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CALOGERO-MOSER SPACES VS UNIPOTENT REPRESENTATIONS

by

CÉDRIC BONNAFÉ

To George Lusztig, with admiration

Abstract. — Lusztig’s classification of unipotent representations of finite reductive groups
depends only on the associated Weyl group W (and the automorphism that the Frobenius
automorphism induces on W ). All the structural questions (families, Harish-Chandra series,
partition into blocks...) have an answer in a combinatorics that can be entirely built directly
from W .

Over the years, we have noticed that the same combinatorics seems to be encoded in the
Poisson geometry of a Calogero-Moser space associated with W (families should correspond
to C×-fixed points, Harish-Chandra series should correspond to symplectic leaves, blocks
should correspond to symplectic leaves in the fixed point subvariety under the action of a
root of unity).

The aim of this survey is to gather all these observations, state precise conjectures and
provide general facts and examples supporting these conjectures.

For this introduction, let us focus on the case where G is a split reductive group over
a finite field with q elements Fq and let G = G(Fq) be the finite group consisting of Fq-
rational points. Let W denote the Weyl group of G and let Zdenote the Calogero-Moser
space associated with W at equal parameters (recall that it is an affine Poisson variety en-
dowed with a C×-action [EtGi, §4]). Let Unip(G) denote the set of irreducible unipotent
characters ofG (as defined by Lusztig). A consequence of a conjecture of Gordon-Martino
(2007, [GoMa]) is that the fixed point set ZC× should be in bijection with the set of Lusztig
families of Unip(G). This first link was the starting point of our interest in the geometry
of Calogero-Moser spaces.

In 2008, Gordon, following works of Haiman, obtained in type A a parametrization
of the irreducible components of the fixed point subvariety Zµd by d-cores of partitions.
This fits perfectly with the partition of irreducible unipotent representations of GLn(Fq)
into d-Harish-Chandra series (defined by Broué-Malle-Michel [BMM1]). In 2011, Bel-
lamy and Losev (independently) obtained a parametrization à la Harish-Chandra of sym-
plectic leaves of Z. In 2013, Rouquier and the author [BoRo1] constructed partitions of
W into left, right and two-sided Calogero-Moser cells and conjectured they coincide with
Kazhdan-Lusztig cells.

The author is partly supported by the ANR: Projects No ANR-16-CE40-0010-01 (GeRepMod) and ANR-18-
CE40-0024-02 (CATORE)..
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From then, the author has worked (with many different authors) on representations
of Cherednik algebras at t = 0 and the geometry of Calogero-Moser spaces (see [BoRo1,
BoRo2, Bon3, BoMa, BoSh]), for, as main motivation, understanding these strange analo-
gies between the geometry of Calogero-Moser spaces and the representation theory of
finite reductive groups. Over the years, the author has enriched these coincidences with
several examples but has never exposed them in a paper. This is the aim of this survey to
present them, state precise conjectures, and provide a list of examples that support these
conjectures. A main reason for waiting for such a long time is that we needed to establish
some theoretical background on Calogero-Moser space to state precise conjectures: this
is done in [Bon4], where we generalize some results of Bellamy [Bel3] and Losev [Los]
on symplectic leaves. We also needed some general results (cohomology, fixed points,
regular automorphisms) in accordance with these conjectures [BoSh, BoMa, Bon5].

Let us explain one of the strangest (and most convincing) coincidences. Let ` be a
prime number not dividing q and assume for simplicity that ` does not divide |W |. We
denote by d the order of q modulo `. Then each `-block B of Unip(G) should correspond
to a symplectic leaf SB of the fixed point subvariety Zµd of Z in such a way that:

• On one hand, the d-Harish-Chandra theory of Broué-Malle-Michel [BMM1] associates
to B a complex reflection group WB whose irreducible characters are in bijection
withB. Moreover, Broué-Malle-Michel also associate toB a Deligne-Lusztig variety
XB and a parameter kB and conjecture that the endomorphism algebra of the `-
adic cohomology of XB is isomorphic to a Hecke algebra of WB with parameter kB .
This association is motivated by Broué’s abelian defect conjecture, and its geometric
version for finite reductive groups [Bro2, §6] (see also [BMM1, BrMa2]).
• On the other hand, an analogue of a d-Harish-Chandra theory for symplectic leaves of
Zµd developed by the author [Bon4] (extending earlier works of Bellamy [Bel3] and
Losev [Los] which deal with the case where d = 1) associates to SB a finite linear
group W′B and a parameter k′B . We conjecture [Bon4, Conj. B] that the normalization
S

nor
B of the closure of the symplectic leaf SB is the Calogero-Moser space for the pair

(W′B, k
′
B).

• The main intriguing observation is that, in the cases where computations can be
done, WB is a subgroup of W′B (in fact, in most cases, WB = W′B) and the parameter
kB is the restriction of the parameter k′B . Our main conjecture is that this holds in
general.

So, important features of the `-modular representation theory of G seem to be encoded
in the (Poisson) geometry of the affine variety Zµd (where d and ` are linked by the fact
that q is a primitive d-th root of unity modulo `). Moreover, this correspondence seems
to carry more properties, as explained in Section 12. To support our conjectures, we have
the following examples available:

• We are able to prove most of them if W is of type A (see Section 15).
• They hold if W is of type B2 or G2 and d is the Coxeter number (see Section 13).
• They hold if W is of classical type and d = 1 (classical Harish-Chandra theory); see

Section 16.
• In the regular case (see §7.C for the definition), we have a general result on Calogero-

Moser spaces (see Theorem 7.4) which fits with observations made on the unipotent
representations side (see Example 12.9).
• Our conjectures are compatible with Ennola duality.
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The text is organized as follows. An introductory part presents the set-up and the nota-
tion involved all along the text. We summarize in the first part some general questions on
the geometry of Calogero-Moser spaces (cohomology, geometry of symplectic leaves...),
already contained in [BoRo2, BoSh, Bon4, Bon5]. The second part is a crash-course on
unipotent representations of finite reductive groups (we hope it is understandable for
non-specialists). The third part contains an explanation of the notion of genericity and
also a detailed exposition of the different coincidences (stated as conjectures) we expect
between the Poisson geometry of Z and the representation theory of G: this is the heart
of this survey. The fourth part contains several very explicit examples confirming the
conjectures. The last (short) part is an invitation to the Spetses theory of Broué-Malle-
Michel [BMM2, BMM3], which have connections with the theme of this paper.
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Commentary. Recently, Riche-Williamson [RiWi] provided a geometric proof of the link-
age principle [Ver, Hum, Jan, And]: in their construction, blocks of the category of rational
representations of G(Fq) are in bijection with the irreducible components of Grµp , where
p is the prime number dividing q and Gr is the (complex) affine Grassmannian of the
(complex) Langlands dual group to G. So our observation has the same flavor as Riche-
Williamson result: the blocks of some category of representations are controlled by the
geometry of fixed points under the action of a group of roots of unity on some variety. Of
course, the main difference is that Riche-Williamson proved a true theorem, built on the
geometric Satake equivalence [Lus5, Gin, BeDr, MiVi] between representations of G(Fq)
and some category of perverse sheaves on Gr. Our observations are conjectural, and
are only concerned with numerical/combinatorial coincidences. We lack of a geometric
Calogero-Moser equivalence(∗)...

Acknowledgements. I wish to thank warmly the Spetses team (Michel Broué, Olivier
Dudas, Gunter Malle, Jean Michel and Raphaël Rouquier), from which I learnt most of
what I know on representation theory of finite reductive groups, and for the hours and
hours of passionate discussions we had together.

SET-UP

1. General notation

Throughout this paper, we will abbreviate ⊗C as ⊗.
If X is a quasi-projective scheme of finite type over an algebraically closed field, we de-

note by Xred its reduced subscheme. By an algebraic variety, we mean a quasi-projective
reduced scheme of finite type over an algebraically closed field. If X is an algebraic vari-
ety, we denote by Xnor its normalization. If X is affine we denote by C[X] its coordinate
ring.

If X is a complex algebraic variety, we denote by Hj(X) its j-th singular cohomology
group with coefficients in C. If X carries a regular action of a torus T, we denote by
Hj

T(X) its j-th T-equivariant cohomology group (still with coefficients in C). Note that
H2•(X) =

⊕
j > 0 H2j(X) is a graded C-algebra and H2•

T (X) =
⊕

j > 0 H2j
T (X) is a graded

H2•
T (pt)-algebra, where pt = Spec(C). We identify H2•

C×(pt) with C[~] in the usual way
(note that H2j+1

T (pt) = 0 for all j). If Y is another complex variety endowed with a
regular T-action and if ϕ : Y→ X is a T-equivariant morphism of varieties, we denote
by ϕ∗ : H•T(X) −→ H•T(Y) the induced morphism in equivariant cohomology.

(∗)Recent works of Dudas-Rouquier relate the category of coherent sheaves on the Hilbert scheme of points
in the plane (which is diffeomorphic to the Calogero-Moser space associated with the symmetric group) and
representations of finite general linear or unitary groups. This work is still unpublished, but the interested
reader might look at numerous videos of some of their talks:
https://www.birs.ca/events/2017/5-day-workshops/17w5003/videos/watch/201710181031-Rouquier.html

https://www.msri.org/workshops/820/schedules/23934

https://www.youtube.com/watch?v=CMBVSJC6EX0
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2. Finite linear group, reflections

Notation. We fix in this paper a finite dimensional C-vector space V and
a finite subgroup W of GLC(V ).

2.A. Reflections, hyperplanes. — We set ε : W → C×, w 7→ det(w) and

Ref(W ) = {s ∈W | dimC V
s = n− 1}.

Note that, for the moment, we do not assume that W = 〈Ref(W )〉. We identify C[V ]
(resp. C[V ∗]) with the symmetric algebra S(V ∗) (resp. S(V )).

We denote by A the set of reflecting hyperplanes of W , namely

A= {V s | s ∈ Ref(W )}.
If H ∈ A, we denote by WH its inertia group, i.e. the group consisting of elements
w ∈ W such that w(v) = v for all v ∈ H . We denote by αH an element of V ∗ such that
H = Ker(αH) and by α∨H an element of V such that V = H ⊕ Cα∨H and the line Cα∨H is
WH -stable. We set eH = |WH |. Note that WH is cyclic of order eH and that Irr(WH) =

{ResWWH
εj | 0 6 j 6 e− 1}. We denote by εH,j the (central) primitive idempotent of CWH

associated with the character ResWWH
ε−j , namely

εH,j =
1

eH

∑
w∈WH

ε(w)jw ∈ CWH .

If Ω is aW -orbit of reflecting hyperplanes, we write eΩ for the common value of all the eH ,
where H ∈ Ω. We denote by ℵ the set of pairs (Ω, j) where Ω ∈ A/W and 0 6 j 6 eΩ − 1.
The vector space of families of complex numbers indexed by ℵ will be denoted by Cℵ,
elements of Cℵ will be called parameters. If k = (kΩ,j)(Ω,j)∈ℵ ∈ Cℵ, we define kH,j for all
H ∈ Ω and j ∈ Z by kH,j = kΩ,j0 where Ω is theW -orbit ofH and j0 is the unique element
of {0, 1, . . . , eH − 1} such that j ≡ j0 mod eH .

2.B. Filtration. — Let cod : W → Z>0 be defined by

cod(w) = codimC(V w)

(note that Ref(W ) = cod−1(1)) and we define a filtration F•(CW ) of the group algebra of
W as follows: let

Fj(CW ) =
⊕

cod(w) 6 j

Cw.

Then

C IdV = F0(CW ) ⊂ F1(CW ) ⊂ · · · ⊂ Fn(CW ) = CW = Fn+1(CW ) = · · ·
is a filtration of CW . For any subalgebra A of CW , we set Fj(A) = A ∩Fj(CW ), so that

C IdV = CF0(A) ⊂ F1(A) ⊂ · · · ⊂ Fn(A) = A = Fn+1(A) = · · ·
is also a filtration of A. Write

Rees•F(A) =
⊕
j>0

~jFj(A) ⊂ C[~]⊗A (the Rees algebra),

gr•F(A) =
⊕
j>0

Fj(A)/Fj−1(A).

Recall that gr•F(A) ' Rees•F(A)/~Rees•F(A).
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3. Rational Cherednik algebra at t = 0

Notation. Throughout this paper, we fix a parameter k ∈ Cℵ.

3.A. Definition. — We define the rational Cherednik algebra Hk to be the quotient of the
algebra T(V ⊕V ∗)oW (the semi-direct product of the tensor algebra T(V ⊕V ∗) with the
group W ) by the relations

(3.1)


[x, x′] = [y, y′] = 0,

[y, x] =
∑
H∈A

eH−1∑
j=0

eH(kH,j − kH,j+1)
〈y, αH〉 · 〈α∨H , x〉
〈α∨H , αH〉

εH,j ,

for all x, x′ ∈ V ∗, y, y′ ∈ V . Here 〈 , 〉 : V × V ∗ → C is the standard pairing. The
first commutation relations imply that we have morphisms of algebras C[V ] → Hk and
C[V ∗]→ Hk. Recall [EtGi, Theo. 1.3] that we have an isomorphism of C-vector spaces

(3.2) C[V ]⊗ CW ⊗ C[V ∗]
∼−→ Hk

induced by multiplication (this is the so-called PBW-decomposition).

Remark 3.3. — Let (lΩ)Ω∈A/W be a family of complex numbers and let k′ ∈ Cℵ be defined
by k′Ω,j = kΩ,j + lΩ. Then Hk = Hk′ . This means that there is no restriction to generality if
we consider for instance only parameters k such that kΩ,0 = 0 for all Ω, or only parameters
k such that kΩ,0 + kΩ,1 + · · ·+ kΩ,eΩ−1 = 0 for all Ω (as in [BoRo2]). �

3.B. Calogero-Moser space. — We denote by Zk the center of the algebra Hk: it is well-
known [EtGi, Theo 3.3 and Lem. 3.5] that Zk is an integral domain, which is integrally
closed. Moreover, it contains C[V ]W and C[V ∗]W as subalgebras [Gor1, Prop. 3.6] (so it
contains P = C[V ]W ⊗ C[V ∗]W ), and it is a free P-module of rank |W |. We denote by
Zk the affine algebraic variety whose ring of regular functions C[Zk] is Zk: this is the
Calogero-Moser space associated with the datum (V,W, k). It is irreducible and integrally
closed.

We set P = V/W ×V ∗/W , so that C[P] = P and the inclusion P ↪→ Zk induces a finite
and flat morphism of varieties

Υk : Zk −→ P.

Using the PBW-decomposition, we define a C-linear map ΩHk : Hk −→ CW by

ΩHk(fwg) = f(0)g(0)w

for all f ∈ C[V ], g ∈ C[V ∗] and w ∈ CW . This map is W -equivariant with respect to the
action on both sides by conjugation, so it induces a well-defined C-linear map

Ωk : Zk −→ Z(CW ).

Recall from [BoRo2, Cor. 4.2.11] that Ωk is a morphism of algebras, and that

(3.4) Zk is smooth if and only if Ωk is surjective.

The “only if” part is essentially due to Gordon [Gor1, Cor. 5.8] (but the reader must see
take [BoRo2, Prop. 9.6.6 and (16.1.2)] into account for translating Gordon’s result in terms
of Ωk) while the “if” part follows from the work of Bellamy, Schedler and Thiel [BeScTh,
Cor. 1.4].
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3.C. Other parameters. — Let C denote the space of maps Ref(W ) → C which are
constant on conjugacy classes of reflections. The element∑

(Ω,j)∈ℵ

∑
H∈Ω

(kH,j − kH,j+1)eHεH,j

of Z(CW ) is supported only by reflections, so there exists a unique map ck ∈ C such that∑
(Ω,j)∈ℵ

∑
H∈Ω

(kH,j − kH,j+1)eHεH,j =
∑

s∈Ref(W )

(ε(s)− 1)ck(s)s.

Then the map Cℵ → C, k 7→ ck, is linear and surjective. With this notation, we have

(3.5) [y, x] =
∑

s∈Ref(W )

(ε(s)− 1) ck(s)
〈y, αs〉 · 〈α∨s , x〉
〈α∨s , αs〉

s,

for all y ∈ V and x ∈ V ∗. Here, αs = αV s and α∨s = α∨V s .

3.D. Extra-structures on the Calogero-Moser space. — The Calogero-Moser space Zk is
endowed with a C×-action, a Poisson bracket and an Euler element which are described
below.

3.D.1. Grading, C×-action. — The algebra T(V ⊕V ∗)oW can be Z-graded in such a way
that the generators have the following degrees

deg(y) = −1 if y ∈ V ,
deg(x) = 1 if x ∈ V ∗,
deg(w) = 0 if w ∈W .

This descends to a Z-grading on Hk because the defining relations (3.1) are homogeneous.
Since the center of a graded algebra is always graded, the subalgebra Zk is also Z-graded.
So the Calogero-Moser space Zk inherits a regular C×-action. Note also that by definition
P = C[V ]W ⊗ C[V ∗]W is clearly a graded subalgebra of Zk.

3.D.2. Poisson structure. — Let t ∈ C. One can define a deformation Ht,k of Hk as fol-
lows: Ht,k is the quotient of the algebra T(V ⊕ V ∗) oW by the relations

(3.6)


[x, x′] = [y, y′] = 0,

[y, x] = t〈y, x〉+
∑
H∈A

eH−1∑
j=0

eH(kH,j − kH,j+1)
〈y, αH〉 · 〈α∨H , x〉
〈α∨H , αH〉

εH,j ,

for all x, x′ ∈ V ∗, y, y′ ∈ V . It is well-known [EtGi, Theo 1.3] that the PBW decomposition
(as in (3.2)) still holds so that the family (Ht,k)t∈C is a flat deformation of Hk = H0,k. This
allows to define a Poisson bracket { , } on Zk as follows: if z1, z2 ∈ Zk, we denote by zt1,
zt2 the corresponding element of Ht,k through the PBW decomposition and we define

{z1, z2} = lim
t→0

[zt1, z
t
2]

t
.

Finally, note that

(3.7) The Poisson bracket is C×-equivariant.



8 CÉDRIC BONNAFÉ

3.D.3. Euler element. — Let (y1, . . . , ym) be a basis of V and let (x1, . . . , xm) denote its
dual basis. As in [BoRo2, §3.3], we set

eu =
m∑
j=1

xjyj +
∑

s∈Ref(W )

ε(s)ck(s)s =
m∑
j=1

xjyj +
∑
H∈A

eH−1∑
j=0

eH kH,jεH,j .

Recall that eu does not depend on the choice of the basis of V . Also

(3.8) eu ∈ Zk, Frac(Zk) = Frac(P)[eu]

and

(3.9) {eu, z} = dz

if z ∈ Zk is homogeneous of degree d (see for instance [BoRo2, Prop. 3.3.3]).

Notation. If ? is one of the above objects defined in this section (Hk, Zk,
ℵ, A, Hk. . . ), we will sometimes denote it by ?(W ) or ?(V,W ) if we need
to emphasize the context.

4. Reflection groups

Recall that, for the moment, we did not assume that W = 〈Ref(W )〉 (this will be as-
sumed only after this section). Let Wref = 〈Ref(W )〉 be the maximal subgroup of W gen-
erated by reflections. Then the set Adepends only on Wref and the finite group W/Wref

acts on ℵ(Wref) and ℵ = ℵ(Wref)/(W/Wref). In other words, giving an element k ∈ ℵ
is equivalent to giving an element k ∈ ℵ(Wref) which is W/Wref -invariant. In this case,
the relations (Hk) only depend on Wref . If we denote by Hk(Wref) the Cherednik algebra
defined with Wref instead of W , then Hk(Wref) is naturally a subalgebra of Hk and, as a
CW -module, Hk = CW ⊗CWref

Hk(Wref). Note also that the finite group W/Wref acts on
Zk(Wref) and on Zk(Wref), and that

(4.1) Zk = Zk(Wref)
W/Wref and Zk = Zk(Wref)/(W/Wref).

We deduce from this the following facts:

Proposition 4.2. — Let q : Zk(Wref) −→ Zk denote the quotient map. Then:

(a) We have ZC×
k = q(Zk(Wref)

C×) and q−1(Zk(Wref)
C×) = ZC×

k .
(b) The morphism q induces isomorphisms

q∗ : H•(Zk)
∼−→ H•(Zk(Wref))

W/Wref

and q∗ : H•C×(Zk)
∼−→ H•C×(Zk(Wref))

W/Wref .

Proof. — (a) follows since q is a finite morphism and since an action of C× on a finite set
is necessarily trivial. (b) is a classical property of cohomology [Bre, Theo. III.2.4].
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Continuing this reduction, we denote by W (k) the subgroup of Wref generated by the
reflections s ∈ Ref(W ) such that ck(s) 6= 0. It is a normal subgroup of W and Wref . Also,
the formula (3.5) shows that, as a CW -module, Hk = CW ⊗CWref

Hk[(Wref). Here, k[ ∈
Cℵ(W (k)) is such that cW (k)

k[
∈ C(W (k)) is the restriction of ck to Ref(W (k)). Therefore, as

above, we have

(4.3) Zk = Zk[(W (k))W/W (k) and Zk = Zk[(W (k))/(W/W (k)).

We deduce from this the following facts:

Proposition 4.4. — Let q[ : Zk[(W (k)) −→ Zk denote the quotient map. Then:

(a) We have ZC×
k = q[(Zk[(W (k))C

×
) and (q[)−1(Zk[(W (k))C

×
) = ZC×

k .
(b) The morphism q[ induces isomorphisms

q[∗ : H•(Zk)
∼−→ H•(Zk[(W (k)))W/W (k)

and q[∗ : H•C×(Zk)
∼−→ H•C×(Zk(W (k)))W/W (k).

Even though the case where k = 0 serves as a base of our conjectures/questions, the
really interesting case is when W (k) = W : equations (4.3) and Proposition 4.4 help us
to recover properties of Zk(W ) from those of Zk(W (k)). For instance, Etingof-Ginzburg
proved that, if Zk is smooth, then W = W (k) (see [EtGi, Prop. 3.10]).

5. Braid group, Hecke algebra

Hypothesis and notation. From now on, and until the end of this paper,
we assume that

W = 〈Ref(W )〉
and we fix k ∈ Cℵ. We set

Vreg = V \
⋃
H∈A

H

and we recall that Vreg is the set of elements of V whose stabilizer in W is
trivial (this is Steinberg’s Theorem: see for instance [Bro1, Theo. 4.7]).

We fix v0 ∈ Vreg and we denote by v̄0 its image in Vreg/W . We set

B = π1(Vreg/W, v̄0) and P = π1(Vreg, v0).

Then the group B (resp. P) is called the braid group (resp. the pure
braid group) of W .

5.A. Generators of B and P. — If H ∈ A, we denote by sH the generator of WH of
determinant ζeH = exp(2iπ/eH) and by sH a braid reflection aroundH (as defined in [Bro1,
Def. 4.13]: they are called generator of the monodromy around H in [BrMaRo]). Through
the exact sequence

(5.1) 1 −→ P −→ B −→W −→ 1
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induced by the unramified covering Vreg → Vreg/W , the image of sH is sH and so seHH ∈ P.
Moreover,

(5.2) B = 〈(sH)H∈A〉 and P = 〈(seHH )H∈A〉.

5.B. Hecke algebra. — Let F denote the number field generated by the traces of the
elements of W (it is generally called the character field of W ). It is known [Ben, Bes]
that the algebra FW is split. We denote by O the ring of algebraic integers in F and let
R = O[qC] be the group algebra of (C,+) over O, denoted with an exponential notation:
namely, we have qaqa

′
= qa+a′ for all a, a′ ∈ C. We set q = q1. The Hecke algebra with

parameter k, denoted by Hk(W ), is the quotient of the group algebra RB of B over R by
the ideal generated by the elements

eH−1∏
j=0

(sH − ζjeHqkH ,j),

where H runs over A.
We denote by TH the image of sH in Hk(W ). We have

(5.3)
eH−1∏
j=0

(TH − ζjeHqkH ,j) = 0.

If q is a non-zero complex number, let Hk(W, q) denote a specialization of Hk(W ) at q.
Namely, we choose a complex logarithm v of q and we denote by evv : R → C the
morphism of C-algebras such that qa 7→ qa = exp(av) for all a ∈ C. Then Hk(W, q) is
the C-algebra obtained by specialisation through evv. This is clearly an abuse of notation,
as the specialization might depend on the choice of the logarithm v of q (for instance
whenever the parameter k has some non-integer values). But it turns out that, in this
survey, this notation will occur only whenever the specialization does not depend on this
choice.

Recall that Hk(W ) is a freeR-module of rank |W | (see [Ari], [ArKo], [BrMaRo], [Cha1],
[Cha2], [Cha3], [Mar1], [Mar2], [Mar3], [MaPf] and [Tsu]) such that its specialization
Hk(W, 1) is just the group algebra CW of W over C.

5.C. Hecke families. — Whenever kΩ,j ∈ Z for all (Ω, j) ∈ ℵ, Broué and Kim [BrKi]
defined a partition of Irr(W ) into families, which they call Rouquier k-families. In [BoRo2,
§6.5], Rouquier and the author extended (easily) the definition of these families to ger-
eral parameters k, and decided to call them Hecke k-families. We will stick to this last
terminology in this paper. Let us explain this definition.

LetK denote the fraction field ofR. TheK-algebraKHk(W ) is split semisimple [Mal3,
Theo. 5.2] so, by Tits deformation Theorem [GePf, Theo. 7.4.6], it is isomorphic to the
group algebra KW . Therefore, its irreducible characters are in bijection with Irr(W ). If
χ ∈ Irr(W ), we denote by χk the corresponding irreducible character of KHk(W ). Now,
let Rcyc denote the localization of R defined by

Rcyc = R[
(
(1− qa)−1

)
a∈C\{0}].

We say the χ and χ′ are in the same Hecke k-family if there is a primitive central idempotent
b of RcycHk(W ) such that χk(b) = χ′k(b) 6= 0.

We denote by FamHec
k (W ) the set of Hecke k-families.
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5.D. Calogero-Moser families. — Calogero-Moser families were defined by Gordon us-
ing baby Verma modules [Gor1, §4.2 and §5.4]. We explain here an equivalent definition
given in [BoRo2, §7.2]. If χ ∈ Irr(W ), we denote by ωχ : Z(CW ) → C its central charac-
ter (i.e., ωχ(z) = χ(z)/χ(1) is the scalar by which z acts on an irreducible representation
affording the character χ). We denote by eχ (or eWχ if necessary) the primitive central
idempotent such that ωχ(eχ) = 1. We say that two irreducible characters χ and χ′ of W
belong to the same Calogero-Moser k-family if ωχ ◦Ωk = ωχ′ ◦Ωk. If F is a subset of Irr(W ),
we set

eF =
∑
χ∈F

eχ ∈ Z(CW ).

Finally, we denote by FamCM
k (W ) the set of Calogero-Moser k-families. Then [BoRo2,

(16.1.2)]

(5.4) Im(Ωk) =
⊕

F∈FamCM
k (W )

CeF

and Im(Ωk) can be identified with the algebra of functions on ZC×
k .

In other words, this defines a surjective map

zk : Irr(W ) −→ ZC×
k

whose fibers are the Calogero-Moser k-families. If p ∈ ZC×
k , we denote by Fp (or Fkp if we

need to emphasize the parameter) the corresponding Calogero-Moser k-family. The next
conjecture can be found in [Mart1]:

Conjecture 5.5 (Martino). — Let k] be the parameter (kΩ,−j)(Ω,j)∈ℵ ∈ Cℵ,
where the index j is viewed modulo eΩ. Then each Calogero-Moser k-family is a
union of Hecke k]-families.

Theorem 5.6. — Conjecture 5.5 is known to hold in the following cases(∗):

(1) If W is of type G(de, e, r), with d, e, r > 1 and e odd whenever r = 2.
(2) If W is of type G4, G12, G13, G20, G22, G23 = W(H3) or G28 = W(F4).
(3) If W is of type G5, G6, G7, G8, G9, G10, G14, G15, G16 or G24 for generic values of k.

Proof. — For (1), see [Mart1, Bel2, Mart2]. For (2) and (3), see [Thi] (except for G28 =
W(F4): for this one, see [BoTh]).

(∗)We refer to Shephard-Todd notation for irreducible complex reflection groups [ShTo].
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PART I
QUESTIONS ABOUT CALOGERO-MOSER SPACES

6. Cohomology

6.A. Localization. — We denote by ik : ZC×
k ↪→ Zk the closed immersion (here, ZC×

k
denotes the reduced zero-dimensional variety of C×-fixed points). As explained in §5.D,
we have a natural isomorphism of algebras

(6.1) HC×(ZC×
k ) ' C[~]⊗ Im(Ωk).

So we view the map i∗k as a morphism of algebras

i∗k : HC×(Zk) −→ C[~]⊗ Im(Ωk).

We can now state the following conjecture (see [BoRo2, §16.1] and [BoSh, Conj. 3.3]).

Conjecture 6.2. — With the above notation, we have:
(a) If i > 0, then H2i+1(Zk) = 0.
(b) Im(i∗k) = ReesF(Im(Ωk)).

Recall from standard arguments [BoSh, Prop. 2.4] that this conjecture would imply a
description of both the cohomology and the equivariant cohomology of Zk:

Proposition 6.3. — Assume that Conjecture 6.2 holds. Then:

(a) If i > 0, then H2i+1
C× (Zk) = 0.

(b) H2•
C×(Zk) ' ReesF(Im(Ωk)) as C[~]-algebras.

(c) H2•(Zk) ' grF(Im(Ωk)).

Theorem 6.4. — Conjecture 6.2 is known to hold in the following cases:
(a) If k = 0.
(b) If dimV = 1.
(c) If Zk is smooth.

Proof. — (a) follows from the fact that Z0 = (V × V ∗)/W is contractible and Im Ω0 = C.
For (b), see [BoRo2, Theo. 18.5.8] and [BoSh, Prop. 1.6]. For (c), see [BoSh, Theo. A].

Example 6.5. — It might be tempting to conjecture that the Calogero-Moser space Zk is
rationally smooth and p-smooth if p is a prime number not dividing |W |. Indeed, Zk
is a deformation of Z0 = (V × V ∗)/W which tends to be smoother and smoother as k
becomes more and more generic. However, both statements are false in general:
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(1) If dimV = 1 and m = |W | > 2 (so that ℵ = ((0, j))0 6 j 6 m−1 and we write kj = k0,j

for simplicity), then it follows from [BoRo2, Theo. 18.2.4] that

Zk =
{

(x, y, z) ∈ C3 |
m−1∏
j=0

(z −mkj) = xy
}
.

Now, if p is a prime number not dividing m and smaller than m (this always exists
if m > 3), and if we choose k such that k0 = k1 = · · · = kp−1 = 0 and kp = kp+1 =
· · · = km−1 = 1, then

Zk = {(x, y, z) ∈ C3 | zp(z −m)m−p = xy}

contains a simple singularity of type Ap−1 and so Zk is rationally smooth but not
p-smooth while Z0 = C2/µm is p-smooth because p does not divide m.

(2) If W is of type B2 and (kΩ,0, kΩ,1) = (kΩ′,0, kΩ′,1) and kΩ,0 6= kΩ,1 (where Ω and
Ω′ are the two orbits of reflecting hyperplanes), then Zk admits a unique singular
point and the singularity is equivalent to the singularity at 0 of the orbit closure of
the minimal nilpotent orbit of the Lie algebra sl3(C) (see [BBFJLS, Theo. 1.3(b)]): it
is well-known that this orbit closure is not rationally smooth. �

6.B. Morphisms between Calogero-Moser spaces. — Let (V ′,W ′) be another pair con-
sisting of a finite dimensional complex vector space and a finite subgroupW ′ ⊂ GLC(V ′).
We fix a parameter k′ ∈ Cℵ(V ′,W ′) and, in this subsection, we will denote by a prime ?′ the
object ? defined using (V ′,W ′) instead of (V,W ), i.e. the object ?(V ′,W ′). For instance,
Z′k′ = Zk′(V

′,W ′) and ℵ′ = ℵ(V ′,W ′).

Hypothesis. We assume in this subsection that we are given a C×-
equivariant morphism of varieties ϕ : Z′k′ → Zk.

We denote by ϕfix : Z′C
×

k′ → ZC×
k the induced map. Then ϕfix induces a morphism of

algebras

ϕ#
fix : Im Ωk −→ Im Ω′k

′

through the formula

ϕ#
fix(eFp) =

∑
p′∈ϕ−1

fix (p)

e′F′
p′
.

The following proposition should be compared with [BoMa, Cor. 1.5]:

Proposition 6.6. — Assume that Conjecture 6.2 holds for both Zk and Z′k′ . Then

ϕ#
fix(Fj Im Ωk) ⊂ F′j Im Ω′k

′

for all j.



14 CÉDRIC BONNAFÉ

Proof. — The maps ϕ and ϕfix induce maps between equivariant cohomology groups
which we denote by

ϕ∗ : H•C×(Zk) −→ H•C×(Z′k′)

and ϕ∗fix : H•C×(ZC×
k ) −→ H•C×(Z′C

×
k′ ).

The functoriality properties of cohomology imply that the diagram

H•C×(Zk)
ϕ∗ //

i∗k

��

H•C×(Z′k′)

i′∗k′

��

H•C×(ZC×
k )

ϕ∗fix // H•C×(Z′C
×

k′ )

is commutative. Recall from (6.1) that we identify H•C×(ZC×
k ) (resp. H•C×(Z′C

×
k′ )) with

C[~] ⊗ Im Ωk (resp. C[~] ⊗ Im Ω′k
′
). Through this identification, the map ϕ∗fix becomes

IdC[~]⊗ϕ
#
fix by construction. Therefore, the above commutative diagram yields a commu-

tative diagram

H•C×(Zk)
ϕ∗ //

i∗k

��

H•C×(Z′k′)

i′∗k′

��

C[~]⊗ Im Ωk
IdC[~]⊗ϕ

#
fix // C[~]⊗ Im Ω′k

′
.

So IdC[~]⊗ϕ
#
fix(Im i∗k) ⊂ Im i′∗k′ . As we assume that Conjecture 6.2 holds for both Zk and

Z′k′ , this is exactly the statement of the proposition.

Remark 6.7. — In the next section, we propose some conjecture which would give many
examples of morphisms between Calogero-Moser spaces. In all the cases where these
conjectures are proved, the above Proposition 6.6 gives a highly non-trivial link between
the character tables of W and W ′ (see for instance [BoMa, Cor. 4.22] for the case where
W = G(l, 1, n)). �

7. Symplectic leaves and fixed points

If τ ∈ NGLC(V )(W ) has finite order and satisfies τ(k) = k, then τ acts on the Calogero-
Moser space Zk. We are interested in this section in the variety of fixed points Zτ

k of τ
(endowed with its reduced structure) and its symplectic leaves. Since W acts trivially on
Zk, the action of τ on Zk depends only on its coset Wτ .

We say that τ is W -full if dim(V τ ) = maxw∈W dim(V wτ ) (see [Bon4, §1.F.4]). Recall
that τ is W -full if and only if the natural map V τ −→ (V/W )τ is onto [Bon4, (3.2)], (the
argument is due to Springer [Spr]). Since W acts trivially on Zk, we may replace τ by
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any wτ and assume that τ is W -full. Therefore, we will work in this section under the
following hypothesis:

Hypothesis and notation. We fix in this section, and only in this sec-
tion, a W -full element τ of finite order in NGLC(V )(W ) and we assume
that τ(k) = k.

As in [Bon4], let Wτ denote the quotient Σ/Π, where Σ (resp. Π) is the setwise (resp.
pointwise) stabilizer of V τ . A parabolic subgroup P of W is called τ -split if P is the
stabilizer in W of a vector belonging to V τ . Note that a τ -split parabolic subgroup is
τ -stable. If P is a τ -split parabolic subgroup of W , we set

NWτ (Pτ ) = NWτ (Pτ )/Pτ .

Then NWτ (Pτ ) acts faithfully on the vector space (V P )τ . So one can define Calogero-
Moser spaces associated with the pair ((V P )τ ,NWτ (Pτ )), even though NWτ (Pτ ) is not
necessarily a reflection group for its action on (V P )τ .

7.A. Symplectic leaves. — Brown-Gordon [BrGo, §3.5] defined a stratification of any
complex affine Poisson variety into symplectic leaves. They also proved that the Calogero-
Moser space Zk has only finitely many symplectic leaves [BrGo, Theo. 7.8]. As explained
in [Bon4, §4.A], this implies that the variety Zτ

k admits a stratification into symplectic
leaves and that there are only finitely many of them. We denote by Symp(Zτ

k ) the set
of its symplectic leaves. Such a symplectic leaf is called τ -cuspidal if it has dimension 0

(we also talk about τ -cuspidal points(∗)). Note that this notion can be defined even if τ is
not W -full. Let Cusτk(V,W ) denote the set of pairs (P, p) where P is a τ -split parabolic
subgroup of W and p is a τ -cuspidal point of ZkP (V/V P , P ) (here kP is the restriction of
k to ℵ(V/V P , P )).

Then Wτ acts on Cusτk(V,W ) and the next result is proved in [Bon4, Theo. A] (when-
ever τ = IdV , it is independently due to Bellamy [Bel3] and Losev [Los]).

Theorem 7.1. — Recall that τ is W -full. Then there is a natural bijection

Symp(Zτ
k )

∼−→ Cusτk(V,W )/Wτ .

Moreover, the dimension of the symplectic leaf associated with the Wτ -orbit of (P, p) through this
bijection is equal to 2 dim(V P )τ .

We refer to [Bon4, Lem. 8.4] for the explicit description of the bijection: if (P, p) ∈
Cusτk(V,W ), we denote by SP,p its associated symplectic leaf. Recall also [Bon4, Rem. 4.2]
that all symplectic leaves are C×-stable.

(∗)We can also say that a Calogero-Moser k-family is τ -cuspidal if it is associated to a τ -cuspidal point. Of
course, a τ -cuspidal family is τ -stable.
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7.B. Normalization. — Let (P, p) ∈ Cusτk(V,W ). Then SP,p carries a Poisson structure
and so does its normalization SP,p

nor (see [Kal]). We proposed in [Bon4, Conj. B] the
following conjecture:

Conjecture 7.2. — There exists a parameter kP,p ∈ Cℵ((V P )τ ,NWτ (Pτ )) such
that the varieties SP,p

nor and ZkP,p((V
P )τ ,NWτ (Pτ )) are isomorphic as Pois-

son varieties endowed with a C×-action.

Theorem 7.3. — Conjecture 7.2 is known to hold in the following cases:

(a) If k = 0.
(b) If Zk is smooth.
(c) If W is a Weyl group of type B (i.e. C) and τ = IdV .
(d) If W is of type D and τ is a diagram automorphism.
(e) If W is dihedral and τ is the non-trivial diagram automorphism.
(f) If W is of type G4.

Proof. — See [Bon4, Prop. 6.7 and §9] for more details: this relies on works of Bellamy-
Maksimau-Schedler [BeMaSc], Maksimau and the author [BoMa] and Thiel and the au-
thor [BoTh].

7.C. Regular case. — We say that the element τ of NGLC(V )(W ) is regular if V τ
reg 6= ∅.

In this case, Zτ
k admits a unique irreducible component of maximal dimension [Bon5,

Prop. 2.4]: we denote by by (Zτ
k )max. It has dimension 2 dim(V τ ). The following result

has been proved in [Bon5, Theo. 2.8] (here, if χ is a τ -stable character of W , we choose an
extension χ̃ of χ to W 〈τ〉):

Theorem 7.4. — Assume that τ is a regular element. Let p ∈ ZC×
k be such that τ(p) = p and∑

χ∈Fτp |χ̃(τ)|2 6= 0. Then p belongs to (Zτ
k )max.

Moreover, it is conjectured in [Bon5, Conj. 2.6] that the converse holds:

Conjecture 7.5. — Assume that τ is a regular element. Let p ∈ ZC×
k be such

that τ(p) = p. Then p belongs to (Zτ
k )max if and only if

∑
χ∈Fτp |χ̃(τ)|2 6= 0.

Note that Conjecture 7.5 holds for W = Sn by [Bon5, Exam. 5.7].
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8. Special features of Coxeter groups

Hypothesis and notation. We assume in this section, and only in this
section, that there exists a W -stable R-vector subspace VR of V such that
V = C ⊗R VR as a W -module, that k takes only real values and that
ck(s) > 0 for all s ∈ Ref(W ).

First, note that the reflections of W have order 2 (so that eH = 2 for all H ∈ A) and that
we have a bijection between Ref(W ) and A. This implies that

ck(s) = kH,1 − kH,0,
where H is the reflecting hyperplane of s. Note that k = k].

8.A. Lusztig families. — If χ ∈ Irr(W ), we denote by sch
(k)
χ ∈ O[qR] the Schur ele-

ment associated with the irreducible character χk of the Hecke algebra Hk(W ) (see [GePf,
§7.2]): since R is an ordered group, we can set a(k)

χ = val sch
(k)
χ and A

(k)
χ = deg sch

(k)
χ :

this defines two maps a(k), A(k) : Irr(W ) → R. Using the map a(k) and the notion
of J-induction, Lusztig [Lus8, §22] defined the notion of k-constructible character (or ck-
constructible character) of W . Let Irrk(W ) denote the graph defined as follows:
• The set of vertices of Irrk(W ) is Irr(W ).
• There is an edge between two vertices if they both occur in a same k-constructible

character.
A Lusztig k-family is a subset of Irr(W ) consisting of the vertices of a connected compo-
nent of Irrk(W ). We denote by FamLus

k (W ) the set of Lusztig k-families of W . It turns
out that

(8.1) FamHec
k (W ) = FamLus

k (W )

(see [Chl] and [Lus8]). Martino’s Conjecture 5.5 has a more precise version in the Coxeter
case:

Conjecture 8.2 (Gordon-Martino). — If W is a Coxeter group, then

FamCM
k (W ) = FamLus

k (W ).

It follows from the definition [Lus8] that

(8.3) the two maps a(k), A(k) : Irr(W )→ R are constant on Lusztig k-families.

So the next proposition is a strong argument in favor of Conjecture 8.2:

Proposition 8.4. — The map a(k) + A(k) : Irr(W ) → R is constant on Calogero-Moser k-
families.

Proof. — If χ and χ′ belong to the same Calogero-Moser family, then ωχ(Ωk(eu)) =

ωχ′(Ω
k(eu)). But the scalar ωχ(Ωk(eu)) is, up to a suitable renormalization by a fixed

affine transformation of R, equal to a(k)
χ +A

(k)
χ (see [BoRo2, Lem. 7.2.1] and [BrMi, 4.21]).

So the result follows.
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Remark 8.5. — Using the Kazhdan-Lusztig basis of the Hecke algebra Hk(W ) and the
associated partition of W into two-sided cells [Lus8, §8] (see also [Bon2, Def. 6.1.4]),
Lusztig defined a partition of Irr(W ) into Kazhdan-Lusztig k-families as follows: two ir-
reducible characters χ and χ′ of W belong to the same Kazhdan-Lusztig k-family if χk
and χ′k both occur in the left module associated to a same two-sided cell. Let FamKL

k (W )
denote the set of Kazhdan-Lusztig k-families of W .

Lusztig conjectured [Lus8, §23] that FamLus
k (W ) = FamKL

k (W ). This conjecture is
known to hold in the following cases:
• If ck is constant [Lus8, Prop. 23.3] (note that this covers the case where W has only

one conjugacy class of reflections, i.e. if W is of type ADE or I2(2m+ 1)).
• If W is dihedral [Lus8].
• If W is of type F4 [Gec].
• If W is of type Bn and ck(t) > (n − 1)ck(s1), where the Coxeter graph is given by

i i i it s1 s2 sn−1

· · ·

(see [BoIa] and [Bon1]).
Note that this conjecture involves only the Hecke algebra and is not related to the geom-
etry of the Calogero-Moser space and the theme of this paper. �

8.B. Cuspidal families. — Lusztig also introduced the important notion of τ -cuspidal
Lusztig k-family [Lus6, §8.1] (note that the definition in [Lus6, §8.1] is for the equal pa-
rameter case, but the definition can easily be extended to general parameters, as explained
in [BeTh, §2.5]). As there is also a notion of τ -cuspidal Calogero-Moser family (see §7.A),
it is natural to expect that the equality predicted by Gordon-Martino conjecture preserves
this feature:

Conjecture 8.6. — If W is a finite Coxeter group, and if τ ∈ NGLR(VR)(W ) is
W -full and satisfies τ(k) = k, then the τ -cuspidal Lusztig k-families coincide
with the τ -cuspidal Calogero-Moser k-families.

If τ = IdV , this conjecture has been proposed by Bellamy and Thiel [BeTh, Conj. B].
The τ -cuspidal Lusztig k-families have been classified (see [Lus6, §8.1] for the equal pa-
rameter case and [BeTh, §6, §7] for the unequal parameter case) and it turns out that there
is at most one τ -cuspidal Lusztig k-family. So Conjecture 8.6 would imply that there is at
most one τ -cuspidal point in Zk whenever W is a Coxeter group [BeTh, Conj. D].

Theorem 8.7. — Conjectures 8.2 and 8.6 are known to hold for W of type A, B = C, D, I2(m),
H3 or F4 (with the restriction that τ = IdV if W is of type F4).

Proof. — For Conjecture 8.2, see [Gor1, Theo. 5.6] for typeA, see [GoMa] for typesB = C
and D, see [Bel2] for type I2(m) and [BoTh] for types H3 and F4.

For Conjecture 8.6, see [BeTh, Theo. A] for types A, B = C, D and I2(m), and [BoTh]
for types H3 and F4.
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PART II
UNIPOTENT REPRESENTATIONS OF FINITE REDUCTIVE GROUPS

Throughout this part, we will only consider algebraic varieties and algebraic groups
defined over an algebraic closure of a finite field. If G is an algebraic group, we denote by
Z(G) its center. If S is a torus, we denote by Y (S) its lattice of one-parameter subgroups.

Let Groups denote the class of triples (q,G, F ) where:
• q is a power of some prime number p.
• G is a connected reductive group defined over an algebraic closure F of the finite

field Fp with p elements.
• F : G → G is a Frobenius endomorphism of G endowing G with a rational struc-

ture over the finite subfield Fq of F with q elements.
This part provides a quick survey on unipotent representations of the finite reductive
group GF (where (q,G, F ) ∈ Groups) and their associated structures (cuspidal represen-
tations, Harish-Chandra theory, d-Harish-Chandra theory...)(∗)

Hypothesis and notation. We fix in this part, and only in this part,
a triple G = (q,G, F ) ∈ Groups. We denote by p the unique prime
number dividing q and by F the algebraic closure of Fp over which G is
defined. We fix a prime number ` different from p and we denote by Q̀ an
algebraic closure of Q̀ . Note that G is not necessarily split over Fq.

If X is an algebraic variety over F, we denote by Hj
c(X) its j-th `-adic cohomology

group with compact support with coefficients in Q̀ : it is a finite dimensional Q̀ -vector
space. We set H•c(X) =

⊕
j>0 Hj

c(X).
We fix an F -stable Borel subgroup B of G and an F -stable maximal torus T of B. Let

B = G/B denote the flag variety. Let W = NG(T)/T denote the Weyl group of G. It
is acted on by F and we denote by τ the automorphism of W induced by F . If O is a
G-orbit in B×B, we denote by

XO = {gB ∈B | (gB, F (g)B) ∈ O}.
Then XO is called a Deligne-Lusztig variety: it is acted on the left by the finite group GF .
Hence, the vector spaces Hj

c(XO) inherits a structure of Q̀ GF -module. An irreducible
representation of GF (over Q̀ ) is called unipotent if it appears in such a Q̀ GF -module,
for some O and some j. The set of isomorphism classes of irreducible unipotent repre-
sentations of GF will be denoted by Unip(G). We define a unipotent representation of
GF to be a direct sum of irreducible unipotent representations.

We define a Levi subgroup of G to be a triple L = (q,L, F ) where L is an F -stable Levi
complement of a parabolic subgroup of G. In this case, we set WG(L) = NGF (L)/LF :
this group acts on Unip(L) and, if λ ∈ Unip(L), we denote by WG(L, λ) its stabilizer.

The set of unipotent representations admits several interesting partitions, which are re-
lated to the different problems one may consider: Harish-Chandra series for an algebraic
parametrization, d-Harish-Chandra series for blocks in transverse characteristic, fami-
lies for computing character values through the theory of character sheaves... All these
partitions interconnect in a very subtle way.

(∗)Our formalism here does not include the Suzuki and Ree groups
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9. Harish-Chandra theories

9.A. Classical Harish-Chandra theory. — If L is an F -stable Levi complement of an
F -stable parabolic subgroup P of G, we denote by

RG
L⊂P : Q̀ LF -mod −→ Q̀ GF -mod

M 7−→ IndGF

PF M̃

the Harish-Chandra induction functor [DiMi1, Chap. 4]. Here, M̃ denotes the inflation of
M through the surjective morphism PF � LF . If we denote by UP the unipotent radical
of P, then RG

L⊂P admits a left and right adjoint functor ∗RG
L⊂P given by

∗RG
L⊂P : Q̀ GF -mod −→ Q̀ LF -mod

N 7−→ NUF
P .

The functor ∗RG
L⊂P is called the Harish-Chandra restriction. Note that both functors send

a unipotent representation to a unipotent representation. An irreducible unipotent rep-
resentation N is called cuspidal if ∗RG

L⊂PN = 0 for any F -stable Levi complement of a
proper F -stable parabolic subgroup P of G. We denote by Unipcus(G) the set of (isomor-
phism classes of) cuspidal unipotent irreducible representations of GF .

It turns out that both Harish-Chandra functors do not depend on the choice of the F -
stable parabolic subgroup P admitting L as a Levi complement. We denote by Cus(G)
the set of pairs (L, λ), where L = (q,L, F ) and L is an F -stable Levi complement of an
F -stable parabolic subgroup of G, and λ ∈ Unipcus(L). We denote by Unip(G,L, λ)
the set of unipotent irreducible representations occuring in RG

L⊂Pλ, where P is any F -
stable parabolic subgroup admitting L as a Levi complement: this set is called the Harish-
Chandra series associated with the pair (L, λ). This set depends on the pair (L, λ) up to
GF -conjugacy. We denote by Cus(G)/∼ the set of GF -conjugacy classes of elements of
Cus(G). The Harish-Chandra theory can then be summarized as follows [Lus1, §5]:

Theorem 9.1 (Lusztig). — We have

Unip(G) =
⋃̇

(L,λ)∈Cus(G)/∼

Unip(G,L, λ),

where ∪̇ means a disjoint union.
Moreover, if (L, λ) ∈ Cus(G), with L= (q,L, F ) and if P is any F -stable parabolic subgroup

admitting L as a Levi complement, then:
(a) The group WG(L) is a Weyl group for its action on the lattice

{y ∈ Y (Z(L)) | F (y) = qy}.
Moreover, WG(L, λ) = WG(L).

(b) The endomorphism algebra EndGF RG
L⊂Pλ is isomorphic to a Hecke algebra of the form

HkL(WG(L), q), where kL ∈ ℵ(WG(L)) does not depend on λ (and is integer valued).
(c) The statement (a) induces a bijection HCG,L,λ : IrrWG(L)

∼−→ Unip(G,L, λ). In other
words,

Unip(G) =
⋃̇

(L,λ)∈Cus(G)/∼

HCG,L,λ
(
IrrWG(L)

)
.
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Example 9.2 (Principal series). — As T is an F -stable maximal torus of the F -stable
Borel subgroup B, we may set T = (q,T, F ) and so there is a Harish-Chandra series
associated with the trivial character (denoted by 1) of TF (indeed, as there is no proper
parabolic subgroup of T, 1 is a cuspidal unipotent representation). Then WG(T) = Wτ

and the injective map HCG,T,1 : Irr(Wτ ) −→ Unip(G) will be simply denoted by HCG.
Its image is called the principal series of unipotent representations of G.

If τ = IdW (i.e., if G/Z(G) is split), then the parameter kT of Theorem 9.1(b) is given
by (kT)H,0 = 1 and (kT)H,1 = 0 for any reflecting hyperplane H of W. This parameter
will be denoted by ksp in the next part. �

9.B. Deligne-Lusztig induction. — For going further, we need to recall the construction
of Deligne-Lusztig induction. If P is a (not necessarily F -stable) parabolic subgroup of
G admitting an F -stable Levi complement L, then we define the variety YP (also called
a Deligne-Lusztig variety) by

YP = {gUP ∈ G/UP | g−1F (g) ∈ UP · F (UP)},

where UP denotes the unipotent radical of P. Then YP inherits a left action of GF and a
right action of LF which commute, endowing the `-adic cohomology groups with com-
pact support Hj

c(YP) with a structure of a (Q̀ GF , Q̀ LF )-bimodule. This allows us to
define a map RG

L⊂P : Z Irr(LF ) −→ Z Irr(GF ) between Grothendieck groups by the for-
mula

RG
L⊂P([M ]) =

∑
k > 0

(−1)j[Hj
c(YP)⊗Q̀ LF M ].

This map is called the Deligne-Lusztig induction and is the shadow of a functor RG
L⊂P :

Db(Q̀ LF -mod) −→ Db(Q̀ GF -mod) between bounded derived categories, which is de-
fined by

RG
L⊂P(M) = H•c(YP)⊗Q̀ LF M.

Note that we work in a semisimple world, so that any complex of Q̀ Γ-modules (where
Γ is a finite group) is quasi-isomorphic to its cohomology: here, H•c(YP) is viewed as a
complex of (Q̀ GF , Q̀ LF )-bimodules whose j-th term is Hj

c(YP) and whose differential
is zero.

If the parabolic subgroup P is F -stable, then the Deligne-Lusztig functor RG
L⊂P is just

the functor induced by the Harish-Chandra functor at the level of derived categories
(this justifies the use of the same notation). BothRG

L⊂P and RG
L⊂P admits adjoints (in two

different significations of adjoint) which we denote by ∗RG
L⊂P and ∗RG

L⊂P and which are
defined by

∗RG
L⊂P(N) = H•c(YP)∗ ⊗Q̀ GF N

and ∗RG
L⊂P([N ]) =

∑
k > 0

(−1)j[Hj
c(YP)∗ ⊗Q̀ GF N ].
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9.C. d-Harish-Chandra theory. — We fix a natural number d > 1 and we denote by ζd a
primitive d-th root of unity. The d-Harish-Chandra theory of Broué-Malle-Michel [BMM1]
is an analogue of Harish-Chandra theory where the F -stable Levi subgroups of F -stable
parabolic subgroups are replaced by a larger class of F -stable Levi subgroups, using
Deligne-Lusztig induction instead of Harish-Chandra induction. Whenever d = 1, we
retrieve the usual Harish-Chandra theory. Let us summarize it.

Let S be a torus over F, endowed with a Frobenius endomorphism F : S → S associ-
ated with an Fq-structure on S. Let Φd denote the d-th cyclotomic polynomial. Then S is
called a Φd-torus if the following two conditions are satisfied:
• S is split over Fqd .
• If S′ is an F -stable subtorus of S different from 1, and if e divides d and is different

from d, then S′ is not split over Fqe .
A Levi subgroup L = (q,L, F ) of G is called d-split if L is the centralizer of an F -stable
Φd-torus of G.

Remark 9.3. — Let L be an F -stable Levi subgroup of G. Then (q,L, F ) is 1-split if and
only if L is the Levi complement of an F -stable parabolic sugroup of G. �

An irreducible unipotent representation N of GF is called d-cuspidal if ∗RG
L⊂P[N ] =

0 for any pair (L,P) where P is a parabolic subgroup of G and L is an F -stable Levi
complement of P which is d-split as a Levi subgroup of G. We denote by Unipdcus(G) the
set of (isomorphism classes of) d-cuspidal irreducible unipotent representations of GF .

We denote by Cusd(G) the set of pairs (L, λ), where L= (q,L, F ) is a d-split Levi sub-
group of G and λ is a d-cuspidal irreducible unipotent representation of LF . We denote
by Unip(G,L, λ) the set of unipotent irreducible representations occuring in RG

L⊂P[λ ],
where P is a parabolic subgroup admitting L as a Levi complement: this set is called
the d-Harish-Chandra series associated with the pair (L, λ). This set depends on the pair
(L, λ) up to GF -conjugacy. We denote by Cusd(G)/∼ the set of GF -conjugacy classes
of elements of Cusd(G). The d-Harish-Chandra theory can then be summarized as fol-
lows [BMM1, Theo. 3.2]:

Theorem 9.4 (Broué-Malle-Michel). — We have

Unip(G) =
⋃̇

(L,λ)∈Cusd(G)/∼

Unip(G,L, λ),

where ∪̇ means a disjoint union.
Moreover, if (L, λ) ∈ Cusd(G) with L= (q,L, F ) and if P is a parabolic subgroup admitting

L as a Levi complement, then:
(a) The group WG(L, λ) is a complex reflection group for its action on

{y ∈ C⊗Z Y (Z(L)) | F (y) = ζdqy}.

(b) There exists a bijection HCG,L,λ
d : IrrWG(L, λ)

∼−→ Unip(G,L, λ) and a sign function
IrrWG(L, λ) −→ {1,−1} intertwining ordinary induction and Lusztig induction [BMM1](∗).
In other words,

Unip(G) =
⋃̇

(L,λ)∈Cusd(G)/∼

HCG,L,λ
d

(
IrrWG(L, λ)

)
.

(∗)Sorry for being somewhat vague in this survey.
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Note that this theorem sounds like a miracle and is proved through a case-by-case
analysis: it would be better explained by the following conjecture (which is true for d = 1
by Theorem 9.1).

Conjecture 9.5 (Broué-Malle-Michel). — Let (L, λ) ∈ Cusd(G) with L =
(q,L, F ). Then there exists a parabolic subgroup P of G, admitting L as a Levi
complement, and such that:

(a) The Q̀ GF -modules Hj
c(YP)⊗Q̀ LF λ and Hj′

c (YP)⊗Q̀ LF λ have no com-
mon irreducible constituent if j 6= j′.

(b) The endomorphism algebra of the complex of Q̀ GF -modules RG
L⊂P(λ) is

isomorphic to a Hecke algebra HkL,λ(WG(L, λ), ζ−1
d q) for some parameter

kL,λ ∈ ℵ(WG(L, λ)).

Of course, Conjecture 9.5 can easily be reduced to the case where G is quasi-simple. In
this case, and for d > 1, the full Conjecture 9.5 is known only whenever d is the Coxeter
number (see Lusztig’s fundamental paper [Lus1], which served as an inspiration for the
conjecture) or whenever G is of typeAd (see [DiMi2]). Part (a) of Conjecture 9.5 is known
if G is of typeA and L is a torus (see [BDR], which relies in an essential way on the work
of Dudas [Dud]). For this part (a), some other cases have been solved by Digne-Michel-
Rouquier [DiMiRo] and Digne-Michel [DiMi2].

For part (b), note also that, in many important cases, a map from the group alge-
bra of the braid group of WG(L, λ) to the endomorphism algebra of the complex of
Q̀ GF -modules RG

L⊂P(λ) has been constructed [BrMi, BrMa2, DiMi2], but it is gener-
ally not known whether it is onto and if it factorizes (exactly) through the Hecke algebra
HkL,λ(WG(L, λ), ζ−1

d q). There are, however, partial results in this direction [BrMi, BrMa2,
DiMi2].

Also, extra-properties that should be satisfied by the Hecke algebra involved in Con-
jecture 9.5 imply that, if χ ∈ Irr(WG(L, λ)), then

(9.6) deg HG,L,λ(χ) = ±
RG

L⊂P(λ)(1)

sch
kL,λ
χ

.

This imposes huge constraints on the parameter kL,λ and allows to determine it explicitly
in almost all cases [BMM1] (including the classical groups).

Remark 9.7. — Let ` be a prime number different from p and assume for simplicity that
` > 5 and ` is very good for G. Let d denote the smallest integer such that ` divides qd − 1.
Then two irreducible unipotent representations of GF belong to the same `-block if and
only if they belong to the same d-Harish-Chandra series (see [BMM1, Theo. 5.24] for the
case where ` does not divide the order of the Weyl group and [CaEn, Theo. 22.4] for the
general case). �
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10. Families

10.A. Almost characters. — If χ is a τ -stable irreducible character of W, we fix once and
for all an extension χ̃ of χ to Wo 〈τ〉. If w ∈ W, we set Tw = gwTg−1

w , where gw ∈ G
is chosen so that g−1

w F (gw) ∈ NG(T) is a representative of w. Then Tw is an F -stable
maximal torus so, using Deligne-Lusztig induction, we can define

(10.1) RG
χ =

1

|W|
∑
w∈W

χ̃(wτ)RG
Tw(1TFw) ∈ CUnip(G).

Then RG
χ is called an almost character of GF . Note that RG

χ depends on the choice of χ̃, but
only up to multiplication by a root of unity.

10.B. Families. — Lusztig [Lus6, Chap. 4] has defined a partition of Unip(G) into fami-
lies: let us recall his construction. Define a graph GrG on Irr(W)τ as follows:
(G1) The set of vertices of GrG is Irr(W)τ .
(G2) Two τ -stable irreducible characters χ and χ′ are linked by an edge in the graph GrG

if RG
χ and RG

χ′ have a common irreducible constituent.

If C is a connected component of GrG, we denote by FG
C the set of irreducible unipotent

representations γ ∈ Unip(G) such that 〈RG
χ , γ〉GF 6= 0 for some χ ∈ C. The subset FG

C of
Unip(G) is called a unipotent Lusztig family of G. We denote by Famun(G) the set of such
families. By construction, the unipotent Lusztig families form a partition of Unip(G).

One of the main results in Lusztig’s work on unipotent representations is the list of
following compatibilities between this partition and Harish-Chandra series [Lus6] (some
of them are proved by a case-by-case analysis):

Theorem 10.2 (Lusztig). — With the above notation, we have:
(a) If (L, λ) ∈ Cus(G) and F ∈ Famun(G), then (HCG,L,λ)−1(F) is empty or belongs to

FamLus
kL

(WG(L)) (recall that WG(L) = WG(L, λ) and that kL = kL,λ does not depend on
λ).

(b) If Unipcus(G) is non-empty, then it is contained in a single family, which will be denoted
by FG

cus.
(c) If τ = IdV , then the principal series (see Example 9.2) satisfies the following property: for

any F ∈ Famun(G) and any χ ∈ Irr(W), then RG
χ ∈ CF if and only if HCG(χ) ∈ F. In

particular, every family meets the principal series.

Note that the analogue of statement (a) for d-Harish-Chandra theory (instead of clas-
sical Harish-Chandra theory) is probably true (by replacing Lusztig families Calogero-
Moser families) but it is still not known up to now. The analogue of statement (b) for
d-Harish-Chandra theory is false in general (for instance, if d is large enough, then all
irreducible unipotent representations are d-cuspidal). The analogue of statement (c) for
τ 6= IdV is false in general (for instance, in twisted type An−1 with n > 3, every fam-
ily is a singleton but there are irreducible unipotent representations not belonging to the
principal series).
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PART III
GENERICITY VS CALOGERO-MOSER SPACES

Hypothesis. We assume in this third part that there exists a rational
structure VQ on V which is stable under the action of W (i.e., W is a
Weyl group). We also assume that V W = 0. We denote by ksp ∈ Cℵ
the spetsial parameter, that is, the parameter such that (ksp)H,0 = 1 and
(ksp)H,1 = 0 for all H ∈ A.

We also fix an element τ ∈ NGLQ(VQ)(W ) of finite order.

We denote by Groups(Wτ) the class of triples (q,G, F ) ∈ Groups such that, if T is any
F -stable maximal torus of G, then the pair (Q⊗ Y (T/Z(G)), NG(T)/T) is isomorphic to
(VQ,W ) and, moreover, τ stabilizes the lattice Y (T/Z(G)) of VQ and there exists w ∈ W
such that F (y) = qwτ(y) for all y ∈ Y (T/Z(G)).

This part may be viewed as the aim of this survey article, where we propose sev-
eral conjectures which compare the geometry (fixed points, symplectic leaves) of the
Calogero-Moser space Zksp with the different partitions (families, d-Harish-Chandra se-
ries) of unipotent characters of triples belonging to Groups(Wτ). A first general remark
(due to Lusztig) is that most of these partitions do not depend that much on the triple
G ∈ Groups(Wτ): they mainly depend only on the coset Wτ . This phenomenon, called
genericity, was developed and formalized by Broué-Malle-Michel [BMM1] and will be
explained in Section 11.

The conjectures will be stated precisely in Section 12. If G∈ Groups(Wτ), they propose
conjectural links between:
• the partition of Unip(G) into families and the C×-fixed points in Zτ

ksp
;

• the partition into d-Harish-Chandra series and symplectic leaves of Zζdτ
ksp

, where ζd
is a primitive d-th root of unity.

In the second point, the most spectacular conjecture relates the parameter involved in
the description of the normalization of the closure of a symplectic leaf as a Calogero-
Moser space (i.e. the parameter kP,p of Conjecture 7.2) and the parameter of the Hecke
algebra which conjecturally describes the endomorphism algebra of the cohomology of
some Deligne-Lusztig variety.

11. Genericity

11.A. Rough definition. — The notions of generic groups, generic unipotent representa-
tions... have been defined rigorously in [BMM1]. In this survey, we will not recall this
precise definition, which would require to introduce again much more notation. We will
use throughout this part a rather vague definition: when some structure associated with
any G = (q,G, F ) ∈ Groups(Wτ) depends only on Wτ and not on the triple G, we will
say that this structure behaves generically.
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A first example is the order of G′F , where G′ is the derived subgroup of G. Indeed,
if m = dimC V , there exists a choice of algebraically independent homogeneous genera-
tors f1,. . . , fm of C[V ]W which are eigenvectors for the action of τ (and we denote by dj
the degree of fj and by ξj the eigenvalue corresponding to fj). We can then define the
following polynomial OrdWτ (q) ∈ Q[q]:

OrdWτ (q) = q|A|
m∏
j=1

(qdj − ξj).

Then this polynomial does not depend on the precise choice of the fj ’s, and

(11.1) |G′F | = OrdWτ (q)

for all (q,G, F ) ∈ Groups(Wτ).

Remark 11.2 (d-splitness). — Let d > 1 and let ζd denote a primitive d-th root of unity.
We set

δ(d) = max
w∈W

dimV ζdwτ

and we denote by wd an element of W such that dimV ζdwdτ = δ(d). Recall [Spr] that δ(d)

is the number of j ∈ {1, 2, . . . ,m} such that ζdjd = ξj .
Thenwdτ is well-defined up toW -conjugacy [Spr] and any subspace of the form V ζdwτ

for some w ∈ W is contained in a subspace of the form x(V ζdwdτ ) for some x ∈ W . We
set τd = ζdwdτ ∈ NGLC(V )(W ). Note that this choice of wd implies that the element τd is
W -full [Spr]. Note also that Zτd

ksp
= Z

ζdτ
ksp

.
Then, for any G ∈ Groups(Wτ), the conjugacy classes of d-split Levi subgroups of G

are in bijection with the Wτd-orbits of τd-split parabolic subgroups of W : the correspon-
dence assigns to the conjugacy class of the d-split Levi subgroup its Weyl group, suitably
embedded in W (see [BrMa1] for details). �

11.B. Genericity of unipotent representations. — For our purpose, the most important
result about genericity is the following theorem, which says that the unipotent represen-
tations of G∈ Groups(Wτ) and their degree behave generically.

Theorem 11.3 (Lusztig). — There exists a finite set Unip(Wτ) endowed with a map degWτ :
Unip(Wτ) −→ Q[q], both depending only on the coset Wτ and such that, for each triple G ∈
Groups(W ), there exists a well-defined bijection

ρG : Unip(Wτ)
∼−→ Unip(G)

satisfying
deg ρG

γ = (degWτ γ)(q)

for all γ ∈ Unip(W ).

This Theorem 11.3 follows from the classification of unipotent representations obtained
by Lusztig [Lus6] and a case-by-case analysis. More recent works of Lusztig [Lus9] pro-
vide general explanations for the existence of the finite set Unip(Wτ) and the bijection ρG

but do not explain the polynomial behaviour of the degree of the unipotent representa-
tions.
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It turns out that the different structures on Unip(G) (families, Harish-Chandra series,
partitions into `-blocks...) can also be read only from the finite set Unip(Wτ), as it will
be explained below. In other words, they behave generically. Our aim here is to provide
numerical evidences that these extra-structures can be read from the geometry of the
Calogero-Moser space Zksp (C×-fixed points, symplectic leaves, fixed points under the
action of µd...).

11.C. Almost characters. — We denote by CUnip(Wτ) the set of formal C-linear combi-
nations of elements of Unip(Wτ) and we still denote by ρG : CUnip(Wτ) −→ CUnip(G)
the C-linear extension of the bijection ρG.

With this notation, the almost characters behave generically. In other words, there
exists a (necessarily unique) family (Rχ)χ∈Irr(W )τ of elements of CUnip(Wτ) such that

(11.4) ρG(Rχ) = RG
χ

for any G∈ Groups(Wτ) (see [Lus6, Chap. 4]). In particular, the graph GrG constructed
in §10.B is generic: it will also be denoted by GrWτ .

11.D. Families. — Families of unipotent characters behave generically. Indeed, it fol-
lows from (11.4) that there exists a partition of Unip(Wτ) into unipotent Lusztig families
(we denote by Famun(Wτ) the set of such families) such that,

(11.5) ρG(Famun(Wτ)) = Famun(G)

for any G∈ Groups(Wτ). If C is a connected component of the graph GrWτ , we denote by
Fun
C ⊂ Unip(Wτ) the associated generic family. Lusztig proved the following important

result [Lus6]:

Theorem 11.6 (Lusztig). — The map

FamLus
ksp

(W )τ −→ Famun(Wτ)

C 7−→ Fun
Cτ

is well-defined and bijective.

This Theorem contains in particular the fact that, if C is a τ -stable Lusztig ksp-family of
characters of W , then Cτ 6= ∅. But this follows directly from the fact that every Lusztig
ksp-family contains a unique character with minimal b-invariant (the b-invariant of an
irreducible character χ is the minimal value of j such that χ occurs in the j-th symmetric
power Sj(V )), called the special character of the family [Lus4, §12]: if the family is τ -stable,
then its special character is necessarily τ -stable.

11.E. Lusztig’s a-function. — If γ ∈ Unip(Wτ), we denote by aγ (resp. Aγ) the valuation
(resp. the degree) of the polynomial degWτ q. It follows from Lusztig’s work [Lus6] that

(11.7) the functions a, A : Unip(Wτ) −→ Z>0 are constant on families.
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11.F. d-Harish-Chandra series. — It turns out that d-Harish-Chandra theory behaves
also generically [BMM1, Theo. 3.2]. More precisely, if G = (q,G, F ) ∈ Groups(Wτ),
then:

• Let Unipdcus(Wτ) denote the set of γ ∈ Unip(Wτ) such that degWτ γ is divisible by
(q− ζd)dimV τd . Then (ρG)(Unipdcus(Wτ)) = Unipdcus(G) (see [BMM1, Prop. 2.9]).
• The GF -conjugacy classes of d-split Levi subgroups of G are in bijection with the
Wτd-conjugacy classes of d-split parabolic subgroups of W (see Remark 11.2): if
the d-split Levi subgroup L of G corresponds to the d-split parabolic subgroup P

under this bijection, then L ∈ Groups(Pτd) and WG(L) ' NWτd
(Pτd) (see [BrMa1,

Prop. 3.12]).
Through this isomorphism and the bijection ρL, the group NWτd

(Pτd) acts on
Unip(Pτd) and stabilizes the subset Unipdcus(L). Moreover, the action of NWτd

(Pτd)

on Unip(Pτd) is generic. If λ ∈ Unip(Pτd), we denote by NWτd
(Pτd , λ) its stabilizer

in NWτd
(Pτd).

• If we denote by Cusd(Wτ) the set of pairs (P, λ) where P is a d-split parabolic sub-
group ofW and λ ∈ Unipdcus(Pτd), then the previous point defines a natural bijection
between Cusd(Wτ)/ ∼ and Cusd(G)/ ∼.

• If (P, λ) ∈ Cusd(Wτ) corresponds to (L,ρLλ ) ∈ Cusd(G), then the maps HC
G,L,ρL

λ
d

and ρG define an injection HCW,P,λ
d : Irr(NWτd

(Pτd , λ)) ↪→ Unip(Wτ) which behaves
generically. Its image is denoted by Unipd(Wτ,P, λ). Then

(11.8) Unip(Wτ) =
⋃̇

(P,λ)∈Cusd(W )

HCW,P,λ
d (Irr(NWτd

(Pτd , λ))).

Moreover, the parameter kL,ρL
λ

in Conjecture 9.5 is generic, i.e. depends only on
(P, λ). It will be denoted by kP,λ.

Here, all the statements stated without reference can be found in [BMM1, Theo. 3.2].

Remark 11.9. — Let (P, λ) ∈ Cusd(Wτ). It follows from the classification of such pairs
(see [BMM1]) that:

• NWτd
(Pτd , λ) is always a reflection group for its action on (V P )τd .

• Examples where NWτd
(Pτd , λ) 6= NWτd

(Pτd) are very rare. For instance, this never
happens if d = 1 (see Theorem 9.1(a)) or if W is of type A (see [BMM1, §3.A]). �

Example 11.10 (Principal series). — Let us describe the generic version of Example 9.2.
First, Unip(1) consists of a single element that we may (and will) denote by 1. Then the
cuspidal pair (1, 1) ∈ Cus(Wτ) corresponds to the pair (T, 1) ∈ Cus(G) associated with
an F -stable maximal torus of an F -stable Borel subgroup and the map HCG = HCG,T,1

will be simply denoted by HCW : Irr(W τ ) ↪−→ Unip(Wτ), instead of HCW,1,1.
If τ = IdV , then the parameter k1,1 is equal to ksp (see Example 9.2). �
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11.G. d-Harish-Chandra theory and filtration. — Assume in this subsection, and only
in this subsection, that τ = IdV (on the reductive group side, this means that we work in
the split case). Let Z(CW )Lus denote the subalgebra of Z(CW ) whose basis is given by
(eWC )C∈FamLus

ksp
(W ). Let (P, λ) ∈ Cusd(W ). We define a morphism of algebras

(HCW,P,λ
d )# : Z(CW )Lus −→ Z(CNWτd

(Pτd , λ))

by

(HCW,P,λ
d )#(eWC ) =

∑
χ∈Irr NWτd

(Pτd ,λ)

such that HCW,P,λd (χ)∈Fun
C

e
NWτd

(Pτd ,λ)
χ .

Conjecture 11.11. — Assume that τ = IdV and fix (P, λ) ∈ Cusd(W ). Then

(HCW,P,λ
d )#(FjZ(CW )Lus) ⊂ FjZ(CNWτd

(Pτd , λ))

for all j.

Remark 11.12. — This conjecture seems to come from nowhere and provides a strange
link between the character tables of W and NWτd

(Pτd , λ). However, if we believe in the
links between representation theory of finite reductive groups and geometry of Calogero-
Moser spaces (as developed in the next section), then this Conjecture 11.11 is just a con-
sequence of this philosophy (see the upcoming Proposition 12.6) and of Conjecture 6.2.
This is an example where the geometry of Calogero-Moser spaces suggests unexpected
properties of the representation theory of finite reductive groups.

Note that Conjecture 11.11 holds in the following cases:
• If W is of type A (see [BoMa, Cor. 4.22] and the explanations given in Section 15).
• A pretty convincing result is that it holds if dimV 6 8 (so this includes the type
E8): this has been checked through computer calculations based on all the functions
implemented by Jean Michel [Mic](∗). �

Example 11.13. — Let z =
∑

s∈Ref(W ) s ∈ Z(CW ). Then z =
∑

χ∈Irr(W )(|A| − (a
(ksp)
χ +

A
(ksp)
χ )eWχ (see [BMM2, Cor.6.9] and [BoRo2, Lem. 7.2.1]). So z ∈ F1Z(CW )Lus by (8.3).

Now, if ψ ∈ Irr NWτd
(Pτd , λ) is such that HCW,P,λ

d (ψ) belongs to the same family as

HCW (χ), then it follows from (9.6) that |A| − (a
(ksp)
χ −A(ksp)

χ ) = M − (a
(kP,λ)
ψ +A

(kP,λ)
ψ ) for

some M which does not depend on ψ or χ (and only on (W,P, λ)). Therefore,

(HCW,P,λ
d )#(z) =

∑
χ∈Irr NWτd

(Pτd ,λ)

(M − (a
(kP,λ)
ψ +A

(kP,λ)
ψ ))e

NWτd
(Pτd ,λ)

ψ .

In other words, it follows from [BMM2, Cor.6.9] and [BoRo2, Lem. 7.2.1] that there exists
M ′ ∈ C such that

(HCW,P,λ
d )#(z) = M ′ +

∑
s∈Ref(NWτd

(Pτd ,λ))

ckP,λ(s)s ∈ F1Z(CNWτd
(Pτd , λ)),

as desired. �

(∗)We wish to thank again warmly Jean Michel for writing the programs for performing these calculations.
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12. Coincidences, conjectures

12.A. Families. — By Theorem 10.2(b), the set Famun(Wτ) is in bijection with the set
FamLus

ksp
(W )τ . We conjecture the first link between the geometry of Zksp and the represen-

tation theory of finite reductive groups:

Conjecture 12.1. — There exists a unique bijection

Φ : (ZC×
ksp

)τ
∼−→ Famun(Wτ)

such that, for any p ∈ (ZC×
ksp

)τ and for any χ ∈ (F
ksp
p )τ , the almost character Rχ

belongs to CΦ(p).

Whenever τ = IdV , this Conjecture 12.1 is equivalent to Gordon-Martino Conjec-
ture 8.2 (see Theorem 11.6). For the rest of this section, we assume that Conjecture 12.1
holds, and we keep the notation Φ : (ZC×

ksp
)τ

∼−→ Famun(Wτ).

12.B. Fixed points and d-cuspidality. — We expect that d-cuspidality of unipotent rep-
resentations and τd-cuspidality of points in Z

τd
ksp

= Z
ζdτ
ksp

are linked as follows:

Conjecture 12.2. — Assume here that Conjecture 12.1 holds. Let p ∈ (ZC×
ksp

)τ

be such that there exists λ ∈ Φ(p) ⊂ Unip(Wτ) which is d-cuspidal. Then p is
τd-cuspidal.

Note that the converse to Conjecture 12.2 does not hold in general, even for d = 1 (for
instance for W of type D, as it will be explained in §16.C).

12.C. d-Harish-Chandra theory and symplectic leaves. — Assume in this subsection
that Conjectures 12.1 and 12.2 hold for W and all its parabolic subgroups. Fix (P, λ) ∈
Cusd(Wτ) and let p be the point of Zksp(V/V P , P ) corresponding to the Lusztig family of
λ through Conjecture 12.1. Then p is τd-cuspidal by Conjecture 12.2. Therefore, one can
associate to the pair (P, p) a symplectic leaf SP,p of Zτd

ksp
.

Conjecture 12.3. — Recall that we assume that Conjectures 12.1 and 12.2 hold
for W and all its parabolic subgroups. Then, with the above notation:

(a) Let p′ ∈ (ZC×
ksp

)τ . Then p′ ∈ SP,p if and only if the d-Harish-Chandra
series HCW,P,λ(Irr(NWτd

(Pτd , λ))) meets the family Φ(p′).
(b) There exists a parameter kP,p ∈ ℵ((V P )τd ,NWτd

(Pτd)) such that:
(b1) S

nor
P,p ' ZkP,p((V

P )τd ,NWτd
(Pτd)) as Poisson varieties endowed with

a C×-action.
(b2) The parameter kP,λ ∈ ℵ((V P )τd ,NWτd

(Pτd , λ)) involved in Con-
jecture 9.5(b) (and which is generic by the previous section) is the
restriction of kP,p to NWτd

(Pτd , λ).
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Commentary 12.4. — In the previous conjecture, the existence of a parameter kP,p satis-
fying (b1) is just a restatement of Conjecture 7.2: the main point of the above conjecture is
that its restriction should coincide with the parameter of Conjecture 9.5(b), which has to
do with a completely different context (`-adic cohomology of Deligne-Lusztig varieties).
In some sense, this is a justification of this long paper. �

The correspondence outlined in Conjecture 12.3 should also be compatible in a more
precise way with Harish-Chandra theory. For this survey, keep the notation of the above
conjecture and assume moreover that NWτd

(Pτd , λ) = NWτd
(Pτd) (recall from Remark 11.9

that this is the most probable situation). Assume also that Conjecture 12.3 holds. Then,
by (b1), we get a C×-equivariant morphism of varieties

ψ : ZkP,p((V
P )τd ,NWτd

(Pτd)) −→ Zksp

whose image is the closure SP,p of the symplectic leaf SP,p of Zτd
ksp

. By restriction to the
C×-fixed points, we get a map

ψfix : ZkP,p((V
P )τd ,NWτd

(Pτd))
C× −→ ZC×

ksp

whose image is contained in (ZC×
ksp

)τ . On the other hand, Conjecture 12.1 provides a sur-

jective map Φ∗ : Unip(Wτ) −� (ZC×
ksp

)τ (whose fibers are the unipotent Lusztig families)
and the definition of Calogero-Moser families provides a surjective map

zkP,p : Irr(NWτd
(Pτd)) −� ZkP,p((V

P )τd ,NWτd
(Pτd)

C× .

Finally, recall that d-Harish-Chandra theory (see Theorem 9.4 and its generic version)
provides an injective map

HCW,P,λ : Irr(NWτd
(Pτd)) ↪−→ Unip(Wτ).

We expect all these maps to be compatible in the following sense:

Conjecture 12.5. — Assume that Conjectures 12.1, 12.2 and 12.3 hold and that
NWτd

(Pτd , λ) = NWτd
(Pτd). Then the diagram

Irr(NWτd
(Pτd))

zkP,p // //
� _

HCW,P,λ

��

ZkP,p((V
P )τd ,NWτd

(Pτd))
C×

ψfix

��

Unip(Wτ)
Φ∗ // // (ZC×

ksp
)τ

is commutative.

The conjectures stated in this section, together with Conjecture 6.2 on the cohomology
of Calogero-Moser spaces, imply the Conjecture 11.11. Let us give some details. First, as
in §6.B, the morphism ψ induces a morphism of algebras

ψ#
fix : Im Ω

ksp

W −→ Im Ω
kP,p

NWτd
(Pτd )

.
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Then, if we assume that τ = IdV and that Conjectures 8.2 and 12.1 hold, the map ψ#
fix

is just the map (HCW,P,λ
d )# of Conjecture 11.11. So Proposition 6.6 has the following

consequence:

Proposition 12.6. — With the above notation, assume that NWτd
(Pτd , λ) = NWτd

(Pτd) and
that Conjectures 6.2, 8.2 12.1, 12.2, 12.3 and 12.5 hold. Then Conjecture 11.11 holds for the
d-cuspidal triple (W,P, λ).

Remark 12.7. — The consequence of Proposition 12.6 does not involve anymore the ge-
ometry of Calogero-Moser spaces but only the representation theory of finite reductive
groups. Therefore, the validity of Conjecture 11.11 in many cases (see Remark 11.12 and
Example 11.13) is a good indication that the general philosophy of this paper has some
reasonable foundation. �

Example 12.8 (Principal series). — Assume in this example, and only in this example,
that τ = IdV , that Conjecture 12.1 (i.e. Gordon-Martino’s Conjecture 8.2) holds and that
(P, λ) = (1, 1) ∈ Cus(W ). Then Conjecture 12.3(a) is a restatement of the fact that ev-
ery family meets the principal series while Conjecture 12.3(b) and Conjecture 12.5 are
vacuous. �

Example 12.9 (Regular element). — Assume in this example, and only in this example,
that τ = IdV and d is chosen such that τd is regular (see §7.C for the definition: from
this definition, the trivial subgroup of W is τ -split). Then, (1, 1) ∈ Cusd(W ) and Wτd =
CW (wd).

On the unipotent representation side, if C is a Lusztig ksp-family, then it has been
checked by J. Michel (unpublished) that the unipotent Lusztig family Fun

C (see Theo-
rem 11.6) meets the d-Harish-Chandra series Unipd(W, 1, 1) if and only if

∑
χ∈C |χ(wd)|2 6=

0. Moreover, he also checked that∑
χ∈C
|χ(wd)|2 =

∑
ψ∈IrrCW (wd)

such that HCW,1,1d (ψ)∈Fun
C

ψ(1)2.

On the Calogero-Moser space side, the closure of the symplectic leaf associated with
(1, 1) is just the irreducible component of maximal dimension (Zτ

ksp
)max defined in §7.C.

So the above facts about unipotent representations justify, through the philosophy of this
section, Conjecture 7.5 and [Bon5, Conj 5.2]. �
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PART IV
EXAMPLES

Hypothesis. As in the third part, we assume that there exists a rational
structure VQ on V which is stable under the action ofW (i.e.,W is a Weyl
group) and that V W = 0. We also fix an element τ ∈ NGLQ(VQ)(W ) of
finite order, an integer d > 1 and a primitive d-th root of unity ζd.

We aim to illustrate the Conjectures stated in Section 12 by several examples:
(a) We prove that Conjectures 12.1, 12.2, 12.3 and 12.5 hold in rank 2 for d equal to the

Coxeter number.
(b) We also prove that, assuming Broué-Malle-Michel Conjecture 9.5 (and particularly

the conjectural value of kP,λ), they hold in type A.
(c) For classical types, we only prove Conjectures 12.1, as well as Conjecture 12.2 when-

ever d = 1 (classical Harish-Chandra theory).
As explained in Commentary 12.4, the most intriguing question is Conjecture 12.3(b),
which predicts the equality of parameters coming from two extremely different contexts
(cohomology of some Deligne-Lusztig variety vs symplectic leaves of Calogero-Moser
spaces). Even for classical Harish-Chandra theory (i.e. whenever the Deligne-Lusztig
variety is zero-dimensional), this is somewhat unexpected and certainly reflects some
deep connections. In the examples treated in this part, we will mainly focus on this
question.

13. Rank 2

The case of type A being treated in the upcoming Section 15, we will just consider
here the types B2 and G2. We will not fill the details for proving all the Conjectures:
indeed, the groups are small enough so that the remaining details can be filled by the
reader. So, as explained in the introduction to this part, we only give the details for
Conjecture 12.3(b).

Theorem 13.1. — Assume that W is of type B2 or G2 and that d is the Coxeter number. Then
Conjectures 12.1, 12.2, 12.3 and 12.5 hold.

Proof. — Let s and t be the two simple reflections of W . Let c = st be a standard Coxeter
element of W and let Oc denote its corresponding G-orbit in B×B. Then ζdc is W -full
(so we may take τd = ζdc) and Wτd = CW (ζdc) = 〈c〉 is the cyclic group of order d. As
there is only one reflecting hyperplane for Wτd , the parameters for Wτd will be denoted
by k = (k0, k1, . . . , kd−1). We denote by kcox the parameter given by:

kcox =

{
(0, 1, 2, 1) if d = 4,
(0, 1, 2, 1, 1, 1) if d = 6.

Also, there is (up to GF -conjugacy), only one proper d-split Levi subgroup, namely the
Coxeter torus Tc. Computing the Deligne-Lusztig induction of the trivial character of
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TF
c amounts to determining the cohomology of the Deligne-Lusztig variety XOc . This

has been done by Lusztig [Lus1], and it follows from his work that Conjecture 9.5 holds
in this case.

Let us give more details. First, he proved Conjecture 9.5(a) about the disjointness of
the cohomology groups [Lus1, Theo. 6.1] and that the endomorphism algebra of the GF -
module H•c(XOc) is generated by the Frobenius endomorphism F and he computed the
eigenvalues of F in all cases [Lus1, Table 7.3]. This leads to the following presentation
for this endomorphism algebra:{

Generator: F (the Frobenius endomorphism),
Relation:

∏d−1
j=0(F − ζjd(ζ−1

d q)k
cox
j ) = 0.

In other words,

(13.2) EndGF H•c(XOc) ' Hkcox(Wτd , ζ
−1
d q).

On the other hand, the computation of the fixed point subvariety Z
µd
ksp

has been done
in [Bon3, Theo. 7.1] and the result is given by:

Z
µd
ksp
' {(x, y, z) ∈ C3 | (z2 − d2)zd−2 = xy}.

Setting z′ = z + d, we get

Z
µd
ksp
' {(x, y, z′) ∈ C3 | z′(z′ − 2d)(z′ − d)d−2 = xy}.

In other words,

(13.3) Z
µd
ksp
' Zkcox(V τd ,Wτd)

(see Example 6.5(a)).
We see that the same parameter occurs in (13.2) and (13.3): this shows that Conjec-

ture 12.3(b) holds in this case, as desired.

14. Some combinatorics

We refer to [JaKe, §2.7] for facts about abaci, d-cores, d-quotients of partitions that will
be used here.

14.A. Notation. — A partition is a sequence λ = (λk)k > 1 of non-negative integers such
that λk > λk+1 for all k and λk = 0 for k � 0. Let Part denote the set of all partitions.
If λ ∈ Part, we set |λ| =

∑
k > 1 λk and aλ =

∑
k > 1(k − 1)λk, and we denote by Y (λ)

the Young diagram of λ, that is, the set of pairs of natural numbers (i, j) such that j > 1
and 1 6 i 6 λj . If y ∈ Y (λ), we denote by hkλ(y) the hook length of λ based at y, i.e. the
number of (i′, j′) ∈ Y (λ) such that i′ > i, j′ > j and (i− i′)(j − j′) = 0. Let

deg λ = qaλ

|λ|∏
k=1

(qk − 1)∏
y∈Y (λ)

(qhkλ(y) − 1)
.

It turns out that deg λ ∈ Z[q].
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Let d > 1. A partition λ is called a d-core if hkλ(y) 6= d for all y ∈ Y (λ). The subset of
Part consisting of d-cores is denoted by Cord. An element λ = (λ(1), . . . , λ(d)) of the set
Partd of d-uples of partitions is called a d-partition: we set |λ| = |λ(1)| + · · · + |λ(d)|. If
λ ∈ Part, we denote by cord(λ) ∈ Cord its d-core and by quod(λ) ∈ Partd its d-quotient.
The map

(14.1) cord × quod : Part −→ Cord × Partd

λ 7−→ (cord(λ), quod(λ))

is bijective. Its inverse will be denoted by

pard : Cord × Partd
∼−→ Part.

It follows from the definition of both maps that

(14.2) |λ| = |cord(λ)|+ d |quod(λ)|.

If r > 0, we denote by Part(r) (resp. Partd(r), resp. Cord(r)) the set of λ ∈ Part (resp.
λ ∈ Partd, resp. λ ∈ Cord) such that |λ| = r. We also set Cord(≡ r) for the set of λ ∈ Cord
such that |λ| 6 r and |λ| ≡ r mod d. In other words, Cord(≡ r) = cord(Part(r)).

If λ ∈ Partd(r), we denote by χλ the associated irreducible character of the complex
reflection group G(d, 1, r), following the convention in [GeJa]. If k ∈ Cℵ(G(d,1,r)) and
λ ∈ Partd(r), we denote by zkλ the element of zk(χλ) ∈ Zk(d, 1, r)

C× defined in §5.D. Note
that we do not need to emphasize d or r, as they are determined by λ.

14.B. Abaci. — A d-abacus is an abacus with d runners. If γ ∈ Cord, we denote by A(γ)
its d-abacus, with the convention that the first runner contains the first empty box. Let
b(γ) = (b0(γ), b1(γ), . . . , bd−1(γ)) denote the sequence defined as follows: bj(γ) is the
number of beads on the (j + 1)-th runner of A(γ) minus the number of beads on the
first runner. Let Resd(γ) = (ρ0(γ), . . . , ρd−1(γ)) denote the d-residue of γ. It is defined as
follows: ρk(γ) is the number of pairs (i, j) ∈ Y (γ) such that i− j ≡ k mod d.

Example 14.3. — Let γ = (5, 2, 1) ∈ Part(8). Its Young diagram is

Y (γ)

It is easily seen that γ is a 4-core, and its 4-abacus A(γ) is given byuu e e e eu u e e eu e e e eu u u e eA(γ)

1st runner

A(γ)
2nd runner

A(γ) 3rd runnerA(γ)
4th runner

Then b(γ) = (0, 1, 0, 2) while Resd(γ) = (3, 2, 2, 1). �

Let us define two sequences kγ = (kγj )0 6 j 6 d−1 and lγ = (lγj )0 6 j 6 d−1 associated with
a d-core γ:
• kγj = dbj(γ) + j.

• lγj = b0(γ) + b1(γ) + · · ·+ bd−1(γ) +

{
d(ρ1−j(γ)− ρ−j(γ)) + j − 1 if 1 6 j 6 d− 1,
d(ρ1(γ)− ρ0(γ)) + d− 1 if j = 0.
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Here, the index in ρ1−j(γ) or ρ−j(γ) must be understood modulo d. The next result will
be useful in the next section:

Proposition 14.4. — Let γ be a d-core and let m denote its length (i.e., the number of non-zero
parts). Then

kγj = lγj+1−m
for all j ∈ Z/dZ.

Proof. — If j ∈ Z/dZ, we denote by j̄ its unique representative in {0, 1, . . . , d − 1}. Note
that m = b0(γ) + b1(γ) + · · ·+ bd−1(γ). We argue by induction on the length m of γ.

If γ = ∅, then kγ = (0, 1, . . . , d − 1) and lγ = (d − 1, 0, 1, . . . , d − 2). This shows the
result whenever m = 0.

Assume now thatm > 1 and write γ = (γ1, γ2, γ3, · · · ) with γ1 >0. Let γ′ = (γ2, γ3, · · · ).
Then γ′ is a d-core so, by the induction hypothesis, Proposition 14.4 holds for γ′. In other
words, kγ

′

j = lγ
′

j+2−m for all j ∈ Z/dZ.
Let us first compare the sequences kγ and kγ

′
. For this, let y denote the unique element

of {0, 1, . . . , d − 1} such that by(γ) = by(γ
′) + 1. Then, if j 6= y, we get bj(γ) = bj(γ

′).
Therefore,

(#) kγj =

{
kγ
′

j if j 6= y,
kγ
′

j + d if j = y.

Let us now compare the sequences lγ and lγ
′
. For this, let x denote the unique element

of {0, 1, . . . , d− 1} such that γ1 ≡ x mod d. Then, for j ∈ Z/dZ, we get

ρj(γ) = ρj−1(γ′) + (γ1 − x)/d+ δx(j)

where δx is identically 0 if x = 0 and

δx(j) =

{
1 if j̄ = 0 or 1 6 d− j̄ 6 x− 1,
0 if x 6 d− j̄ 6 d− 1,

if x > 1. Also, note that γ1 = d(by(γ) − 1) + y + 1 −m, so y + 1 −m ≡ x mod d. Let us
also write lγj , for j ∈ Z/dZ, as follows:

lγj = m+ d(ρ1−j(γ)− ρ−j(γ)) + j̄ − 1 + dδj,0

where δj,0 is the Kronecker symbol. Putting things together, one gets:

lγj = m+ d(ρ−j(γ
′)− ρ−1−j(γ

′) + δx(1− j)− δx(−j)) + j̄ − 1 + dδj,0

= 1 + lγ
′

j+1 − j + 1 + 1− dδj+1,0 + d(δx(1− j)− δx(−j)) + j̄ − 1 + dδj,0.

But j + 1 = j̄ + 1− dδj+1,0, so

lγj = lγ
′

j+1 + d(δx(1− j)− δx(−j)) + dδj,0.

Two cases may occur:
• If x = 0, then δx is identically 0 and so d(δx(1− j)− δx(−j)) + dδj,0 = dδj,0 = dδj,−x.
• If x > 0, then there are only two values of j ∈ Z/dZ for which δx(1 − j) − δx(−j)

is non-zero, namely j = 0 and j = x. If j = 0, this returns −1 while, if j = x, this
returns 1. Therefore, we have again d(δx(1− j)− δx(−j)) + dδj,0 = dδj,x.
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Finally, lγj = lγ
′

j+1 + dδj,−x and x ≡ y + 1 − m mod d so, by the induction hypothesis
and (#),

lγj = kγ
′

j+m−1 + dδj,m−y = kγj+m−1 − dδj+m−1,y + dδj,x = kγj+m−1,

as expected.

15. The smooth example: type A

The Calogero-Moser space Zksp is smooth if and only if W is a Weyl group of type A.
This simplifies drastically its geometry (C×-fixed points, symplectic leaves,...) and all the
conjectures proposed in Part I are true in this case [BoSh, BoMa].

On the other hand, the almost characters of some G∈ Groups are all irreducible char-
acters if and only if Gis of typeA. This also simplifies drastically its representation theory
(unipotent Lusztig families, d-Harish-Chandra theory, blocks,...).

In the spirit of this paper, these two facts should be the shadow of a common phe-
nomenon. We do not propose an explanation for it, but we give details about how the
combinatorics on both sides fit perfectly in type A, so that all the conjectures stated in
Part III hold in this case (provided that Conjecture 9.5 holds).

Hypothesis. From now on, and until the end of this section, we fix a natural
number n > 2 and we assume that

V = {(ξ1, . . . , ξn) ∈ Cn | ξ1 + · · ·+ ξn = 0}
and that W = Sn acting on V by permutation of the coordinates. The
Calogero-Moser space Zksp(V,Sn) will be simply denoted by Z(n).

We set r = bn/dc and we denote by wd a product of r disjoint cycles of
length d. Then ζdwd is Sn-split.

The ζdwd-split parabolic subgroups of Sn are those of the form Sm, where m 6 n and
m ≡ n mod d. In this case, (Sn)ζdwd ' G(d, 1, r) and

(15.1) N(Sn)ζdwd
((Sm)ζdwd) ' G(d, 1, (n−m)/d).

If γ ∈ cord(≡ n), we set rγ = rγ(n) = (n − |γ|)/d and we denote by kγ ∈ Cℵ(G(d,1,rγ)) the
parameter defined by:{

((kγ)Ker(x1−x2),0, (kγ)Ker(x1−x2),1) = (d, 0), if rg > 2,
((kγ)Ker(x1),0, (kγ)Ker(x1),1, . . . , (kγ)Ker(x1),d−1) = kγ , if rg > 1 and d > 2,

where kγ is the sequence defined in §14.B. If rγ = 0, then kγ is the zero parameter of the
trivial group.

If λ ∈ Part(n), we denote by zλ the image of χλ through the map zksp : Irr(Sn) −→
Z(n)C

×
. Similarly, if µ ∈ Partd(m), and if k ∈ Cℵ(G(d,1,m)), we denote by zkµ the image of

χµ through the map zk : IrrG(d, 1,m) −→ Zk(G(d, 1,m))C
×

.
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15.A. Geometry of Z(n). — Recall that Z(n) is smooth [EtGi, Cor. 16.2]. This has sev-
eral consequences:

• First, the map zksp : Irr(Sn) −→ Z(n)C
×

defined in §5.D is bijective [Gor1, Cor. 5.8].
This means that

(15.2) the map Part(n) −→ Z(n)C
×

, λ 7−→ zλ is bijective.

• The variety Z(n) has only one symplectic leaf (it is a symplectic variety). Therefore,
if d > 1, then Z(n)µd is also smooth and symplectic, so its symplectic leaves coincide
with its irreducible components: in particular, they are closed normal subvarieties
of Z(n), so coincide with the normalization of their closure (which is involved in
Conjecture 7.2).

The next theorem, which describes these symplectic leaves, has been obtained by Mak-
simau and the author [BoMa, Theo. 4.21]:

Theorem 15.3. — With the above notation, we have:

(a) Let λ ∈ Part(n). Then zλ is ζd-cuspidal if and only if λ is a d-core.
(b) The map

Cord(≡ n) −→ Cusζdwdksp
(Z(n))

γ 7−→ (S|γ|, zγ)

is bijective. We denote by Sγ(n) the symplectic leaf SS|γ|,zγ of Z(n)µd .
(c) If γ ∈ Cord(≡ n), then there exists a C×-equivariant isomorphism of varieties

iγ : Zkγ (G(d, 1, rγ))
∼−→ Sγ(n)

such that

iγ(zµ) = zpard(γ,µ)

for all µ ∈ Partd(rγ) (in particular, dimSγ(n) = 2rγ).

Proof. — All the results have been proved in [BoMa, Theo. 4.21], except that we need to
make some comments about the parameter. So let γ ∈ Cord(≡ n) and let lγ ∈ Cℵ(G(d,1,rγ))

be the parameter defined by:{
((lγ)Ker(x1−x2),0, (lγ)Ker(x1−x2),1) = (d, 0), if rg > 2,
((lγ)Ker(x1),0, (lγ)Ker(x1),1, . . . , (lγ)Ker(x1),d−1) = lγ , if rg > 1 and d > 2,

where lγ is the sequence defined in §14.B. Then the result of [BoMa, Theo. 4.21] says that
SS|γ|,zγ ' Zlγ (G(d, 1, rγ)). However, Proposition 14.4 says that lγ is obtained from kγ by
a cyclic permutation, and so Zkγ (G(d, 1, rγ)) ' Zlγ (G(d, 1, rγ)) by [BoRo2, (3.5.4)].
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15.B. Unipotent representations: the split case. — We fix in this subsection a triple
G = (q,G, F ) ∈ Groups(Sn). In other words, G′F is a split group of type An−1 (recall
that the definition of Groups(Sn) implies no restriction on the rational structure of the
center of G). Then it is well-known that

(15.4) Unip(G) = {RG
χ | χ ∈ Irr(Sn)} and degRG

χλ
= (deg λ)(q).

In other words, we may define the set Unip(Sn), the bijection ρG and the map degSn as
follows: 

Unip(Sn) = Part(n),

ρG
λ = RG

χλ
for any λ ∈ Part(n),

degSn = deg.

The partition into families is pretty easy in this case:

(15.5) All the unipotent Lusztig families are singletons.

A generic translation is given by:

(15.6) the map Part(n) −→ Famun(Sn), λ 7−→ {λ} is bijective.

The following result has been proved in [BMM1, Pages 45-47]:

Theorem 15.7 (Broué-Malle-Michel). — With the above notation, we have:
(a) Let λ ∈ Part(n). Then the unipotent character Rχλ is d-cuspidal if and only if λ is a d-core.
(b) The map

Cord(≡ n) −→ Cusd(Sn)
γ 7−→ (S|γ|, Rχγ )

is bijective. If γ ∈ Cord(≡ n), then

N(Sn)ζdwd
((S|γ|)ζdwd) ' G(d, 1, rγ).

(c) If γ ∈ Cord(≡ n), let HCγ
d denote the bijection HC

Sn,Sm,Rχγ
d : Irr(G(d, 1, rγ)) −→

Unip(Sn,S|γ|, Rχγ ) defined by the d-Harish-Chandra theory. Then

HCγ
d(χλ) = Rχpard(γ,λ)

for all λ ∈ Partd(rγ).

Now, fix a d-core γ ∈ Cord(≡ n) and let Lγ = (g,Lγ , F ) ∈ Groups(S|γ|) be such that
Lγ is a d-split Levi subgroup of G (if GF = GLn(Fq), then LFγ ' GL|γ|(Fq) × (F×

qd
)rγ ).

Conjecture 9.5 predicts the existence of a parabolic subgroup Pγ such that the Deligne-
Lusztig variety YUPγ

satisfies the following two properties:

(a) The Q̀ GF -modules Hj
c(YPγ ) ⊗Q̀ LFγ

R
Lγ
χγ and Hj′

c (YP) ⊗Q̀ LF R
Lγ
χγ have no common

irreducible constituent if j 6= j′.
(b) EndGF RG

Lγ⊂Pγ (R
Lγ
χγ ) ' H

k#
γ

(G(d, 1, rγ), ζ−1
d q) for some parameter k#

γ .

This conjecture is far from being proved (see the next remark) but Broué-Malle [BrMa2,
Prop. 2.10] proposed a conjectural value for k#

γ :

Conjecture 15.8 (Broué-Malle). — If γ ∈ Cord(≡ n), then Conjecture 9.5
holds for the pair (Lγ , R

Lγ
χγ ) with parameter k#

γ = kγ .
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We find remarkable that the parameter kγ predicted, in this particular case, by Broué-
Malle in 1993 in the context of Deligne-Lusztig varieties coincides (up to a non-relevant
cyclic permutation) with the parameter lγ found in 2018 by Maksimau and the author
when studying Calogero-Moser spaces.

Remark 15.9. — The disjunction of the cohomology (see the above statement (a)) has
been proved in [BDR, Theo. 4.3] whenever Lγ is a torus (i.e. |γ| = 0 or 1), based on earlier
works of Dudas [Dud, Cor. 3.2]. The statement (b) is only known if d = n (Lusztig [Lus1,
§7.3]) or d = n− 1 (Digne-Michel [DiMi2, Theo. 10.1]). �

The comparison between Theorems 15.3 and 15.7 yields:

Theorem 15.10. — If Wτ = Sn, then:

(a) Conjectures 12.1, 12.2, 12.3(a) and 12.5 hold.
(b) If moreover Conjecture 15.8 holds, then Conjecture 12.2(b) holds.

15.C. The non-split case. — In type A, the non-split case corresponds to the case where
F acts on the Weyl group Sn by the diagram automorphism (i.e. conjugation by the
longest element). In our generic description, this corresponds to the coset −Sn and ob-
jects in Groups(−Sn) (for instance, we may take for (q,G, F ) ∈ Groups(−Sn) the triple
where G = GLn(Fq) and GF is the general unitary group). Ennola duality establishes
a bijection between Unip(Sn) and Unip(−Sn) and this bijection transforms d-Harish-
Chandra series into d′-Harish-Chandra series, where

d′ =


2d if d ≡ 1 mod 2,
d/2 if d ≡ 2 mod 4,
d if d ≡ 0 mod 4.

Therefore, the non-split case follows directly from the split one by applying Ennola du-
ality (see [BrMa2, Rem. 2.11]). More precisely:

Theorem 15.11. — If Wτ = −Sn, then:

(a) Conjectures 12.1, 12.2, 12.3(a) and 12.5 hold.
(b) If moreover Conjecture 15.8 holds, then Conjecture 12.2(b) holds.
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16. Classical groups and Harish-Chandra theory

We aim to check the following result:

Theorem 16.1. — Assume that W is a Weyl group of classical type and that d = 1. Then
Conjectures 12.1, 12.2 and 12.3 hold.

The rest of this section is devoted to the proof of this Theorem. Note that the most
difficult part of the work has been previously done by Gordon-Martino [GoMa], Bellamy-
Thiel [BeTh] and Bellamy-Maksimau-Schedler [BeMaSc] on the Caloger-Moser space
side (as well as an application of Bellamy-Maksimau-Schedler result by the author [Bon4,
Cor. 9.8]), and by Lusztig [Lus2, Lus4, Lus5] on the unipotent representations side. The
main interest of this section is to relate all these results together following the philosophy
of this survey.

Notation. If n > 0, we set Wn = G(2, 1, n) and W ′n = G(2, 2, n), so
that Wn is a Weyl group of type Bn (i.e. Cn) and W ′n is a Weyl group
of type Dn. We denote by τ = diag(−1, 1, . . . , 1) ∈ Wn: it induces the
non-trivial involutive diagram automorphism ofW ′n. The canonical basis
of V = Cn is denoted by (y1, . . . , yn) and its dual basis is denoted by
(x1, . . . , xn).

Note that Wn = 〈τ〉nW ′n.

16.A. Families. — First, Conjectures 12.1 and 12.2 for d = 1 follow immediately from
Theorem 8.7 and [BeTh, Theo. A].

16.B. Type B or C. — We denote by BC(n) the set of r ∈ Z>0 such that r2 + r 6 n. If r,
m > 0, we denote by k[r] the element of Cℵ(Wm) defined by{

k[r]Ω,0 = r, k[r]Ω,1 = 0,

k[r]Ω′,1 = 1, k[r]Ω′,1 = 0,

where Ω (resp. Ω′) is the orbit of the reflecting hyperplane Ker(x1) (resp. Ker(x1 − x2)).
Note that ksp = k[1]. The notation k[r] is somewhat ambiguous, as it does not refer to the
natural number m, but it will be used only whenever m is clear from the context. The
generic version of Harish-Chandra theory can be summarized as follows [Lus2], [Lus3,
Tab. II] (note that NWn(Wm) 'Wn−m for all m 6 n):

Theorem 16.2 (Lusztig). — Let n > 2. Then:
(a) Unipcus(Wn) is non-empty if and only if n = r2 + r for some r ∈ Z>0. In this case, it

contains only one element, which will be denoted by cusn.
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(b) The map
BC(n) −→ Cus(Wn)/Wn

r 7−→ (Wr2+r, cusr2+r)

is bijective.
(c) Let r ∈ BC(n). If G= (q,G, F ) ∈ Groups(Wn) and if L= (q,L, F ) ∈ Groups(Wr2+r)

is such that L is a 1-split Levi subgroup of G, then

EndGF RG
L ρ

G
cusr2+r

' Hk[2r+1](Wn−(r2+r)).

On the Calogero-Moser space side, Bellamy-Thiel [BeTh, Theo. 6.24] and Bellamy-
Maksimau-Schedler [BeMaSc] proved the following result (note that the proof of (c) by
Bellamy-Maksimau-Schedler relies on the description of Zk(Wn) as quiver varieties):

Theorem 16.3 (Bellamy-Thiel, Bellamy-Maksimau-Schedler). — Let n > 2. Then:
(a) Zksp(Wn) contains a cuspidal point if and only if n = r2 +r for some r ∈ Z>0. In this case,

it contains only one cuspidal point, which will be denoted by zcus
n . It is equal to zksp

(rr+1,∅)
.

(b) The map
BC(n) −→ CusIdV (Zksp(Wn))/Wn

r 7−→ (Wr2+r, z
cus
r2+r)

is bijective. We denote by Sr(n) the symplectic leaf of Zksp(Wn) indexed by (Wr2+r, z
cus
r2+r)

through Theorem 7.1.
(c) Let r ∈ BC(n). Then

Sr(n)
nor ' Zk[2r+1](Wn−(r2+r)).

The comparison between the above two theorems proves Conjecture 12.3 in type B
or C, up to the verification that the cuspidal unipotent representation belongs the same
unipotent Lusztig family as HCW (χ(rr+1,∅)). We need for this the combinatorics of sym-
bols [Lus2, §3] and its link with unipotent representations [Lus2, Theo. 8.2]. Whenever
n = r(r+1), then the cuspidal unipotent representation cusn is parametrized by the sym-

bol
(

1 2 · · · 2r 2r + 1
∅

)
(with defect 2r + 1) while HCW (χ(rr+1,∅)) is parametrized

by the symbol
(
r + 1 r + 2 · · · 2r 2r + 1

1 2 · · · r

)
(with defect 1). Since both symbols have

the same entries, cusr(r+1) and HCW (χ(rr+1,∅)) belong to the same unipotent Lusztig fam-
ily [Lus4, Theo. 5.8], as desired.

16.C. Type D. — We denote by D(n) the set of r ∈ Z>0 such that r2 6 n and r 6= 1. For
j ∈ {0, 1}, we set

Dj(n) = {0} ∪ {r ∈ D(n) | r > 2 and r ≡ j mod 2}.

In type D, there are two kinds of possible rational structures (and a third one, if n = 4,
inducing an order 3 automorphism of W ′4: it will not be considered here), a split one and
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a non-split one. They correspond respectively to the elements IdV = τ0 and τ of the
normalizer of W ′n. Note that

N(W ′n)
τj

((W ′m)τ j ) '


W ′n if (m, j) = (0, 0),
Wn−1 if (m, j) = (0, 1),
Wn−m if m > 2.

We summarize the generic version of Harish-Chandra theory in both cases [Lus2], [Lus3,
Tab. II]:

Theorem 16.4 (Lusztig). — We have:
(a) Unipcus(W

′
n) (resp. Unipcus(W

′
nτn)) is non-empty if and only if n = r2 for some r ∈ Z>0,

r even (resp. r odd or r = 0). In this case, it contains only one element, which will be
denoted by cus′n.

(b) If j ∈ {0, 1}, the map

Dj(n) −→ Cus(W ′nτ
j
n)/W ′n

r 7−→ (W ′r2 , cus′r2)

is bijective.
(c) Let j ∈ {0, 1} and let r ∈ Dj(n). If G = (q,G, F ) ∈ Groups(W ′nτ

j
n) and if L =

(q,L, F ) ∈ Groups(W ′r2) is such that L is a 1-split Levi subgroup of G, then

EndGF RG
L ρ

G
cus′

r2
'


Hksp(W ′n) if (r, j) = (0, 0),
Hk[2](Wn−1) if (r, j) = (0, 1),
Hk[2r](Wn−r2) otherwise.

In [Bon4, Cor. 9.8], the author determined the partition into symplectic leaves (as well
as their structure) of both Zksp(W ′n) and Zksp(W ′n)τn , but it must be said that the essential
part of the work was done by Bellamy-Thiel [BeTh, Prop. 4.17] and Bellamy-Maksimau-
Schedler [BeMaSc]:

Theorem 16.5 (Bellamy-Thiel, Bellamy-Maksimau-Schedler). — Let n > 4. Then:
(a) Zksp(W ′n) (resp. Zksp(W ′n)τn) admits a cuspidal point if and only if there exists r > 2 such

that n = r2. In this case, it contains only one element, which will be denoted by ycus
n . By

extension, we set ycus
0 for the unique cuspidal point of Zksp(0, 1).

(b) If j ∈ {0, 1}, the map

Dj(n) −→ Cusτ
j
n(Zksp(W ′n)/W ′n

r 7−→ (W ′r2 , y
cus
r2 )

is bijective. We denote by S′r(n) the cuspidal leaf of Zksp(W ′n)τ
j
n indexed by (W ′r2 , y

cus
r2 ).

(c) Let j ∈ {0, 1} and let r ∈ Dj(n). Then

S′r(n)
nor '


Zksp(W ′n) if (r, j) = (0, 0),
Zk[2](Wn−1) if (r, j) = (0, 1),
Zk[2r](Wn−r2) otherwise.
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The comparison between the above two theorems proves Conjecture 12.3 in type D, in
both the untwisted and the twisted case, up to the verification that the cuspidal families
correspond on both side: this is done thanks to the combinatoric of symbols, in the same
way as for type B or C.

PART V
SPETSES

17. What is a spets?

As explained in Section 11, and as noticed in many papers on the subject, essential
features of the representation theory of a finite reductive group are controlled by its Weyl
group and can be recovered from structures built from it. The Spetses(∗) program initi-
ated by Broué-Malle-Michel [Mal1, Mal2, BMM2, BMM3], which takes its origin in their
work on genericity [BMM1, BrMa2], proposes to attach to some finite complex reflec-
tion groups (called spetsial, see below) some numerical data (“unipotent representations”,
“degrees”) which admits partitions into “families”, “d-Harish-Chandra series” satisfying
the same kind of properties as in the case of Weyl groups. This was soon corroborated by
computations done by Lusztig [Lus7] and Malle (unpublished) for finite Coxeter groups
that are not Weyl groups. This suggests that there should be a mysterious object (the
spets) admitting some kind of representation theory similar to the representation theory
of finite reductive groups.

We try to summarize it (very) quickly in this section, and see what are the possible
links with the material of this paper. We come back to the general situation where W is
a complex reflection group. The spetsial parameter of W , denoted by ksp, is defined by
(ksp)Ω,0 = 1 and (ksp)Ω,j = 0 for all Ω ∈ A/W and 1 6 j 6 eΩ − 1. Broué-Malle-Michel
asked whether one can associate with any reflection groupW several combinatorial data:
(S1) A set Unip(W ), whose elements are called irreducible unipotent representations of the

spets attached to W , even though there is no group and no representation attached
to them.

(S2) A map deg : Unip(W ) −→ C[q]. For ζ a root of unity, an irreducible unipotent rep-
resentation ρ ∈ Unip(W ) is called ζ-cuspidal if degρ is divisible by (q− ζ)dim(V/W )ζ .

(S3) A ζ-Harish-Chandra theory: in other words, a partition of Unip(W ) into ζ-Harish-
Chandra series built on the same model as in Theorem 9.4. In particular, to each
Harish-Chandra series is associated a Hecke algebra of the stabilizer of the corre-
sponding ζ-cuspidal pair (P, λ), with a well-defined parameter kP,λ.

(S4) Almost characters: these are formal complex linear combinations of irreducible
unipotent representations that can be used to define a partition of Unip(W ) into
unipotent Lusztig families in the same way as in §10.B.

All these data should satisfy compatibility conditions (axioms) which mimic what is
known or conjectured for finite reductive groups. The group W is said to be spetsial if
some divisibility property of its Schur elements sch

ksp
χ holds [Mal2, §3]. It turns out that

(∗)Spetses is a greek island where a conference on finite groups was organized in 1993: this program started
there, during a coffee break...
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many complex reflection groups are not spetsial, but some of them are. The list of irre-
ducible spetsial groups is as follows:
• The groups G(e, 1, n) and G(e, e, n) for any e > 1;
• The primitive groups Gj , for

j ∈ {4, 6, 8, 14, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37}.
Being spetsial is easily seen to be a necessary condition for admitting combinatorial data
as in (S1), (S2), (S3) and (S4) satisfying the list of axioms, but it is somewhat astonishing
that it is also a sufficient condition [Mal1, BMM2, BMM3]. The natural remaining ques-
tion is to figure out if there is a category (the spets?) lying above all these combinatorial
data. Note the first attempts in this direction using fusion systems and `-compact groups
by Kessar-Malle-Semeraro [Sem, KMS1, KMS2].

Of course, if W is a Weyl group (i.e. a finite rational reflection group), then W is spet-
sial and one recovers the generic theory of unipotent representations of finite groups of
the form GF where (q,G, F ) ∈ Groups(W )(∗). In the late 80’s, Lusztig associated to
each finite Coxeter group which is not a Weyl group a combinatorial datum as in (S1)
and (S2) satisfying a few axioms (this was finally published in 1993; see [Lus7]). For
H2, H3 and H4, this was rediscovered by Malle in 1992 (unpublished). In this case, the
almost characters as in (S4) were obtained for dihedral groups by Lusztig and for H4

by Malle [LuMa]. About the same period, Malle [Mal1] proved that the imprimitive
complex reflection groups G(e, 1, n) and G(e, e, n) can be endowed with data satisfy-
ing (S1), (S2), (S3), (S4). The case of the primitive complex reflection groups has been
done by Broué-Malle-Michel [BMM2, BMM3].

We expect that, for spetsial groups, all the above Broué-Malle-Michel constructions are
compatible with the geometry of the Calogero-Moser space associated with W at spetsial
parameter, and that all the conjectures stated in Section 12 remain valid in this context.
In other words, is the spets attached to W hidden in the (Poisson) geometry of Zksp(W )?

In the upcoming section, we illustrate again these coincidences in the smallest non-
cyclic primitive complex reflection group, namely the group G4.

18. A primitive example

Hypothesis. We assume in this section, and only in this section, thatW
is of type G4. In other words, we set

s =

(
1 0
0 ζ3

)
and t =

1

3

(
2ζ3 + 1 2(ζ3 − 1)
ζ3 − 1 ζ3 + 2

)
,

and we assume that W = 〈s, t〉 = G4. Here, ζ3 is a primitive third root
of unity.

If (δ, β) ∈ {(1, 0), (1, 4), (1, 8), (2, 1), (2, 3), (2, 5), (3, 2)}, there is a unique irreducible
character of G4 of degree δ and b-invariant β: it will be denoted by φδ,β . We have

Irr(G4) = {φδ,β | (δ, β) ∈ {(1, 0), (1, 4), (1, 8), (2, 1), (2, 3), (2, 5), (3, 2)}}.

(∗)Note that, in this case, the ζ-Harish-Chandra series depend only on the order d of ζ and coincide with
d-Harish-Chandra series
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Note that φ1,0 = 1 is the trivial character, that φ1,4 = ε, φ1,8 = ε2, that φ2,1 and φ2,3 are the
characters afforded by the representations V and V ∗ respectively, that φ2,5 is the character
afforded by V ⊗ ε ' V ∗ ⊗ ε2 and that φ3,2 corresponds to the second symmetric power
S2(V ) ' S2(V ∗). We denote by C3 the parabolic subgroup 〈s〉 of W : it is a cyclic group of
order 3.

18.A. Unipotent representations. — All the facts stated without proof in this paragraph
are taken from [BMM3, §A.4] (see also [Mic]). The set Unipcus(C3) contains a single
element (which will be denoted by cusC3) and the set Unipcus(G4) contains also a single
element (which will be denoted by cusG4). The (classical) 1-Harish-Chandra theory of the
spets G4 may be summarized as follows:

• There are three Harish-Chandra series, namely Unip(G4, 1, 1), Unip(G4, C3, cusC3)
and {cusG4}.
• Unip(G4, 1, 1) is the principal series, and we set ρδ,β = HCG4(φδ,β).
• We have NG4(C3, cusC3) = NG4(C3) ' µ2 and we set ρC3,+ = HCG4,C3,cusC3 (1) and
ρC3,− = HCG4,C3,cusC3 (σ), where σ is the inclusion µ2 ↪→ C×.

Therefore,

(18.1) Unip(G4) = {ρ1,0, ρ1,4, ρ1,8, ρ2,1, ρ2,3, ρ2,5, ρ3,2, ρC3,+, ρC3,−, cusG4}.

The unipotent Lusztig families are the following four subsets F♣, F♦, F♥, F♠ of Unip(G4):

(18.2)


Fun
♣ = {ρ1,0},

Fun
♦ = {ρ3,2},

Fun
♥ = {ρ2,1, ρ2,3, ρC3,+},

Fun
♠ = {ρ1,4, ρ1,8, ρ2,5, ρC3,−, cusG4}.

The next table summarizes the numerical data attached to the spets G4. Let us explain
the information given in this table:

• The first column contains the list of irreducible unipotent representations ρ of the
spets G4.
• The second column contains the degree of ρ, where Φe denotes the e-th cyclotomic

polynomial, Φ′3 = q−ζ3, Φ′′3 = q−ζ−1
3 , Φ′6 = q−ζ6, Φ′′6 = q−ζ−1

6 and
√
−3 = 2ζ3 +1.

• The third column gives the family of ρ.
• The fourth (resp. fifth) column gives the cuspidal pair (P, λ) parametrizing the ζ4-

Harish-Chandra series (resp. ζ6-Harish-Chandra series) to which ρ belongs. Note
that an empty box means that ρ is ζ4-cuspidal (resp. ζ6-cuspidal) and that (1, 1)d
denotes the ζd-cuspidal pair associated with the trivial parabolic subgroup, which
if τd-split (∗).

(∗)The interesting ζ-Harish-Chandra series are those attached to a root of unity ζ of order equal to 1, 2, 3, 4
or 6; the ζ = −1 (resp. the ζ = ζ3) case can be deduced from the ζ = 1 (resp. ζ = ζ6) case thanks to Ennola
duality [BMM3, Axiom 5.13], which essentially amounts to replacing q by −q in this case.
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ρ deg(ρ) Family ζ4-series ζ6-series

ρ1,0 1 ♣ (1, 1)4 (1, 1)6

ρ1,4 −
√
−3/6q4Φ′′3Φ4Φ′′6 ♠ (1, 1)6

ρ1,8

√
−3/6q4Φ′3Φ4Φ′6 ♠

ρ2,1 (3 +
√
−3)/6qΦ′3Φ4Φ′′6 ♥ (1, 1)6

ρ2,3 (3−
√
−3)/6qΦ′′3Φ4Φ′6 ♥

ρ2,5 1/2q4Φ2
2Φ6 ♠ (1, 1)4

ρ3,2 q2Φ3Φ6 ♦ (1, 1)4

ρC3,+ −
√
−3/3qΦ1Φ2Φ4 ♥ (1, 1)6

ρC3,− −
√
−3/3q4Φ1Φ2Φ4 ♠ (1, 1)6

cusG4 −1/2q4Φ2
1Φ3 ♠ (1, 1)4 (1, 1)6

We conclude this subsection by giving the parameters kP,λ for all (P, λ) ∈ Cusd(G4) and
d ∈ {1, 4, 6}. Whenever the relative Weyl group NG4(P, λ) is cyclic and isomorphic to µd,
then the parameter will be given as a list (k0, k1, . . . , kd−1) of complex numbers:

• k1,1 = ksp.
• kC3,cusC3

= (3, 0).
• k(1,1)4

= (3, 0, 1, 0).
• k(1,1)6

= (2, 0, 0, 1, 0, 1).

18.B. Calogero-Moser space. — As there is only one orbit of reflecting hyperplanes (call
it Ω), we will simply denote parameters k ∈ Cℵ(G4) by a triple (k0, k1, k2) ∈ C3 where
kj = kΩ,j . For instance, ksp = (1, 0, 0). Descriptions of the Calogero-Moser space Zk(G4)
have been given in [BoMa] and [BoTh]. Note that the descriptions given in both cases
are for parameters k = (k0, k1, k2) ∈ C3 satisfying k0 + k1 + k2 = 0: this is not restrictive,
thanks to Remark 3.3. So, we set k◦sp = (2/3,−1/3,−1/3), and then Zksp(G4) = Zk◦sp(G4).
Specializing the presentation [BoTh] at k◦sp, we get that Zk◦sp is the closed subvariety of



48 CÉDRIC BONNAFÉ

C8 consisting of points (x1, x2, y1, y2, a, b, c, e) ∈ C8 such that

ab+ 12ce+ 2x1y1 − 15e4 + 234e2 + 192e = 0,

3ay1e+ 4bc− 9be3 + 126be+ 2x1y2 = 0,

3a2e− 2bx2 + 8cx1 − 9x1e
3 − 108x1e = 0,

4ac− 9ae3 + 126ae+ 3bx1e+ 2x2y1 = 0,

2ay2 − 3b2e− 8cy1 + 9y1e
3 − 108y1e = 0,

−a3 − 3ax1e
2 + 48ax1 + 2ay2

1 − b3 + 2bx2
1

− 3by1e
2 + 48by1 − 8cx2 − 8cy2 + 10x2e

3

− 156x2e+ 128x2 + 10y2e
3 − 156y2e− 128y2 = 0,

16c2 + 720ce+ 9x1y1e
2 + 2x2y2 − 27e6 + 864e3 + 6804e2 = 0,

−2ay2
1 + b3 + 3by1e

2 − 48by1 + 8cy2 − 10y2e
3 + 156y2e+ 128y2 = 0,

5a2y1 + 444ab+ 5b2x1 + 280ce3 + 4848ce− 1280c+ 60x1y1e
2

+ 648x1y1 + 10x2y2 − 360e6 + 7200e3 + 88776e2 + 44928e = 0.

The action of C× is given by

(18.3) ξ · (x1, x2, y1, y2, a, b, c, e) = (ξ4x1, ξ
6x2, ξ

−4y1, ξ
−6y2, ξ

2a, ξ−2b, c, e).

An immediate computation shows that ZC×
k◦sp

contains 4 points, given by

z♣ = (0, 0, 0, 0, 0, 0, 468, 8), z♦ = (0, 0, 0, 0, 0, 0, 0, 0),

z♥ := (0, 0, 0, 0, 0, 0,−45, 2) and z♠ = (0, 0, 0, 0, 0, 0,−18,−4).

We denote by FCM
F the Calogero-Moser k◦sp-family associated with zF. Then

(18.4)


FCM
♣ = {φ1,0},

FCM
♦ = {φ3,2},

FCM
♥ = {φ2,1, φ2,3}

FCM
♠ = {φ1,4, φ1,8, φ2,5}.

The comparison of (18.2) and (18.4) proves the spetsial analogue of Conjecture 12.1.

18.B.1. Symplectic leaves of Zk◦sp . — Let S denote the singular locus of Zk◦sp . It has been
computed in [BoTh] and it is proved there that it is irreducible of dimension 2 and that

(18.5) z♣, z♦ 6∈ S and z♥, z♠ ∈ S.

Moreover, z♠ is the only singular point of S. Therefore, there are three symplectic leaves:
– The smooth locus: through the parametrization of Theorem 7.1, it corresponds to

the pair (1, p), where p is the unique point of the Calogero-Moser space Zk◦sp(0, 1).
– S◦ = S \ {z♠}: through the parametrization of Theorem 7.1, it corresponds to

the pair (C3, q), where q is the unique cuspidal point of the Calogero-Moser space
Zk◦sp(V/V C3 , C3).

– {z♠}: it is cuspidal.
This parametrization fits perfectly with the partition of Unip(G4) into Harish-Chandra
series, so this proves the spetsial analogue of Conjecture 12.2 and Conjecture 12.3(a) for
d = 1.
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Concerning Conjecture 12.3(b), the only interesting case is the second one. Recall that
NG4(C3) = µ2. It is proved in [BoTh] that

(18.6) Snor ' {(x, y, e) ∈ C3 | (e− 2)(e+ 4) = xy} ' ZkC3,cusC3
(µ2)

as Poisson varieties. Note that the computation in [BoTh] is done for the parameter
−3k◦sp, so the equation given here is just obtained after a rescaling. This proves that
Conjecture 12.3(b) holds for d = 1.

18.B.2. Symplectic leaves of Zµ4
k◦sp

. — The action of C× being given by (18.3), the variety

Z
µ4
k◦sp

is defined, inside Zk◦sp , by the equations a = b = x2 = y2 = 0. This yields

(18.7) Z
µ4
k◦sp

= {z♥} ∪̇ S4,

where

(18.8) S4 ' {(x1, y1, e) ∈ C3 | 4/3x1y1 = e(e− 8)(e+ 4)2}

So S4 admits only one singular point (namely, z♠) and so Z
µ4
k◦sp

admits three symplectic
leaves:

– There are two τ4-cuspidal points, namely z♥ and z♠.
– There is one 2-dimensional symplectic leaf, which is the smooth locus of S4 (i.e.
S4 \ {z♠}). Through the parametrization of Theorem 7.1, it corresponds to the pair
(1, p), where p is the unique point of the Calogero-Moser space Zk◦sp(0, 1).

This parametrization fits perfectly with the partition of Unip(G4) into 4-Harish-Chandra
series, so this proves the spetsial analogues of Conjectures 12.2 and 12.3(a) for d = 4.

Concerning Conjecture 12.3(b), the only interesting case is the second one. Recall that
Wτ4 ' µ4. The above description proves that S4 (which is the closure of the symplectic
leaf S4 \ {z♠}) is normal and that

(18.9) S4 ' Zk(1,1)4
(µ4)

as Poisson varieties (for the Poisson bracket, see [BoTh]). So Conjecture 12.3(b) holds for
d = 4.

18.B.3. Symplectic leaves of Zµ6
k◦sp

. — The action of C× being given by (18.3), the variety

Z
µ6
k◦sp

is defined, inside Zk◦sp , by the equations a = b = x1 = y1 = 0. This yields

(18.10) Z
µ6
k◦sp

= {z♦} ∪̇ S6,

where

(18.11) S6 ' {(x2, y2, e) ∈ C3 | x2y2 = (e− 8)(e− 2)2(e+ 4)3}

So S6 admits two singular points (namely, z♥ and z♠) and so Z
µ6
k◦sp

admits four symplectic
leaves:

– There are three τ6-cuspidal points, namely z♦, z♥ and z♠.
– There is one 2-dimensional symplectic leaf, which is the smooth locus of S6 (i.e.
S6 \ {z♥, z♠}). Through the parametrization of Theorem 7.1, it corresponds to the
pair (1, p), where p is the unique point of the Calogero-Moser space Zk◦sp(0, 1).

This parametrization fits perfectly with the partition of Unip(G4) into 6-Harish-Chandra
series, so this proves the spetsial analogues of Conjectures 12.2 and 12.3(a) for d = 6.
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Concerning Conjecture 12.3(b), the only interesting case is the second one. Recall that
Wτ6 ' µ6. The above description proves that S6 (which is the closure of the symplectic
leaf S6 \ {z♥, z♠}) is normal and that

(18.12) S6 ' Zk(1,1)6
(µ6)

as Poisson varieties (for the Poisson bracket, see [BoTh]). So Conjecture 12.3(b) holds for
d = 6.
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