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ON THE CALOGERO-MOSER SPACE ASSOCIATED
WITH DIHEDRAL GROUPS II.
THE EQUAL PARAMETER CASE

by

CEDRIC BONNAFE

Abstract. — We continue the study of Calogero-Moser spaces associated with dihedral
groups by investigating in more details the equal parameter case: we obtain explicit equa-
tions, some informations about the Poisson bracket, the structure of the Lie algebra associated
with the cuspidal point and the action of SL,(C).

In this paper, we continue the study of Calogero-Moser space %, associated with the
dihedral group W of order 2d started in [Bon1], from which we keep the notation. We
mainly focus on the equal parameter case (i.e. the case where c is constant or, i.e. if a=b
with the notation of [Bon1, §3.4])1). In this case, the main results of this paper are the
following;:

e We describe explicit equations for Z,.

¢ We obtain informations about the Poisson bracket that allow to determine the struc-
ture of the Lie algebra associated with the cuspidal point.

e We describe the action of SL,(C) on the generators of Z. and explain how the pre-
sentation of Z; can be interpreted in terms of Hermite’s reciprocity law® (see for
instance [Bri, Cor. 2.2]).

e If 7 denotes the diagram automorphism of W, then 7 acts on %, because we are
in the equal parameter case, and we prove that the irreducible components of %
are also Calogero-Moser spaces associated with other reflection groups. This con-
firms [BoRo, Conj. FIX] (or [Bon2, Conj. B]) in this small case.

These results are used by G. Bellamy, B. Fu, D. Juteau, P. Levy, E. Sommers and the author
in [BBFJLS], where it is shown that, for d > 5, the symplectic singularity of %, at its cus-
pidal point is a new family of isolated symplectic singularities whose local fundamental
group is trivial [BBFJLS], answering an old question of Beauville [Bea].

These computations are based on a first paper of the author on Calogero-Moser spaces
associated with dihedral groups [Bonl] and on the above mentioned algorithm devel-
oped by Thiel and the author [BoTh]. Explicit computer computations in small cases (i.e.

The author is partly supported by the ANR: Projects No ANR-16-CE40-0010-01 (GeRepMod) and ANR-18-
CE40-0024-02 (CATORE).

(Recall that, if d is odd, then we have necessarily a = b.

@We wish to thank warmly Pierre-Louis Montagard for his enlighting explanations.
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d €1{4,5,6,7}) were necessary to find the general pattern. So, even though this does not
appear in this paper, it is fair to say that the above results owe their existence to MAGMA.

Recollection of notation from [Bon1].— We will use the notation of the first part [Bon1]
and we recall here some of them, the most important ones. We set V = C? and (x, y)
denotes its canonical basis while (X, Y) is the dual basis of V*. We identify GLc(V) with
GL,(C). We also fix a non-zero natural number d, as well as a primitive d-th root of unity
leC*.IfieZorZ/dZ, we set
1
S; = (z:(z, % );

s =S8y, t =5 and W = (s, t): it is the dihedral group of order 2d. In particular,
s(x)=¢"y, si(y)=Cx, s(X)={'Y and §(Y)={"'X.

The set Ref(W) of reflections of W (for its action on V) is {s; | i € Z/dZ}. Finally, let w,
denote the longest element of W (we have wy = #(st)@"V/2 if d is odd and wy = (st)%/? if
d is even): this notation was used in the first part [Bon1, Rem. 6.4] but we had forgotten
to define it! It will be used here in Section 4.
Wesetg=xy,Q=XY,r=x%+y4, R=X?+Y%and,if0<i<d,
a; = x4yt yd_i Yi.

In this second part, we will not use the notation r or R as r =agy and R =a; o: we prefer
this second notation. If i > 0, we set

eug) =(xX)' +(yY)
and we set eug = eugl) =xX+yY. Recall from [Bon1, Theo. 2.1] that
(C[V X V*]W :C[q,Q,euO,aovo,aLo,...,ad'o].

We fix a map c : Ref(W)— C and we set a = ¢; and b = ¢,. We denote by H, the rational
Cherednik algebra at ¢ =0, with parameter ¢, whose presentation is given in [Bon1, (3.2)]:
it is defined as the quotient of T(V & V*)x W by the following relations (here, T(V & V*) is
the tensor algebra of V & V* over C):

[u’ u/] = [U» U/] =0,

(%) N laV
wul=—2 3 ¢, et t)

v .
i€Z/dZ <ai’ a;)

for U, U’ e V* and u, u’ € V. Note that we have followed the convention of [BoRo].
Recall from [EtGi] that H, contains naturally the algebras C[V], C[V*] and CW as
subalgebras and that the multiplication map

ClV]®CW ®C[V*]— H,

is an isomorphism of vector spaces. The center of H, is denoted by Z, and we denote by
%, the affine variety whose algebra of regular functions C[%,] is precisely Z,.
We denote by Trunc, the C-linear map

Trunc, :H, — C[V x V*]



CALOGERO-MOSER SPACE AND DIHEDRAL GROUPS: THE EQUAL PARAMETER CASE 3

such that, if feC[V x V*]and w € W, then

f iftw=1,
0 otherwise.

Trunc.(f w)={

It is the map induced by the map Trunc defined in [Bon1, §3.4]. Its restriction Trunc, :
Z, — C[V x V*]W is an isomorphism of Z-graded vector spaces [Bon1, Lem. 3.5]. Recall
that it is R-linear, where B, =C[V]" @ C[V*]" =C[q, Q, a9, a4 0]-

We add a further notation which will be useful in this second part, namely, we set

= 8) wly 0) e r=(2 )

so that (e, h, f) is the standard basis of the Lie algebra sl,(C).

Hypothesis. All along this paper, together with the above notation, we
make the additional assumption that a = b, which justifies the title of this
paper. Recall that it is automatically satisfied if d is odd.

1. Back to Z,=(V x V¥)/W

1.A. Some polynomial identities. — If i >0, let eug] denote the element

i (X —(yy)tt i—j '
= => (xX)(yvY)
0 xX—yY ]Z:(;

of Z,=C[V x V*]. In other words, with the notation of [Bonl1, §2],
. il
euE)l] = Z (QQ)]eug 7 + 61’ is even»
0< j<i/2
where 0 iseven is equal to 1 (resp. 0) if i is even (resp. odd). Hence, using the inversion
formula [Bonl, (2.1)], one gets

j ~ i—2j—2k
enf)= D (@QF D mir@Qfeuy )48k even
0<j<i/2 0<k<1/2—]
which can be rewritten
. L
(1.1) eu)) = Z m; j(qQ) eu, ~/,
0<j<if2
for some uniquely defined elements m; ; € Z (note that m;, = 1). Let ¥;(T,T’,T”) de-
note the polynomial in three indeterminates equal to >, ¢ ; </, M j(T'T"Y T*21. Tt is
homogeneous of degree i for the natural graduation of C[T, T, T”] and, as a polynomial
in T with coefficients in C[T”, T”], it is monic. If we denote by C[T, T’, T”]; the homoge-
neous component of C[T, T/, T”] of degree k, then the unitriangularity of the formula (1.1)
shows that
(1.2) (T T o< i< j<kisabasis of C[T, T, T”]y.
By construction, ¥; is the unique polynomial satisfying the following identity:
. (xX)i-H _(y Y)i+1

— anlt
(1.3) U;(euy, q,Q) = euy XY
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The unicity comes from the fact that euy, g and Q are algebraically independent. Note
that ¥y =1 and ¥} = T. Now the sequence (¥;); > ¢ is easily determined by the following
recursive formula: if i > 1, then

(1.4) U =TV, —T'T"V;_,.

Indeed, this follows from the fact that (xX)*? —(y Y)*2 = (x X + y Y)(x X)*1 —(y Y)I*1)—
xyXY((xX)'=(yY)"). Note also for future reference the following two relations: if i > 1
then

oU, o
2T8_T+T5T” (l+1)T\I’l 1
(1.5)
ov; oy,
7" i . 7"
2T 8_T+ aT/_(l+1)T ;.

Proof of (1.5). — We prove only the first identity, the second one being obtained by ex-
changing the roles of (x,y) and (X,Y). Let us consider the two identities obtained by
applying /90X and 0/3Y to (1.3):

([ + D)X (xX =y Y) = x((xX)*' = (y Y)'*)

ov; ov;
x—(euo,q Q)+Y

oT aT”(euo’q’Q) (xX—yY)2 ’
v v _ i+ )yMY (x X —y V)4 y (X)) —(y V)
J/ﬁ(euo,QrQ)"‘ T,,(eUOrq ,Q)= (xX—yY) )

Multiplying the first equality by y, the second by x, and adding the results yields exactly

v, ov;
~(eug, g, Q) +eug———(euy, q,Q) = (i + 1)q¥;_;(euy, 4,Q),

2157 aT”
as expected. O

1.B. Presentation. — We rewrite slightly differently the presentation of Z, =C[V x V*]W
obtained in [Bon1, Theo. 2.1] according to our needs. A straightforward computation
shows that,if 1<i< j<d—1,then

— (ogr2 d—j—1pi-1,. [j—i]
a;_1,08j41,0—2;08j,0=(eug—4gQ)g“ /T Q" euy .

Using (1.1), this gives
(37 P a;_108j41,0—a;08,,0 = (eu;—4qQ)q* Q' W;_;(euy, q,Q)

This equation can also be obtained by substracting the equation (ZO ;) to the equation

Z3_, j+1) (with the notation of [Bon1, §2]). Consequently, the presentatlon givenin [Bonl,
Theo. 2.1] can be rewritten as follows:

Theorem 1.6. — The algebra of invariants C[V x VW admits the following presentation:
o Generators: q, Q, eug, ag, 41,0, 2,0, .., A4,
e Relations:
eupa; o =qga;10+Qa; o for1
a;_108j41,0—a;08j0=(eul—4gQ)g?/1Q1W;_;(euy,4,Q) for1

i<
Si<j<d-1.

d_
i<
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1.C. Poisson bracket. — The Poisson bracket on C[V x V*]W is obtained by restriction
of the natural one on C[V x V*], which is completely determined by the following rules:

{x,X}={y,Y}=1 and {x,7}={X,Y}={x,Y}={y, X}=0.

Therefore, a straightforward computation shows that the Poisson bracket between the

generators of C[V x V*]W is given by:
{q,Q}=euy,
{euO’ CI} = —26],
{euy, Q}=20Q,

(L.7) { {eug,a; 0} =(2i —d)a; ,

{g,a;0} =12,
{Q»ai,o}:(i_d)aHl,O o .
{al’yo,aj,o}:j(d—l')qd_jQieug]_l_l)—i(d—j)qd_j_lQi_leug]_Hl),

where the last equality only holds if 0 < i < j < d. In particular, (Q, euy,—g) is an sl,-triple
(for the Lie algebra structure on C[V x V*]" induced by the Poisson bracket). Note that

(1.8) {Q,eu} —4qQ}={q,eu} —4qQ} = {euy,eu; —4gQ} =0.
1.D. Action of GL,(C). — Since W is a Coxeter group, the CW-modules V and V* are
isomorphic. In our situation, the map
b v — v*
ax+py — pX+aY

is an isomorphism of CW-modules. One then gets an action of GL,(C) on V x V* as
follows:

((; g)-(u, U)=(au+po ' (U),yd(u)+85U).
By construction, this action commutes with the action of W, so induces an action of
GL;(C) on the C-algebras C[V x V*], C[V x V*]x W and C[V x V*]W. This induces an action
of the Lie algebra gl,(C) by derivations on C[V x V*] and C[V x V*]". For conventional

reasons, if ¢ € C[V x V*]and & € 5[,(C), we denote by &« the image of ¢ under the action
of —!&. It is easily checked on the generators x, y, X, Y of C[V x V*] that

(1.9) esp ={Q,p}, hep={euy,p} and  fep={—q,¢}
for all p e C[V x V*].

2. Calogero-Moser space at equal parameters

Notation. We denote by q, Q, eu, a,, a,,..., a, the respective preim-
ages of q, Q, euy, ayg, Ay,..., a4, under the isomorphism of vector
spaces Trunc, : Z, — C[V x V¥V,

By definition, q, Q, eu, ay, a,,..., a,; are the respective images, by specializing at the
parameter c, of the elements that were denoted by g, Q, eu, a, a,,..., a; in [Bon1, §3.4].
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Note the following formulas:

[x,X]=—a Z Siy
i€Z]dZ.

[x,Y]=a > s,
i€Z]d7Z.

(2.1) 4

. Xl=a Y s,
i€Z]d7Z.

[y, Y]=—a Z S;.

\ i€Z/dZ.

Note also the following formula, which follows from [Gor1, §3.6]: if P € C[X, Y], then

p—sp p—sip
(2.2) [x,P]=—a Z X_—ms,-=—a Z Sim.
i€Z/dZ i€Z/dZ

2.A. Explicit form of the generators. — Recall from [BoRo, §3.3 and §4.1] that

(2.3) eu=xX+yY+a Z S;.
i€Z]dZ.

An important feature of the equal parameter case is that the elements a ; have a reason-
ably simple form:
Proposition 2.4. — If0< j<d, then

xd=i _giiyd=i xi_ziiyi
; . y S;
x—{"ty X-=riy

a; = x4yl 4 ydixi—a Z g
i€Z/dZ
d-j _gijyd—i  xi_ziiyi
_ d=iyiy yd—ixi_ iy Xy X -CUY
Oy “ 2 8T PTX—giy
i€zdz Y

Notation.— For future use of the above formula, we set
xd_j _gi].yd_j

x—{ty

XJ—riiyJ

and l“i'j: X—le

Yi,j=

fori€Z/dZ and 0< j<d. Note thaty; ;=T;p=0and thaty; ;1 =T;;=1. 1

Proof. — Let b; € H, denote the right-hand side of the equation of the proposition. Since
Trunc, induces an isomorphism Z, — C[V x V*]¥ and Trunc,(a j) = Trunc(b;), it is
sufficient to check that b ; € Z.. First, an easy computation shows that b ; commutes with
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s=spand ¢ = 5. Now, by (2.2), we have

XI—ZiiyJ . XJ—riiyi
[x,b;] = ( Z T s X—Ciy )+yd J(—a Z Si X—-Ciy )
i€Z/dZ i€Z/dZ
x4l gl yd=i XJ—riiyi
R taE Ll = 2 1)
i€zdz. x—Cly X—dy
o - Xxi_riiyi
R N a  I e e b
i€z/dz X=gy
y=iJ xd=i _ yd=j Xi—riiyi
—a - [x,s;] ;
i Xy X-=ay

xd=i —giiyd=i Xi—ziiyi
—a > oS §_ Si[x’X_—iv,-y]
i€Z/dZ X

Now, the first two lines of this last equation compensate each other and it remains
o xA-i—pijyd=i XJi—riiyi
_ij X y 4
. - 1] .
[x,b,] a D S sl =y

i€Z/dZ

=i _giiyd=i (Xf_gijyj ;i’jxj_g(i—i')jyj)
N )

2 —ij
a Z &y X—giy  'X=(i-i'y

e
i,i’€Z/dZ * g y

again by using (2.2). But s;s; = ¢, where ¢ = ts =diag(,{™") so, if we set k=i —i’, we
can rewrite the above formula as follows:

(x.b ] ) Z é’—l] xa- ]_é't]yd J k(Xj—{inj éf(i—k)ij_érijj)
X, D ; = da - _ :
! i,kez/dz. x—¢y X-={0iY Ji-kX — kY
- g2 Z é,_ijxd—j_é'ijyd—j(é’—ijj_é’(H—k)ij_Xj_gijyj) .
i\kez/dz. x—¢y kX —i+kYy X-Ziy
= a* Z G)j,kck,
kez/dzZ
where
oxAl gt yd=i ek X — (i+k)j v j J_rijvi
—ij % y HXI=¢ Y; XI-=-rUy
. = L] - : _ . E(C , ®CX,Y .
Pk ieZZ/ng x—g—ly ( g—kX_é’H—kY X—le ) [x y] [ ]

This formula implies that ©; ; is a linear combination of (non-commutative) monomials
of the form x!y4 1=l xmyJi=1=m where 0< 1 <d—j—1and 0< m < j—1, and the coeffi-
cient 6 . ; , of this monomial in ©; ; is equal to

Qj,k,l,m = Z g—ijg—i(d—j—l—l)(é'—km Z(Hk)(j_l_m)—gi(j_l_m))

i€z/dz

— Z C'i(l+j—m)(éfk(j—l—2m)_l).

i€z/dz

Butj<i+j<d—1land0<m< j—1,s0 !+ j#m modd. This implies in particular that
Diczyaz 7™ =0, and 50 0} k.1, =0. This shows that [x,b;]=0.
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A similar computation shows that [X,b;] = 0 and so b; commutes with s, , x, X,
sxs~!=y and sXs7! =Y, so it is central in H,. This completes the proof of the proposi-
tion. ]

This has the following consequence, that will be used later for obtaining a presentation
of the algebra Z,.

Corollary 2.5. — If1<i< j<d—1, then
Truncc(al’_laj+l _uiaj) — qd—j—lQi—l(xj—i+2Xj—i+2 + yj—i+2 Yj—i+2)
g Qi( I X 4 iy i)
j-1

+d(1+j—i—d)a2 Z xM+d—i—jyd—2—MXMYi+j—2—M.
M=i-1
Proof. — Assume first that 0 <i < j < d. Since a; is central, we get
aa; = xd_iu]-Yi+yd_ian"—a Z Q'_kiyky,-ajskl“ky,-

kez/dz
= xdixdmTylyiy pd=iydmixiyi gy d=iyd=iyixiy yd=iyd=xiyi
di . di .
—a Z xSl Y —a Z YO ksl j X!

kez/dzZ kez/dZ

—a Z Ry (x YT 4 y I X i
keZ]dz
2 ki y—kj

+a Ty ire, T sl i
k,l<z/dZ

Therefore,
Trunc.(a;a;) = x>y 4 y2dimi X 4 qdmi QU (x T XTI 4 y ity I
) i
+a Dy ik T, i T
kez/dZ

Expanding the product yx ;v«, Tk, Tk, gives

Trunc(a;a ;)= x> Y™ 4 y2mI X 4 g4I QY (x 1T X T 4 y ity T

—j-1 i-1 j-l1

d—i—1 d
_ : 5 /__ _ / ’ JRE T, T B 0 ’ : P9 _ ’
+a? Z Z Z Z Z; k(i+j+l+1"—m—m') , I+1 y2d i—j=2=1=1 yym+m' yri+j—2—m—m’

keZ/dZ 1=0 I’'=0 m=0 m’=0
fOSL<2d—i—j—2(resp. 0S M < i+ j—2),let.&; ;(L) (resp. .#; j(M)) denote the set of
pairs (1,1’) (resp. (m,m’)) such that [ +1’=L (resp. m+m’=M)and 0<I<d—i—1and
0<l'<d—j—1(resp. 0Sm<i—1and 0<m’< j—1). Then the above equality might
rewritten

i o i it deiie it i

Trunc.(a;a;)=x"""" Y™ + y= I X 4 g QN (XTI X T 4 y T YT

2d—i—j-2 i+j-2
=0

+612 Z Z Z |$l,](L)| . |.//ll’](M)| . g—k(i+j+L—M)xLy2d—i—j—2—LXM Yi+j_2_M.
keZ/dZ L M=0
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Now, if 1 <i < j <d—1, applying the above formula by replacing i by i—1 and j by j+1
yields

Truncc(al’_laj+l _aiaj) — qdfjleifl(xijszfiJrz + yj7i+2 Yj7i+2)
_qPIQi(x I X 4 yi Ty i)
2d—i—j—2 i+j—2
+a? ST NS, (L)) M, (M) = | L5 (L)), (M)
=0  M=0 kézjdz
xby2d=imj=2=L XMy itj=2-M_
So, the coefficient of x!y?d=i=j=2=LxMyi+j=2=M jg non-zero if and only if i+ j+ L=M
mod d and | Ly, j1(L)] - [ Ay, jr (M) #1%; j(L)| - |4, j(M)]. Since i < j, we have
1+L fo<L<d—j—1,
L (L) ={ d—j ifd—j-1<L<d—i—1,
2d—i—j—1—L ifd—i—1<L<2d—i—j—2,

1+M fosM<i-—1,
and | A; (M) =+ i ifi—1<M<j—1,
i+j—1—-M if j—1<M<i+j—2.
So | Loy, j (D | M i, jr (M| # 1 ; j(D)| |4, j(M)] if and only if d — j—1< L<d—i—1or
i—1< M < j—1. Combined with the fact that i+ j+ L =M mod d to obtain a non-zero
coefficient for x1y2d=i=j=2=LxMyi+j=2=M this forces i + j+ L =M +d and so
Trunc, (@@, —a;a ;)= GII1 QI (I X I—iH2 oy i-iH2y iy

g Qi X 4 Ty

j-1
+d6l2 Z ((d—]— 1)(1 _ 1)—(d —])l) xM+d—i—jyd—2—MXM Yi+j_2_M,
M=i-1 =1+ j—i—d
as expected. O

2.B. Poisson bracket. — We determine here part of the Poisson bracket between the
generators:

Proposition 2.6. — We have
{g,Q}=eu, {eu,q}=—2q and {eu,Q}=2Q.
Moreover, if 0 < j < d, then
gaj}=jaj, fewaj}=2j—da; ad {Qa;}=(j—daj.,
with the convention that a_; = a 4,1, =0.

Proof. — First, note that the Poisson bracket on Z, is in fact the restriction of a Poisson
bracket {,} : H, x Z, — H,. This Poisson bracket satisfies the following property: if
z=> wfwwF, €Z,, with f,, €C[x,y] and F, € C[X, Y], then

(2.7) {x,z}= Z fwwaai)? and {y,z}= Z fwwaai;/.

weW weW



10 C. BONNAFE

The first three equalities of the proposition are standard and hold for any Coxeter group
(see [Dez, §4] or [BEG, §3]) and can easily be checked in this case by a little computation.
Similarly, the fact that {eu,a ;} = (2j —d)a; follows from the general fact that, if h € H,
is homogeneous of degree k, then {eu, h} = kh (see for instance [BoRo, Prop. 3.3.3]). We
now prove that {g,a ;} = ja ,,, the last equality being proved similarly. From the formula
given for a j in Proposition 2.4, we get

gaj=tyxa} = jxTIy s jy X
—a > Clypsiadx—a > Clyrsi—2.
i€Z/dZ oY i€Z/dZ o0X

In order to prove the proposition, it is sufficient to check that Trunc.({g,a;})= ja,;_,. But,
from the above formula and from (2.2), one gets

. i oL
Truncc({q,uj}):]aj_l—aTruncc(.Z EHyisi 3y x).
i€z/dz
Since oT, oT, orT,
—ij.,  JYtLi —ij. o Lji i,j
Z 4 YijSi oY X = Z 4 Tl,]sz(x Y [x» 2y ]),

i€Z/dZ i€Z/dZ
it follows from (2.2) that

ari,j s al"i,j
Y Y

Trunc,({g,a;})= ja;_; +a° Z S Xy

iez/dz
So it remains to prove that

. 7Y Y
(ﬁ) g_ljyi,j+:0.
ieZZ/dZ X_ZIY

Let us compute the big fraction in the above formula. First,

-1

~.

ri,j: é’lkX‘]—l—k Yk,
k=0
S0
o _$ 'k'lkklj_z i(k+1) y j—2—k vk
bl ik v j—1—k y k=1 _ i(k+1) v j—2—
£ =D kXY R =N e g 1)g D xRy
k=0 k=0
Therefore,
or; .\ L3 , o .
(5 )= kz_;(k + 1) YR O,

Simplifying and using the change of variable k — j—2—k, one gets

si( ari’j ) _ ]Z_Z:( i—1— k);i(k‘kl)xj—z—k Yk'
oy )T '

We deduce that

%_Si(

oy & l. .
J) _ o pilkH) yj—2—k vk
o 6Y) Ez 2k +2—j)**Px Yk,

k=0
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But Z{;%(Zk +2—j)=0,s0

5133/‘ s ari,j < 2k 42— j)ilk+l) xi—2—k i(j=2—k)y j—2—kyyk
S =)= D @k e I g )Yk,

Since the term corresponding to k = j —2 vanishes, this implies that
A s,-( oL ) i—3 j—3—k

7Y oY i 3 kK i /
X_—m Z (2k+2—])§’(k+1)X] 3—k k(a:ly)k Y/C

~

g

k=0 k’=0
j—3 j—3—k

_ (zk+2_j)gi(k+k/+1)Xj—3—k—k’Yk+k’
k=0 k’=0
j=3 i3

= DD Rk+2— kI y K
k=0 k'=k
-3 K

= > (D lek+a—j))g ik xis Ky
k’=0 k=0
Jj—3

= D (K +2— ) + 1) EF XTI YK,
k'=0
Therefore, the left-hand side of the formula () is a linear combination of monomials of the
form x@—J71=lylxi=3—mym where 0<1<d—j—1and 0< m < j—3, and the coefficient
of this monomial is
D> (m+2—jm+ ) = (g2 — j)m+1) D O,
i€z/dz. i€z/dz

But j<I+j<d—-1and 1<m+1<j—2, so this coefficient is 0 and the equality (f) is
proved. O

Corollary 2.8. — We have
{q,eu’ —4qQ} = {eu, eu’ —4qQ} ={Q, eu’ —4qQ} =0.

2.C. Presentation. — The main result of this paper is the following:

Theorem 2.9. — If a = b, then the algebra Z,. admits the following presentation:
o Generators: q,Q, eu, ay, a,, ..., a,.
e Relations:
{euai=qai+1+Qui—1 fori<i

< d—1,
a;,aj,—a;a;=(eu?—49Q—d*a*)q? Q" ;_,(eu,q,Q) for 1<i

<
<j<d-1l.

Proof. — By [BoTh], a presentation of Z, is obtained by deforming the generators of
Zy = C[V x V*]" and deforming the relations. Therefore, in order to prove the theo-
rem, it is sufficient to check that the relations given in the statement are satisfied. So let
1<i<j<d-1.

Let us first prove that

(34) eua;=qa; . +Qa; ;.
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For this, it is sufficient to prove that Trunc.(eu a;) = Trunc.(qa;;; + Qa;_;). But the map
Trunc, is R-linear so it is sufficient to prove that

() Trunc.(eu a;)=euja; .
Since a; is central, it follows from (2.3) and Proposition 2.4 that

eua; = xa;X+ya;Y+a Z a; sy
kez/dz
= x(x¥Y 4 yTIXNX +y(x Y+ y XY
—a Z giik xyk/,l-skfl“k,,,-X—a Z §*iky7fk/y,-sk/l“k/,l-Y

k'€Z/dz k'€Z]dZ.
L L o
+a Z (xyl 4 yiX s —a? z Ry iTor i Spr S
kEZ/dZ k,k'€Z]dZ

But sy s, =1if and only if k' =k, so
Trunc.(eu a;)=eupa; o — a’® Z Q’_ikyk,,-l"k,i.
kezZ/dzZ

The element.Z kez) dZ.é’ “iky 1 iTr; of C[V x V¥]W is a linear combination of monomials of
the form x4—=1=lyl xi=l=mym ywhere 0 < [ < d—i—1and 0 < m < i—1, and the coefficient
of this monomial is equal to

Z Z—kig—klgkm: Z g—k(l"Fl_m).

keZ/dZ keZ/dZ

Buti<i+l<d—land0<m<i—1,s0i+1—m#0 modd. This shows that the above
sum is zero, and this completes the proof of (}).

Let us now prove that
(3i,;) a_1a;,—aa;=(eu’—4qgQ —dzaz)qd_j_lQi_l‘I’j—i(eu, q,Q).

This will be proved by induction on j—i. So let us first consider the case where j—i =0,
i.e. where j =i. Again, it is sufficient to prove the equality after applying the map Trunc,.
We deduce from Corollary 2.5 that

Trunc.(a;_ja;1— a‘?) =g QT (k2 X%+ y2 Y2 —2qQ —d(d —1)a?).
Since Trunc, is R-linear and ¥, =1, proving (3, ;) is equivalent to proving that
Trunc,(eu? —4qgQ—d*a*)= x*X*+ y*Y*—2qQ —d(d —1)a?,

or, equivalently, that

(&) Trunc.(eu?)= x*X*+ y*Y?+2qQ +da’.
But
eu’ = xeuX+yeuY +a Z eu sy
keZ/dZ
= x2X2+nyX+a Z xst+yxXY+y2Y2+a Z Vs Y
kezZ/dZ kezZ/dZ

+a z (xX +yY)se +a’ Z Sy Sk -

kRZ/adZ k,l€Z/dZ
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It follows directly that

Trunc,(eu?)= x*X*+ y*Y*+2qQ +a* Z 1,
kez/dz

as desired.

Assume now that j—i > 1 and that (3;,;,) holds if j'—i’ < j—i. Then, by the induction
hypothesis, we have

aaj—a;a;=(eu’—4qQ —dzﬂz)qd_j_ZQi‘I’j—i—l(euy q,Q).
Applying {q,—} to this equality, and using Proposition 2.6 and Corollary 2.8, one gets:

i(aiajn—aaj)+jlaa;j—a;a; 1)=(eu2—467Q—d2612)€ld_j_1
i1 ov;_;_
(1" ety (e, q,Q)+29Q" " (e, 4,0+ Q' ew 2 — o ew,q,Q).
But, by (1.5),
o) i oW i .
zq 3T (eu)qu)+eu BT” (eu)q!Q):(]_l)quj—i—Z(eu’qu)

and, by (1.4),

eul;_;_(en,q,Q)—qQ¥;_; »(eu,q,Q)=V;_;(en,q,Q).
Therefore,

i(@aiqaj—aaj)+jlaa;j—a;a; )=
(eu®—4gQ—d*a*)q QI i, i(eu, q,Q)+ jaQW;i(eu, q,Q)).
Since the induction hypothesis implies that
(@ia;—ai.a;)=(eu’—4gQ—d*a®)g"7Q"¥;_;_,(eu,q,Q),
the result follows. O

2.D. Back to the Poisson bracket. — In Proposition 2.6, we did not determine the Pois-
son brackets {a;,a ;}. This was only determined for a =0 in (1.7): it is proven that there
exists a polynomial I1; ; € C[T, T’, T”], which is homogeneous of degree d —1, such that

{a;o,a;0}=11; j(euy, q,Q).

This will be deformed to the a # 0 case as follows:

Proposition 2.10. — If 0<i < j <d, there exists a polynomial ®; ; € C[T, T’, T"], homoge-
neous of degree d —3, such that

{a;,a;} =11, j(eu,q,Q)+ a’®; ;(eu,q,Q).
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Proof. — We will prove that there exist polynomials ®; ;, ®; ; € C[T, T/, T”], homogeneous
of degree d —1 and d —3 respectively, such that
(@i,j) {ai’aj}:¢?’j(eu)q»Q)"’_az(I)i,j(eurq)Q)'

This is sufficient because, by specializing a to 0, one gets that ®; ; =11, ;.
Let us first assume that i = 0. To make an induction argument on j work, we will prove
a slightly stronger result, namely that

(9, {aga;}=q"(p;(eu,q,Q)+a*0;(eu, q,Q)).

where ¢;, 0; € C[T, T’, T"] are homogeneous of degree j—1 and j—3 respectively. For
this, let us apply {a(,—} to the following two relations given by Theorem 2.9

(31) Qay—eua,+qa,=0,

(311) aa,—a’=q**(eu’ —4qQ—d*a?).
Using Proposition 2.6, this gives
—eu{ay, a,}+qlay a,}=0,
qaolag, a}—2qa{ag,a }=q% a, eu?—4qQ} = q*'(2dajeu—4dqa,).

Thanks to the first equality, we can replace the term g{a, a,} in the second equation by
eu{ay, a,}, and this yields

(aveu—2qa{ag, a\}=2dq" (asen—2qa,).
Since ageu —2qa, # 0 (by computing its image by Trunc,) and since Z, is an integral
domain, we get
{ag,ar}=2dq"",
which proves (pg ;). We also deduce that
{ag,ax}=2dq"eu,
which proves (pg,)-
Now, assume that j >3 and that (g, ) holds for j” < j. Applying {ag,—} to
(3,-1) Qa; ,—eua; ;+qa;=0
yields, thanks to Proposition 2.6,

da,a; ,+Q{aga; }—daa;_,—eulayg,a; }+qlayga;}=0.

But
(31,j—2) apdj 1 —a,a; = (eu”—4qQ— dzaz)qd_jﬂ\l’jfg(eu, q,Q)
by Theorem 2.9 and

d—j+2(

{uo,aj_g}zq <,0j_2(eu,q,Q)+a20j_2(eu,q,Q)),

{ag,a;1}=q"7"(p;_1(eu,q,Q)+a*0;_,(eu,q,Q))

by the induction hypothesis. This gives
{ag,a;}=d(eu’ —4qgQ—d*a*)q" 1 W;_s(eu,q,Q)
— g Q(pjoleu, q,Q)+a*0;_s(eu,q,Q) +q"  eu(yp;_1(eu,q,Q)+a*0;_,(eu,q,Q)),
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which proves that (o, ;) holds.

We will now prove that (p; ;) holds by induction on i. The case i = 0 has just been
treated, so assume that i > 1 and that (p;_, ;) holds for all j’. Then (i—1—d)a; ={Q,a;_}
and i —1—d #0. By the Jacobi identity, we get

(i—1—d}a;a;} = {{Qa; .} a;}
{Q{a;y,a;}}—{a;1,{Q,a;}}
{Q»{ai—l’aj}}_(j_d){ai—lruj+1}-

So the result follows from the induction hypothesis because, if ® € C[T, T/, T”] is an ho-
mogeneous polynomial of degree k, then

(Q.6leu,q, Q) =20 7 (eu, 4,Q)— eu-oo et 4, )
oT a1’
is of the form ©%(eu, g, Q) where ©” is homogeneous of degree k. The proof of the propo-
sition is complete. ]

2.E. Lie algebra structure at the cuspidal point. — By Theorem 2.9, the affine variety
%. might be described as

%, ={(0,9,¢,a9,ay,...,a;) €C |

ed; =qa;y1 +24a; 1,
ai1ajn—aa;=(*—49Q—d*a*)q71Q7;_i(e,q,9)

If d =3 and a #0, then %, is smooth. So assume from now on that d >4 and a # 0. Then
the homogeneous component of minimal degree of all the above equations is equal to 2,
so the point 0=(0, ...,0) € Z, is singular and the tangent space of %, at 0 has dimension d+
4. It is the only singular point and it is a cuspidal point in the sense of [Bel2] (see [Bon1,
§5.2]). This means that the corresponding maximal ideal m, of Z, is a Poisson ideal (since
my =(q,Q,eu,ay,a,...,a,), this can also be checked thanks to Proposition 2.10). This
implies that the cotangent space mg/m3 of %, at 0 inherits a Lie algebra structure from
the Poisson bracket: we denote by £iey(Z,) the vector space my/ mg endowed with its Lie
algebra structure. It has been proved in [Bon1, Prop. 8.4] that

(2.11) If d =4, then Liey(Z,) ~sl3(C).

We now determine Liey(Z,) in the remaining cases:

v1<i<j<d—1,{ }.

Proposition 2.12. — If d > 5, then
Lieg(Z:)=sL(C)@ Sy,
where Sy is a commutative ideal of Lieg(%,) of dimension d + 1 on which sly(C) acts irreducibly

(i.e. Sy ~Sym?(C?) as an sl,(C)-module).

Proof. — If m € my, we denote by i1 its image in Lieg(Z;). Then (g, Q,eu,ag,a,...,a,)is
a basis of Liey(Z,). We set

d
g=CQeCeuoCq and S;=(PcCa;.
j=0
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It follows from Proposition 2.6 that g is a Lie subalgebra of £iej(%Z,) isomorphic to sl,(C),
and that S; is normalized by g and is isomorphic to Sym*(C?) as an sl,(C)-module.

Since d > 5 (and so d —3 > 2), we get from Proposition 2.10 that {a;,a;} € m3 and so
[@;,a;]=0. This completes the proof of the proposition. O

3. Action of SL,(C)

The action of GL,(C) on C[V x V*]x W does not deform to an action on H, by automor-
phisms of algebras, but the action of the subgroup SL,(C) does, as explained for instance
in [BoRo, §3.6]. This action commutes with W and is given on elements of V' and V* by
the same formula as in §1.D.

We investigate here several of its properties (Poisson structure, existence of an equiv-
ariant morphism %, — sl,(C), interpretation of the presentation of %, in terms of
Hermite’s reciprocity law). The equivariant morphism to sl,(C) is for instance used
in [BBFJLS] to prove that the local fundamental group of %, at its singular point is
trivial.

3.A. Action and Poisson structure. — This SL,(C)-action induces an action of the Lie
algebra sl,(C) on H, by derivations: as in §1.D, if £ €s[,(C) and ¢ € H;, we denote by £+h
the action of —& on h. It is related to the Poisson bracket through the same formulas as
in §1.D:

(3.1) eep={Q, p}, hep ={euy,9} and  fep={—q,p}.

3.B. Map to sl,(C). — If (q,9,¢) € C3, we denote by M(q,Q,¢) the matrix
(9]

—¢

M(q,9Q,¢)= (fq )65[2(((2).

We identify sl,(C) with the subspace of Z, equal to Cq ® CQ ® Ceu by sending (e, h, f) to
(Q, eu,—q): by Proposition 2.6, this identification carries the Lie bracket on sl,(C) to the
Poisson bracket on Cq @ CQ @ Ceu. This gives an identification C[q, Q, ex] ~ Sym(s[,(C))
and the inclusion C[q, Q, eu] C Z, gives an SL,(C)-equivariant Poisson map

u %, — sh(C)*

(the equivariance follows from (3.1)). Identifying sl,(C) with its dual thanks to the trace
map endows sl,(C) with a Poisson structure and gives an SL,(C)-equivariant Poisson map

u:%, — sl(C).
The map u can be explicitly described by the following formula
AU’(q'Q' ¢, ay, A1) ad) = M(CI;Q; e)-



CALOGERO-MOSER SPACE AND DIHEDRAL GROUPS: THE EQUAL PARAMETER CASE 17

3.C. Hermite’s reciprocity law. — Let E = E*® E; denote the vector space

E=CQoeCeueCqgoCayoCa,;®---®a,.

Et Eq

Theorem 2.9 shows that the natural morphism of algebras o : Sym(E)— Z, is surjective
and it describes its kernel. For avoiding the confusion between multiplication in Z, and
multiplication in Sym(E), we will denote by * the multiplication in Sym(E). For instance,
agxa,— aiz is an element of Sym(E) whereas aya, — a% is an element of Z., which is
equal to o(ag * a,—a}?). Similarly, if e,,..., e, are elements of E and if ¥ € C[T;,..., T;,]
is a polynomial in 7 indeterminates, we denote by ¥*(ey,...,e,) the evaluation of ¥ at
(ey,...,e,) inside the algebra Sym(E) whereas ¥(ey, ..., e,) denotes the evaluation of W inside
the algebra Z,: they satisfy the equality o(¥*(ey,...,e,))=U(ey,...,e,).

Proposition 2.6 and (3.1) imply that E is an SL,(C)-stable subspace of Z, so that o is
SL,(C)-equivariant. Let us denote by V, ~ C? another copy of C? viewed as the standard
representation of SL,(C) (or sl,(C)), and we denote by (u,, u,) its canonical basis. We then
have two isomorphisms of vector spaces

an:Symz(Vz)—> E! and oy :Symd(Vz)—> E,
which are defined by

ol ud=2q, ocHuu)=eu, o' (u)=2Q

and Ud(uf_’ u,)=a; for0<i<d.

Proposition 2.6 and (3.1) imply that o' and o4 are SLy(C)-equivariant and we will identify
E'and E,; with Sym?(V3) and Sym%(V5) through these isomorphisms.
Let us first interprete the equations (3;); < ; < 4—1. Note that

Sym?(E) = Sym*(Sym*(V;)) @ Sym®(V4)® Sym*(V5) & Sym*(Sym“(13))
and that we have a natural morphism
Uz,q : Sym?(V5) ® Sym?(V5) — Sym”?*2(13)

given by multiplication. We denote by Der(Sym(V5)) the Sym(V;)-module of derivations
Sym(V3) — Sym(V3). If D € Der(Sym(V3)), we denote by D® the map Sym?(V3)®Sym¢(V3) —
Sym(Vz), ¢ ® Y — D(p)yp. Then it is easily checked that

d—1
Ker(uzg)n () Ker(DP)=EDC(Q+a;_—ewxa;+q+a;,)c Sym*(E).
DeDer(Sym(V5)) i=1

So the family of equations (3;); < ; < 4—1 can be summarized by

(3.2) Ker(u,,4)N ﬂ Ker(D?) is contained in Ker(o).

DeDer(Sym(15))
Note that Ker(Uz,a) N[ \peper(sym(i)) Ker(D®?) is SL,(C)-stable, as the construction is canon-
ical.

The interpretation of the equations (3;,j)i < i< j<a-1 is somewhat more subtle and is
related with Hermite’s reciprocity law (see the upcoming Remark 3.7). First, evaluation
induces a surjective morphism of SL,(C)-modules

Emn: Sym™(Sym"(V3)) —  Sym™*(13)

Uy x-k* Uy, — V- Uy
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In the special case where m =2 and n =d, then:

Lemma 3.3. — The family (a;_1*a . —a;*a;) << j<a— of elements of Sym(E) is a basis of
Ker(e,,4) C Sym?(Sym®(V3)) ~ Sym?(Ey).

In fact, the family (a;_; xa;,, —a; xa ;) <;<j<a—1 generates the ideal equal to the
kernel of the natural morphism &, ; : Sym(Sym?(V3)) — Sym(V;). On the other hand, it
follows from (1.2) that:

Lemma 3.4. — The family (q*¢—1=1 » Q*~! «Wi_(ew,q,Q))i<i< j<a- of elements of Sym(E)
is a basis of Sym“~2(Sym?(1})) ~ Sym“~2( E").
Lemmas 3.3 and 3.4 allow to define a linear map
pa:Ker(g, ) — Sym**(E¥)
by the formula
pa@i*aj,—a;xa;)=qg" 77 xQ ! « W (en,q,Q)
for 1<i< j<d. Itis an isomorphism of vector spaces but an important fact is the fol-
lowing:

Lemma 3.5. — The map p, :Ker(e, 4) — Sym“2(E%) is an isomorphism of SL,(C)-modules.

Proof. — This is more or less the computation done in the end of the proof of Theo-
rem 2.10. It is sufficient to prove that it is an isomorphism of sl,(C)-modules. By (3.1)
Proposition 2.6, we have

felaigxaj—a;i*xa;) = (i—la;xaj,+(j+l)a;xaj—ia;, xa;—ja;>a;,
= (i—-1)@a;zxaj 1—a; *xa;)+jla;xa;—a;xa;_ ).
Therefore,
. *xd—j— *xi—2 *
palfel@aiixaj—a;xa;) = (i—1)g" 77" +Q" *W_;,(en,q,Q)

+jq*d—j*Q*i—l*lp;_l._l(eu,q,o),

and so one gets
palfelaiy*xaj—a;xaj))
=q" T QT (=1, (em,q,Q)+ jgxQ* T}, (en,q,Q))
=g Q T x (i )eu W (eu,q,Q)+(j—i+1)gxQ*T;_, ,(en,q,Q)),
where the last equality follows from (1.4). Applying now (1.5) yields

(i—DeuV; ;(en,q,Q)+(j—i+1)g+Q¥; , (en,q,Q)

. * a\llj_l * a\Il]_l *
=(i—Dews¥;_(eu,q,Q)+2+Q* (57" ) (e, 0, Q)+ g+ eu( 517 ) (ew, 4, Q).

Putting things together and using again (3.1) and Proposition 2.6 yields

palfelaixaj—a;*xa;))=fepyla;, xaj,—a;~aj),
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as desired. The fact that
pales(@a,1*aj,—a;xaj))=ee.pyla,*aj,,—a;*aj),

follows from a similar computation and this completes the proof of the Lemma. O

Using the isomorphism of SL,(C)-modules p,, the family of equations (3; ;) can be
rewritten as follows:

(3.6) V ¢ €Ker(eyq), ¢ —palp)+(ew*—4q+Q—d*a”) e Ker(o).

Remark 3.7. — The existence of such an isomorphism of SL,(C)-modules Ker(¢; 4) =
Sym?~%(E*) is a consequence of Hermite’s reciprocity law, as it has been explained to
us by Pierre-Louis Montagard. Indeed, Hermite’s reciprocity law (see for instance [Bri,
Cor. 2.2]) says that we have an isomorphism of SL,(C)-modules

i, 2 Sym™ (Sym” (V3)) — Sym(Sym™"(V3))
making the diagram

hm,n
Sym™(Sym"(V,)) Sym" (Sym™(15))

Em,n gn,m
Sym™"(V3)
commutative. In particular, A, , induces an isomorphism, still denoted by h,), ,,, between

Ker(¢,, ,) and Ker(g,, ,,,).
In the particular case where m =2 and n = d, the kernel of the evaluation map &, :

Sym(Sym?(13)) = Sym(E*) — Sym(1%) is the principal ideal generated by eu*> —4q + Q so
that the map

Sym?*(1p) — Ker(gg,5)

¢ — (eu?—4g+Q)xy

is an isomorphism of SL,(C)-modules. Composing the inverse of this isomorphism with
hy,4 gives an isomorphism Ker(e, ;) 5 Sym42(EY). m
Remark 3.8. — Since eu*>—4q « Q € Sym(E*)32(© (in fact, it even generates this invari-
ant algebra) we can define, for any polynomial P in one variable, a variety Z” by the
following equations:

%P = {(q!de;ao;al,...,ad)Ecd+4 |
ea; =qa +a;_, |

Vi1<i<j<d-—1, e
{ﬂi—1aj+1—aiaj=p(€2—4q9)qd Q75 (e,9,9Q)

By (3.2) and (3.6), the variety Z” can we rewritten as follows:

EZDP:{(q,D,e,Clo,al,...,ad)eCd+4 |

VSD S Ker(tuld) n ﬂDeDer(Sym(Vg)) Ker(D(Z))) So(qr Q, ¢, Ay, Ay, ..., ad) = 07 }
VSO € Ker(‘gz,d)’ SO(aO» ayy..., ad) = P(ez _4qQ)pd(80)(9, q, Q)

This shows that 7 is an SL,(C)-stable subvariety of Ci*~E* m
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4. Fixed points under diagram automorphism

0
Let /Z bea primitive 2d-th root of unity such that (VP =Candlet T = ( J7 -1 \{)Z)
Then st =t and 7¢7 " =s. So T normalizes W and, since ¢; = ¢;, T acts on Z, and
so on %, by [BoRo]. The action on the generators of Z, given in Theorem 2.9 is easily

computed:

1 1

(4.1) "q=q, 'Q=Q, "eu=eu and ‘a;,=-—a;

for0<i<d.
Using the description of %, as a closed subvariety of C?** as in §2.E thanks to Theo-
rem 2.9, one gets:

ZF ={(0,Q,e,a9,ay,...,a5) €%, | ag=a, =---=a, =0}.
Therefore,
#T~{(q,9Q,0)eC|V1<i<j<d—1,(*—qQ—d*a*)q" 72", ;(e,q,Q)=0}.

Let (¢,q,9Q) € Z7. If q #0, then the above equation with i = j =1 gives ¢? —qQ—d?a*=0.

Similarly, if Q # 0, the above equation with i = j = d —1 gives ¢ —qQ—d?a® = 0. So
assume now that q = Q = 0. Then the above equation with i =1 and j = d —1 gives
(e —d?a®)¥,;_,(e,0,0)=0. But an easy induction on k shows that ¥;(T,0,0)= T* for all k,
so this gives (¢ — d?a?)e?=2 = 0. This discussion shows that

(4.2) Z7 ~{(0,0,0}U{(q,Q,¢)€C® | (e—da)(e+da)=qQ}.

So the 0-dimensional irreducible component is of course isomorphic to the Calogero-
Moser space associated with the trivial group (!), and the 2-dimensional irreducible com-
ponent is isomorphic to the Calogero-Moser spaces associated with the pair (V*, W*) and
parameter da/2: indeed, dim V"™ =1, W* = (wy) ~ i, and equations for Calogero-Moser
spaces associated with cyclic groups are given for instance in [BoRo, Theo. 18.2.4]. More-
over, Proposition 2.6 shows that this isomorphism respect the Poisson bracket. So we
have proved the following result, which confirms [BoRo, Conj. FIX] (or [Bon2, Conj. B]):

Proposition 4.3. — The unique 2-dimensional irreducible component of Z is isomorphic, as a
Poisson variety endowed with a C*-action, to the Calogero-Moser space associated with the pair
(VT W) ~(C,u,) and the parameter map Ref(u,)={—-1} - C, -1 —da.
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