement, if χ is a τ -stable irreducible character of W , we denote by χ̃ an extension
of χ to the finite group W ⟨τ⟩ (see [Isa, Coro. 11.22] for the existence of χ̃): note that |χ̃(τ)|2
does not depend on the choice of χ̃ (see [Isa, Coro. 6.17]). Our proof of Theorem A makes an
extensive use of the Gaudin operators introduced in [BoRo, §8.3.B]: whenever χ̃(τ) ̸= 0, the
decomposition of a representation affording χ with respect to generalized eigenspaces of the
Gaudin operators allows to construct a τ -fixed point p′ in (Zτ

k )max such that p = limξ→0 ξ · p′.
We conjecture that the converse of Theorem A holds [Bon3, Conj. 7.5]:

Conjecture B. — Assume that V τ
reg ̸= ∅. Let p ∈ ZC×

k be such that τ(p) = p
and p ∈ (Zτ

k )max. Then there exists χ in Fτp such that χ̃(τ) ̸= 0.

General notation. Throughout this paper, we will abbreviate ⊗C as ⊗ and all varieties will
be algebraic, complex, quasi-projective and reduced. If X is an affine variety, we denote by
C[X] its coordinate ring.

If X is a subset of a vector space V (or of its dual V ∗), and if Γ is a subgroup of GLC(V ),
we denote by ΓX the pointwise stabilizer of X . If moreover Γ is finite, we will identify (V Γ)∗

and (V ∗)Γ.
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1. Calogero-Moser spaces and families

Hypothesis and notation. We fix in this paper a finite dimensional com-
plex vector space V and a finite subgroup W of GLC(V ). We set

Ref(W ) = {s ∈W | codimC V
s = 1}

and we assume throughout this paper that

W = ⟨Ref(W )⟩,
i.e. that W is a complex reflection group.

1.A. About W . — We set ε : W → C×, w 7→ det(w). We identify C[V ] (resp. C[V ∗]) with
the symmetric algebra S(V ∗) (resp. S(V )).

We denote by A the set of reflecting hyperplanes of W , namely

A= {V s | s ∈ Ref(W )}.
If H ∈ A, we denote by αH an element of V ∗ such that H = Ker(αH) and by α∨

H an element
of V such that V = H ⊕ Cα∨

H and the line Cα∨
H is WH -stable. We set eH = |WH |. Note that

WH is cyclic of order eH and that Irr(WH) = {ResWWH
εj | 0 ⩽ j ⩽ e − 1}. We denote by εH,j

the (central) primitive idempotent of CWH associated with the character ResWWH
ε−j , namely

εH,j =
1

eH

∑
w∈WH

ε(w)jw ∈ CWH .

If Ω is a W -orbit of reflecting hyperplanes, we write eΩ for the common value of all the eH ,
where H ∈ Ω. We denote by ℵ the set of pairs (Ω, j) where Ω ∈ A and 0 ⩽ j ⩽ eΩ − 1. The
vector space of families of complex numbers indexed by ℵ will be denoted by Cℵ: elements of
Cℵ will be called parameters. If k = (kΩ,j)(Ω,j)∈ℵ ∈ Cℵ, we define kH,j for all H ∈ Ω and j ∈ Z
by kH,j = kΩ,j0 where Ω is the W -orbit of H and j0 is the unique element of {0, 1, . . . , eH − 1}
such that j ≡ j0 mod eH .

We denote by Vreg the set of elements v of V such that Wv = 1. It is an open subset of V
and recall from Steinberg-Serre Theorem [Bro, Theo. 4.7] that

(1.1) Vreg = V \
⋃
H∈A

H.

In particular, Vreg is a principal open affine subset of V and C[Vreg] = C[V ][1/
∏
H∈AαH ].

1.B. Rational Cherednik algebra at t = 0. — Let k ∈ Cℵ. We define the rational Cherednik
algebra Hk (at t = 0) to be the quotient of the algebra T(V ⊕V ∗)⋊W (the semi-direct product
of the tensor algebra T(V ⊕ V ∗) with the group W ) by the relations

(1.2)


[x, x′] = [y, y′] = 0,

[y, x] =
∑
H∈A

eH−1∑
j=0

eH(kH,j − kH,j+1)
⟨y, αH⟩ · ⟨α∨

H , x⟩
⟨α∨

H , αH⟩
εH,j ,

for all x, x′ ∈ V ∗, y, y′ ∈ V . Here ⟨ , ⟩ : V × V ∗ → C is the standard pairing. The first
commutation relations imply that we have morphisms of algebras C[V ] → Hk and C[V ∗] →
Hk. Recall [EtGi, Theo. 1.3] that we have an isomorphism of C-vector spaces

(1.3) C[V ]⊗ CW ⊗ C[V ∗]
∼−→ Hk
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induced by multiplication (this is the so-called PBW-decomposition).

Remark 1.4. — Let (lΩ)Ω∈A/W be a family of complex numbers and let k′ ∈ Cℵ be defined by
k′Ω,j = kΩ,j + lΩ. Then Hk = Hk′ . This means that there is no loss of generality if we consider
for instance only parameters k such that kΩ,0 = 0 for all Ω, or only parameters k such that
kΩ,0 + kΩ,1 + · · ·+ kΩ,eΩ−1 = 0 for all Ω (as in [BoRo]). ■

1.C. Calogero-Moser space. — We denote by Zk the center of the algebra Hk: it is well-
known [EtGi, Theo 3.3 and Lem. 3.5] that Zk is an integral domain, which is integrally closed.
Moreover, it contains C[V ]W and C[V ∗]W as subalgebras [Gor, Prop. 3.6]. So, by the PBW-
decomposition, Zk contains P = C[V ]W ⊗ C[V ∗]W , and it is a free P-module of rank |W |
(see [EtGi, Prop. 4.15]). We denote by Zk the affine algebraic variety whose ring of regular
functions C[Zk] is Zk: this is the Calogero-Moser space associated with the datum (V,W, k). It
is irreducible and normal.

We set P = V/W × V ∗/W , so that C[P] = P and the inclusion P ↪→ Zk induces a mor-
phism of varieties

Υk : Zk −→ P

which is finite and flat.

1.D. Calogero-Moser families. — Using the PBW-decomposition, we define a C-linear map
ΩHk : Hk −→ CW by

ΩHk(fwg) = f(0)g(0)w

for all f ∈ C[V ], g ∈ C[V ∗] and w ∈ CW . This map is W -equivariant for the action on both
sides by conjugation, so it induces a well-defined C-linear map

Ωk : Zk −→ Z(CW ).

Recall from [BoRo, Cor. 4.2.11] that Ωk is a morphism of algebras.
Calogero-Moser families were defined by Gordon using his theory of baby Verma mod-

ules [Gor, §4.2 and §5.4]. We explain here an equivalent definition given in [BoRo, §7.2]. If
χ ∈ Irr(W ), we denote by ωχ : Z(CW ) → C its central character (i.e., ωχ(z) = χ(z)/χ(1) is
the scalar by which z acts on an irreducible representation affording the character χ). We say
that two characters χ and χ′ belong to the same Calogero-Moser k-family if ωχ ◦Ωk = ωχ′ ◦Ωk.

In other words, the map ωχ◦Ωk : Zk → C is a morphism of algebras, so it might be viewed
as a point φk(χ) of Zk, which is easily checked to be C×-fixed. This defines a surjective
map [Gor, §5.4]

φk : Irr(W ) −→ ZC×
k

whose fibers are the Calogero-Moser k-families. If p ∈ ZC×
k , we denote by Fp the correspond-

ing Calogero-Moser k-family.
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1.E. Alternative parameters. — Let C denote the space of maps Ref(W ) → C which are
constant on conjugacy classes of reflections. The element∑

(Ω,j)∈ℵ

∑
H∈Ω

(kH,j − kH,j+1)eHεH,j

of Z(CW ) is supported only by reflections, so there exists a unique map ck ∈ C such that∑
(Ω,j)∈ℵ

∑
H∈Ω

(kH,j − kH,j+1)eHεH,j =
∑

s∈Ref(W )

(ε(s)− 1)ck(s)s.

Then the map Cℵ → C, k 7→ ck is linear and surjective. With this notation, we have

(1.5) [y, x] =
∑

s∈Ref(W )

(ε(s)− 1) ck(s)
⟨y, αs⟩ · ⟨α∨

s , x⟩
⟨α∨

s , αs⟩
s,

for all y ∈ V and x ∈ V ∗. Here, αs = αV s and α∨
s = α∨

V s .

1.F. Actions on the Calogero-Moser space. — The Calogero-Moser space Zk is endowed
with a C×-action and an action of the stabilizer of k in NGLC(V )(W ), which are described
below.

1.F.1. Grading, C×-action. — The algebra T(V ⊕V ∗)⋊W can be Z-graded in such a way that
the generators have the following degrees

deg(y) = −1 if y ∈ V ,
deg(x) = 1 if x ∈ V ∗,
deg(w) = 0 if w ∈W .

This descends to a Z-grading on Hk, because the defining relations (1.2) are homogeneous.
Since the center of a graded algebra is always graded, the subalgebra Zk is also Z-graded.
So the Calogero-Moser space Zk inherits a regular C×-action. Note also that by definition
P = C[V ]W ⊗ C[V ∗]W is clearly a graded subalgebra of Zk.

1.F.2. Action of the normalizer. — The group NGLC(V )(W ) acts on the set ℵ and so on the
space of parameters Cℵ. If τ ∈ NGLC(V )(W ), then τ induces an isomorphism of algebras
Hk −→ Hτ(k). So, if τ(k) = k, then it induces an action on the algebra Hk (and so on its
center Zk and on the Calogero-Moser space Zk).

Notation. From now on, and until the end of this paper, we fix a parameter k ∈ Cℵ

and a regular element τ of finite order of NGLC(V )(W ) such that τ(k) = k.

We denote by Zτ
k the variety of fixed points of τ in Zk, endowed with its reduced structure.

All the above constructions are τ -equivariant: for instance, the map φk : Irr(W ) −→ ZC×
k is

τ -equivariant.
Let us recall the following consequence [Spr, Prop. 3.5 and Theo. 4.2] of the above hypoth-

esis:

Theorem 1.6 (Springer). — The group W τ acts as a reflection group on V τ and the natural map
V τ/W τ → (V/W )τ is an isomorphism of varieties.
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Corollary 1.7. — The natural map (V τ
reg × V ∗τ )/W τ → ((Vreg × V ∗)/W )τ is an isomorphism of

varieties.

Proof. — Since W acts freely on the variety Vreg × V ∗, the quotient variety (Vreg × V ∗)/W is
smooth. Consequently, the variety of fixed points ((Vreg×V ∗)/W )τ is also smooth. Similarly,
(V τ

reg×V ∗τ )/W τ is smooth. Since a bijective morphism between smooth complex varieties is
an isomorphism (by Zariski’s Main Theorem), we only need to show that the above natural
map is bijective.

First, if (v1, v
∗
1) and (v2, v

∗
2) are two elements of V τ

reg × V ∗τ belonging to the same W -
orbit, there exists w ∈ W such that v2 = w(v1). Since v1 and v2 are τ -stable, we also have
τ(w)(v1) = v2, and so v1 = w−1τ(w)(v1). Since v1 ∈ Vreg, this forces τ(w) = w and the
injectivity follows.

Now, if (v, v∗) ∈ Vreg × V ∗ is such that its W -orbit is τ -stable, then the W -orbit of v is
τ -stable. So Theorem 1.6 shows that we may assume that τ(v) = v. The hypothesis implies
that there exists w ∈ W such that τ(v) = w(v) and τ(v∗) = w(v∗). But τ(v) = v ∈ Vreg, so
w = 1. In particular, τ(v∗) = v∗, and the surjectivity follows.

2. Irreducible component of maximal dimension

Let (Zk)reg denote the open subset Υ−1
k (Vreg/W × V ∗/W ). By [EtGi, Prop. 4.11], we have

a C×-equivariant and τ -equivariant isomorphism

(2.1) (Zk)reg ≃ (Vreg × V ∗)/W.

This shows that (Zk)reg is smooth and so (Zk)
τ
reg is also smooth. By Corollary 1.7, this implies

that

(2.2) (Zk)
τ
reg ≃ (V τ

reg × V ∗τ )/W τ .

In particular it is irreducible. We denote by (Zτ
k )max its closure: it is an irreducible closed

subvariety of Zτ
k .

Moreover, (Zk)
τ
reg has dimension 2 dimV τ by Corollary 1.7. So dimZτ

k ⩾ 2 dimV τ =
dim(Zτ

k )max. But, on the other hand, Υk(Z
τ
k ) ⊂ (V/W )τ × (V ∗/W )τ . Since Υk is a finite

morphism, we get from Theorem 1.6 that dimZτ
k ⩽ 2 dimV τ . Hence

(2.3) dimZτ
k = dim(Zτ

k )max = 2dimV τ .

This shows that (Zτ
k )max is an irreducible component of maximal dimension of Zτ

k and that

(2.4) Υk((Z
τ
k )max) = (V/W )τ × (V ∗/W )τ .

Proposition 2.5. — The closed subvariety (Zτ
k )max of Zτ

k is the unique irreducible component of
maximal dimension.

Proof. — Let X be an irreducible component of Zτ
k of dimension 2 dimV τ . Since Υk is fi-

nite, the image Υk(X) is closed in V/W × V ∗/W , irreducible of dimension 2 dim(V τ ) and
contained in (V/W )τ × (V ∗/W )τ . By Theorem 1.6, we get that Υk(X) = (V/W )τ × (V ∗/W )τ .

Let U= Υ−1
k (Vreg/W × V ∗/W ) ∩ X. Then U is a non-empty open subset of X: since X is

irreducible, this forces U to have dimension 2 dim(V τ ). But U is contained in (Zk)
τ
reg which

is irreducible of the same dimension, so the closure of U contains (Zk)
τ
reg. This proves that

X= (Zτ
k )max.
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It is natural to ask which C×-fixed points of Zk belong to (Zτ
k )max. Inspired by the repre-

sentation theory of finite reductive groups (see [BrMi] and [BMM2, Rem. 4.21]), we propose
an answer to this question in terms of the character table of the finite groupW ⟨τ⟩ (see [Bon3,
Ex. 12.9] for some explanations). We first need some notation.

If χ ∈ Irr(W ), we denote by Eχ a CW -module affording the character χ. If moreover χ is
τ -stable, we fix a structure of CW ⟨τ⟩-module on Eχ extending the structure of CW -module,
and we denote by χ̃ its associated irreducible character of W ⟨τ⟩. Note that the real number
|χ̃(τ)|2 does not depend on the choice of χ̃.

Conjecture 2.6. — Recall that τ is regular. Let p ∈ ZC×
k be such that τ(p) = p.

Then p belongs to (Zτ
k )max if and only if

∑
χ∈Fτ

p
|χ̃(τ)|2 ̸= 0.

Remark 2.7. — Let F be a τ -stable Calogero-Moser family. Then F contains a unique irre-
ducible character χF with minimal b-invariant [BoRo, Theo. 7.4.1], where the b-invariant of
an irreducible character χ is the minimal natural number j such that χ occurs in the j-th
symmetric power of the natural representation V of W . From this characterization, we see
that χF is τ -stable. In particular, any τ -stable Calogero-Moser family contains at least one
τ -stable character. ■

In general, we are only able to prove the “if” part of Conjecture 2.6.

Theorem 2.8. — Recall that τ is regular. Let p ∈ ZC×
k be such that τ(p) = p. If

∑
χ∈Fτ

p
|χ̃(τ)|2 ̸= 0,

then p belongs to (Zτ
k )max.

The next two sections are devoted to the proof of Theorem 2.8.

3. Verma modules

3.A. Definition. — Recall that C[V ]⋊W is a subalgebra of Hk (it is the image of 1⊗CW ⊗
C[V ] by the PBW-decomposition 1.3). If E is a CW -module, we denote by E# the (C[V ∗] ⋊
W )-module extending E by letting any element f ∈ C[V ∗] act by multiplication by f(0). If
χ ∈ Irr(W ), we define an Hk-module ∆(χ) as follows:

∆(χ) = Hk ⊗C[V ∗]⋊W E#
χ .

Then ∆(χ) is called a Verma module of Hk (see [BoRo, §5.4.A]: in this reference, ∆(χ) is de-
noted by ∆(E#

χ )). Let Hreg
k denote the localization of Hk at Preg = C[Vreg/W ] ⊗ C[V ∗/W ].

By [EtGi, Prop. 4.11], we have an isomorphism C[Vreg × V ∗] ⋊ W ≃ Hreg
k . We denote by

∆reg(χ) the localization of ∆(χ) at Hreg
k . So, by restriction to C[Vreg × V ∗], the localized

Verma module ∆reg(χ) might be viewed as a W -equivariant coherent sheaf on Vreg × V ∗.
We also view e∆(χ) as a coherent sheaf on Zk, so that e∆reg(χ) may be viewed as a coher-
ent sheaf on (Vreg × V ∗)/W . If p ∈ Zk (or if (v, v∗) ∈ Vreg × V ∗), we denote by e∆(χ)p
(respectively e∆(χ)W ·(v,v∗) = e∆reg(χ)W ·(v,v∗), respectively ∆reg(χ)v,v∗) the restriction of
e∆(χ) (respectively of e∆(χ) or e∆reg(χ), respectively ∆reg(χ)) at the point p (respectively
W · (v, v∗) ∈ (Vreg×V ∗)/W ≃ (Zk)reg, respectively (v, v∗)). It follows from the definition that
the support of e∆(χ) is contained in Υ−1

k (V/W×0), and recall that, through the isomorphism
Z

reg
k ≃ (Vreg × V ∗)/W , Υ−1

k (Vreg/W × 0) is not necessarily contained in (Vreg × {0})/W .
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Lemma 3.1. — Let χ ∈ Irr(W ) and let p ∈ ZC×
k . Then e∆(χ)p ̸= 0 if and only if χ ∈ Fp.

Proof. — Let p0 denote the maximal ideal of the algebra P = C[P] consisting of functions
which vanish at 0. Then ∆(χ)/p0∆(χ) is a representation of the restricted rational Cherednik
algebra Hk/p0Hk which coincides with the baby Verma module defined by Gordon [Gor, §4.2].
As ZC×

k = Υ−1
k (0), the result follows from the very definition of Calogero-Moser families

in terms of baby Verma modules and the fact that it is equivalent to the definition given
in §1.D.

3.B. Bialynicki-Birula decomposition. — We denote by Zatt
k the attracting set of Zk for the

action of C×, namely

Zatt
k = {p ∈ Zk | lim

ξ→0

ξp exists}.

Recall from [BoRo, Chap. 9] the following facts:

Proposition 3.2. — With the above notation, we have:

(a) The map lim : Zatt
k −→ ZC×

k , p 7→ limξ→0
ξp is a morphism of varieties.

(b) Zatt
k = Υ−1

k (V/W × {0}).
(c) If I is an irreducible component of Zatt

k , then I is C×-stable and Υk(I) = V/W × {0} and
lim(I) is a single point.

(d) If χ ∈ Irr(W ), then the support of e∆(χ) is a union of irreducible components of Zatt
k .

(e) If I is an irreducible component of Zatt
k , then there exists χ ∈ Irr(W ) such that the support of

e∆(χ) contains I.

Proof. — (a) is classical (see for instance [BoRo, §9.1]). For (b), see [BoRo, Lem. 9.3.2]. (c) is
explained at the end of [BoRo, §9.3]. For (d) and (e), see [BoRo, (8.1.3) and Prop. 9.3.3].

We characterize points of ZC×
k belonging to (Zτ

k )max in terms of Verma modules:

Lemma 3.3. — Let p ∈ ZC×
k and assume that τ(p) = p. Then p ∈ (Zτ

k )max if and only if there exist
χ ∈ Fkp and (v, v∗) ∈ V τ

reg × V ∗τ such that e∆(χ)W ·(v,v∗) ̸= 0.

Proof. — Let (Zτ
k )

att
max denote the attracting set of (Zτ

k )max. Then (2.4) and Proposition 3.2(b)
imply that Υk((Z

τ
k )

att
max) = (V/W )τ ×{0}. Since Υk is a finite morphism, the same arguments

used in [BoRo, Chap. 9] to prove the Proposition 3.2 above yields the following statements:

(a) The map lim : (Zτ
k )

att
max −→ (Zτ

k )
C×
max, p 7→ limξ→0

ξp is a morphism of varieties.
(b) (Zτ

k )
att
max = (Zτ

k )max ∩Υ−1
k ((V/W )τ × {0}).

(c) If Iis an irreducible component of (Zτ
k )

att
max, then Iis C×-stable and Υk(I) = (V/W )τ×

{0} and lim(I) is a single point.
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Assume that p ∈ (Zτ
k )max. Let I be an irreducible component of (Zτ

k )
att
max ∩ lim−1(p).

Then I is contained in an irreducible component I′ of (Zτ
k )

att
max. Since lim(I′) is a single

point by (c), we have lim(I′) = {p} and so I = I′. Still by (c), this says that Υk(I) =
(V/W )τ × {0}. So let q ∈ Ibe such that Υk(q) ∈ (Vreg/W )τ × {0}.

Now, let Jbe an irreducible component of Zatt
k containing I. By Proposition 3.2(e), there

exists χ ∈ Irr(W ) such that the support of e∆(χ) contains J. In particular, e∆(χ)p ̸= 0 and
so χ ∈ Fp by Lemma 3.1. But also e∆(χ)q ̸= 0. Since q ∈ (Zτ

k )max and Υk(q) ∈ Vreg/W , it
follows that there exists (v, v∗) ∈ V τ

reg × V ∗τ such that e∆(χ)W ·(v,v∗) ̸= 0, as desired.

Conversely, assume that there exist both χ ∈ Fkp and (v, v∗) ∈ V τ
reg × V ∗τ such that

e∆(χ)W ·(v,v∗) ̸= 0. Let I be an irreducible component of Zatt
k contained in the support

of e∆(χ). Then p ∈ Iand so p = limW · (v, v∗). Since W · (v, v∗) ∈ (Zτ
k )max by the definition

of (Zτ
k )max, this implies that p ∈ (Zτ

k )max, as desired.

4. Gaudin algebra

4.A. Definition. — We recall here the definition of Gaudin algebra [BoRo, §8.3.B]. First, let
C[Vreg][W ] denote the group algebra of W over the algebra C[Vreg] (and not the semi-direct
product C[Vreg]⋊W ). For y ∈ V , let

Dk
y =

∑
s∈Ref(W )

ε(s)ck(s)
⟨y, αs⟩
αs

s ∈ C[Vreg][W ].

Now, let Gauk(W ) be the sub-C[Vreg]-algebra of C[Vreg][W ] generated by the Dk
y ’s (where y

runs over V ): it will be called the Gaudin algebra (with parameter k) associated with W .
Let C(V ) denote the function field of V (which is the fraction field of C[V ] or of C[Vreg])

and let C(V )Gauk(W ) denote the subalgebra C(V ) ⊗C[Vreg] Gauk(W ) of the group algebra
C(V )[W ]. Recall [BoRo, §8.3.B] that

(4.1) Gauk(W ) is a commutative algebra,

but that C(V )Gauk(W ) is generally non-split, as shown by the examples treated in [Bon1,
§4] and [Lac].

4.B. Generalized eigenspaces. — If v ∈ Vreg, we denote by D
k,v
y the specialization of Dk

y at
v, namely D

k,v
y is the element of the group algebra CW equal to

Dk,v
y =

∑
s∈Ref(W )

ε(s)ck(s)
⟨y, αs⟩
⟨v, αs⟩

s.

Now, if v∗ ∈ V ∗ and if M is a CW -module, we define Mk,v,v∗ to be the common generalized
eigenspace of the operators D

k,v
y for the eigenvalue ⟨y, v∗⟩, for y running over V . Namely,

Mk,v,v∗ = {m ∈M | ∀ y ∈ V, (Dk,v
y − ⟨y, v∗⟩ IdM )dim(M)(m) = 0}.

Then

(4.2) M =
⊕
v∗∈V ∗

Mk,v,v∗ ,

since Gauk(W ) is commutative.
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Lemma 4.3. — Let χ ∈ Irr(W ) and let (v, v∗) ∈ Vreg × V ∗. Then the following are equivalent:
(1) e∆(χ)W ·(v,v∗) ̸= 0.
(2) ∆reg(χ)v,v∗ ̸= 0.
(3) Ek,v,v

∗
χ ̸= 0.

Proof. — The equivalence between (1) and (2) follows from the Morita equivalence between
C[Vreg × V ∗]W and C[Vreg × V ∗] ⋊W proved in [BoRo, Lem. 3.1.8(b)]. Now, as a (C[Vreg] ⋊
W )-module, ∆reg(χ) ≃ C[Vreg] ⊗ Eχ. and the action of y ∈ V ⊂ C[V ∗] is given by the
operator −Dk

y ∈ C[Vreg][W ] (see [BoRo, §8.3.B]). Now, ∆reg(χ)v,v∗ ≃ Eχ as a C-vector space:
on this vector space, the action of an element f ∈ C[Vreg] is given by multiplication by f(v)
while the action of an element y ∈ V is given by the operator ⟨y, v∗⟩ IdEχ −D

k,v
y (see [BoRo,

Theo. 4.1.7]). This shows the equivalence between (2) and (3).

4.C. Proof of Theorem A (i.e. Theorem 2.8). — Let χ ∈ Irr(W ) be τ -stable and such that
χ̃(τ) ̸= 0 and let v ∈ V τ

reg. By Lemmas 3.1 and 4.3, it is sufficient to show that there exists
v∗ ∈ V ∗τ such that Ek,v,v

∗
χ ̸= 0.

For this, let E denote the set of v∗ ∈ V ∗ such that Ek,v,v
∗

χ ̸= 0. Then it follows from (4.2)
that

(∗) Eχ =
⊕
v∗∈E

Ek,v,v
∗

χ .

Since τ(v) = v, we have

τDk,v
y =

∑
s∈Ref(W )

ε(s)ck(s)
⟨y, αs⟩
⟨v, αs⟩

τsτ−1 =
∑

s∈Ref(W )

ε(s)ck(s)
⟨y, τ−1(αs)⟩
⟨v, τ−1(αs)⟩

s = D
k,v
τ(y).

Consequently,
τEk,v,v

∗
χ = Ek,v,τ(v

∗)
χ .

But χ̃(τ) = Tr(τ, Eχ) ̸= 0, so τ must fix at least one of the generalized eigenspaces in the
decomposition (∗). In other words, this implies that there exists v∗ ∈ E such that τ(v∗) = v∗,
as desired. The proof is complete.

5. Complements: further conjectures, examples

5.A. Conjectures. — The variety Zk is endowed with a Poisson structure [EtGi, §1] and so
the variety of fixed points Zτ

k inherits a Poisson structure too, as well as all its irreducible
components. Recall from Springer Theorem 1.6 that W τ is a reflection group for its action
on V τ , so we can define a set of pairs ℵτ for the pair (V τ ,W τ ) as well as ℵ has been defined
for the pair (V,W ) and, for each parameter l ∈ Cℵτ , we can define a Calogero-Moser space
Zl(V

τ ,W τ ). The following conjecture is a particular case of [Bon2, Conj. B] (see [Bon2] for a
discussion about the cases where this conjecture is known to hold):

Conjecture 5.1. — Recall that τ is regular. Then there exists a linear map λ : Cℵ →
Cℵτ and, for each k ∈ Cℵ, a C×-equivariant isomorphism of Poisson varieties

ιk : (Z
τ
k )max

∼−→ Zλ(k)(V
τ ,W τ ).
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If the existence of such a C×-equivariant isomorphism ιk : (Zτ
k )max

∼−→ Zλ(k)(V
τ ,W τ ) is

known but if it is not known that it preserves the Poisson structure, then we will say that
“Conjecture 5.1− holds”.

Assume now that Conjecture 5.1− holds and keep its notation. Then ιk restricts to a map
ιk : (Zk)

C×
max

∼−→ Zλ(k)(V
τ ,W τ )C

×
. If p ∈ Zλ(k)(V

τ ,W τ )C
×

, we denote by F
(τ)
ιk(p)

the cor-
responding Calogero-Moser λ(k)-family of W τ . The next conjecture, still inspired by the
representation theory of finite reductive groups (see again [Bon3, Ex. 12.9] for some expla-
nations), makes Conjecture B more precise:

Conjecture 5.2. — Recall that τ is regular and assume that Conjecture 5.1− holds.
If p ∈ (Zτ

k )
C×
max, then ∑

χ∈Fτ
p

|χ̃(τ)|2 =
∑

ψ∈F(τ)
ιk(p)

ψ(1)2.

Note that this last conjecture is compatible with the fact that∑
χ∈Irr(W )τ

|χ̃(τ)|2 = |W τ | =
∑

ψ∈Irr(W τ )

ψ(1)2,

where the first equality follows from the second orthogonality relation for characters applied
to W ⟨τ⟩. Indeed,

∑
θ∈Irr(W ⟨τ⟩) |θ(τ)|2 = |CW ⟨τ⟩(τ)| and θ(τ) ̸= 0 implies that θ is an extension

of a τ -invariant character χ of W by [Isa, Theo. 6.11]: the equality then follows from the
fact that |θ(τ)| depends only on χ and that there are |W ⟨τ⟩|/|W | extensions of χ by [Isa,
Coro. 6.17].

5.B. Roots of unity. — We consider in this subsection a particular (but very important) case
of the general situation studied in this paper. We fix a natural number d ⩾ 1 and a primitive
d-th root of unity ζd. The group of d-th roots of unity is denoted by µd. An element w ∈ W

is called ζd-regular if the element ζ−1
d w of NGLC(V )(W ) is regular. In other words, w is ζd-

regular if and only if its ζd-eigenspace meets Vreg. The existence of a ζd-regular element is not
guaranteed: we say that d is a regular number of W if such an element exists.

Hypothesis. We assume in this subsection that d is a regular number of
W . We denote by wd a ζd-regular element and we also set τd = ζ−1

d wd, so
that τd is a regular element of NGLC(V )(W ).

Recall from [Spr, Theo. 4.2(iv)] that wd is uniquely defined up to conjugacy. Note that

(5.3) V τd = Ker(wd − ζd IdV ), W τd = CW (wd) and Z
τd
k = Z

µd
k .

Since τd induces an inner automorphism of W , all the irreducible characters are τd-stable.
Moreover, if χ ∈ Irr(W ), then χ̃(τd) = ξχ(wd) for some root of unity ξ, so |χ̃(τd)|2 = |χ(wd)|2.
This allows to reformulate both Theorem A and Conjecture B in this case:

Conjecture 5.4. — Recall that d is a regular number. Let p ∈ ZC×
k . Then p belongs

to (Z
µd
k )max if and only if

∑
χ∈Fp

|χ(wd)|2 ̸= 0.
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Theorem 5.5. — Recall that d is regular. Let p ∈ ZC×
k be such that

∑
χ∈Fp

|χ(wd)|2 ̸= 0. Then p
belongs to (Z

µd
k )max.

Example 5.6 (Symmetric group). — We assume here that W = Sn acting on V = Cn by
permutation of the coordinates, for some n ⩾ 2. The canonical basis of Cn is denoted by
(y1, . . . , yn). Then there is a unique orbit of hyperplanes, that we denote by Ω, and eΩ = 2. To
avoid too easy cases, we also assume that kΩ,0 ̸= kΩ,1 (so that Zk is smooth [EtGi, Cor. 1.14])
and that d ⩾ 2. Saying that d is a regular number is equivalent to say that d divides n or n−1.
Therefore, we will denote by j the unique element of {0, 1} such that d divides n− j and we
set r = (n − j)/d. Then wd is the product of r disjoint cycles of length d, so one can choose
for instance

wd = (1, 2, . . . , d)(d+ 1, d+ 2, . . . , 2d) · · · ((r − 1)d+ 1, (r − 1)d+ 2, . . . , rd).

Then V τd is r-dimensional, with basis (v1, . . . , vr) where va =
∑d

b=1 ζ
−b
d e(a−1)d+b and the

group CW (wd) ≃ G(d, 1, r) acts “naturally” as a reflection group on V τd =
⊕r

a=1Cva.
We also need some combinatorics. We denote by Part(n) (resp. Partd(r)) the set of parti-

tions of n (resp. of d-partitions of r). If λ ∈ Part(n), we denote by χλ the irreducible character
of Sn (with the convention of [GePf]: for instance χn = 1 and χ1n = ε), by cord(λ) the d-core
of λ, by quod(λ) its d-quotient. We let Part(n, d) denote the set of partitions of nwhose d-core
is the unique partition of j ∈ {0, 1}. Then the map

quod : Part(n, d) −→ Partd(r)

is bijective. Finally, if µ ∈ Partd(r), we denote by χµ the associated irreducible character of
CW (wd) = G(d, 1, r) (with the convention of [GeJa]). It follows from Murnaghan-Nakayama
rule that

(5.7) χλ(wd) ̸= 0 if and only if λ ∈ Part(n, d),

and that

(5.8) χλ(wd) = ±χquod(λ)
(1)

for all λ ∈ Part(n, d) (see for instance [BMM1, Page 47]).
Now, the smoothness of Zk implies that the map φk : Irr(Sn) −→ ZC×

k is bijective (so
that Calogero-Moser k-families of Sn are singleton) and it follows from the main theorem
of [BoMa] that Conjecture 5.1 holds (except that we do not know if the isomorphism respects
the Poisson structure), so that we have a C×-equivariant isomorphism of varieties

ιk : (Z
µd
k )max

∼−→ Zλ(k)(V
τd , G(d, 1, r))

for some explicit λ(k) ∈ Cℵτd . Moreover, Zλ(k)(V τd , G(d, 1, r)) is smooth so that the map
φτdλ(k) : Irr(G(d, 1, r)) −→ Zλ(k)(V

τd , G(d, 1, r))C
×

is bijective (that is, Calogero-Moser λ(k)-
families of G(d, 1, r) are singleton). Now, by [BoMa, Theo. 4.21], we have that

(5.9) φk(χλ) ∈ (Z
µd
k )max if and only if λ ∈ Part(n, d),

and that

(5.10) ιk(φk(χλ)) = φτdλ(k)(χquod(λ)
)

for all λ ∈ Part(n, d). Then (5.7), (5.8), (5.9) and (5.10) show that Conjectures 5.4 and 5.2 hold
for the symmetric group. ■
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