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AUTOMORPHISMS AND SYMPLECTIC LEAVES
OF CALOGERO-MOSER SPACES

by

CÉDRIC BONNAFÉ

Abstract. — We study the symplectic leaves of the subvariety of fixed points of an automor-
phism of a Calogero-Moser space induced by an element of finite order of the normalizer of
the associated complex reflection group. We give a parametrization à la Harish-Chandra of its
symplectic leaves (generalizing earlier works of Bellamy and Losev). This result is inspired
by the mysterious relations between the geometry of Calogero-Moser spaces and unipotent
representations of finite reductive groups, which is the theme of another paper [Bon2].

Let V be a finite dimensional vector space and let W be a finite subgroup of GLC(V )
generated by reflections. To a class function k on W supported on the set of reflections,
Etingof and Ginzburg [EtGi] have associated a normal irreducible affine complex variety
Zk(V,W ) called a (generalized) Calogero-Moser space. If τ is an element of finite order of
the normalizer of W in GLC(V ) stabilizing the class function k, it induces an automor-
phism of Zk(V,W ). The main theme of this paper is the study of the symplectic leaves of
the variety Zk(V,W )τ of its fixed points in Zk(V,W ) (endowed with its reduced closed
subscheme structure).

Note that W acts trivially on Zk(V,W ) so, by replacing τ by wτ for some w ∈W if nec-
essary, we may assume that the natural morphism V τ −→ (V/W )τ is onto (the argument
is due to Springer [Spr] and will be recalled in §3): this will be assumed throughout this
paper and will simplify the statements.

The Poisson bracket on Zk(V,W ) induces a Poisson bracket on Zk(V,W )τ and we are
interested in parametrizing the symplectic leaves of this fixed points subvariety. For this,
we define a τ -cuspidal symplectic leaf (or a τ -cuspidal point) to be a zero-dimensional
symplectic leaf of Zk(V,W )τ , and we define a τ -split parabolic subgroup of W to be the
stabilizer of some point in V τ . We also denote by Wτ the quotient Σ/Π, where Σ (resp.
Π) is the setwise (resp. pointwise) stabilizer of V τ . For its action on V τ , the group Wτ is
a reflection group [LeSp]. Our result is as follows:

Theorem A. Assume that the natural morphism V τ −→ (V/W )τ is onto. Then there is a natural
bijection between the set of symplectic leaves of Zk(V,W )τ and the set ofWτ -orbits of pairs (P, p),
where P is a τ -split parabolic subgroup and p is a τ -cuspidal point of ZkP (VP , P )τ .

Moreover, the dimension of the symplectic leaf associated with (P, p) through this bijection is
equal to 2 dim(V P )τ .

The author is partly supported by the ANR: Projects No ANR-16-CE40-0010-01 (GeRepMod) and ANR-18-
CE40-0024-02 (CATORE).



2 C. BONNAFÉ

Here, kP is the restriction of k to P . We will give in Section 8 an explicit description
of the bijection. If τ = 1, this result was proved by Bellamy [Bel1] and Losev [Los] and
might be viewed as a Harish-Chandra theory of symplectic leaves. So Theorem A can be
thought as a τ -Harish-Chandra theory, inspired by Broué-Malle-Michel d-Harish-Chandra
theory of unipotent representations of finite reductive groups [BMM] (see [Bon2] for a
further discussion of this analogy and applications of Theorem A). The main point is
to combine Springer/Lehrer-Springer theory (which describes the action of the setwise
stabilizer of V τ on V τ ) with Bellamy/Losev works. We propose the following conjecture
about the geometry of symplectic leaves of Zk(V,W )τ .

Conjecture B. Let (P, p) be as in Theorem A and let S denote the
corresponding symplectic leaf of Zk(V,W )τ . Then there exists a pa-
rameter l for the pair ((V P )τ ,NWτ (Pτ )/Pτ ) and a C×-equivariant
isomorphism of Poisson varieties

S
nor ' Zl((V

P )τ ,NWτ (Pτ )/Pτ ).

Here, Snor denotes the normalization of the closure of S.

Note that this conjecture is not known even in the case where τ = IdV (in which case
Wτ = W and Pτ = P ). It has been proved by Maksimau and the author [BoMa] when-
ever Zk(V,W ) is smooth and τ ∈W · C×.

The paper is organized as follows. We recall the set-up (reflection groups, Cherednik
algebras, Calogero-Moser spaces...) in the first section and the second section is a recollec-
tion of useful results on Poisson structures and symplectic leaves. In the third section, we
recall the main results of Lehrer-Springer on the group Wτ and some of its consequences.
In the fourth section, we restate Theorem A and Conjecture B in more precise terms. The
proof of Theorem A is given in Sections 5 to 8 (see the end of Section 4 for the description
of the different steps). We propose in the nineth section an overview of the known cases
for Conjecture B. A short appendix summarizes easy results about completions of rings
that are needed in Section 8 to conclude the proof of Theorem A.

Acknowledgements. We thank warmly Gwyn Bellamy for sharing his files containing
preliminary versions of his upcoming papers with Chalykh [BeCh] and Schedler [BeSc],
and for his help for understanding his work on symplectic leaves of Calogero-Moser
spaces.

We also wish to thank warmly Jean Michel for very long and fruitful discussions about
d-Harish-Chandra theory of unipotent representations of finite reductive groups: even if
it does not appear in this text (but will be explained in [Bon2]), all what I learned from
him was a great source of inspiration for this paper.

1. Set-up

1.A. Complex numbers. — Throughout this paper, we will abbreviate ⊗C as ⊗ and all
varieties will be algebraic, complex, quasi-projective and reduced. If X is an irreducible
variety, we denote by Xnor its normalization. If X is an affine variety, we denote by C[X]
its coordinate ring: if moreover X is irreducible, then Xnor is also affine and C[Xnor] is the
integral closure of C[X] in its fraction field (which will be denoted by C(X)).
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We fix in this paper a complex vector space V of finite dimension n. If X is a subset of
V (or V ∗), and if G is a subgroup of GLC(V ), we denote by Gset

X (resp. Gpt
X ) the setwise

(resp. pointwise) stabilizer of X and we set G[X] = Gset
X /Gpt

X . Then G[X] acts faithfully
on X (and on the vector space spanned by X). If X = {v} is a singleton, then Gset

X = Gpt
X

(and we will denote both simply by GX or Gv) and G[X] = 1. If H is a subgroup of G,
we set NG(H) = NG(H)/H .

If moreover G is finite, we identify (V G)∗ and (V ∗)G, and we denote by VG the unique
G-stable subspace of V such that V = VG ⊕ V G.

1.B. Reflections. — Let W be a finite subgroup of GLC(V ). We set

Ref(W ) = {s ∈W | dimC V
s = n− 1}

and note that, for the moment, we do not assume that W is generated by Ref(W ). We set
ε : W → C×, w 7→ det(w). We identify C[V ] (resp. C[V ∗]) with the symmetric algebra
S(V ∗) (resp. S(V )).

We denote by A the set of reflecting hyperplanes of W , namely

A= {V s | s ∈ Ref(W )}.

If H ∈ A, we denote by αH an element of V ∗ such that H = Ker(αH) and by α∨H an
element of V such that V = H ⊕Cα∨H and the line Cα∨H is W pt

H -stable. We set eH = |W pt
H |.

Note that W pt
H is cyclic of order eH and that Irr(W pt

H ) = {ResW
Wpt
H

εj | 0 6 j 6 e − 1}. We
denote by εH,j the (central) primitive idempotent of CWH associated with the character
ResW

Wpt
H

ε−j , namely

εH,j =
1

eH

∑
w∈Wpt

H

ε(w)jw ∈ CW pt
H .

If Ω is a W -orbit of reflecting hyperplanes, we write eΩ for the common value of all the
eH , where H ∈ Ω. We denote by ℵ the set of pairs (Ω, j) where Ω ∈ Aand 0 6 j 6 eΩ − 1.
The vector space of families of complex numbers indexed by ℵ will be denoted by Cℵ:
elements of Cℵ will be called parameters. If k = (kΩ,j)(Ω,j)∈ℵ ∈ Cℵ, we define kH,j for all
H ∈ Ω and j ∈ Z by kH,j = kΩ,j0 where Ω is theW -orbit ofH and j0 is the unique element
of {0, 1, . . . , eH − 1} such that j ≡ j0 mod eH .

1.C. Parabolic subgroups. — We denote by Parab(W ) the set of parabolic subgroups
of W (i.e. the set of subgroups of W which are stabilizers of some point of V ) and by
Parab(W )/W the set of conjugacy classes of parabolic subgroups ofW . If P ∈ Parab(W ),
we denote by V(P ) the set of elements v ∈ V such that Wv = P : it is a non-empty open
subset of V P . By definition, W pt

V P
= P and W set

V P
= NW (P ), so that W [V P ] = NW (P ). The

family (V(P ))P∈Parab(W ) is a stratification of V (the order between strata corresponds to
the reverse order of the inclusion of parabolic subgroups).

This stratification is stable under the action of the group W . If P ∈ Parab(W )/W ,
we denote by U(P) the image of V(P ) in V/W , where P is any element of P. Then
(U(P))P∈Parab(W )/W is a stratification of V/W (the order between strata corresponds to
the reverse order of the inclusion, up to conjugacy, of parabolic subgroups). Replacing V
by V ∗, we define similarly V∗(P ) and U∗(P) for P ∈ Parab(W ) and P ∈ Parab(W )/W .
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By definition, NW (P ) acts freely on V(P ) or V∗(P ). Moreover, for P ∈ P, the natural
map V(P )→ U(P) induces an isomorphism of varieties

(1.1) V(P )/NW (P )
∼−→ U(P).

In particular, U(P) is smooth.

1.D. Rational Cherednik algebra at t = 0. — Let k ∈ Cℵ. We define the rational Chered-
nik algebra Hk (at t = 0) to be the quotient of the algebra T(V ⊕ V ∗) oW (the semi-direct
product of the tensor algebra T(V ⊕ V ∗) with the group W ) by the relations

(1.2)


[x, x′] = [y, y′] = 0,

[y, x] =
∑
H∈A

eH−1∑
j=0

eH(kH,j − kH,j+1)
〈y, αH〉 · 〈α∨H , x〉
〈α∨H , αH〉

εH,j ,

for all x, x′ ∈ V ∗, y, y′ ∈ V . Here 〈 , 〉 : V × V ∗ → C is the standard pairing. The
first commutation relations imply that we have morphisms of algebras C[V ] → Hk and
C[V ∗]→ Hk. Recall [EtGi, Theo. 1.3] that we have an isomorphism of C-vector spaces

(1.3) C[V ]⊗ CW ⊗ C[V ∗]
∼−→ Hk

induced by multiplication (this is the so-called PBW-decomposition).

Remark 1.4. — Let (lΩ)Ω∈A/W be a family of complex numbers and let k′ ∈ Cℵ be defined
by k′Ω,j = kΩ,j + lΩ. Then Hk = Hk′ . This means that there is no restriction to generality if
we consider for instance only parameters k such that kΩ,0 = 0 for all Ω, or only parameters
k such that kΩ,0 + kΩ,1 + · · ·+ kΩ,eΩ−1 = 0 for all Ω (as in [BoRo]). �

1.E. Calogero-Moser space. — We denote by Zk the center of the algebra Hk: it is well-
known [EtGi, Theo 3.3 and Lem. 3.5] that Zk is an integral domain, which is integrally
closed. Moreover, it contains C[V ]W and C[V ∗]W as subalgebras [Gor, Prop. 3.6] (so it
contains P = C[V ]W ⊗ C[V ∗]W ), and it is a free P-module of rank |W |. We denote by
Zk the affine algebraic variety whose ring of regular functions C[Zk] is Zk: this is the
Calogero-Moser space associated with the datum (V,W, k). It is irreducible and normal.

We set P = V/W × V ∗/W , so that C[P] = P and the inclusion P ↪→ Zk induces a
morphism of varieties

Υk : Zk −→ P

which is finite (and flat if W = 〈Ref(W )〉).

1.F. Extra-structures on the Calogero-Moser space. — The Calogero-Moser space Zk is
endowed with extra-structures (a C×-action, a Poisson bracket, a filtration, an action of
NGLC(V )(W )...) which are described below.
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1.F.1. Grading, C×-action. — The algebra T(V ⊕ V ∗)oW can be Z-graded in such a way
that the generators have the following degrees

deg(y) = −1 if y ∈ V ,
deg(x) = 1 if x ∈ V ∗,
deg(w) = 0 if w ∈W .

This descends to a Z-grading on Hk, because the defining relations (1.2) are homoge-
neous. Since the center of a graded algebra is always graded, the subalgebra Zk is also
Z-graded. So the Calogero-Moser space Zk inherits a regular C×-action. Note also that
by definition P = C[V ]W ⊗ C[V ∗]W is clearly a graded subalgebra of Zk.

1.F.2. Poisson structure. — Let t ∈ C. One can define a deformation Ht,k of Hk as follows:
Ht,k is the quotient of the algebra T(V ⊕ V ∗) oW by the relations

(1.5)


[x, x′] = [y, y′] = 0,

[y, x] = t〈y, x〉+
∑
H∈A

eH−1∑
=0

eH(kH,i − kH,i+1)
〈y, αH〉 · 〈α∨H , x〉
〈α∨H , αH〉

εH,i,

for all x, x′ ∈ V ∗, y, y′ ∈ V . It is well-known [EtGi] that the PBW decomposition still
holds so that the family (Ht,k)t∈C is a flat deformation of Hk = H0,k. This allows to
define a Poisson bracket { , } on Zk as follows: if z1, z2 ∈ Zk, we denote by zt1, zt2 the
corresponding element of Ht,k through the PBW decomposition and we define

{z1, z2} = lim
t→0

[zt1, z
t
2]

t
.

Finally, note that

(1.6) The Poisson bracket is C×-equivariant.

1.F.3. Filtration. — The tensor algebra T(V ⊕ V ∗) is naturally filtered by the subspaces(⊕d
j=0(V ⊕ V ∗)⊗j

)
. This induces a filtration of T(V ⊕ V ∗) oW by putting W in degree

0 and so induces a filtration (FjHk)j>0 of the rational Cherednik algebra. By convention,
we set F−1Hk = 0. If M is any subspace of Hk, we set FjM = M ∩FjHk, so that M also
inherits a filtration and we denote by ReesFM the Rees module of M (associated with the
filtration (FjX)j>0), namely the C[~]-submodule of C[~]⊗M equal to

ReesFM =
⊕
j > 0

~jFjM.

Recall that, if λ ∈ C, then

(1.7) C[~]/〈~− λ〉 ⊗C[~] ReesFM '

{
M if λ 6= 0,
grF(M) if λ = 0,

where grF(M) =
⊕

j > 0 FjM/Fj−1M is the graded vector space associated with M and
its filtration.
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If A is a subalgebra of Hk and J is an ideal of A, then ReesF(A) is a subalgebra of
C[~]⊗A (called the Rees algebra of A) and ReesF(J) is an ideal of ReesF(A). Recall [EtGi,
Theo. 1.3] that

(1.8) grFHk ' H0 = C[V × V ∗] oW and grFZk ' Z0 = C[V × V ∗]W .

1.F.4. Action of the normalizer. — The group NGLC(V )(W ) acts on the set ℵ and so on the
space of parameters Cℵ. If τ ∈ NGLC(V )(W ), then τ induces an isomorphism of algebras
Hk −→ Hτ(k). So, if τ(k) = k, then it induces an action on the algebra Hk, and so on its
center Zk and on the Calogero-Moser space Zk, which preserves the C×-action and the
Poisson bracket. We set

δ(τ) = max
w∈W

dimV wτ .

Of course, δ(τ) depends only on the coset Wτ and not on τ . We say that τ is W -full
if δ(τ) = dimV τ . Since W acts trivially on Zk, the study of the action of τ on Zk is
equivalent to the study of the action of wτ . So, by replacing τ by wτ if necessary, we may
assume that τ is W -full.

Example 1.9. — An element τ ∈ NGLC(V )(W ) is called W -regular (or simply regular if
W is clear from the context) if V τ ∩ Vreg 6= ∅. A W -regular element of NGLC(V )(W ) is
W -full [Spr]. �

Hypothesis and notation. From now on, and until the end of this paper, we
assume that

W = 〈Ref(W )〉,
we fix a parameter k ∈ Cℵ and an element τ of finite order of NGLC(V )(W )
such that τ(k) = k. We also assume that τ is W -full.

IfF is one of the objects defined in the previous sections (Hk, Zk, ℵ, A,. . . ),
we will sometimes denote it byF(W ) orF(V,W ) if we need to emphasize the
context.

2. Recollection about Poisson structures and symplectic leaves

Notation. We fix in this section, and only in this section, a commutative
noetherian Poisson C-algebraR, whose Poisson bracket is denoted by {, }.

2.A. Poisson ideals. — An ideal I of R is called a Poisson ideal of R if {r, I} ⊂ I for all
r ∈ R. The following facts may be found in [Dix, Lem. 3.3.3]:

Proposition 2.1. — Let I be a Poisson ideal of R. Then:
(a) Every minimal prime ideal containing I is Poisson.
(b) The radical of I is Poisson.
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2.B. Normalisation. — The next result is due to Kaledin [Kal]:

Theorem 2.2 (Kaledin). — Assume that R is a domain. Then there is a unique Poisson bracket
on the normalisation of R extending {, }.

2.C. Action of a finite group. — We assume in this subsection that we are given a finite
groupG acting on the C-algebraR in such a way that the Poisson bracket isG-equivariant
(i.e. {g(r), g(r′)} = g({r, r′}) for all g ∈ G and r, r′ ∈ R). Let I denote the ideal of R
generated by the family (g(r) − r)g∈G

r∈R
. Then R/I is the biggest quotient algebra of R on

which G acts trivially.
Since G is finite and C has characteristic 0, the natural map

RG −→ (R/I)G = R/I

is surjective and its kernel is IG. Moreover, RG is a Poisson subalgebra of R (because the
Poisson bracket is G-equivariant). Note that I is not in general a Poisson ideal of R, but
it is easily checked that

(2.3) IG is a Poisson ideal of RG.

Therefore, R/I = RG/IG can be naturally endowed with a Poisson bracket. And, by
Proposition 2.1(b), R/

√
I = RG/

√
IG also inherits a Poisson bracket.

Remark 2.4. — If R = C[X] is the coordinate ring of an affine variety X, then R/I is
the coordinate ring of the G-fixed points scheme of X (which will be denoted by X(G)),
while R/

√
I is the coordinate ring of its reduced subscheme (which will be denoted by

XG). The above construction shows that the closed subvariety XG of X inherits a Poisson
structure from the one on X, even though it is not in general a Poisson subvariety of X
(i.e. the natural map XG ↪−→ X is not Poisson). However, X/G is also a Poisson variety
and the natural map XG ↪−→ X/G is Poisson, i.e. XG is a closed Poisson subvariety of
X/G.

If moreover X is smooth, then X(G) = XG is also smooth, and if the Poisson struc-
ture on Xmakes it into a symplectic variety, then XG is also symplectic for the induced
Poisson structure. �

Example 2.5. — Let E be a C-vector space endowed with a symplectic form ω and as-
sume here that R = C[E] and that G ⊂ Sp(E,ω). Then the restriction of ω to EG is
non-degenerate, so this endows EG with a structure of Poisson (even more, symplectic)
variety. On the other hand, via the above Remark 2.4, the variety EG also inherits from
E a structure of Poisson variety. It is easily checked that both structures coincide. �
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2.D. Symplectic leaves. — Assume in this subsection that R = C[X] is the coordinate
ring of an affine variety X. Then Brown-Gordon [BrGo] have defined a stratification of
Xby symplectic leaves, which are in general not algebraic subvarieties of X. We denote by
Symp(X) the set of symplectic leaves of X.

When X has finitely many symplectic leaves, then the symplectic leaves are alge-
braic [BrGo, Prop. 3.7] and the stratification of X into symplectic leaves is given as fol-
lows. Let (Sj)j > 0 be the sequence of closed subvarieties of Xdefined by{

S0 = Zτ
k ,

If j > 0, then Sj+1 is the reduced singular locus of Sj .

Then the symplectic leaves of Xare the irreducible components of the locally closed sub-
varieties (Sj \Sj+1)j > 0. Let PSpec(C[X]) denote the set of prime ideals that are Poisson.
If S is a symplectic leaf of X, we denote by pS the defining ideal of S in C[X]: it belongs
to PSpec(C[X]). If Xhas finitely many symplectic leaves, then the map

(2.6) Symp(X) −→ PSpec(C[X])
S 7−→ pS

is bijective [BrGo, Lem. 3.4]. The inverse is given as follows: if p ∈ PSpec(C[X]) corre-
sponds to S through this bijection, then S is the smooth locus of the closed irreducible
subvariety of Xdefined by p.

Lemma 2.7. — Assume that Xhas finitely many symplectic leaves and that Y is a locally closed
Poisson subvariety of X. Then Yhas finitely many symplectic leaves.

Proof. — Taking the closure of Y, which is also Poisson, allows to assume that Y is
closed. Let (Sl)l∈L be the family of symplectic leaves of X (for some finite indexing set L).
Let Ibe an irreducible component of Y. Then I is also Poisson by Proposition 2.1(a) so
it is the closure of a symplectic leaf thanks to the bijection (2.6). In particular, there exists
a subset I of L such that I is the union of the Si, for i ∈ I . This proves that Y is a union
of symplectic leaves of X, each of which being also a symplectic leaf of Y.

Now, let G be a finite group acting on X and preserving the Poisson bracket. Then
X/G is an affine Poisson variety (because C[X/G] = C[X]G is a Poisson subalgebra of
C[X], see Remark 2.4). If H is a subgroup of G, we denote by X(H) the set of elements
x ∈ Xwhose stabilizer is exactly H . Then X(H) is a locally closed subvariety of X (it is
open in XH ). The subgroup H is called parabolic if X(H) 6= ∅. Let Parab(G) denote the
set of parabolic subgroups of G.

If H is a conjugacy class of parabolic subgroups ofG, we denote by (X/G)(H) the image
of X(H) in X/G for some (or any) H ∈ H. Then the group NG(H)/H acts freely on X(H)
and the natural map X(H)→ (X/G)(H) induces an isomorphism

(2.8) X(H)/G(H)
∼−→ (X/G)(H).

Indeed, if g ∈ G and x, x′ ∈ X(H) are such that g · x = x′, then H = Gx′ = gGx = gH and
so g ∈ NG(H). The next results generalizes slightly [BrGo, Prop. 7.4]:
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Proposition 2.9. — Assume that X is smooth and symplectic. Then the symplectic leaves of
X/G are the irreducible components of the locally closed subvarieties (X/G)(H) where H runs
over Parab(G)/G.

In particular, if all the subvarieties (X/G)(H) are irreducible, then

X/G =
⋃̇

H∈Parab(G)/G

(X/G)(H)

is the stratification of X/G into symplectic leaves.

Proof. — Let H ∈ Parab(G) and let H ∈ H. Since X is smooth and symplectic, the sub-
variety XH is also smooth and symplectic. So its open subset X(H) is also smooth and
symplectic as well as (X/G)(H) thanks to the isomorphism (2.8). And the morphism
XH → X/G is Poisson: this proves that any irreducible component of (X/G)(H) is con-
tained in a unique symplectic leaf. In particular, X/G has finitely many symplectic leaves.

It remains to show that any irreducible component Iof (X/G)(H) is a symplectic leaf.
But I is a closed Poisson subvariety of X/G, so its smooth locus is a symplectic leaf of
X/G by the bijection (2.6). Since I is smooth, it remains to show that I is the smooth
locus of I. But, by the bijection (2.6) applied to I, this follows from the fact that I\I is
a closed Poisson subvariety of I (indeed, I\I is the intersection of Iwith the union of
the (X/G)(H′), where H′ runs over the set of conjugacy classes of parabolic subgroups of
G containing strictly at least one element of H).

Corollary 2.10. — Assume that X has finitely many symplectic leaves. Then X/G and XG

have finitely many symplectic leaves.

Proof. — Let Sdenote a symplectic leaf of Xand letH = Gset
S . As symplectic leaves form

a partition of X, and since g(S) is a symplectic leaf of X for any g ∈ G, we get that

g(S) ∩ S= ∅

for all g 6∈ H . So, the image S in X/G is isomorphic to S/H and is a locally closed Poisson
subvariety of X/G. But, by Proposition 2.9, S/H has finitely many symplectic leaves.

As Xhas finitely many symplectic leaves, this shows that X/G also has finitely many
symplectic leaves. Now, XG is a closed Poisson subvariety of X/G, so it also admits
finitely many symplectic leaves by Lemma 2.7.

As a consequence of the above proof, we get:

Corollary 2.11. — Assume that Xhas finitely many symplectic leaves and that G acts freely on
X. Then the map Symp(X)/G −→ Symp(X/G) sending the G-orbit of a symplectic leaf of X
to its image in X/G is well-defined and bijective.
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3. Recollection of Lehrer-Springer theory

3.A. Reflection groups. — Note that [Spr]

(3.1) δ(τ) = dim(V/W )τ .

Therefore, since (V/W )τ is irreducible (it is isomorphic to an affine space [Spr]), we get
that

(3.2) the natural map V τ → (V/W )τ is onto.

For simplifying notation, we set Wτ = W set
V τ /W

pt
V τ . Note that W τ ⊂ W set

V τ . Moreover, Wτ

acts faithfully on V τ , so

(3.3) τ acts trivially on Wτ .

Lehrer-Springer theory [LeSp, Theo. 2.5 and Cor. 2.7] gives the following result:

Theorem 3.4 (Springer, Lehrer-Springer). — Recall that τ is W -full. Then:
(a) The group Wτ is a reflection group for its action on V τ .
(b) The natural map

iτ : V τ/Wτ −→ (V/W )τ

is an isomorphism of varieties.
(c) The reflecting hyperplanes of Wτ are exactly the intersections with V τ of the reflecting

hyperplanes of W which do not contain V τ .

Similarly, the natural map i∨τ : V ∗τ/Wτ → (V ∗/W )τ is an isomorphism of varieties.

Example 3.5. — If τ is W -regular (as defined in Example 1.9), then Wτ = W τ by [Spr].�

3.B. τ -split parabolic subgroups. — A parabolic subgroup P of W is called τ -split if it
is the stabilizer of some point of V τ (i.e. if P = W pt

V P∩V τ or, in other words, if V(P ) ∩
V τ 6= ∅). This is equivalent to say that P is the stabilizer of some point of V ∗. Note the
following easy fact:

(3.6) The intersection of τ -split parabolic subgroups is τ -split.

In this case, P is normalized by τ and τ is P -full, and we define the τ -rank of P to be
the number dim(V P )τ . We denote by Parabτ (W ) the set of τ -split parabolic subgroups of
W . If P ∈ Parabτ (W ), then W pt

V τ ⊂ P and Pτ = (P ∩W set
V τ )/W pt

V τ is a parabolic subgroup
of Wτ . This shows that the map

Parabτ (W ) −→ Parab(Wτ )
P 7−→ Pτ

is well-defined.

Lemma 3.7. — The map
Parabτ (W ) −→ Parab(Wτ )

P 7−→ Pτ
is bijective.
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Proof. — First, if Q is a parabolic subgroup of Wτ , then there exists v ∈ V τ such that
Q = (Wτ )v and so, if we set P = Wv, then P is τ -split and Pτ = Q. This shows that the
map is surjective.

Now, if P is a τ -split parabolic subgroups of W , then

(3.8) (V P )τ = (V τ )Pτ .

Proof of (3.8). — Since P is τ -split, there exists v ∈ (V P )τ such that P =
Wv (and so Pτ = (Wτ )v). Therefore,

(V τ )Pτ =
⋂

H∈A(V τ ,Wτ )
v∈H

H,

and so, by Theorem 3.4(c),

(V τ )Pτ = V τ ∩
( ⋂
H∈A(V,W )

v∈H

H
)

= V τ ∩ V P ,

as expected.
Since P = W pt

(V P )τ
, the group Pτ determines P . This means that the map of the lemma is

injective.

If Q ∈ Parab(Wτ )/Wτ and Q ∈ Q, we denote by Vτ (Q) and Uτ (Q) the analogues of
V(P ) and U(P) for P ∈ Parab(W )/W and P ∈ P. We also define similarly V∗τ (Q) and
U∗τ (Q). The same argument as in the above proof (using Theorem 3.4(c)) shows that, if P
is τ -split, then

(3.9) Vτ (Pτ ) = V(P )τ .

3.C. Normalizers. — Fix a τ -split parabolic subgroup P of W . If w ∈Wτ , then wP does
not depend on the representative of w in W set

V τ , because W pt
V τ ⊂ P by definition. So we

can define the normalizer NWτ (P ) of P in Wτ and, by the bijectivity proved in Lemma 3.7,
it coincides with the normalizer NWτ (Pτ ). The kernel of the well-defined composition

NWτ (Pτ ) = NWτ (P ) −→ NW (P )/P

is equal to Pτ , so we get a natural injective map

(3.10) NWτ (Pτ ) ↪−→ NW (P ).

Now, τ acts on NW (P ). The next result describes the image of the above injective map:

Lemma 3.11. — The image of the morphism (3.10) is equal to NW (P )τ .

Proof. — Let G denote the image of the morphism (3.10) and let v ∈ V(P )τ (so that
P = Wv).

Let w ∈ NWτ (Pτ ) and let ẇ be a representative of w in W set
V τ . Then ẇ(v) ∈ V(P )τ

by (3.9). So τ(ẇ(v)) = ẇ(v), i.e. ẇ−1τ(ẇ) ∈ P . So the image of w in NW (P ) is τ -invariant.
This proves that G ⊂ NW (P )τ .

Conversely, let w ∈ NW (P )τ and let ẇ denote a representative of w in NW (P ). Then
τ(ẇ(v)) = ẇ(ẇ−1τ(ẇ))(v). But (ẇ−1τ(ẇ))(v) = v since ẇ−1τ(ẇ) ∈ P by hypothesis. So v
and ẇ(v) belong to V τ so, by Lehrer-Springer Theorem 3.4(b), there exists x ∈ W set

τ such
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that ẇ(v) = x(v). In other words, x−1ẇ ∈ P . Moreover, v and ẇ(v) both belong to V(P ),
so x normalizes P (and Pτ ), so w is the image of x under the morphism (3.10). In other
words, NW (P )τ ⊂ G.

Thanks to Lemma 3.11, we will identify NWτ (Pτ ) with NW (P )τ . Note that NWτ (Pτ ) =

NW (P )τ is the stabilizer of the set V(P )τ in NW (P ).

3.D. Orbits of τ -split parabolic subgroups. — We denote by Parab(W )τspl the set of τ -
split parabolic subgroups of W and by (Parab(W )/W )τspl the set of W -orbits of parabolic
subgroups of W containing a τ -split one. The group W set

V τ acts on Parab(W )τspl by conju-
gacy and, since any τ -split parabolic subgroup of W contains W pt

V τ , this action factorizes
through an action of Wτ . If P ∈ (Parab(W )/W )τspl, we set Pτ

spl = P ∩ Parab(W )τspl.
Now, let EP (resp. ẼP ) denote the set of elements w ∈ NW (P ) (resp. NW (P )) such that
V(P )wτ 6= ∅. Then NW (P ) acts by conjugacy on the set ẼP τ . If w ∈ EP , we denote by
[wτ ] the NW (P )-orbit of the image of wτ in NW (P )τ .

Proposition 3.12. — Let P be a τ -split parabolic subgroup and let P denote its W -orbit. Then:
(a) Let x ∈W . Then xP is τ -split if and only if x−1τ(x) ∈ EP .
(b) The map Pτ

spl → ẼP τ/NW (P ), xP 7→ [x−1τx] is well-defined and induces a bijection

Pτ
spl/Wτ

∼−→ ẼP τ/NW (P ).

Proof. — (a) Assume that xP is τ -split. In other words, there exists v ∈ V τ such that
xP = Wv. Now, let w = x−1τ(x): then x−1(v) ∈ V(P )wτ and so w ∈ EP .

Conversely, assume that w = x−1τ(x) ∈ EP . Then there exists v ∈ V(P ) such that
v ∈ V wτ . Therefore, P = Wv and so xP = Wx(v). But τ(x(v)) = xx−1τ(x)τ(v) = xwτ(v) =
x(v), so x(v) ∈ V τ . This implies that xP is τ -split by definition.

(b) Let us first show that the map (let us denote it by φ) is well-defined. For this, let x
and y be two elements of W such that xP = yP is τ -split. Then there exists u ∈ NW (P )
such that y = xu. So y−1τy = u−1x−1τxu and so [y−1τy] = [x−1τx], as expected.

Let us now prove that φ is constant on Wτ -orbits. For this, let w ∈ Wτ and x ∈ W
be such that ξ−1τ(x) ∈ EP . Then (xw)−1τ(wx) = x−1w−1τ(w)xx−1τ(x). But w−1τ(w) ∈
W pt
V τ ⊂ P by (3.3), so the images of x−1τ(x) and (wx)−1τ(wx) in ẼP coincide. Therefore,

φ actorizes through a map

φ̃ : Pτ
spl/Wτ −→ EP τ/NW (P ).

Let us prove that φ̃ is injective. So let x and y be two elements of W such that xP and
yP are τ -split and [x−1τx] = [y−1τy]. Then there exists u ∈ NW (P ) and p ∈ P such that
y−1τy = u−1x−1τxup. In particular, V(P )y

−1τy = V(P )u
−1x−1τxu. Since xP = xuP , we

may (and we will) assume that u = 1. As xP is τ -split, the set V(xP )τ is non-empty, so
we may pick an element v ∈ V(xP )τ . Then

τyx−1(v) = yy−1τyx−1(v) = yx−1τxpx−1(v).
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But x−1(v) ∈ V(P ) so px−1(v) = x−1(v). Consequently, τyx−1(v) = yx−1τ(v) = yx−1(v).
In other words, yx−1(v) ∈ V(yP )τ ⊂ V τ . By Lehrer-Springer Theorem 3.4(b), there exists
a ∈Wτ such that yx−1(v) = a(v). Then

yP = yx−1
(xP ) = yx−1

Wv = Wyx−1(v) = Wa(v) = aWv = a(xP ),

which shows that yP and xP are Wτ -conjugate.
Let us now prove that φ̃ is surjective. So let w ∈ EP . Then there exists v ∈ V(P )wτ .

So W · v ∈ (V/W )τ . By Lehrer-Springer Theorem 3.4, there exists x ∈ W such that
x(v) ∈ V τ . Therefore, xP = Wx(v) is τ -split and v ∈ V x−1τx. So, if we set p = w−1x−1τ(x),
then p(v) = v so p ∈ P and φ(xP ) = [x−1τ(x)] = [wp] = [w], as desired.

3.E. Stratification of (V/W )τ . — Applying 1.C to the pair (V τ ,Wτ ), the variety V τ/Wτ

admits a stratification (Uτ (Q))Q∈Parab(Wτ )/Wτ
while the variety (V/W )τ admits a strati-

fication (U(P)τ )P∈Parab(W )/W . Both varieties are isomorphic and so both stratifications
can be compared: through this isomorphism, the first one is a refinement of the second
one, as will be shown in Corollary 3.15 below by using Proposition 3.12.

Proposition 3.13. — Let P ∈ Parab(W )/W . Then U(P)τ is non-empty if and only if P
contains a τ -split parabolic subgroup.

Proof. — If P contains a τ -split parabolic subgroup P and if v ∈ V τ is such that P = Wv,
then the W -orbit of v belongs to U(P)τ which is therefore non-empty. Conversely, if
U(P)τ is non-empty, it then follows from Theorem 3.4(b) that there exists v ∈ V τ whose
W -orbit belongs to U(P)τ . By construction, Wv ∈ P and is τ -split.

After eliminating the empty pieces, Proposition 3.13 shows that (V/W )τ admits a strat-
ification (U(P)τ )P∈(Parab(W )/W )τspl

. Let us decompose the pieces of this stratification into
irreducible components. For this, fix a τ -split parabolic subgroup P and let P denote its
conjugacy class. Then U(P)τ is smooth since U(P) is smooth and τ has finite order, and
we have

U(P)τ = (V(P )/NW (P ))τ =
( ⋃
w∈ẼP

V(P )wτ
)
/NW (P ).

By definition of V(P ), V(P )wτ ∩ V(P )w
′τ = ∅ is w 6= w′. If E is a subset of ẼP τ , we

denote by V(P )E the (disjoint) union of the V(P )g for g ∈ E. Then

(3.14) U(P)τ =
⋃

E∈ẼP τ/NW (P )

V(P )E/NW (P ).

Then V(P )E/NW (P ) is the image of some V(P )g for some g ∈ E and so V(P )E/NW (P )
is closed (in U(P)) and irreducible. So the decomposition (3.14) is the decomposition of
U(P)τ into irreducible (i.e. connected because they are disjoint) components.

So the stratification (U(P)τ )P∈(Parab(W )/W )τspl
of (V/W )τ together with the decompo-

sition (3.14) provides a finer stratification of (V/W )τ , indexed by the Wτ -orbits of τ -
split parabolic subgroups (by using the bijection of Proposition 3.12(b)). On the other
hand, V τ/Wτ admits a stratification (Uτ (Q))Q∈Parab(Wτ )/Wτ

. Both stratifications coincide
through the isomorphism iτ , as shown by the next result:
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Corollary 3.15. — Let P ∈ (Parab(W )/W )τspl, let P ∈ P and let E ∈ ẼP τ/NW (P ). Let PE

denote the Wτ -orbit of τ -split parabolic subgroups of W associated with E through the bijection
of Proposition 3.12(b). Let QE denote the Wτ -orbit of parabolic subgroups of Wτ of the form Qτ
for Q ∈ PE (see Lemma 3.7). Then

iτ (Uτ (QE)) = V(P )E/NW (P ).

Proof. — Let g ∈ E and let x ∈ W be such that [x−1τx] = [g] (the existence of such an
x is guaranteed by Proposition 3.12(b)). We set Q = xP . Then Q is τ -split by Proposi-
tion 3.12(a) and PE (resp. QE) is the Wτ -orbit of Q (resp. Qτ ) by construction.

Now, iτ (Uτ (QE)) is the image of V(xP )τ in (V/W )P and, through the isomorphism
V(P )/NW (P ) ' U(P), the result comes from the fact that x−1 induces an isomorphism
between V(xP )τ and V(P )x

−1τx.

4. The problem, the main result

4.A. Symplectic leaves. — Let Ik denote the ideal of Zk generated by (τ(z) − z)z∈Zk .
It is τ -stable. Recall from Remark 2.4 that C[Zτ

k ] = Zk/
√
Ik = Zτk/

√
Iτk , and that Zk/Ik

inherits a Poisson bracket which makes Zτ
k into an affine Poisson variety. Therefore, Zτ

k
admits a stratification into symplectic leaves [BrGo, §3.5]. We denote by Symp(Zτ

k ) the
set of symplectic leaves of Zτ

k .

Remark 4.1. — Note that Zτ
k is generally not irreducible, not connected, not equidimen-

sional and that its irreducible components might not coincide with its connected compo-
nents. �

Since Zk has finitely many symplectic leaves [BrGo, Prop. 7.4], it follows from Corol-
lary 2.10 that Zτ

k has finitely many symplectic leaves too. They are obtained as in §2.D.

Remark 4.2. — This description shows that the symplectic leaves of Zτ
k are C×-stable. �

If S is a symplectic leaf of Zτ
k , we denote by pS the defining ideal of S in Zk/Ik: it

belongs to PSpec(Zk/Ik). Since Zτ
k has finitely many symplectic leaves, the map

(4.3) Symp(Zτ
k ) −→ PSpec(Zk/Ik)

S 7−→ pS

is bijective (see (2.6)).
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4.B. τ -cuspidality. — We define a τ -cuspidal symplectic leaf(∗) to be a zero-dimensional
symplectic leaf of Zτ

k . We will therefore also call it a τ -cuspidal point. Through the bijec-
tion (4.3), the set of τ -cuspidal points is naturally in bijection with the set PMax(Zk/

√
Ik)

of maximal ideals of the algebra C[Zτ
k ] = Zk/

√
Ik which are also Poisson ideals (note that

PMax(Zk/Ik) = PMax(Zk/
√
Ik) ⊂ PSpec(Zk/

√
Ik)).

Remark 4.4. — It follows from Remark 4.2 that τ -cuspidal points are fixed under the
action of C×. �

We denote by Cusτk(V,W ) the set of pairs (P, p) where P is a τ -split parabolic subgroup
of W and p is a τ -cuspidal point of ZkP (VP , P )τ , where kP denotes the restriction of
k to the parabolic subgroup P . The group Wτ acts on Cusτk(V,W ) and we denote by
Cusτk(V,W )/Wτ the set of its orbits in Cusτk(V,W ). If (P, p) ∈ Cusτk(V,W ), we denote by
[P, p] its Wτ -orbit.

4.C. Main result. — With the above notation, Theorem A can be restated (and made
more precise) as follows:

Theorem A. There is a natural bijection (which will be explicitly constructed in Section 8)

Cusτk(V,W )/Wτ −→ Symp(Zτ
k )

[P, p] 7−→ SP,p.

It satisfies that Υk(SP,p) is the image of (V P )τ × (V ∗P )τ in V/W × V ∗/W . In particular,

dimSP,p = 2 dim(V P )τ .

We will prove Theorem A in the next sections. First, in Section 5, we will recall the
proof, essentially due to Brown-Gordon [BrGo, Prop. 7.4] of Theorem A whenever k = 0
and τ = 1. In Section 6, we will use Lehrer-Springer Theorem 3.4 to prove Theorem A
whenever k = 0. In Section 7, we will use a deformation argument to attach to each
symplectic leaf a Wτ -orbit of τ -split parabolic subgroups: in some sense, this is half of
the construction of the above bijection. The second half will be constructed in Section 8,
where the proof of Theorem A will be completed.

Let us also restate Conjecture B:

Conjecture B. Let (P, p) ∈ Cusτk(V,W ). Then there exists a pa-
rameter l for the pair ((V P )τ ,NWτ (Pτ )) and a C×-equivariant iso-
morphism of Poisson varieties

S
nor
P,p ' Zl((V

P )τ ,NWτ (Pτ )).

(∗)This definition coincides with the notion of cuspidal leaf of Zk introduced by Bellamy [Bel1, §5] in the case
where τ = 1.
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5. Symplectic leaves of Z0 = (V × V ∗)/W

The Poisson bracket on Z0 = C[V × V ∗]W is the one obtained by restriction from the
usual Poisson bracket on C[V × V ∗]. The symplectic leaves of Z0 have been described
in [BrGo, Prop. 7.4]: we recall their description in this section, and give some more pre-
cision about the structure of their closure.

If P ∈ Parab(W ), let VV∗(P ) denote the set of elements (v, v∗) ∈ V ×V ∗ such thatWv∩
Wv∗ = P . Again, the family (VV∗(P ))P∈Parab(W ) is a stratification of V × V ∗ (the order
between strata corresponds to the reverse order of the inclusion of parabolic subgroups).
If P ∈ Parab(W )/W , we let UU∗(P) denote the image of VV∗(P ) in (V ×V ∗)/W , where
P is any element of P. Then (UU∗(P))P∈Parab(W )/W is a stratification of (V ×V ∗)/W (the
order between strata corresponds to the reverse order of the inclusion, up to conjugacy,
of parabolic subgroups).

Fix now P ∈ Parab(W )/W and P ∈ P. Then

(5.1) V(P )× V∗(P ) ⊂ VV∗(P ) ⊂ V P × V ∗P .

Note that NW (P ) acts on V P × V ∗P and that VV∗(P ) is the open subset of V P × V ∗P on
which it acts freely. The image of VV∗(P ) = V P × V ∗P is equal to UU∗(P).

Recall from §2.C that V P ×V ∗P is not a Poisson subvariety of V ×V ∗ but that it inherits
from V ×V ∗ a Poisson structure. This Poisson structure is the natural one endowed by the
product of a vector space with its dual: it is NW (P )-equivariant, so (V P ×V ∗P )/NW (P ) is
also a Poisson variety. By definition, NW (P ) acts freely on the open subset VV∗(P ), so the
variety VV∗(P )/NW (P ) is smooth and its Poisson bracket makes it a symplectic variety.
The next proposition is a particular case of the discussion preceding Proposition 2.9:

Lemma 5.2. — Let P ∈ Parab(W )/W and let P ∈ P. Then:

(a) The closed subvariety UU∗(P) is a Poisson subvariety of (V × V ∗)/W .
(b) The map VV∗(P )→ UU∗(P) induces an isomorphism

VV∗(P )/NW (P )
∼−→ UU∗(P)

of Poisson varieties.

Corollary 5.3. — Let P ∈ Parab(W )/W and let P ∈ P. Then the above isomorphism
VV∗(P )/NW (P )

∼−→ UU∗(P) extends to an isomorphism of Poisson varieties

(V P × V ∗P )/NW (P )
∼−→ UU∗(P)

nor
.

Proof. — The surjective map ϕ : (V P × V ∗P )/NW (P ) → UU∗(P) induces an injection
C[UU∗(P)] ⊂ C[V P ×V ∗P ]NW (P ) between algebra of regular functions, and both algebras
have the same fraction fields by Lemma 5.2(b). But ϕ is finite and C[V P × V ∗P ]NW (P ) is
integrally closed, so C[V P ×V ∗P ]NW (P ) is the integral closure of C[UU∗(P)] in its fraction
field. This completes the proof of the corollary.
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The next result follows immediately from Lemma 5.2 and is a particular case of Propo-
sition 2.9 (see also [BrGo, Prop. 7.4]):

Proposition 5.4. — The family (UU∗(P))P∈Parab(W )/W of locally closed subvarieties is the
stratification of Z0 = (V × V ∗)/W by symplectic leaves.

Let us interprete the results of this section in terms of Theorem A and Conjecture B for
k = 0 and τ = IdV . First, it follows from Corollary 5.3 that, if P ∈ Parab(W )/W and if
P ∈ P, then dim UU∗(P) = 2 dimV P . Therefore, UU∗(P) is IdV -cuspidal (we will say
cuspidal for simplification) if and only if V P = 0. Therefore, there is at most one cuspidal
leaf of Z0 and there is actually one if and only if V W = 0 (in this case, this cuspidal leaf
will be simply denoted by 0, as it is the W -orbit of 0 ∈ V × V ∗). This shows that

CusIdV
0 (V,W ) = {(P, 0) | P ∈ Parab(W )} ∼←→ Parab(W ).

Consequently, the bijection CusIdV
0 (V,W )/W

∼−→ Symp(Z0) predicted by Theorem A in
the case where k = 0 and τ = IdV is simply given by the formula

SP,0 = UU∗(P)

for all P ∈ Parab(W )/W and all P ∈ P: this is the content of Proposition 5.4. Moreover,
Corollary 5.3 proves Conjecture B in this case:

Proposition 5.5. — Theorem A and Conjecture B hold if k = 0 and τ = IdV .

6. Symplectic leaves of Zτ
0

We have Zτ
0 = ((V × V ∗)/W )τ . So, for studying its symplectic leaves, the next conse-

quence of Lehrer-Springer Theorem 3.4 will be crucial:

Proposition 6.1. — The natural map

iiτ : (V τ × V ∗τ )/Wτ −→ ((V × V ∗)/W )τ = Zτ
0

is a finite bijective morphism of Poisson varieties: it is the normalization of the variety Zτ
0 .

Proof. — Only the statement on the bijectivity needs to be proved, the others being ob-
vious or immediate consequences. Let us first prove that iiτ is injective. Let (v1, v

∗
1) and

(v2, v
∗
2) ∈ V τ × V ∗τ be such that (v2, v

∗
2) belong to the W -orbit of (v1, v

∗
1). Then there

exists a ∈ W such that (v2, v
∗
2) = a(v1, v

∗
1). By Theorem 3.4(b), there exists b ∈ W set

V τ such
that v2 = b(v1). Therefore, b−1a(v1) = v1 and b−1(v∗2) = b−1a(v∗1). In other words, b−1a
belongs to the stabilizer Wv1 of v1 in W (it is a parabolic subgroup). Since τ(v1) = v1, τ
normalizes Wv1 . Hence, since τ is Wv1-full by (3.2), we may apply Theorem 3.4(b) to the
pair (Wv1 , τ) so that, by dualizing, there exists c ∈ (W set

V τ )v1 such that b−1(v∗2) = c(v∗1).
Therefore, bc ∈W set

V τ and bc(v1, v
∗
1) = (v2, v

∗
2), as desired.

Let us now prove that iiτ is surjective. Let (v, v∗) ∈ V × V ∗ be such that its W -orbit is
τ -stable. By Theorem 3.4(b), there exists x ∈W such that τ(x(v)) = x(v). So, by replacing
(v, v∗) by x(v, v∗) if necessary, we may, and we will, assume that τ(v) = v. Therefore,
there exists a ∈ W such that (τ(v), τ(v∗)) = (a(v), a(v∗)). In other words, a(v) = v and
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τ(v∗) = a(v∗). So a belongs to the parabolic subgroup Wv, which is τ -stable. Applying
again Theorem 3.4(b) to (Wv, τ) (since τ is Wv-full by (3.2)), and dualizing, one gets that
there exists b ∈ Wv such that τ(b(v∗)) = b(v∗). Therefore, ab(v, v∗) ∈ V τ × V ∗τ , as
desired.

Remark 6.2. — We do not know if there are examples of pairs (W, τ) such that the variety
Zτ

0 is not normal. By the above proposition, saying that Zτ
0 is normal is equivalent to

saying that any Wτ -invariant polynomial function on V τ × V ∗τ extends to a W -invariant
polynomial function on V × V ∗. �

A bijective morphism of Poisson varieties does not necessarily induce a bijection be-
tween symplectic leaves, but it turns out that this holds for our map iiτ , as shown by the
Corollary 6.6 below. Before proving it, let us introduce some notation. If Q is a parabolic
subgroup of Wτ , we denote by VV∗τ (Q) the set of pairs (v, v∗) ∈ V τ × V ∗τ such that
Q = Wv ∩ Wv∗ . If Q denotes the Wτ -orbit of Q, we denote by UU∗τ (Q) the image of
VV∗τ (Q) in (V τ × V ∗τ )/Wτ . By Proposition 5.4 applied to the pair (V τ ,Wτ ), the locally
closed subvariety UU∗τ (Q) is a symplectic leaf of (V τ × V ∗τ )/Wτ and all the symplectic
leaves are obtained in this way. Note first the following easy fact:

Lemma 6.3. — Let P ∈ Parab(W )/W , let P ∈ P and let w ∈ NW (P ). Then:
(a) VV∗(P )wτ 6= ∅ if and only if V(P )wτ 6= ∅.
(b) UU∗(P)τ 6= ∅ if and only if U(P)τ 6= ∅.

Proof. — Note that (a) implies (b) by Lemma 5.2(b). On the other hand, if V(P )wτ 6=
∅, then V∗(P )wτ 6= ∅. So, if we pick v ∈ V(P )wτ and v∗ ∈ V∗(P )wτ , then (v, v∗) ∈
VV∗(P )wτ . This proves the “if” part of (a).

Conversely, if VV∗(P )wτ 6= ∅, pick (v, v∗) ∈ VV∗(P )wτ . Then V∗(Wv∗)
wτ 6= ∅ so

V(Wv∗)
wτ . Pick v′ ∈ V(Wv∗)

wτ and let S denote the subspace of V generated by v and
v′. Then P = W pt

S , so there exists v′′ ∈ S such that Wv′′ = P . But v′′ ∈ V wτ ∩V(P ), which
proves the “only if” part of (a).

The above Lemma allows to apply to the bijective morphism of varieties iiτ : (V τ ×
V ∗τ )/Wτ −→ Zτ

0 the same arguments as in §3.E. For instance, if P ∈ Parab(W )/W ,
then it follows from Lemma 6.3 and Proposition 3.13 that UU∗(P)τ 6= ∅ if and only if P
contains a τ -split parabolic subgroup.

Moreover, if P ∈ (Parab(W )/W )τspl and if P ∈ P is τ -split, then the τ -equivariant iso-
morphism UU∗(P) ' VV∗(P )/NW (P ) induces a decomposition into irreducible compo-
nents

(6.4) UU∗(P)τ =
⋃

E∈ẼP τ/NW (P )

VV∗(P )E/NW (P ),

where VV∗(P )E is defined in the same way as V(P )E . Similarly, the analogue of Corol-
lary 6.6 is given as follows:
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Proposition 6.5. — Let P ∈ (Parab(W )/W )τspl, let P ∈ P and letE ∈ ẼP τ/NW (P ). Let PE

denote the Wτ -orbit of τ -split parabolic subgroups of W associated with E through the bijection
of Proposition 3.12(b). Let QE denote the Wτ -orbit of parabolic subgroups of Wτ of the form Qτ
for Q ∈ PE (see Lemma 3.7). Then

iiτ (UU∗τ (QE)) = VV∗(P )E/NW (P ).

Corollary 6.6. — The bijective morphism of varieties iiτ : (V τ × V ∗τ )/Wτ −→ Zτ
0 induces a

bijection between symplectic leaves.

Proof. — Both varieties admits finitely many symplectic leaves so, by taking the closure,
these leaves are, in both cases, in bijection with the set of irreducible closed Poisson sub-
varieties.

Now, let S be an irreducible closed Poisson subvariety of (V τ × V ∗τ )/Wτ . Since iiτ
respects the Poisson bracket, iiτ (S) is also an irreducible closed Poisson subvariety of
Zτ

0 : this shows that iiτ induces an injective map between the symplectic leaves of (V τ ×
V ∗τ )/Wτ and those of Zτ

0 .
Let us now show that this map is surjective. For this, let S be a symplectic leaf of

Zτ
0 . Then there exists P ∈ Parab(W )/W such that S∩ UU∗(P)τ is open and dense in S.

So P contains a τ -split parabolic subgroup P and the decomposition of UU∗(P)τ 6= ∅
into irreducible components is given by (6.4). But UU∗(P) is smooth and symplectic,
so UU∗(P)τ is also smooth and symplectic, so S ∩ UU∗(P)τ is equal to one of these
irreducible components. The result then follows from Proposition 6.5.

Proposition 6.7. — If k = 0, then Theorem A and Conjecture B hold.

Proof. — By Corollary 6.6, Zτ
0 admits a τ -cuspidal point if and only if (V τ )Wτ = 0 and, in

this case, there is only one τ -cuspidal point, namely the orbit of 0. So, still by Corollary 6.6
(and (3.8)), Cusτ0(V,W ) is in bijection with conjugacy classes of parabolic subgroups ofWτ

and Symp(Zτ
0 ) is also in bijection with conjugacy classes of parabolic subgroups of Wτ .

This provides a natural bijection between Cusτ0(V,W ) and Symp(Zτ
0 ), which satisfies the

required properties of Theorem A.

Let us now prove Conjecture B in this case. So let S be a symplectic leaf of Zτ
0 . Let

L= ii−1
τ (S): it is a symplectic leaf of (V τ × V ∗τ )Wτ and

M= ii−1
τ (S).

Since iiτ is bijective, we have L
nor

= S
nor, so Conjecture B now follows from Lemma 5.2

applied to the pair (V τ ,Wτ ) instead of (V,W ).

Remark 6.8. — If k = 0, then the parameter l involved in Conjecture B is equal to 0. �
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7. Parabolic subgroups attached to symplectic leaves

7.A. Définition. — Let Sbe a symplectic leaf of Zτ
k . We denote by pS the prime ideal of

Zk defining S: then pτS ∈ PSpec(Zτk). Now, the isomorphism grFZk ' Z0 is τ -equivariant
and (grFZk)

τ = grF(Zτk). So grF(pτS) is an ideal of Zτ0 . The next important result follows
mainly from [Mar1, Theo. 2.8].

Lemma 7.1. — The ideal
√

grF(pτS) of Zτ0 is prime, Poisson and contains Iτ0 .

Proof. — First, the Poisson bracket {, } on Zk is a proto-Poisson bracket of degree −2 in
the sense of [Mar1, Def. 2.4] and its associated graded Poisson bracket on Z0 is also the
natural Poisson bracket on Z0 (for a proof of both facts, see [EtGi, Lem .2.26]).

The same facts also holds by taking fixed points under the τ -action and so, the fact that√
grF(pτS) is a prime ideal of Zτ0 which is Poisson is an application of [Mar1, Theo. 2.8].
Finally, τ acts trivially on Zk/pS, so it acts trivially on grF(Zk/pS) = grF(Zk)/grF(pS) =

Z0/grF(pS). This shows that grF(pS) contains I0 and so grF(pτS) contains Iτ0 .

Lemma 7.1 shows that
√

grF(pτS) defines a symplectic leaf S0 of Zτ
0 so, by Corollary 6.6,

there exists a uniqueWτ -orbit QS of parabolic subgroups ofWτ such that
√

grF(pτS) is the
defining ideal of iiτ (UU∗τ (QS)). Through the bijection of Lemma 3.7, there exists a unique
Wτ -orbit PS of τ -split parabolic subgroups of W such that QS = {Pτ | P ∈ PS}.

Definition 7.2. — Let Sbe a symplectic leaf of Zτ
k . The Wτ -orbit of τ -split parabolic subgroups

PS is called theWτ -orbit associated with S. Any element of PS is called an associated τ-split
parabolic subgroup (with S).

If P is a τ -split parabolic subgroup of W associated with S, then

(7.3) dimS= 2 dim(V P )τ .

Indeed, dimS= dimS0.

7.B. Geometric construction. — Let π : V/W × V ∗/W → V/W and π∨ : V/W ×
V ∗/W −→ V ∗/W denote the first and second projection respectively. The next propo-
sition gives another characterization of the Wτ -orbit of τ -split parabolic subgroups asso-
ciated with a symplectic leaf:

Proposition 7.4. — Let Sbe a symplectic leaf of Zτ
0 . Then:

(a) Υk(S) = ιτ (Uτ (QS))× ι∨τ (U∗τ (QS)).
(b) π(Υk(S)) = ιτ (Uτ (QS)).
(c) π∨(Υk(S)) = ι∨τ (U∗τ (QS)).
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Proof. — Let H#
k denote the C[~]-algebra obtained as the quotient of the algebra C[~] ⊗

(T(V ⊕ V ∗) oW ) by the relations

(7.5)


[x, x′] = [y, y′] = 0,

[y, x] = ~2
∑
H∈A

eH−1∑
j=0

eH(kH,i − kH,i+1)
〈y, αH〉 · 〈α∨H , x〉
〈α∨H , αH〉

εH,i,

for all y, y′ ∈ V and x, x′ ∈ V ∗. It follows from the comparison of the relations (1.2)
and (7.5) that there is a well-defined morphism of C[~]-algebras θ : H#

k −→ ReesFHk

such that
θ(y) = ~y, θ(x) = ~x and θ(w) = w

for all y ∈ V , x ∈ V ∗ and w ∈W . In fact,

(7.6) θ is an isomorphism of algebras.

Indeed, the surjectivity is immediate while the injectivity follows from the PBW decom-
position (1.3), which also holds for H#

k , namely, the map

C[~]⊗ C[V ]⊗ CW ⊗ C[V ∗] −→ H#
k

induced by the multiplication is an isomorphism of C[~]-modules.
Let Z#

k denote the centre of H#
k . Then it follows from (7.6) that θ induces an isomor-

phism of algebras

(7.7) Z#
k −→ ReesFZk.

Again, Z#
k is a flat family of deformations of Z0 = C[V × V ∗]W . We denote by Z

#
k

the affine variety such that C[Z#
k ] = Z#

k . The inclusion P ↪→ Z#
k induces a morphism

Υ#
k : Z#

k −→ P = V/W × V ∗/W .
The action of τ and C× extends easily to H#

k , by letting them act trivially on the inde-
terminate ~. However, H#

k (and so Z#
k ) inherits an extra-action of C×. Namely, there is

an action of C× × C× given by
(ξ, ξ′) · x = ξξ′x if x ∈ V ∗,
(ξ, ξ′) · y = ξ−1ξ′y if y ∈ V ,
(ξ, ξ′) · w = w if w ∈W ,
(ξ, ξ′) · ~ = ξ′~.

The action of the first copy of C× extends the one which has been already defined in §1.F.1.
Through the isomorphism θ, this action on ReesFHk is just the restriction of the action on
C[~]⊗Hk given by

(ξ, ξ′) · (P (~)⊗ h) = P (ξ′~)⊗ (ξ · h).

Then (1.8) can be retrieved thanks to the isomorphism θ, the specialization process (S)
and (1.7).

Specializing ~ to λ ∈ C gives the algebras Hλ2k and Zλ2k. Geometrically, the inclusion
C[~] ↪→ Z#

k induces a flat morphism Z
#
k → C whose fiber at λ is the Calogero-Moser

space Zλ2k.
Now, view S as a subvariety of Z#

k and let S0 = (1× C×) · S∩ Z0, endowed with its
reduced structure. Then, using the isomorphism θ, it follows from the definition of the
action of the second copy of C× on ReesF(Hk) that the defining ideal of S0 is

√
grF(pS).
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Since S is (C× × 1)-stable, we have

(1× C×) · S= (C× × C×) · S= ∆(C×) · S,

where ∆(C×) is the diagonal in C× × C×. Note also that, if ξ ∈ C× and z ∈ Z
#
k , then

π ◦Υ#
k ((ξ, ξ) · z) = π ◦Υ#

k (z). Moreover, if z ∈ S, then z0 = limξ→0(ξ, ξ) · z exists (because
the action ∆(C×) has non-negative weights) and z0 ∈ S0. So (π ◦ Υk)(z) = (π ◦ Υ0)(z0)

belongs to ιτ (Uτ (QS)), as expected. This shows that

π(Υk(S)) ⊂ ιτ (Uτ (QS)).

By exchanging the role of V and V ∗, we have

π∨(Υk(S)) ⊂ ι∨τ (U∗τ (QS)).

Therefore,

Υk(S) ⊂ ιτ (Uτ (QS))× ι∨τ (U∗τ (QS)).

Since Υk(S) is closed irreducible of dimension 2 dim(V P )τ (by (7.3) and the finiteness of
the morphism Υk), we get that

Υk(S) = ιτ (Uτ (QS))× ι∨τ (U∗τ (QS)).

In other words, this proves (a). Now, (b) and (c) follow from (a).

Keep the notation introduced in the above proof (H#
k , Z#

k , Z#
k ,. . . ) and let us explain

how this proof provides a justification of Conjecture B as well as a possible strategy for
proving it. Indeed, if S is a symplectic leaf of Zk, let S#

= (1× C×) · S. Then S
# comes

equipped with a morphism $ : S
# −→ C and we denote by ν : (S

#
)nor −→ C the

composition of the normalization morphism (S
#

)nor −→ S
# with $. Then ν is flat [Har,

Chap. III, Prop. 9.7]. Since $−1(C×) ' C× × S, we have

ν−1(C×) ' C× × S
nor
.

Let SF0 denote the scheme-theoretic fiber of ν at 0. Assume that we are able to show the
following two facts:

(1) The reduced subscheme of SF0 is the normalization of S0.
(2) The scheme S

F
0 is generically reduced.

Then a Theorem of Hironaka [Har, Chap. III, Theo. 9.11] would show that ν is a flat
family of schemes, all of whose scheme-theoretic fibers are reduced, irreducible and nor-
mal varieties. As S

F
0 = S

nor
0 is the normalization of S0 by (1), this would imply that

S
nor is a Poisson deformation of Snor

0 . So Conjecture B would then follow from Proposi-
tions 6.5, 6.7 and a result of Bellamy [Bel2, Theo. 1.4] (which follows works of Ginzburg-
Kaledin [GiKa] and Namikawa [Nam1], [Nam2]).
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8. τ -Harish-Chandra theory of symplectic leaves

Let P be a parabolic subgroup ofW and let P denote its conjugacy class. Let kP denote
the restriction of k to the hyperplane arrangement of P and let k◦P denote its “extension
by zero” to the hyperplane arrangement of NW (P ): in other words, if H ∈ A(V,NW (P ))
and 0 6 i 6 eH − 1, we set

(k◦P )H,i =

{
kH,i if H ∈ A(V, P ),
0 otherwise.

If X is a locally closed subvariety of V/W , we denote by Zk(V,W )
∧

X the scheme equal
to the completion of Zk(V,W ) at it locally closed subvariety (π ◦ Υk)

−1(X). Note that it
inherits a Poisson structure from the one of Zk(V,W ) (see for instance [Bel1, Lem. 3.5]).

Our construction of the τ -Harish-Chandra theory of symplectic leaves will follow from an
upcoming result of Bellamy-Chalykh [BeCh] which says that there is a natural isomor-
phism of Poisson schemes(†)

(8.1) Zk(V,W )
∧

U(P) ' Zk◦P (V,NW (P ))
∧

U(P)
.

Note that U(P) ' V(P )/NW (P ) maybe be viewed as a locally closed subvariety of
both V/W and V/NW (P ). The construction of this isomorphism implies that it is τ -
equivariant.

A sheafified version of Proposition A.4 implies that we can take fixed points under the
action of τ in the above isomorphism and get an isomorphism

(8.2) Zk(V,W )τ
∧

U(P)τ ' Zk◦P (V,NW (P ))τ
∧

U(P)τ
,

with obvious notation. Moreover, this isomorphism is also Poisson: indeed, the Poisson
structure on the left-hand side comes from the Poisson structure on the quotient scheme
(Zk(V,W )
∧

U(P))/〈τ〉 and one can use Corollary A.3 (and similary for the right-hand side).
Now, the irreducible (i.e. connected in this case) components of U(P)τ have been

described in Corollary 3.15: this leads to a decomposition of the two schemes involved
in isomorphism (8.2). We focus on the irreducible component ιτ (Uτ (Pτ

spl)) of U(P)τ and
get an isomorphism of Poisson schemes

(8.3) Zk(V,W )τ
∧

ιτ (Uτ (Pτspl))
' Zk◦P (V,NW (P ))τ
∧

ιτ (Uτ (Pτspl))
.

A sheafified version of [Bel1, Lem. 3.3, 3.4, 3.5] provides a natural bijection between Pois-
son reduced irreducible subschemes of Zk(V,W )τ of dimension 2 dim(V P )τ meeting (π ◦
Υk)

−1(ιτ (Uτ (Pτ
spl)) and Poisson reduced irreducible subschemes of Zk(V,W )τ

∧

ιτ (Uτ (Pτspl))

of dimension 2 dim(V P )τ . A similar bijection is obtained with the right-hand side of (8.3).
Using the isomorphism (8.3), one gets a bijection between the following two sets:
• The set SPτspl

of symplectic leaves of Zk(V,W )τ of dimension 2 dim(V P )τ meeting
(π ◦Υk)

−1(ιτ (Uτ (Pτ
spl));

• The set S′Pτspl
of symplectic leaves of Zk◦P (V,NW (P ))τ of dimension 2 dim(V P )τ meet-

ing (π′ ◦Υ′k)
−1(ιτ (Uτ (Pτ

spl)).

(†)As [BeCh] is still not published, we mention here that it is based on Bezrukavnikov-Etingof like constructions
of isomorphisms when completing at a single point of V/W .



24 C. BONNAFÉ

Here, the maps π′ and Υ′k are the analogues of π and Υk for the Calogero-Moser space
Zk◦P (V,NW (P )).

But it follows from Proposition 7.4 that SPτspl
is exactly the set of symplectic leaves Sof

Zk(V,W )τ such that PS = Pτ
spl. So Theorem A will follow from the next lemma:

Lemma 8.4. — The set S′Pτspl
is in natural bijection with the set of NWτ (Pτ )-orbits of cuspidal

points of ZkP (VP , P )τ .

Proof. — Since k◦P is the extension by zero of kP , we have

Zk◦P (V,NW (P )) = ZkP (V, P )/NW (P ) = (V P × V ∗P ×ZkP (VP , P ))/NW (P ).

Consequently,

U(P)×V/NW (P ) Zk◦P (V,NW (P )) = (V(P )× V ∗P × (0×VP /P ZkP (VP , P )))/NW (P ).

As in (3.14) and (6.4), the τ -fixed points of (V(P )×V ∗P × (0×VP /P ZkP (VP , P )))/NW (P )

decomposes into pieces indexed by ẼP τ/NW (P ) as follows:(
(V(P )× V ∗P × (0×VP /P ZkP (VP , P )))/NW (P )

)τ
=⋃

w∈[ẼP τ/NW (P )]

(V(P )wτ × (V ∗P )wτ ×ZkP (VP , P )wτ )/NW (P )wτ .

Here, [ẼP τ/NW (P )] is a set of representatives of ẼP τ/NW (P ). We may, and we will,
assume that 1 ∈ [ẼP τ/NW (P )]. Then, by construction, only the piece indexed by 1 meets
(π′ ◦Υ′k)

−1(ιτ (Uτ (Pτ
spl)). Therefore, S′Pτspl

is in natural bijection with the set of symplectic
leaves of

X= (V(P )τ × (V ∗P )τ ×ZkP (VP , P )τ )/NW (P )τ

of dimension 2 dim(V P )τ . But NW (P )τ = NWτ (Pτ ) by Lemma 3.11, and it acts freely on
V(P )τ×(V ∗P )τ×ZkP (VP , P )τ . So it follows from Corollary 2.11 that the set of symplectic
leaves of X is in natural bijection with the set of NWτ (Pτ )-orbits of symplectic leaves of

Y= V(P )τ × (V ∗P )τ ×ZkP (VP , P )τ .

But any symplectic leaf of Y is of the form V(P )τ × (V ∗P )τ × S, where S is a symplectic
leaf of ZkP (VP , P )τ . For dimension reasons, S′Pτspl

is in natural bijection with the set of

NWτ (Pτ )-orbits of symplectic leaves of ZkP (VP , P )τ if dimension 0, which is exactly the
desired statement.

9. Examples

9.A. Smooth case. — Assume in this subsection, and only in this subsection, that Zk is
smooth and that τ is of the form ζw for some root of unity ζ and w ∈W . We denote by d
the order of ζ. Then

(9.1) Zτ
k = Z

µd
k .

Since Zk is smooth, it is symplectic by (4.3), and so Zτ
k is also smooth and symplectic: its

symplectic leaves are exactly its irreducible (i.e. connected) components.
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In [BoMa], Maksimau and the author have described the irreducible components of
Z

µd
k as particular Calogero-Moser spaces, and the reader can check that this description is

compatible with Conjecture B: however, it is not proved that the isomorphism preserves
the Poisson structure. In other words [BoMa, Theo. 2.13 and 5.1]:

Theorem 9.2. — If Zk is smooth and τ ∈ C×W , then Conjecture B holds, possibly up to the
Poisson structure.

9.B. Type G4. — Thiel and the author [BoTh] have developed algorithms for comput-
ing presentations of Zk that have been implemented in MAGMA [Mag] (more precisely,
in the CHAMP package for MAGMA written by Thiel [Thi]). This allows computations for
(very) small groups.

We assume in this subsection, and only in this subsection, that W is the group G4, in
Shephard-Todd classification [ShTo]. Then a presentation of Zk can be obtained with
MAGMA (see for instance [BoMa, §5] or [BoTh, Theo. 5.2]) and it has been checked
in [BoTh, Theo 4.7] that Conjecture B holds in this case:

Theorem 9.3. — If W = G4, then Conjecture B holds.

9.C. TypeB. — Assume in this subsection, and only in this subsection, that W = Wn is
a Coxeter group of type Bn for some n > 2 (i.e. we may assume that W = G(2, 1, n) in
Shephard-Todd classification) and that τ = IdV . Let t = diag(−1, 1, . . . , 1) ∈ Wn and, for
1 6 j 6 n − 1, let sj denote the permutation matrix corresponding to the transposition
(j, j + 1).

There are two conjugacy classes of reflections: the class of t (which generates an el-
ementary abelian normal subgroup of order 2n) and the one of s1 (which generates a
normal subgroup W ′n = G(2, 2, n) of index 2 isomorphic to a Coxeter group of type Dn).
We set b = ck(t) and a = ck(s1) and we denote by In the set ofm ∈ Z such that |m| 6 n−1.
The Dynkin diagram, together with the values of the parameter function ck, is given as
follows:

i i i · · · it s1 s2 sn−1

b a a a

The case where a = 0 is somewhat uninteresting, as then Zk ' (Cb)
n/Sn, where Cb is

the Calogero-Moser associated with the cyclic group of order 2 whose equation is given
by Cb = {(x, y, z) ∈ C3 | z2 = xy + 4b2}. So we assume throughout this subsection that
a 6= 0. This implies that

(9.4) Zk is smooth if and only if b/a 6∈ In.

As τ = IdV , the smooth case is uninteresting so we assume that b/a = m ∈ In. As
the cases b/a = m and b/a = −m are equivalent, we also may assume that m > 0. The
Calogero-Moser space Zk will then we denoted by Za,ma(n). Symplectic leaves have been
parametrized by Martino in his PhD Thesis [Mar2, §5.4]. Bellamy and Thiel have then
reinterpreted his result in terms of Bellamy parametrization à la Harish-Chandra [BeTh,
Lem. 6.5]. This can be summarized as follows:
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• Za,ma(n) admits a cuspidal point if and only if there exists r ∈ Z> 0 such that n =
r(r +m): if so, there is only one cuspidal point that we denote by pn.
• Therefore, CusIdV (Za,ma(n)) = {(Wr(r+m), pr(r+m)) | r(r + m) 6 n}, with the con-

vention that W0 = 1 and W1 = 〈t〉.
• If r(r + m) 6 n, we denote by Smr (n) the symplectic leaf of Za,ma(n) associated

with (Wr(r+m), pr(r+m)) through the bijection of Theorem A (since we are in the case
where τ = IdV , this bijection was established by Bellamy [Bel1] and Losev [Los]).
We have

dimSmr (n) = 2(n− r(r +m)).

If r(r +m) 6 n, then
NWn(Wr(r+m)) 'Wn−r(r+m).

Using the description of Za,ma(n) in terms of quiver varieties, Bellamy and Schedler
proved the following result [BeSc]:

Theorem 9.5 (Bellamy-Schedler). — If r(r+m) 6 n, then there is a C×-equivariant isomor-
phism of Poisson varieties

Smr (n)
nor ' Za,(m+2r)a(n− r(r +m)).

Corollary 9.6. — Conjecture B holds if W is a Coxeter group of type Bn and τ = IdV .

9.D. Type D. — Assume in this subsection, and only in this subsection, that W = W ′n
is a Coxeter group of type Dn for some n > 4 (i.e. we may assume that W = G(2, 2, n) in
Shephard-Todd classification). We set a = ck(s1), as in the previous subsection, and the
Calogero-Moser space Zk will be denoted by Z′a(n). The case where a = 0 being treated
in Section 6, we assume throughout this subsection that a 6= 0. The following facts are
proved in [BeTh, Theo. 7.2](‡):
• Z′a(n) admits a cuspidal point if and only if there exists r ∈ Z> 0 \ {1} such that
n = r2: if so, there is only one cuspidal point that we denote by p′n.
• Therefore, CusIdV (Z′a(n)) = {(W ′r2 , p

′
r2) | 0 6 r2 6 n and r 6= 1}, with the convention

that W ′0 = 1.
• If 0 6 r2 6 n and r 6= 1, we denote by S′r(n) the symplectic leaf of Z′a(n) associated

with (W ′r2 , p
′
r2). We have

dimS′r(n) = 2(n− r2).

Let us give another description, coming from the link between Z′a(n) and the Calogero-
Moser space Za,ma(n) of type Bn defined in the previous section for the special value
m = 0. Indeed, Z′a(n) admits an action of the element t ∈ Wn ⊂ NGLC(V )(W

′
n) defined in

the previous subsection and [BeTh, Prop. 4.17]

Z′a(n)/〈t〉 ' Za,0(n),

as Poisson varieties endowed with a C×-action. Denote by γn : Z′a(n) → Za,0(n) the
quotient morphism.

(‡)Note that there is a little mistake in [BeTh, Theo. 7.2], which can be easily corrected to give the statement
written here.
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Proposition 9.7. — We have

S′0(n) = γ−1
n (S0

0 (n) ∪ S0
1 (n)) and S′r(n) = γ−1

n (S0
r (n))

for all r > 2 such that r2 6 n.

Proof. — The symplectic leaves of Z′a(n) are characterized by their dimension, so every
symplectic leaf is t-stable (so is the inverse image, under γn, of its image in Za,0(n)). But if
0 6 r2 6 n and r 6= 1, then γn(S′r(n)) is a closed irreducible Poisson subvariety of Za,0(n),
so it is the closure of a symplectic leaf. For dimension reason, it must me equal to S0

r (n).
The result follows.

Corollary 9.8. — We have
Z′a(n)t = γ−1

n (S0
1 (n)).

In particular, if 4 6 r2 6 n, then t acts trivially on S′r(n).

Proof. — First, t does not act trivially on Z′a(n) so it does not act trivially on the open leaf
S′0(n). Since S′0(n) is smooth and symplectic, the description of the symplectic leaves of
S′0(n)/〈t〉 is given by Proposition 2.9. But S′0(n)/〈t〉 = S0

0 (n) ∪ S0
1 (n) by Proposition 9.7.

Comparing both descriptions shows that t acts freely on S0
0 (n) and trivially on S0

1 (n).
Therefore, t acts trivially on the closure of γ−1

n (S0
1 (n)) and freely on S0

0 (n). But the
closure of S0

1 (n) is the union of the S0
r (n) for r > 1 (see [BeTh, Lem. 6.5]). So the corollary

follows now directly from Proposition 9.7.

Assume now that 4 6 r2 6 n. Then Corollary 9.8 shows that S′r(n) ' S0
r (n). Moreover,

NW ′n(W ′r2) 'Wn−r2 . So Theorem 9.5 shows the following result:

Corollary 9.9. — Conjecture B holds if W is a Coxeter group of type Dn and τ ∈ {IdV , t}.

Proof. — For the case τ = IdV , the work has already been done. For the case where
τ = t, one must notice that τ isW ′n-regular so it isW ′n-full (see Example 1.9), that (W ′n)τ =
(W ′n)τ 'Wn−1 (see Example 3.5) and that

N(W ′n)τ ((W ′r2)τ ) = NWn−1(Wr2−1) 'Wn−r2 .

Then the result follows from Theorem 9.5 and Corollary 9.8.

9.E. Dihedral groups at equal parameters. — Let d be a natural number and let ξ denote
a primitive 2d-th root of unity. For j ∈ Z/2dZ, we set

sj =

(
0 ξj

ξ−j 0

)
We assume in this section, and only in this section, that W = 〈s0, s2〉 is dihedral of order
2d and that τ = s1: note that τ2 = IdV , that τs0τ

−1 = s2, that τs2τ
−1 = s0 and that τ isW -

full. We set a = ck(s0) and, since k is τ -stable by hypothesis, we have ck(s2) = a. In other
words, we are in the equal parameter case studied by the author in [Bon1]. Moreover,
in [Bon1, §4], the author determined the structure of Zτ

k . This gives:

Proposition 9.10. — If W is dihedral of order 2d and if τ is as above, then Conjecture B holds.
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Appendix A
Completion and finite group actions

Hypothesis and notation. We fix in this appendix a commutative
noetherian C-algebra R, an ideal I of R, a fintie group G acting on the
C-algebra R and we assume that I is G-stable. We set J = 〈IG〉R.

Let rG be the ideal of R generated by the family (r− g(r))r∈R,g∈G and
set R(G) = R/

√
rG. We denote by I(G) the image of I in R(G). Note

that R(G) is the biggest quotient algebra of R which is reduced and on
which G acts trivially.

Finally, we denote by R̂I the I-adic completion of R, i.e.

R̂I = lim←−
j

R/Ij ,

and by ι : R→ R̂I the canonical map.

The results of this Appendix do not pretend to any originality, and might certainly be
written in greater generality. We nevertheless do not find appropriate references contain-
ing all of them, and decided to state them in terms which are suitable for our purpose.

Lemma A.1. — There exists an integer m such that Im ⊂ J .

Proof. — Let p be a prime ideal of R containing IG. We first wish to prove tha p contains
I . For this, let r ∈ I . Then

∏
g∈G g(r) ∈ IG, and so there exists gr ∈ G such that gr(r) ∈ p

because p is prime. This shows that I ⊂ ∪g∈Gg(p). By the Prime Avoidance Lemma, we
get that there exists g ∈ G such that I ⊂ g(p). Since moreover I is G-stable, we get that
I ⊂ p. In other words, I is contained in any prime ideal containing J . So I ⊂

√
J . As R

is noetherian, the result follows from Levitsky’s Theorem [Lam, Theo. 10.30].

Lemma A.2. — Let j > 0. Then (J j)G = (IG)j .

Proof. — The inclusion (IG)j ⊂ (J j)G is obvious. Conversely, let r ∈ (J j)G. Then there
exists a finite setE, a family (re)e∈E of elements ofR and a family (i

(1)
e , . . . , i

(j)
e ) of j-uples

of elements of IG such that
r =

∑
e∈E

rei
(1)
e · · · i(j)e .

Since r is G-invariant, we have r = (1/|G|)
∑

g∈G g(r), so

r =
∑
e∈E

( 1

|G|
∑
g∈G

g(re)
)
i(1)
e · · · i(j)e .

Hence, r ∈ (IG)j .

Since I and J are G-stable, the completions R̂I and R̂J inherit a G-action.
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Corollary A.3. — The C-algebras (R̂I)
G and (̂RG)IG are canonically isomorphic.

Proof. — As Im ⊂ J ⊂ I for some m by Lemma A.1, the completions R̂I and R̂J
are canonically isomorphic, and the isomorphism is G-equivariant. This gives an iso-
morphism (R̂I)

G ' (R̂J)G. So the result follows directly from Lemma A.2, because
(R/J j)G = RG/(J j)G since we work in characteristic zero.

Proposition A.4. — Assume that R is Nagata. Then

R̂(G)I = R̂I(G).

Proof. — Let r̂G denote the completion of rG at I . Since R is noetherian, r̂G is the ideal of
R̂I generated by rG and

̂(R/rG)I = R̂I/r̂G

(see for instance [GrSa, §4]). This shows that G acts trivially on R̂I/r̂G and so r̂G is the
ideal of R̂I generated by (g(r)− r)r∈R̂I ,g∈G.

Moreover, as R is Nagata, we have that
√
r̂G =

√̂
rG by [GrSa, Coro. 14.8]. The propo-

sition follows.

Example A.5. — Assume that R is a localization or a completion of a finitely generated
algebra. Then R is Nagata. �
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