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COMPLEX REFLECTION GROUPS AND K3 SURFACES II. THE GROUPS G 29 , G 30 AND G 31
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We study some K3 surfaces obtained as minimal resolutions of quotients of subgroups of special reflection groups. Some of these were already studied in a previous paper by W. Barth and the second author. We give here an easy proof that these are K3 surfaces, give equations in weighted projective space and describe their geometry.

Introduction

In the first paper of this series [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF], the authors have explained how to build K3 surfaces from invariants of complex reflection groups of rank 4 generated by reflections of order 2. In this second part and the upcoming third part [START_REF] Bonnafé | Complex reflection groups and K3 surfaces III. The group G 28 = W(F 4 )[END_REF], we complete this qualitative result by investigating more precisely the examples given by the primitive groups (see [5, §2] for the definition), i.e., the groups G 28 , G 29 , G 30 and G 31 (as in [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF], we follow Shephard-Todd numbering for complex reflection groups [START_REF] Shephard | Finite unitary reflection groups[END_REF]). In particular, we investigate the following questions:

(a) We show that all the K3 surfaces constructed this way have big Picard number. (b) We compute some of the transcendental lattices of those K3 surfaces with Picard number 20. (c) We give some explicit equations in weighted projective space. (d) We construct explicit elliptic fibrations for all the examples of K3 surfaces we obtain: as shown in [START_REF] Sterk | Finiteness results for algebraic K3 surfaces[END_REF]Corollary 2.7] there is only a finite number of elliptic fibrations for a K3 surface (up to automorphisms) but, even though we sometimes construct several non-equivalent elliptic fibrations, there is no case in which we pretend to have constructed all of them. For some of them, we determine the singular fibers. When one knows the transcendental lattice one could use the recent paper by Festi and Veniani [START_REF] Festi | Counting elliptic fibrations on K3 surfaces[END_REF] to compute the number of elliptic fibrations (up to automorphisms of the surface).

In this second paper, we focus on the groups G 29 , G 30 and G 31 while the third paper [START_REF] Bonnafé | Complex reflection groups and K3 surfaces III. The group G 28 = W(F 4 )[END_REF] will be devoted to the study of G 28 . See the introduction of [START_REF] Bonnafé | Complex reflection groups and K3 surfaces III. The group G 28 = W(F 4 )[END_REF] for the reasons why G 28 deserves a particular treatment, we recall here the main points: firstly, G ′ 28 ̸ = G SL 28 ; secondly, there are two possible interesting degrees for the fundamental invariants, namely 6 and 8; thirdly, G 28 admits an interesting outer automorphism. Also, we take opportunity of this work to revisit results from both authors who constructed highly singular surfaces from invariants of complex reflection groups [START_REF] Bonnafé | Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF][START_REF] Sarti | Pencils of symmetric surfaces in P 3[END_REF]. Most (but not all) of the singularities constructed this way can be obtained from [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF]Corollary 2.4]. In §6.5, we also revisit Boissière-Sarti example of the smooth octic surface containing 352 lines [START_REF] Boissière | Counting lines on surfaces[END_REF], using Springer theory [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF]Theorem 3.13].

Finally, note that the first part [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF] was free of computer calculations, as the arguments were pretty general: in this second part, we study very specific examples, for which the determination of geometric features (singularities, transcendental lattices, branch locus, etc.) requires computer calculations. We use here the software Magma [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF] (as well as some specific functions described in [START_REF] Bonnafé | Magma codes for "Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF]).

The structure of the paper is as follows. In Section 3 we recall some general facts on the groups G 29 , G 30 and G 31 . Section 4 is devoted to the group G 29 . Here we consider the unique G 29 -invariant polynomial of degree four which defines a quartic K3 surface in P 3 (C), this is denoted by X Mu in [START_REF] Bonnafé | K3 surfaces with maximal finite automorphism groups containing M 20[END_REF]. We consider then the quotient of the quartic K3 surface by the derived group G ′ 29 = G SL 29 . As remarked in [START_REF] Bonnafé | K3 surfaces with maximal finite automorphism groups containing M 20[END_REF] we have that PG ′ 29 = M 20 the Mathieu group, which acts symplectically on X Mu . It is well known that the minimal resolution is again a K3 surface and Xiao in [START_REF] Xiao | Galois covers between K3 surfaces[END_REF] showed that the Picard number is 20. We give in Lemma 4.1 and Corollary 4.2 an alternative proof that uses Lehrer-Springer theory. In §4. [START_REF] Bonnafé | Magma codes for "Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF] we describe an elliptic fibration on this surface and thanks to that we compute the transcendental lattice. This result is new and summarized in the following theorem: Theorem 1.1. Let X29 be the minimal resolution of X Mu /G ′ 29 . This is a K3 surface with Picard number 20 admitting an elliptic fibration with fibers Ẽ6 + D6 + 2 Ã2 + Ã1 and transcendental lattice isometric to T X29 = 6 0 0 60 .

Observe that this surface was already studied under a different point of view by M. Schütt in the paper [START_REF] Schütt | Elliptic fibrations of some extremal K3 surfaces[END_REF]Table 2] about the construction of elliptic fibrations on extremal K3 surfaces. Note that Schütt constructs another elliptic fibration for X29 : it would be interesting to know if there are still other elliptic fibrations. In Section 5 we consider the group G 30 and the zero set of the one dimensional family of invariant polynomials of degree 12. The group G 30 is the Coxeter group of type H 4 . Let X30 λ denote the K3 surface which is the minimal resolution of the quotient of the zero set Z(f 2,λ ) of the polynomials of degree 12 by G SL 30 and let X 30 λ denote this singular quotient (recall that here G ′ 30 = G SL 30 ). In [START_REF] Barth | Polyhedral groups and pencils of K3-surfaces with maximal Picard number[END_REF][START_REF] Sarti | Transcendental lattices of some K3-surfaces[END_REF] the Picard number and the transcendental lattice of the K3 surfaces were computed. The equation of X 30 λ and the description of the elliptic fibration is new. We show the following result: Theorem 1.2. We have the following equation X 30 λ = {[y 1 : y 3 : y 4 : j] ∈ P(1, 2, 3, 6) | j 2 = r λ (y 1 , y 3 , y 4 )}, where r λ (y 1 , y 3 , y 4 ) is a polynomial of total degree 12. For λ generic the surface X30

λ has Picard number 19 and it admits an elliptic fibration with fibers D5 + Ã4 + 2 Ã2 + 3 Ã1 . The transcendental lattice as computed in [START_REF] Sarti | Transcendental lattices of some K3-surfaces[END_REF] is

T X30 λ =   4 2 0 2 34 0 0 0 -30   .
There are at least four special values of λ for which the Picard number of the corresponding K3 surface is 20, these four values correspond to the surfaces in Z(f 2,λ ) that have isolated ADE singularities. These values of λ, the singular fibers of an elliptic fibration and the transcendental lattices are resumed in Table III.

Finally Section 6 is devoted to the group G 31 and the one-dimensional family of invariant polynomials of degree 20. We have again G SL 31 = G ′ 31 , and let X 31 λ denote the singular quotient by G SL 31 and by X31 λ its minimal resolution. The latter is a K3 surface and we show: Theorem 1.3. We have the following equation X 31 λ = {[y 1 : y 2 : y 4 : j] ∈ P(2, 1, 2, 5) | j 2 = q λ (y 1 , y 2 , y 4 )}, where q λ (y 1 , y 2 , y 4 ) is a polynomial of total degree 10. For λ generic the surface X31 λ has Picard number 18 and it admits an elliptic fibration with singular fibers D7 + 3 Ã2 + 3 Ã1 . There are at least six special values of λ for which the Picard number of the corresponding K3 surface is 19, and five of these values correspond to the singular fibers in Z(f 3,λ ). These values of λ and the singular fibers of an elliptic fibration are resumed in Table IV.

Finally in the Appendix we collect several useful results that allow to find the equations of the K3 surfaces and the elliptic fibrations. We remark that in the case of G 31 we described a one parameter family of K3 surfaces, we believe that this family is not isotrivial, but we could not prove it, for G 30 this was shown in [START_REF] Barth | Polyhedral groups and pencils of K3-surfaces with maximal Picard number[END_REF]. fruitful discussions. We also thank the referee for having carefully read the first version of this paper and for valuable suggestions. The first author is grateful to the MSRI to let him use its high performance computing facilities.

Hypothesis and notation. We keep the notation introduced in [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF]. We recall some of them. First, V is a complex vector space and W is a complex reflection group acting on V of dimension n. If v ∈ V \ {0}, we denote by [v] ∈ P(V ) the line it defines (i.e., [v] = Cv). If S is a subset of V , we denote by W S (resp. W (S)) the setwise (resp. pointwise) stabilizer of S (so that W (S) is a normal subgroup of W S and W S /W (S) acts faithfully on S). The derived subgroup of W will be denoted by W ′ , and we set W SL = W ∩ SL C (V ). The degrees (resp. codegrees) of W (see [5, where V (w, ζ e ) denotes the ζ e -eigenspace of the element w ∈ W . In particular, ζ e is an eigenvalue of some element of W if and only if δ(e) ̸ = 0 that is, if and only if e divides some degree of W . In this case, we fix an element w e of W such that dim V (w e , ζ e ) = δ(e). We set for simplicity V (e) = V (w e , ζ e ) and W (e) = W V (e) /W (V (e)): this subquotient of W acts faithfully on V (e). We denote by A the set of reflecting hyperplanes of W and we set

J = H∈A α H ,
where α H is an element of V * such that H = Ker(α H ).

From now on, and until the end of this paper, we assume that n = dim(V ) = 4 and that W ⊂ GL C (V ) is a primitive1 complex reflection group. If S is a K3 surface, we denote by T S its transcendental lattice and by ρ(S) its Picard number.

If C 1 , . . . , C r are curves on a surface S, the intersection graph will be represented as follows: vertices correspond to C 1 , . . . , C r and are represented by circles (with no information if the self-intersection is -2; otherwise, the selfintersection number is written inside the circle) and there is an edge between the vertices corresponding to C j and

C j ′ if C j •C j ′ ̸ = 0 (nothing more is written on the edge if C j • C j ′ = 1; otherwise, the number C j • C j ′ is written above the edge).
The singular fibers of elliptic fibrations will be denoted as usual according to their intersection matrix: for instance, a singular fiber of type D4 is a fiber whose intersection matrix is the Cartan matrix of the extended Dynkin diagram of type D4 (in Kodaira's notation, it is of type I * 0 ). There remain some ambiguities (for types Ã1 and Ã2 ): we say that a singular fiber is of type Ã1 (resp. Ã2 ) if it is of type I 2 (resp. I 3 ) and will use Kodaira's notation (i.e., III or IV) for the other singular fibers whose intersection graph is of type Ã1 or Ã2 .

If S is a K3 surface and φ : S -→ P 1 (C) is an elliptic fibration admitting a section σ : P 1 (C) -→ S, we denote by MW σ (φ) (or simply MW(φ) if σ is clear from the context) its Mordell-Weil group. In this case, we denote by Triv σ (φ) (or Triv(φ)) the trivial lattice of the fibration φ, namely the lattice generated by the vertical divisors and the class of the image of σ. Then (1.4) MW σ (φ) ≃ Pic(S)/Triv σ (φ).

See the book [START_REF] Schütt | Mordell-Weil lattices[END_REF] for more details on elliptic surfaces. We will often denote by a b c the 2 × 2-matrix: a b b c .

Preliminaries on primitive complex reflection groups of rank 4

Recall [START_REF] Shephard | Finite unitary reflection groups[END_REF] that there are five primitive complex reflection groups of rank 4, and that they are denoted by G 28 , G 29 , G 30 , G 31 and G 32 . The first four are generated by reflections of order 2 and G 32 is generated by reflections of order 3. Note that G 28 (resp. G 30 ) is the Coxeter group of type F 4 (resp. H 4 ).

When we do explicit computations, we use the models of the primitive complex reflection groups W that were implemented in Magma by the first author (almost copying files due to Michel [START_REF] Michel | The development version of the CHEVIE package of GAP3[END_REF] and Thiel [START_REF] Thiel | Champ: a Cherednik algebra Magma package[END_REF]) in a file primitive-complex-reflection-groups.m which can be downloaded in [START_REF] Bonnafé | Magma codes for "Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF]. Most of them (but not all) are taken from [START_REF] Michel | The development version of the CHEVIE package of GAP3[END_REF] or [START_REF] Thiel | Champ: a Cherednik algebra Magma package[END_REF]. We do not pretend that these are the best models, but the interested reader might have a look at [START_REF] Bonnafé | Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF]Remark 1.3] for a discussion about some of the advantages of these models.

Representing W as a subgroup of GL 4 (C) allows to identify V with C 4 and we denote by (x, y, z, t) the dual basis of the canonical basis of C 4 . Therefore,

C[V ] = C[x, y, z, t].
A first advantage of the chosen models is that the group W is implemented as a Galois stable subgroup of GL 4 (K), where K is a finite Galois extension of Q (the fact that such a model always exists was proved by Marin-Michel [START_REF] Marin | Automorphisms of complex reflection groups[END_REF]). This implies that we can find fundamental invariants in Q[x, y, z, t]. For instance, with such a model for W = G 30 = W(H 4 ), the singular dodecic surfaces constructed by the second author [START_REF] Sarti | Pencils of symmetric surfaces in P 3[END_REF] can be realized over Q, as explained in [START_REF] Bonnafé | Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF]Proposition 1.1]. Another advantage of our models is that W generally contains a big subgroup of monomial matrices (except for W = G 30 = W(H 4 )). This leads to expressions of fundamental invariants in terms of symmetric functions. For this reason, we introduce the following notation: if m is a monomial in x, y, z, t, we denote by Σ(m) the sum of the monomials obtained by permuting the variables. For instance,

Σ(x 4 y) = x 4 (y + z + t) + y 4 (x + z + t) + z 4 (x + y + t) + t 4 (x + y + z) = Σ(xy 4 ).

The groups G 29 , G 30 and G 31

Hypothesis. From now on, and until the end of this paper, we assume moreover that W is one of the three primitive groups G 29 , G 30 or G 31 .

Let us first recall in Table I some specific data for these three groups that were contained in [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF]Table I].

Note that the hypothesis implies that

W ′ = W SL
is of index 2 in W (recall from [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF] the notation W SL = W ∩ SL C (V )): we denote by σ the non-trivial element of W/W ′ . According to [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF]Theorem 5.4], the surface Z (f )/W ′ is a K3 surface with ADE singularities (endowed with a non-symplectic automorphism given by the action of σ), provided that f is a fundamental invariant of W of degree 

(f )/W ′ for W = G 29 , G 30 or G 31 W d Z sing (f ) m singularities of Z (f )/W ′ ρ T Z (f )/W ′ G 29 4 ∅ 0 D 4 + 2 A 4 + 3 A 2 + A 1 20 6 0 60 G 30 12 ∅ 1 A 4 + 4 A 2 + 5 A 1 ⩾ 19 Theorem 1.2 60 A 1 0 E 8 + 3 A 2 + 4 A 1 20 4 2 34 300 A 1 0 E 6 + A 4 + 2 A 2 + 4 A 1 20 12 6 58 360 A 1 0 D 7 + 4 A 2 + 3 A 1 20 6 0 132 600 A 1 0 D 5 + A 4 + 3 A 2 + 3 A 1 20 6 0 220 G 31 20 ∅ 1 D 6 + A 3 + 3 A 2 + 2 A 1 ⩾ 18 960 A 1 0 D 6 + D 5 + A 3 + 2 A 2 19 480 A 1 0 E 6 + D 6 + A 3 + A 2 + A 1 19 1920 A 1 0 D 6 + A 5 + A 3 + A 2 + 2 A 1 19 1440 A 2 0 D 6 + D 5 + 3 A 2 + A 1 19 640 A 3 0 D 6 + 2 A 3 + 2 A 2 + 2 A 1 19 
(Here, d = deg(f ), m is the number of moduli of the family and

ρ = ρ( Z (f )/W ′ ))
Z (f )/W ′ : in particular, we prove that the information given in Table II are correct3 .

The group G 29

Hypothesis. We assume in this section, and only in this section, that W = G 29 .

We have G 29 = ⟨s 1 , s 2 , s 3 , s 4 ⟩, where

s 1 =     1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 -1     , s 2 = 1 2     1 1 i i 1 1 -i -i -i i 1 -1 -i i -1 1     , s 3 =     0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1     , s 4 =     1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1     .
Here, i = ζ 4 is a primitive fourth root of unity. Some of the numerical facts used below can be extracted from [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF]Table I]. For instance, note that

G SL 29 = G ′ 29 is of index 2 in G 29 , so that G 29 = ⟨s 1 ⟩ ⋉ G ′ 29 (observe that s 1 is an involution). Note also that Z(G 29 ) ≃ µ 4 ⊂ G ′
29 , see for instance [5, (3.2)]. Moreover, P G ′ 29 ≃ M 20 (the Mathieu group of degree 20) so that we have a split exact sequence 1

-→ P G ′ 29 ≃ M 20 -→ P G 29 -→ µ 2 -→ 1,
where the last map is induced by the determinant.

The K3 surface

By [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF]Table I], there exists a unique (up to scalar) homogeneous invariant polynomial f 1 of degree 4: it is given by

f 1 = Σ(x 4 ) -6Σ(x 2 y 2 ).
As in [START_REF] Bonnafé | K3 surfaces with maximal finite automorphism groups containing M 20[END_REF], we set X Mu = Z (f 1 ) (recall that this surface was discovered by Mukai [START_REF] Mukai | Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent[END_REF]). It can easily be checked that X Mu is a smooth and irreducible quartic in P 3 (C), so that it is a K3 surface, endowed with a symplectic action of M 20 and an extra non-symplectic automorphism of order 2. Several properties of X Mu are given in [START_REF] Bonnafé | K3 surfaces with maximal finite automorphism groups containing M 20[END_REF] (transcendental lattice, automorphisms, polarizations: note that it is denoted by X Mu in [START_REF] Bonnafé | K3 surfaces with maximal finite automorphism groups containing M 20[END_REF], as it was discovered by Mukai [START_REF] Mukai | Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent[END_REF]). For instance, it is known that X Mu has Picard number 20.

Continuing with the topic of this paper, we describe here geometric properties of the quotient X 29 = X Mu /G ′ 29 : as the quotient of a K3 surface by a finite group acting symplectically, it is also a K3 surface with ADE singularities, whose minimal resolution X29 has Picard number 20 (see [START_REF] Bonnafé | K3 surfaces with maximal finite automorphism groups containing M 20[END_REF]). This can also be proved by examining the singularities of X 29 , which are given below: Lemma 4.1 (Xiao). The K3 surface X 29 has singularities

D 4 +2 A 4 +3 A 2 +A 1 .
Proof. See [30, Table 2, last line]. As we need concrete results (for instance, the coordinates of the singular points), we provide a proof that will provide these extra-information.

Since the action of P G ′ 29 on X Mu is symplectic, it is sufficient to compute the stabilizers of points of X Mu . For this, we follow the discussion of [5, §4.1], from which we keep the notation. We fix v ∈ V \ {0} such that z = [v] ∈ X Mu and we may assume that W z = W v ⟨w ez ⟩. Note that 4 divides e z because w 4 = ζ 4 Id V ∈ W , and that e z divides one of the degrees of W . So e z ∈ {4, 8, 12, 20}. This leads to the following discussion, by using Magma:

• If e z = 20 then, since δ(20) = δ * (20) = 1, we have W v = 1 by [5, Theorem 3.13] and det(w 20 ) = ζ 4+8+12+20-4 20 = 1. So the stabilizer of z in W is contained in W ′ : so the W -orbit of z contains two W ′ -orbits, and the stabilizer of z in P G ′ 29 is cyclic of order 5. This leads to 2 A 4 singularities in X 29 , which we denote by a ± 4 .

• If e z = 12, then δ(12) = 1, so the W -orbit of z is completely determined, and a computation with Magma shows that |W z | = 24. This shows that W v is generated by a single reflection and so W ′ z = ⟨w 12 ⟩ ⊊ W z . So the W -orbit of z is a single W ′ -orbit, and the stabilizer of z in P G ′ 29 is cyclic of order 3. This leads to an A 2 singularity in X 29 , which we denote by a 2 .

• If e z = 8, then δ(8) = 1, so the W -orbit of z is completely determined, and a computation with Magma shows that 

|W z | = 64 ̸ = 32 = |W ′ z |. So the W -orbit of z is a single W ′ -
A 1 × A 1 and |(W ′ ∩ N 13 )/W 13 ⟨w 4 ⟩| = 4.
Moreover, the stabilizer of any point in E 13 is equal to (W ′ ∩ W 13 )⟨w 4 ⟩, so its stabilizer in P W ′ is cyclic of order 2. This leads to an A 1 singularities in X 29 , which we denote by a 1 .

-The set E 23 is contained in the W -orbit of z 8 , so this case has already been treated and does not lead to new singularities in X 29 . The proof of the proposition is complete. □ Corollary 4.2. The Picard number of the K3 surface X29 is 20.

Proof. As X29 is algebraic, we get from Lemma 4.1 that the rank of Pic( X29 ) is [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF]Proposition 3.11]). In this model, the singular points are given as follows, as can be checked with Magma: have coordinates of the form [1 : 0 : 0 : j 1 ], [0 : 1 : 0 : j 2 ] and [0 : 0 : 1 : j ± 3 ], respectively, and the values of j 1 , j 2 and j ± 3 are determined by the equation of X 29 . For the remaining points, computations with Magma show that the evaluation of f 4 (the invariant of degree 20) at points of E 12 or E 13 is different from 0, so that the points a 1 and a ± 2 belong to the affine chart X 29 (4) of X 29 defined by x 4 ̸ = 0. Setting x 4 = 1, the coordinates in the ambient space of X 29 (4) are a = x 5 2 , b = x 2 x 3 , c = x 5 3 and j, and X 29 (4) is equal to

⩾ 1 + (1 + 3 • 2 + 2 • 4 + 4) = 20
j 2 = -64x 5 2 x 2 4 + 16x 4 2 x 4 3 + 32x 3 2 x 3 3 x 4 + 1800x 2 2 x 2 3 x 2 4 -432x 2 x 6 3 -5000x 2 x 3 x 3 4 + 432x 5 3 x 4 + 3125x 4 4 } (see
d 4 = [1 : 0 : 0 : 0], a 2 = [0 : 1 : 0 : 0], a ± 4 = [0 : 0 : 1 : ±25 √ 5] a 1 = [α : β : 1 : 0] and a ± 2 = [α ± : β ± : 1 : 0],
X 29 (4) ={(a, b, c, j) ∈ A 4 (C) | b 5 = ac and j 2 = -64a + 16b 4 + 32b 3 + 1800b 2 -432bc -5000b + 432c + 3125}.
From the second equation, we can express a in terms of b, c and j, and so (4.4)

X 29 (4) = {(b, c, j) ∈ A 3 (C) | 64b 5 = cP 29 (b, c, j)},
where P 29 (b, c, j) = 16b 4 +32b 3 +1800b 2 -432bc-5000b+432c+3125-j 2 . The coordinates of the singular points of X 29 (4) can then be computed with Magma and fit with what is written above.

Finally, recall that the action of the non-trivial element σ of W/W ′ is given by

(4.5) σ • [x 2 : x 3 : x 4 : j] = [x 2 : x 3 : x 4 : -j]
and that X 29 /⟨σ⟩ ≃ P(2, 3, 5).

Some smooth rational curves in X 29

We work in the model given by Remark 4.3 and we denote by π : X29 → X 29 the natural morphism from the minimal resolution X29 of X 29 . If p is a singular point of X 29 , we denote by ∆ p 1 , . . . , ∆ p m the irreducible components of π -1 (p) (these are smooth rational curves and m is equal to the Milnor number of X 29 at p). We define Proof. First, 5 2 : x 2 4 : j] is an isomorphism of varieties. Through this isomorphism, we get 2 4 }. Hence, C 3 is a non-degenerate conic in P 2 (C), i.e., C 3 is a smooth rational curve.

C 2 = {[x 2 : x 3 : x 4 : j] ∈ X 29 | x 2 = 0} and C 3 = {[x 2 : x 3 : x 4 : j] ∈ X 29 | x 3 = 0}. Let C2
C 3 = {[x 2 : x 4 : j] ∈ P(2, 5, 10) | j 2 = -64x 5 2 x 2 4 + 3125x 4 4 }. But the map P(2, 5, 10) → P 2 (C), [x 2 : x 4 : j] → [x
C 3 = {[x 2 : x 4 : j] ∈ P 2 (C) | j 2 = -64x 2 x 4 + 3125x
For C 2 , note that 

C 2 = {[x 3 : x 4 : j] ∈ P(3, 5, 10) | j 2 = 432x
C 2 = {[x 3 : x 4 : j] ∈ P(3, 1, 2) | j 2 = 432x 3 x 4 + 3125x 4 4 }. For k ∈ {3, 4}, we denote by C (k) 2 the affine chart of C 2 defined by x k ̸ = 0. Then C 2 = C (3) 2 ∪C (4)
2 and we only need to show that C 

C (3) 2 = {(a, b, c) ∈ A 3 (C) | b 3 = ac, c = 432b + 3125ab and b 2 = 432a + 3125a 2 } ≃ {(a, b) ∈ A 2 (C) | b 2 = 432a + 3125a 2 }.
This is clearly smooth and the result follows. □ Proposition 4.6 implies that C2 and C3 are smooth rational curves in X29 . Adding the 19 smooth rational curves of the form ∆ p m , this gives us 21 smooth rational curves in X29 , we investigate in the next subsection if these curves are independent in the Picard group or not.

An elliptic fibration

Any K3 surface with Picard number 20 admits an elliptic fibration. We construct here an explicit one, and determine its singular fibers.

First, let φ :

X 29 \ {a + 4 , a - 4 } → P 1 (C), [x 2 : x 3 : x 4 : j] → [x 3 2 : x 2 3 ]. This map is indeed well-defined on X 29 \ {a + 4 , a - 4 } and induces a map φ : X29 \ (π -1 (a + 4 ) ∪ π -1 (a - 4 
)) -→ P 1 (C). Our elliptic fibration is obtained by extending φ:

Proposition 4.7. The map φ : X29 \ (π -1 (a + 4 ) ∪ π -1 (a - 4 )) -→ P 1 (C) extends to a morphism of algebraic varieties X29 -→ P 1 (C).
Proof. Let π : X29 -→ X 29 denote the minimal resolution of X 29 only at the points a + 4 and a - 4 . In particular, X29 is still singular (it has singularities

A 1 + 3 A 2 + D 4 ). Let φ = φ • π : X29 \ (π -1 (a + 4 ) ∪ π-1 (a - 4 
)) -→ P 1 (C). Since the resolution π : X29 → X 29 factors through X29 , it is sufficient to show that φ extends to X29 .

We will now use the results (and the notation) of Appendix A with (k, l) = (2, 3). Let a 4 = [0 : 0 : 1] ∈ P(2, 3, 5): it is the image of a + 4 (or a - 4 ) through the quotient morphism X 29 -→ P(2, 3, 5). Now, the map φ :

X 29 \ {a + 4 , a - 4 } → P 1 (C) is the composition of the quotient X 29 \{a + 4 , a - 4 } -→ P(2, 3, 5)\{a 4 } and the map φ 2,3 : P(2, 3, 5) \ {a 4 } -→ P 1 (C) defined in Appendix A. Therefore, φ is the composition X29 \ (π -1 (a + 4 ) ∪ π-1 (a - 4 )) / / P(2, 3, 5) \ {a 4 } φ2,3 / / P 1 (C),
where the first map is the quotient by the lift of σ. So the result follows from the fact that φ2,3 extends to P(2, 3, 5) (see (A. the smooth rational curves which are the components of the exceptional divisor of X29 above a ± 4 . Since X 29 -→ P(2, 3, 5) is unramified above [0 : 0 : 1], we can number those last curves so that ∆a ± Now, by Remark A.4, the map φ2,3 admits a section θ : P 1 (C) -→ P(2, 3, 5) whose image is ∆ 2 . This yields two sections θ± :

P 1 (C) → X29 , whose image is ∆ a ± 4 2
. Now, X29 is obtained from X29 by successive blow-ups of points not lying in ∆

a + 4 2 ∪ ∆ a - 4
2 , so θ± lifts to a section θ± :

P 1 (C) -→ X29 , note that θ-= σ • θ+ . Let [u : v] ∈ P 1 (C). We denote by X 29 u,v the Zariski closure of φ -1 ([u : v]) (endowed with its reduced structure) in X 29 and by X29 u,v its strict transform in X29 . Note that X29 u,v ⊂ φ-1 ([u : v]) and that X 29 u,v = {[x 2 : x 3 : x 4 : j] ∈ X | vx 3 2 = ux 2 3 } red = φ -1 ([u : v]) ∪ {a + 4 , a - 4 },
where Y red denotes the reduced subscheme of Y (this is necessary only if uv = 0).

Corollary 4.9. The elliptic fibration φ has singular fibers Ẽ6 + D6 +2 Ã2 + Ã1 .

Proof. Since the map φ factorizes through the quotient X29 /⟨σ⟩, it follows from Proposition A.3 that the intersection graph of the family of smooth rational

curves ( C2 , C3 , ∆ a + 4 1 , ∆ a + 4 2 , ∆ a + 4 3 , ∆ a + 4 4 , ∆ a - 4 1 , ∆ a - 4 2 , ∆ a - 4 3 , ∆ a - 4 4 
) is given by ) are the only rational curves among the ∆

(4.10) i C3 d d i ∆ a + 4 1 i ∆ a - 4 1 i ∆ a + 4 2 i ∆ a - 4 2 i ∆ a + 4 3 i ∆ a - 4 3 i ∆ a + 4 4 i ∆ a -
a ± 4 k 's which are contained in φ-1 ([1 : 0]) (resp. φ-1 ([0 : 1])).
This shows that φ-1 ([1 : 0]) and φ-1 ([0 : 1]) are singular fibers. Let us determine their type. Note that

C 3 = X 29 1,0 and C 2 = X 29 0,1 .
As the only singular points of X29 belonging to C 3 (resp. C 2 ) are a + 4 , a - 4 and d 4 (resp. a + 4 , a - 4 and a 2 ), this shows that

φ-1 ([1 : 0]) = C3 ∪ ∆ a + 4 1 ∪ ∆ a - 4 1 ∪ 4 k=1 ∆ d4 k and φ-1 ([0 : 1]) = C2 ∪ 4 k=3 (∆ a + 4 k ∪ ∆ a + 4 k ) ∪ 2 k=1 ∆ a2 k . But ∆ a ± 4 k • ∆ d4 l = ∆ a ± 4 k • ∆ a2 m = 0
, so the Kodaira-Néron classification of singular fibers forces that, with a suitable numbering of the ∆ d4 k 's and the ∆ a2 k 's, the intersection graphs inside φ-1 ([1 : 0]) and φ-1 ([0 : 1]) are, respectively, given by (4.11)

i ∆ d4 3 i ∆ d4 4 i ∆ d4 2 i ∆ d4 1 i C3 d d i ∆ a + 4 1 i ∆ a - 4 1 and i ∆ a + 4 3 i ∆ a - 4 3 i ∆ a + 4 4 i ∆ a - 4 4 d d i C2 i ∆ a2 1 i ∆ a2 2
In other words, they are of type D6 and Ẽ6 , respectively.

Let us now study the fibers of φ at [α 3 :

β 2 ] and [α 3 ± : β 2 ± ]
, where α, β, α ± and β ± are defined in Remark 4.3. This amounts to understand the fibers of φ passing through a 1 , a + 2 and a - 2 . Let us first determine their irreducible components (we treat only the cases of a 1 and a + 2 , as the case of a - 2 is isomorphic to the case of a + 2 ). Note that

β 2 α 3 = β 5 (αβ) 3 = 4 135
and

β 2 + α 3 + = β 5 + (α + β + ) 3 = -36 + 16 √ 6 45
.

Working inside the affine chart X 29 (4) , a Magma computation shows that a 1 (resp. a + 2 ) is an A 1 -singularity of X 

√ 6]) = X29 45,-36+16 √ 6 ∪ ∆ a + 2 1 ∪ ∆ a + 2 
2 ) is a singular fiber of type Ã1 (resp. Ã2 ).

So we have found that the elliptic fibration φ has at least 5 singular fibers of respective types Ã1 , Ã2 , Ã2 , D6 and Ẽ6 . Since the sum of the Euler characteristics of these singular fibers is equal to 24, the elliptic fibration φ has no more singular fiber. □

Transcendental lattice

We aim to prove that Pic( X29 ) is generated by the classes of the 21 smooth rational curves described in the previous subsection. The intersection numbers between these 21 smooth rational curves have been determined in the proof of Corollary 4.9 (see (4.10) and (4.11)). They are gathered in the following proposition.

Proposition 4.12. The intersection graph of the above 21 smooth rational curves is given by

i ∆ a + 2 1 i ∆ a + 2 2 i ∆ a - 2 1 i ∆ a - 2 2 i ∆ a1 1 i ∆ d4 3 i ∆ d4 4 i ∆ d4 2 i ∆ d4 1 i C3 d d i ∆ a + 4 1 i ∆ a - 4 1 i ∆ a + 4 2 i ∆ a - 4 2 i ∆ a + 4 3 i ∆ a - 4 3 i ∆ a + 4 4 i ∆ a - 4 4 d d i C2 i ∆ a2 1 i ∆ a2 2
We can then compute the lattices Pic( X29 ) and T X29 .

Theorem 4.13. The Picard group Pic( X29 ) admits

([∆ a + 2 1 ], [∆ a + 2 2 ], [∆ a - 2 1 ], [∆ a - 2 2 ], [∆ a1 1 ], [∆ d4 1 ], [∆ d4 2 ], [∆ d4 3 ], [∆ d4 4 ], [ C3 ], [∆ a + 4 1 ], [∆ a + 4 2 ], [∆ a + 4 3 ], [∆ a + 4 4 ], [∆ a - 4 1 ], [∆ a - 4 2 ], [∆ a - 4 3 ], [∆ a - 4 4 ], [ C2 ], [∆ a2 1 ]
) as a Z-basis. The transcendental lattice of X29 is given by 

T X29 = 6 
D k ) 1 ⩽ k ⩽ 20 . Its dual lattice Λ ∨ in Pic( X29 ) ⊗ Q satisfies |Λ ∨ /Λ| = | det(I • )| = 360 and Λ ⊂ Pic( X29 ) ⊂ Λ ∨ .
Let m denote the order of Pic( X29 )/Λ. We must show that m = 1. Assume that there exists a prime number p dividing m. Then m 2 divides |Λ ∨ /Λ|, so p ∈ {2, 3}.

Assume first that 2 divides m. Then Pic( X29 )/Λ contains an element of order 2 and a computation with Magma shows that this implies that Pic( X29 ) contains one of the elements 1 2

D 5 = 1 2 [∆ a1 1 ], 1 2 (D 6 + D 7 ) = 1 2 ([∆ d4 1 ] + [∆ d4 2 ]) or 1 2 (D 5 + D 6 + D 7 ).
But any element D in this list satisfies D • D ̸ ∈ 2Z: this contradicts the fact that Pic( X29 ) is an even lattice. So m is not divisible by 2.

Assume finally that 3 divides m. Then Pic( X29 )/Λ contains an element of order 3 and a computation with Magma shows that this implies that Pic( X29 ) contains one of the elements

L a,b = a 3 (D 1 -D 2 ) + b 3 (D 3 -D 4 ) = a 3 ([∆ a + 2 1 ] -[∆ a + 2 2 ]) + b 3 ([∆ a - 2 1 ] -[∆ a - 2 2 ]) for some a, b ∈ {0, 1, 2} and (a, b) ̸ = (0, 0). But L a,b • L a,b = 2/3(a 2 + b 2 ) ̸ ∈
Z, so we also get a contradiction. This shows that m is not divisible by 3.

Consequently, m = 1, as expected.

Let us now turn to the computation of the transcendental lattice of X29 . First, as there is a finite rational map X Mu X29 , the transcendental lattice of X29 is proportional (by some rational number) to the one of X Mu by [13, Proposition 1.1]. But the transcendental lattice of X Mu is given by

T X Mu = 4 0 0 40
(see for instance [6, Proposition 4.4(1)]). As the discriminant of T X29 is equal to the discriminant of Pic( X29 ), this shows that disc(T X29 ) = 360, and so the only possibility is

T X29 = 6 0 0 60 ,
as expected (we here also use that the signature of the transcendental lattice is (2, 0)). □ Remark 4.14. Note that one can write

[∆ a2 2 ] = [∆ d4 1 ] + [∆ d4 2 ] + 2[∆ d4 3 ] + 2[∆ d4 4 ] + 2[ C3 ] + [∆ a + 4 1 ] + [∆ a - 4 1 ] -[∆ a + 4 3 ] -[∆ a - 4 3 ] -2[∆ a + 4 3 ] -2[∆ a - 4 3 ] -3[ C2 ] -2[∆ a2 1 ].
We conclude this section by determining the Mordell-Weil group of φ, with respect to the section θ+ :

Proposition 4.15. MW θ+ ( φ) = Z[∆ a - 4 2 ] ≃ Z.
Proof. First, it follows from [25, Nr. 2493] that the torsion group of MW θ+ ( φ) is trivial. By the description of the singular fibers of the fibration φ given in Corollary 4.9, the rank of the group Triv θ+ ( φ) is equal to 19. Hence MW θ+ ( φ) ≃ Z. To determine the generators, one just needs to notice that Pic( X29 ) is generated by all the classes given in Theorem 4. [START_REF] Inose | On certain Kummer surfaces which can be realized as non-singular quartic surfaces in P 3[END_REF] , where E α denotes the elliptic curve C/(Z ⊕ Zα). Therefore, there exists a Nikulin configuration in X Mu (i.e., 16 two by two disjoint smooth rational curves). Since [START_REF] Bonnafé | K3 surfaces with maximal finite automorphism groups containing M 20[END_REF] appeared, it has been shown by Degtyarev [10, Theorem 1.1 and Introduction] that X Mu contains 800 irreducible conics (note that 320 conics were already found in [START_REF] Bonnafé | K3 surfaces with maximal finite automorphism groups containing M 20[END_REF]Remark 4.4] but this set of conics contains no Nikulin configuration). Later, Naskręcki found explicit equations for the 800 conics, and showed that one can extract from this set a Nikulin configuration, [START_REF] Naskręcki | Explicit equations of 800 conics on a Barth-Bauer quartic[END_REF]. Let us describe them here. For this, let

C 0 = {[x : y : z : t] ∈ P 3 (C) | z + i 1+ √ 5 2 t = x 2 + 2 √ 2xy + y 2 + 3 1+ √ 5 2 t 2 = 0}, C 1 = {[x : y : z : t] ∈ P 3 (C) | x + y + z = y 2 + yz + z 2 + 3+ √ 10 2 t 2 = 0}
and

C 2 = {[x : y : z : t] ∈ P 3 (C) | x + y + z = y 2 + yz + z 2 + 3- √ 10 2 t 2 = 0}.
Then C 0 , C 1 and C 2 are conics contained in X Mu and belonging to different G 29 -orbits. Moreover, the G 29 -orbit of C 0 (resp. C 1 , resp. C 2 ) has cardinality 480 (resp. 160, resp. 160).

The group G 30 = W(H 4 )

Hypothesis. We assume in this section, and only in this section, that

W = G 30 = W(H 4 ).
Recall that G 30 is the Coxeter group W(H 4 ) of type H 4 . In other words, we have G 30 = ⟨s 1 , s 2 , s 3 , s 4 ⟩ in its natural representation of dimension 4 associated with the Coxeter graph of type H 4 , i.e., given by

i s 1 5 i s 2 i s 3 i s 4
(see [9, Chapter IV] for the definition of a Coxeter graph and [9, Chapter V, §5] for the definition of its associated representation). Explicit matrices may be found in [START_REF] Bonnafé | Magma codes for "Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF]. We refer to [5, Table I] for the numerical information used here. First, recall that G ′ 30 = G SL 30 and that G 30 /G ′ 30 ≃ µ 2 . As the group is a Coxeter group, there exists a real vector subspace V R of V such that V = C ⊗ R V R and which is stabilized by G 30 . This also implies that G 30 admits an invariant f 1 of degree 2, which is the scalar extension of a positive definite quadratic form on V R . We fix a fundamental invariant f 2 of degree 12. If λ ∈ C, we set f 2,λ = f 2 + λf 6 1 : this describes (up to scalar) all the fundamental invariants of degree 12. We set

X 30 λ = Z (f 2,λ )/G ′ 30 .
We proved in [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF]Theorem 5.4] that X 30 λ is a K3 surface with ADE singularities (retrieving a result of Barth and the second author [START_REF] Barth | Polyhedral groups and pencils of K3-surfaces with maximal Picard number[END_REF]). Let π λ : X30 λ → X 30 λ denote its minimal resolution: it is a smooth K3 surface. As this example was already studied in [START_REF] Barth | Polyhedral groups and pencils of K3-surfaces with maximal Picard number[END_REF], we will not compute again the singularities of X 30 λ as well as the transcendental lattices given in Table II. We will just give some complementary information coming from the general theory of complex reflection group (equations, base locus, ramification) as well as a description of an elliptic fibration together with its singular fibers in most cases.

Singular dodecics

If 1 ⩽ k ⩽ 4, we denote by W k the subgroup of G 30 generated by {s 1 , s 2 , s 3 , s 4 } \ {s k }. Then W 1 ≃ S 4 , W 2 ≃ ⟨s 1 ⟩ × S 3 , W 3 ≃ W(I 2 (5)) × ⟨s 4 ⟩ and W 4 ≃ W(H 3 ).
Here, I 2 (5) (resp. H 3 ) denotes the complete subgraph of H 4 whose vertices are s 1 and s 2 (resp. s 1 , s 2 and s 3 ) and W (I 2 (5)) = ⟨s 1 , s 2 ⟩ (resp. W (H 3 ) = ⟨s 1 , s 2 , s 3 ⟩) is its associated Coxeter group. Note that W(I 2 (5)) is the dihedral group of order 10. Each maximal parabolic subgroup is conjugate to one of the W k 's, and only to one of them because they are two by two non-isomorphic.

Let v k ∈ V R \ {0} be such that V W k = [v k ]. We denote by Ω k the W -orbit of [v k ] in P(V ). Since -Id V ∈ W by [5, Table I] and N G30 (W k )/W k acts faithfully on V W k R = Rv k (which is of dimension 1), it follows that N G30 (W k ) = W k × ⟨-Id V ⟩. Since N W (W k ) = W [v k ] by [5, Remark 2.5], we get (5.1) |Ω k | =          300 if k = 1, 600 if k = 2, 360 if k = 3, 60 if k = 4. Now, f 1 (v k ) ̸ = 0 because f 1 is positive definite and v k ∈ V R ,

and we can define

λ k = -f 2 (v k )/f 1 (v k ) 6 . Therefore, [5, Corollary 2.4] shows that (5.2)
The singular locus of the surface

Z (f 2,λ k ) contains Ω k .
An explicit computation shows that λ k ̸ = λ l if k ̸ = l. So this example explains by general theory and simple counting arguments the construction of the four singular dodecics constructed by the second author [START_REF] Sarti | Pencils of symmetric surfaces in P 3[END_REF]. It also explains why the singular points are real. However, it does not explain why there is no more singular point, why they are all nodes, or why there is no more value of λ such that Z (f 2,λ ) is singular. All these later facts were explained in [START_REF] Sarti | Pencils of symmetric surfaces in P 3[END_REF]. As a consequence of the above discussion, we get:

Lemma 5.3. If v ∈ V \ {0} is such that [v] is a singular point of Z (f 2,λ ) for some λ ∈ C, then W v is a maximal parabolic subgroup of W (in particular, W v ̸ = 1).

Equations

It follows from [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF]Proposition 3.11] that

X 30 λ = {[x 1 : x 3 : x 4 : j] ∈ P(2, 20, 30, 60) | j 2 = P f (x 1 , -λx 6 1 , x 3 , x 4 )}.
Recall that the polynomial P f is defined as follows: J 2 ∈ C[V ] W and so there is a unique polynomial in four variables P f such that

J 2 = P f (f 1 , f 2 , f 3 , f 4 ).
Finally P(2, 20, 30, 60) = P(1, 10, 15, 30) = P(1, 2, 3, 6). Through this sequence of isomorphisms, there exists a polynomial r λ in variables y 1 , y 3 , y 4 which is homogeneous of degree 12 if we assign to y 1 , y 3 , y 4 the weights 1, 2, 3 respectively, and such that P f (x 1 , -λx 6 1 , x 3 , x 4 ) = r λ (x 5 1 , x 3 , x 4 ). Therefore, (5.4)

X 30 λ = {[y 1 : y 3 : y 4 : j] ∈ P(1, 2, 3, 6) | j 2 = r λ (y 1 , y 3 , y 4 )}.
We denote by σ the unique non-trivial element of G 30 /G ′ 30 ≃ µ 2 : through the model of X 30 λ given by (5.4), the action of σ is described by σ([y 1 : y 3 :

y 4 : j]) = [y 1 : y 3 : y 4 : -j].
Note moreover that (5.5) [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF]Proposition 3.3]). The branch locus R λ of the quotient morphism ξ λ : X 30 λ -→ P(1, 2, 3) is the zero set of r λ .

Z (f 2,λ )/G 30 = X 30 λ /µ 2 ≃ P(2, 20, 30) ≃ P(1, 2, 3) (see

Base locus

Let B denote the base locus of the family of dodecic surfaces (Z (f 2,λ )) λ∈C , that is, the subvariety of P(V ) which is contained in all the members of this family. Namely,

B = {p ∈ P(V ) | f 1 (p) = f 2 (p) = 0}
. Note that δ(10) = δ * (10) = 2, so that dim V (10) = 2. We denote by L 10 the line P(V (10)) in P(V ). The next result was already obtained by Barth and the second author [START_REF] Barth | Polyhedral groups and pencils of K3-surfaces with maximal Picard number[END_REF], but we give a proof that makes it an application of Lehrer-Springer theory. The only fact that is not covered by [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF]Theorem 3.13] is that the 24 lines forming B split into two G ′ 30 -orbits of cardinality 12: but this follows from the fact that W (10) ⊂ G ′ 30 (which can be checked for instance with Magma). □ Let B ′ denote the image of B in P(V )/W ′ . Then it follows from Proposition 5.6 that B ′ is the union of two irreducible components B + and B -. We denote by B+ and Btheir respective strict transforms in X31

λ . Let us examine some particular points of B. First, note that B does not contain a singular point of Z (f 2,λ ) since we have seen in §5. Note that a r is an A r singularity of P(1, 2, 3). Now, the morphism X 30 λ → P(1, 2, 3) is unramified above a r because W (20) and W (30) are contained in W ′ . So let a ± r denote the two points of X 30 λ above a r : in the model given in §5.2, we have a ± 1 = [0 : 1 : 0 : ±j 1 ] and a ± 2 = [0 : 0 : 1 : ±j 2 ] for some j r ∈ C × . They are both A r singularities of X 30 λ (note that this is true for any value of λ). We choose the value of j r so that a + r ∈ B + (and then

1 that f 1 (v) ̸ = 0 for any v ∈ V \ {0} such that [v] is a singular point of Z (f 2,λ ). Now, let k ∈ {20, 30}. Examining Table I, we see that δ(k) = δ * (k) = 1. By Springer Theory [5, Theorem 3.13], this implies that dim V (k) = 1, that W (V (k)) = 1 and that W (k) = ⟨w k ⟩. Let z k denote the image of V (k) in P(V ). Then the stabilizer of z k in W is W (k)
a - r ∈ B -). Recall from [1] that (5.7) (X 30 λ ) sing ∩ B ′ = {a + 1 , a - 1 , a + 2 , a - 2 }.
Again, this fact holds for any value of λ.

Lemma 5.8. Let x ∈ X 30 λ \ {a ± 1 , a ± 2 }.
Then x is singular if and only if ξ λ (x) is a singular point of the branch locus R λ . In this case, the singularity x is of the same type as the singularity ξ λ (x) of the curve R λ .

Proof. Since the only singular points of P(1, 2, 3) are a 1 and a 2 , the result follows from [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF]Proposition 4.4]. □

Elliptic fibration

With the model of X 30 λ given in §5.2, we can define a map φ λ :

X 30 λ \ {a + 2 , a - 2 } -→ P 1 (C) [y 1 : y 3 : y 4 : j] -→ [y 2 1 : y 3 ].
Since this map factorizes through the quotient P(1, 2, 3) of X 30 λ , the same argument as in the proof of Proposition 4.7 shows that: Proposition 5.9. The map

φ λ • π λ : X30 λ \ π -1 λ (a + 2 ) ∪ π -1 λ (a -
2 ) -→ P 1 (C) extends to a morphism of algebraic varieties φλ : X30 λ -→ P 1 (C). Remark 5.10. By the same argument as in Remark 4.8, the elliptic fibration φλ : X30 λ -→ P 1 (C) admits two sections θ± λ :

P 1 (C) -→ X30 λ which satisfy θ-= σ • θ+ .
Note that the above result is independent of λ. However, we will see in the next corollary that the singular fibers of the elliptic fibration φλ depend on λ. We will not determine the fiber in all cases, but only whenever the following hypothesis is satisfied:

Hypothesis (H λ ). If x and y are two different singular points of X 30 λ \ {a ± 1 , a ± 2 }, then φ λ (x) ̸ = φ λ (y)
. Note that Hypothesis (H λ ) holds for all but a finite number of values of λ. Moreover, an explicit computation with Magma shows that it holds for λ ∈ {λ 1 , λ 2 , λ 3 , λ 4 }.

Corollary 5.11. Let λ ∈ C be such that (H λ ) holds. Then the singular fibers of the elliptic fibration φλ : X30 λ → P 1 (C) are given by Table III. Proof. Let us first examine the fiber at [0 : 1]. For this particular fiber, the description will not depend on λ. Note that

φ -1 λ ([0 : 1]) = B ′ = B + ∪ B -.
We now apply results from Appendix A in the case where (k, l) = (1, 2). Let ∆ 1 and ∆ 2 denote the lines in P(1, 2, 3) described in Appendix A and let φ1,2 : P(1, 2, 3) → P 1 (C) denote the map constructed in (A.1). It follows from Proposition A.3 that

(♣) φ-1 1,2 ([0 : 1]) = ∆ 2 ∪ ∆(1)
, where ∆ (1) = {[y 1 : y 3 : y 4 ] ∈ P(1, 2, 3) | y 1 = 0} and ∆(1) is the strict transform of ∆ (1) in P [START_REF] Barth | Polyhedral groups and pencils of K3-surfaces with maximal Picard number[END_REF][START_REF] Boissière | Counting lines on surfaces[END_REF][START_REF] Bonnafé | Magma codes for "Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF]. By the argument in Remark 4.8, the two smooth rational curves ∆

a ± 2 1 and ∆ a ± 2 2
above the point a ± 2 can be numbered so that ∆ a ± 2 k is mapped isomorphically to ∆ k through the quotient morphism X30 λ → P(1, 2, 3), moreover, the inverse image of ∆ (1) in X λ is B + ∪ B -. So, if we denote by ∆ a ± 1 the smooth rational curve above the points a ± 1 and by B (resp. B± ) the strict transform of B ′ (resp. B ± ) in X30 λ , then it follows from (♣) and the construction of φλ that

φ-1 λ ([0 : 1]) = ∆ a + 1 ∪ ∆ a - 1 ∪ ∆ a + 2 2 ∪ ∆ a - 2 2 ∪ B+ ∪ B-. Since B+ ∩ B-̸ = ∅, since ∆ a ε 1 ∩B η ̸ = ∅ if and only if ε = η, since ∆ a ε 2 2 ∩B η ̸ = ∅ if and only if ε = η and since ∆ a ε 1 ∩ ∆ a η 2 2 = ∅, the Kodaira-Néron classification of singular fibers implies that (♢) φ-1 λ ([0 : 1]) is of type D5 .
Note that (♢) holds for any value of λ. We will now start the discussion according to the value of λ.

Assume that λ ̸ ∈ {λ 1 , λ 2 , λ 3 , λ 4 }. Then X 30 λ \ {a ± 1 , a ± 2 } has 6 singular points x 1 , . . . , x 6 , of respective type A 1 , A 1 , A 1 , A 2 , A 2 and A 4 .
Let x be one of these 6 points and let m denote its Milnor number. Then π -1 λ (x) is the union of m smooth rational curves ∆ x 1 , . . . , ∆ x m . Let E x denote the closure of φ -1 λ (φ λ (x)) and let Ẽx denote its strict transform in X30 λ . Then

(♡) φ-1 λ (φ λ (x)) = Ẽx ∪ ∆ x 1 ∪ • • • ∪ ∆ x m . So φ-1 λ (φ λ (x)
) is a singular fiber. Let us determine its type. Note that φ-1 1,2 (φ λ (x)) is a projective line by Proposition A.3 and Remark A.5. Therefore, its double cover Ẽx has at most two irreducible components. Note also that the multiplicity of ∆ m k in the singular fiber φ-1 λ (φ λ (x)) is equal to one. Therefore, according to the Kodaira-Néron classification of singular fibers, (♡) gives the following possibilities:

• If x = x 1 , x 2 or x 3 is an A 1 singularity, then φ-1 λ (φ λ (x)) is of type Ã1 or III if Ẽx is irreducible or of type Ã2 or IV if Ẽx has two irreducible components. • If x = x 4 or x 5 is of type A 2 , then φ-1 λ (φ λ (x)) is of type Ã2 or IV if Ẽx is irreducible or of type Ã3 if Ẽx has two irreducible components. • If x = x 6 is of type A 4 , then φ-1 λ (φ λ (x)
) is of type Ã4 if Ẽx is irreducible or of type Ã5 if Ẽx has two irreducible components.

Let χ k denote the Euler characteristic of the singular fiber above x k . Since the Euler characteristic of φ-1 λ ([0 : 1]) is equal to 7 by (♢), we have

(♠) χ 1 + χ 2 + χ 3 + χ 4 + χ 5 + χ 6 ⩽ 24 -7 = 17.
But it follows from the above discussion that

χ 1 ⩾ 2, χ 2 ⩾ 2, χ 3 ⩾ 2, χ 4 ⩾ 3, χ 5 ⩾ 3 and χ 6 ⩾ 5.
Therefore, (♠) forces χ 1 = χ 2 = χ 3 = 2, χ 4 = χ 5 = 3 and χ 6 = 5. And so the singular fibers are of the types described in the first line of Table III. The cases mentioned in the last four lines of Table III follow from a similar discussion, the conclusion using the same argument based on the Euler characteristic. □ Table III. Some numerical data for the family of K3 surfaces ( X30 λ ) λ∈C ( †) Only for λ generic

Z sing (f 2,λ ) singularities of X 30 λ T X30 λ singular fibers of φλ MWθ+ λ ( φλ ) ∅ A 4 + 4 A 2 + 5 A 1 Theorem 1.2 D5 + Ã4 + 2 Ã2 + 3 Ã( †) 1 Z 60 A 1 E 8 + 3 A 2 + 4 A 1 4 2 34 Ẽ8 + D5 + Ã2 + 2 Ã1 Z 300 A 1 E 6 + A 4 + 2 A 2 + 4 A 1 12 6 58 Ẽ6 + D5 + Ã4 + 2 Ã1 Z 360 A 1 D 7 + 4 A 2 + 3 A 1 6 0 132 D7 + D5 + 2 Ã2 + Ã1 Z 600 A 1 D 5 + A 4 + 3 A 2 + 3 A 1 6 0 220 2 D5 + Ã4 + Ã2 + Ã1 Z

The group G 31

Hypothesis. We assume in this section, and only in this section, that W = G 31 .

Let

s 1 =     0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1     , s 2 =     1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1     , s 3 =     1 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 1     and s 4 = 1 2     1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 1     .
Then W(F 4 ) = G 28 = ⟨s 1 , s 2 , s 3 , s 4 ⟩. We set

s 5 =     0 i 0 0 -i 0 0 0 0 0 1 0 0 0 0 1     .
Then G 31 = ⟨s 1 , s 

= (f 1 , f 2 , f 3 , f 4 ) a family of fundamental invariants such that deg(f i ) = d i .
Then f 1 and f 2 are uniquely determined (up to a scalar). We have

f 1 = Σ(x 8 ) + 14Σ(x 4 y 4 ) + 168x 2 y 2 z 2 t 2 , f 2 = Σ(x 12 ) -33Σ(x 8 y 4 ) + 792Σ(x 6 y 2 z 2 t 2 ) + 330Σ(x 4 y 4 z 4 ).
We will make a special choice for f 3 as follows. First, let N denote the normalizer of G 28 in G 31 . Then N has index 10 in G 31 and we denote by [G 31 /N ] a set of representatives of the cosets in G 31 /N . Then x 2 + y 2 + z 2 + t 2 is G 28 -invariant (but not N -invariant) and it turns out that

f 3 = g∈[G31/N ] g (x 2 + y 2 + z 2 + t 2 )
is a fundamental invariant of degree 20 of G 31 . Of course, Z (f 3 ) is not irreducible (it is the union of 10 quadrics). We choose the set of representatives [G 31 /N ] such that the coefficient of x 14 y 2 z 2 t 2 in f 3 is equal to 648. Then f 3 = 648(Σ(x 14 y 2 z 2 t 2 ) -Σ(x 12 y 4 z 4 ) -Σ(x 10 y 6 z 2 t 2 ) + 2Σ(x 8 y 8 z 4 ) + 13Σ(x 8 y 4 z 4 t 4 ) -14Σ(x 6 y 6 z 6 t 2 )).

Finally, we set f 4 = 3888(Σ(x 18 y 2 z 2 t 2 ) + 2Σ(x 16 y 4 z 4 ) -12Σ(x 14 y 6 z 2 t 2 ) -2Σ(x 12 y 8 z 4 ) + 76Σ(x 12 y 4 z 4 t 4 ) + 22Σ(x 10 y 10 z 2 t 2 ) -52Σ(x 10 y 6 z 6 t 2 ) + 36Σ(x 8 y 8 z 8 ) + 36Σ(x 8 y 8 z 4 t 4 ) -8x 6 y 6 z 6 t 6 ).

Then f = (f 1 , f 2 , f 3 , f 4 ) is a family of fundamental invariants of G 31 . Note that the coefficients 648 (for f 3 ) and 3888 (for f 4 ) are just chosen for simplifying the general equation of the surfaces studied in this section.

If λ ∈ C, we set f 3,λ = f 3 + λf 1 f 2 . Recall from [START_REF] Bonnafé | Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF] that there are only 6 values of λ such that Z (f 3,λ ) is singular: one of them is 0, which is the only value of λ for which Z (f 3,λ ) is not irreducible. We set

X 31 λ = Z (f 3,λ )/G ′

31

(it is a K3 surface with ADE singularities by [5, Theorem 5.4]) and we denote by X31 λ its minimal resolution (it is a smooth K3 surface). We aim in this section to prove the results stated in Table II, namely compute the singularities of X 31 λ and the Picard number of X31 λ . We will also provide some more information about the geometry of Z (f 3,λ ) and X 31 λ (lines, branch locus of the double cover X 31 λ → Z (f 3,λ )/G 31 = P 2 (C),. . . ).

Equations, branch locus

Let ξ λ : X 31 λ → Z (f 3,λ )/G 31 = P 2 (C) be the natural map. This is a double cover, whose branch locus R λ ⊂ P 2 (C) is a sextic that will be described below. First [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF]Proposition 3.11].

X 31 λ = {[x 1 : x 2 : x 4 : j] ∈ P(8, 12, 24, 60) | j 2 = P f (x 1 , x 2 , -λx 1 x 2 ,
x 4 )}. But P(8, 12, 24, 60) ≃ P(2, 3, 6, 15) ≃ P(2, 1, 2, 5). So there exists a polynomial q λ ∈ C[y 1 , y 2 , y 4 ] which is homogeneous of degree 10 if we assign to y 1 , y 2 , y 4 the degrees 2, 1, 2, respectively, and such that 

X 31 λ = {[y 1 : y 2 : y 4 : j] ∈ P(2, 1, 2, 5) | j 2 = q λ (
R λ = {[z 1 : z 2 : z 4 ] ∈ P 2 (C) | z 2 r λ (z 1 , z 2 , z 4 ) = 0}.
In other words, the sextic R λ is the union of the projective line B2 defined by z 2 = 0 and of the quintic R ′ λ = Z (r λ ).

Other model.

Let

X λ = {[z 1 : z 2 : z 4 : t] ∈ P(1, 1, 1, 3) | t 2 = z 2 r λ (z 1 , z 2 , z 4 )}.
Then is well-defined outside of [0 : 0 : 0 : 1] 2,1,2,5 and is birational (it is for instance an isomorphism between the open subsets defined, respectively, by y 2 ̸ = 0 and z 2 ̸ = 0). But note that [0 : 0 : 0 : 1] 2,1,2,5 ̸ ∈ X 31 λ and that ι(X 31 λ ) = X 31 λ . Also X 31 λ (resp. X λ ) is contained in the open subsets defined by (y i ̸ = 0) i∈{1,2,4} (resp. (z i ̸ = 0) i∈{1,2,4} ). An immediate computation in all these open subsets show that ι induces an isomorphism X 31 λ ∼ -→ X λ . As this second model is somewhat simpler to work with, we will now identify X 31 λ with X λ and so view X 31 λ in the more classical model for double covers of P 2 (C) ramified above a sextic:

X λ → P 2 (C), [z 1 : z 2 : z 4 : t] → [z 1 : z 2 : z 4 ]
(6.3) X 31 λ = {[z 1 : z 2 : z 4 : t] ∈ P(1, 1, 1, 3) | t 2 = z 2 r λ (z 1 , z 2 , z 4 )}.
Through this model, the double cover morphism ξ λ :

X 31 λ -→ P 2 (C) is just given by ξ λ ([z 1 : z 2 : z 4 : t]) = [z 1 : z 2 : z 4 ].

Value of r λ .

The explicit value of the polynomial r λ is given below (recall that it depends on our special choice of the family f of fundamental invariants and a suitable normalization for J):

r λ = -432 λ 3 (λ + 1) z 3 1 z 2 2 -108 λ 2 z 3 1 z 2 z 4 + (12500 λ 6 + 22500 λ 5 + 10800 λ 4 + 864 λ 3 ) z 2 1 z 3 2 + (4125 λ 4 + 3420 λ 3 + 216 λ 2 ) z 2 1 z 2 2 z 4 + 222 λ 2 z 2 1 z 2 z 2 4 + z 2 1 z 3 4 -432 λ 3 z 1 z 4 2 + (900 λ 3 -108 λ 2 ) z 1 z 3 2 z 4 + (-500 λ 3 + 210 λ 2 ) z 1 z 2 2 z 2 4 + (-150 λ 2 -24 λ -2) z 1 z 2 z 3 4 -2 z 1 z 4 4 + z 2 2 z 3 4 -2 z 2 z 4 4 + z 5
4 . Remark 6.4. Assume in this remark, and only in this remark, that λ = 0. Then

X 31 0 = {[z 1 : z 2 : z 4 : t] ∈ P(1, 1, 1, 3) | t 2 = z 3 4 (z 2 1 +z 2 2 +z 2 4 -2z 1 z 2 -2z 1 z 4 -2z 2 z 4 )}.
The singular locus is a union of the point [1 : 0 : 1 : 0] and the smooth rational curve defined by z 4 = t = 0. So the singular locus has dimension 1 and the surface X 31 0 will not be considered in this section.

Hypothesis. From now on, and until the end of this section, we assume that λ ̸ = 0.

Singular icosics

As explained in the introduction of this section, it follows from [START_REF] Bonnafé | Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF] that there are 5 values of λ ∈ C × such that Z (f 3,λ ) is singular. We explain here what are these special values, and how we can recover the singularities of Z (f 3,λ )/G ′ 31 thanks to [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF]Proposition 4.4] and Magma computations.

First, we set 

W 145 =
k = [v k ] = V W k ∈ P(V ) = P 3 (C). We also set N k = N W (W k )
and we denote by Ω k the W -orbit of z k : it follows from [5, Remark 2.5] that

|Ω k | = |W |/|N k |.
Concretely, we have:

(6.5) |Ω k | =      960 if k = 145, 480 if k = 245, 60 if k = 1234.
A Magma computation shows that (6.6) Z (f 1 ) and Z (f 2 ) are smooth.

In particular,

v k ̸ ∈ Z (f 1 ) ∪ Z (f 2 ) by [5, Corollary 2.4]. So we can define λ k = -f 3 (v k )/(f 1 f 2 )(v k ).
It turns out that λ 1234 = 0, so that f 3,λ1234 = f 3 is not irreducible: this case does not lead to a K3 surface and will not be studied here. Therefore, we have found in this way two values of λ, namely λ 145 and λ 245 , such that Z (f 3,λ ) is irreducible and singular. But there are three more values of λ such that Z (f 3,λ ) is irreducible and singular [START_REF] Bonnafé | Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF]: this shows, by opposition with the cases of G 29 (in degree 8) and G 30 (in degree 12), [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF]Corollary 2.4] that it is not sufficient to explain all the singular icosics that can be constructed from fundamental invariants of G 31 of degree 20. With our choice of the family f of fundamental invariants of G 31 , we have

λ 145 = - 8 25
and λ 245 = -81 175 .

We set

λ 1 = 1, λ 2 = - 1 3 and λ 3 = - 1 2 .
Then 

Z sing (f 3,λ k ) =                960 A 1 if k = 145, 480 A 1 if k = 245, 1920 A 1 if k = 1, 1440 A 2 if k = 2, 640 A 3 if k = 3.

Springer theorem, base locus

Recall from [5, Table I] that Deg(W ) = [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF][START_REF] Festi | Counting elliptic fibrations on K3 surfaces[END_REF][START_REF] Sarti | Pencils of symmetric surfaces in P 3[END_REF][START_REF] Shephard | Finite unitary reflection groups[END_REF], Codeg(W ) = (0, [START_REF] Festi | Counting elliptic fibrations on K3 surfaces[END_REF][START_REF] Michel | The development version of the CHEVIE package of GAP3[END_REF][START_REF] Van Luijk | Quartic K3 surfaces without nontrivial automorphisms[END_REF].

The following facts can be deduced immediately from this and from [5, Theorem 3.13]: (a) δ(8) = δ * (8) = 2, so dim V (8) = 2. We denote by L 8 the line P(V (8)) ⊂ P(V ) = P 3 (C). Then W (8) = C W (w 8 ) is a reflection group for its action on V (8), and its degrees are [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF][START_REF] Shephard | Finite unitary reflection groups[END_REF]. So |W (d) δ(24) = δ * (24) = 1, so dim V (24) = 1. We denote by z 24 ∈ P 3 (C) the point defined by the line V [START_REF] Shephard | Finite unitary reflection groups[END_REF]. Then W (24) = C W (w 24 ) = ⟨w 24 ⟩ is cyclic of order 24.

It follows from the above discussion and [5, Theorem 3. 

(z 20 ) = f 2 (z 20 ) = f 4 (z 20 ) = 0, so that we cannot have f 3 (z 20 ) = 0 since 0 is the only common zeros of the fundamental invariants (f k ) 1 ⩽ k ⩽ 4 . Hence z 20 ̸ ∈ Z (f 3,λ ). □
This shows in particular that Z (f 3,λ ) contains at least 400 lines (the Worbit of L 8 of length 240 and the W -orbit of L 12 of length 160): it can be shown that, for λ generic, these are the only lines contained in

Z (f 3,λ ). Now, let B = Z (f 3 ) ∩ Z (f 1 f 2 )
denote the base locus of the family (Z (f 3,λ )) λ∈C × . We write

B 1 = Z (f 3 ) ∩ Z (f 1 ) and B 2 = Z (f 3 ) ∩ Z (f 2 ), so that B = B 1 ∪ B 2 .
By [5, Theorem 3.13(d)], we have (6.10)

B 1 = x∈W x(L 12 ) and B 2 = x∈W x(L 8 ).
We denote by B ′ the image of B in P(V )/W ′ (it is the base locus of the family (X 31 λ ) λ∈C ). Then

B ′ = B ′ 1 ∪ B ′ 2
, where B ′ j denotes the image of B j . It can be checked that the stabilizers C W (w 8 ) and C W (w 12 ) of L 8 and L 12 in W , respectively, are not contained in

W ′ . So B ′ 1 (resp. B ′ 2
) is also the image of L 12 (resp. L 8 ), hence it is a (possibly singular) rational curve. Proposition 6.11. The rational curve B ′ 2 is smooth, while the rational curve

B ′ 1 has singularities A 1 + A 2 .
Proof. From the explicit formula for r λ given in §6.1.2, we have

B ′ 1 = {[z 1 : z 2 : z 4 : t] ∈ P(1, 1, 1, 3) | z 1 = 0 and t 2 = z 2 z 3 4 (z 2 -z 4 ) 2 } and B ′ 2 = {[z 1 : z 2 : z 4 : t] ∈ P(1, 1, 1, 3) | z 2 = t = 0}. So B ′ 2 = P(1, 1) = P 1 (C) as expected.
Let us now consider the case of B ′ 1 . An easy computation in the affine charts defined by z 2 ̸ = 0 and z 4 ̸ = 0 gives two singular points [0 : 1 : 0 : 0] and [0 : 1 : 1 : 0] which are singularities of type A 2 and A 1 , respectively. □ Note that the set theoretic intersection of B ′ 1 and B ′ 2 consists of only one point (let us call it z ′ 24 as it is the image of z 24 ∈ Z (f 3,λ ) ⊂ P(V )). Its coordinates are given by z ′ 24 = [0 : 0 : 1 : 0] ∈ X 31 λ ⊂ P(1, 1, 1, 3). Its image z24 = [0 : 0 : 1] ∈ P 2 (C) is a smooth point of the branch locus R λ (for all values of λ, because r λ (0, 0, 1) = 1 ̸ = 0). Remark 6.12. Let B1 and B2 denote the respective images of B ′ 1 and B ′ 2 in X 31

λ /⟨σ⟩ = P 2 (C). Then B1 (resp. B2 ) is the line defined by the equation

z 1 = 0 (resp. z 2 = 0). Note that the morphism B ′ 2 -→ B2 is an isomorphism (as B ′ 2 is contained in the ramification locus) while the morphism B ′ 1 -→ B1 is a morphism of degree 2.
Recall that the branch locus of They do not depend on λ. We will see in Corollary 6.14 and Proposition 6.15 that, if λ ̸ = 0, then d 6 is always a D 6 singularity of R λ while a 3 is an A 3 singularity except whenever λ = λ 2 (in which case it is a D 5 singularity).

X 31 λ → P 2 (C) is the union of B2 and R ′ λ = Z (r λ ). So B2 ∩ R ′ λ = {[z 1 : 0 : z 4 ] ∈ P 2 (C) | z 3 4 (z 1 -z 4 ) 2 = 0}. The set B2 ∩ R ′ λ contains

Singularities

We wish to determine the list of singularities of X 31 λ . We gather in the next proposition some helpful general facts, from which we can deduce the list of singularities of X 31 λ thanks to a few computations with Magma. Proposition 6.13. Let v ∈ V \ {0} and let z = [v]. We assume that z is a smooth point of Z (f 3,λ ) and we denote by z ′ its image in

X 31 λ . (a) If |W v | = 1 or 2, then z ′ is smooth. (b) If z ∈ B and W v has rank 2, then T z (Z (f 3,λ
)) together with its action of W z does not depend on λ.

and ζ -24 24 = 1, so w 2 ez acts as a reflection on T z (Z (f 3,λ )). This implies that z ′ is smooth. This shows (a) whenever W v = {1}.

Let us now assume that |W v | = 2. Since w ez normalizes W v , this means that w ez commutes with the non-trivial element of W v , which is a reflection. But a Magma computation shows that w e does not commute with any reflection if e ∈ {8, 12, 24}. So e z = 4, which means that (P W ′ ) z = {1}. So z ′ is smooth.

(b) Assume that z ∈ B and that W v has rank 2. Then T z (Z (f 3,λ )) is a dimension 2 subspace of T z (P(V )) which is stable under the action of W v : but T z (P(V )) = V /z endowed with the natural action of W v which is of rank 2, so there is a unique W v -stable dimension 2 subspace of T z (P(V )). This shows (b).

(c) Assume that P is a parabolic subgroup of rank 2 and that z ∈ (Z (f 3,λ ) \ B) ∩ P(V P ). The fact that z ̸ ∈ B implies that e z ̸ ∈ {8, 12, 24} by (6.10). This shows that W z = W v ⟨w 4 ⟩. On the other hand, P = W v by [5, (4.2)].

□ Corollary 6.14. If λ ∈ C is such that Z (f 3,λ ) is smooth, then X 31 λ has sin- gularities D 6 + A 3 + 3 A 2 + 2 A 1 .
Proof. The previous proposition shows that it is sufficient to determine a set of representatives of conjugacy classes of parabolic subgroups P of rank 2 and to determine the action of W z on T z (Z (f 3,λ )) for all z ∈ Z (f 3,λ ) ∩ P(V P ). Let -L 14 ∩ B 1 contains 2 elements which form a single N 14 -orbit. If z ∈ L 14 ∩ B 1 , then the action of W ′ z on T z (Z (f 3,λ )) can be computed for a single value of λ thanks to Proposition 6.13(b), and it can be checked that it acts as a reflection group, so the image of z is smooth.

W 14 = ⟨s 1 , s 4 ⟩, W 15 = ⟨s 1 , s 5 ⟩ and W 123 = ⟨s 1 , s 2 , s 3 ⟩. We set N k = N W (W k ) and L k = P(V W k ) for k ∈ {14,
-L 14 ∩ B 2 = ∅.
-So it remains 18 points in (Z (f 3,λ ) \ B) ∩ L 14 : since the stabilizers of these points are equal to W 14 ⟨w 4 ⟩ by Proposition 6.13(c), their N 14 -orbits have cardinality 6, so there are 3 such orbits, each leading to an A 2 -singularity because W 14 is of type

A 2 . • W 15 is a Coxeter group of type A 1 × A 1 and |N 15 /W 15 ⟨w 4 ⟩| = 8. More- over: -L 15 ∩ B 1 = ∅. -L 15 ∩ B 2 contains 4 elements which form a single N 15 -orbit. If z ∈ L 15 ∩ B 2 , then the action of W ′ z on T z (Z (f 3,λ )
) can be computed for a single value of λ thanks to Proposition 6.13(b), and then it can be checked that the image of z is an A 3 -singularity.

-So it remains 16 points in (Z (f 3,λ ) \ B) ∩ L 15 : since the stabilizers of these points are equal to W 15 ⟨w 4 ⟩ by Proposition 6.13(c), their N 15 -orbits have cardinality 8, so there are 2 such orbits, each leading to an A 1 -singularity because W 15 is of type II, i.e., (a) The surface X 31 λ145 = X 31 -8/25 has singularities

A 1 × A 1 . • W 123 is a complex reflection group of type G(4,
D 6 + D 5 + A 3 + 2 A 2 . (b) The surface X 31 λ245 = X 31 -81/175 has singularities E 6 +D 6 +A 3 +A 2 +A 1 . (c) The surface X 31 λ1 = X 31 1 has singularities D 6 + A 5 + A 3 + A 2 + 2 A 1 . (d) The surface X 31 λ2 = X 31 -1/3 has singularities D 6 + D 5 + 3 A 2 + A 1 . (e) The surface X 31 λ3 = X 31 -1/2 has singularities D 6 + 2 A 3 + 2 A 2 + 2 A 1 . Proof.
Using the formula for r λ given in the previous subsection, one can easily obtain the equation of the branch locus R λ k for the five values of k. The singularities of the curve R λ k are then easily determined thanks to Magma and we conclude thanks to [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF]Proposition 4.4]. □

This has the following consequence, which confirms some of the results of Table II:

Corollary 6.16. Let λ ∈ C × . Then: (a) If λ ̸ ∈ {λ 145 , λ 245 , λ 1 , λ 2 , λ 3 }, then ρ( X31 λ ) ⩾ 18. (b) For generic λ, we have ρ( X31 λ ) = 18. (c) If λ ∈ {λ 145 , λ 245 , λ 1 , λ 2 , λ 3 }, then ρ( X31 λ ) = 19. Proof. Let λ ∈ C × .
We denote by m the sum of the Milnor numbers of the singularities of X 31 λ (i.e., m is the number of smooth rational curves in the exceptional divisors of the resolution

π λ : X31 λ -→ X 31 λ ). Then ρ( X31 λ ) ⩾ 1 + m since X 31
λ is projective, so one can check from Corollary 6.14 and Proposition 6.15 the following two facts:

(♣) If λ ̸ ∈ {λ 145 , λ 245 , λ 1 , λ 2 , λ 3 }, then ρ( X31 λ ) ⩾ 18; If λ ∈ {λ 145 , λ 245 , λ 1 , λ 2 , λ 3 }, then ρ( X31 λ ) ⩾ 19.

Note that (♣) proves the inequality stated in (a).

Let us now prove the equalities stated in (b) and (c). We shall use the methods developed by van Luijk [START_REF] Van Luijk | K3 surfaces with Picard number one and infinitely many rational points[END_REF] and Elsenhans and Jahnel [11, §3.3.1], based on the Artin-Tate Conjecture (proved by Nygaard and Ogus for K3 surfaces [START_REF] Nygaard | Tate's conjecture for K3 surfaces of finite height[END_REF] in characteristic ⩾ 5), but we adapt them to the singular case. For this, assume that λ ∈ Q and let P λ denote the set of prime numbers p such that:

(1) p ⩾ 5 and p does not divide any denominator of any coefficient of r λ (so that we can define a reduction of X 31 λ modulo p, which will be defined over F p and will be denoted by (X 31 λ ) p : we also denote by (R λ ) p the reduction modulo p of the ramification locus of π λ ).

(2) If O λ is the ring of integers of the minimal number field K λ containing the coordinates of all the singular points of X 31 λ and if p λ is a prime ideal of O λ lying over p, then O λ /p λ = F p and all the singular points of (X 31 λ ) p have coordinates in F p and are the reduction modulo p λ of the singular points of

X 31 λ . (3) If x ∈ X 31
λ is a singular point, then its reduction modulo p is an ADE singularity of (X 31 λ ) p of the same type as x. So let p ∈ P λ . We denote by ( X31 λ ) p the minimal resolution of the K3 surface (X 31 λ ) p . Then ( X31 λ ) p is the reduction modulo p of X 31 λ by ( 1), ( 2) and (3), because ( X31 λ ) p is obtained from X 31 λ by the same sequence of blowups. This shows in particular that X31 λ has good reduction modulo p (i.e., remains smooth) and that its reduction modulo p is exactly ( X31 λ ) p . We denote by P λ,p ∈ Z[T ] (resp. Pλ,p ∈ Z[T ]) the Weil polynomial of (X 31 λ ) p (resp. ( X31 λ ) p ), namely the characteristic polynomial of the Frobenius map on the second ℓ-adic cohomology group of (X 31 λ ) p (resp. ( X31 λ ) p ). Note that the polynomial P λ,p can be computed explicitly (and efficiently!) thanks to the command WeilPolynomialOfDegree2K3Surface in Magma and that

(♢) Pλ,p = (T -p) m P λ,p ,
where we recall that m is the number of irreducible components of the exceptional divisors of the minimal resolution of X 31 λ (or of (X 31 λ ) p , as they are all defined over F p by ( 2) and ( 3)). Let ρ λ,p denote the (T -p)-valuation of P λ,p and let Q λ,p = P λ,p /(T -p) ρ λ,p . Let ρ g λ,p denote the number of root of Q λ,p of the form ζp, where ζ is a root of unity (note that ρ g λ,p ⩾ ρ λ,p ). Also, we denote by 

D λ ∈ Q × the discriminant
(♠ + ) If ρ( X31 λ ) = m+ρ g λ,p = m+ρ λ,p , then D λ ≡ p m+ρ g λ,p -21 Q λ,p (p) mod Q ×2 .
With all these tools in hand, we proceed as follows (numerical results stated below are obtained with Magma). • If λ = λ 145 = -8/25, then p ∈ {59, 73, 89}.

• If λ = λ 245 = -81/175, then p ∈ {31, 47, 73}.

• If λ = λ 1 = 1, then p = 43.

• If λ = λ 2 = -1/3, then p = 337.

• If λ = λ 3 = -1/2, then p ∈ {73, 79}. Then ( X31 λ ) p is supersingular. Remark 6.18. Note that, generically, r λ is irreducible. However, r λ1 and r λ3 are not irreducible 4 :

• The quintic R ′ λ1 = R ′ 1 is the union of a smooth irreducible conic and an irreducible cubic. More detail about this case will be given in §7.4.2.

• The quintic R ′ λ3 = R ′ -1/2
is the union of a line and an irreducible quartic. More detail about this case will be given in §7.4.3.

Complements

Notice that

f 1 = Σ(x 8 ) + 14Σ(x 4 y 4 ) + 168x 2 y 2 z 2 t 2
is the polynomial which defines the smooth octic containing 352 lines constructed by Boissière and the second author [START_REF] Boissière | Counting lines on surfaces[END_REF]. We will revisit here this example. Let

σ = √ 2 2     -1 0 0 -1 0 1 1 0 0 1 -1 0 -1 0 0 1     .
Then σ(s i ) = s 5-i if i ∈ {1, 2, 3, 4} and ζ 8 σ ∈ G 31 . Moreover, ζ 8 σ normalizes the subgroup G 28 . In [START_REF] Boissière | Counting lines on surfaces[END_REF], the polynomial f 1 was constructed as a particular invariant of the one-parameter family of fundamental invariants of degree 8 of the group ⟨σ⟩ ⋉ G SL 28 (which is contained in ⟨ζ 8 ⟩G 31 ), but it turns out that this is exactly the one which is invariant by G 31 .

The 352 lines on Z (f 1 ) are divided into two G 31 -orbits: one of size 160 and one of size 192. We explain here how to construct these two orbits.

First, as 12 does not divide 8, the G 31 -orbit of L 12 is contained in Z (f 1 ) by [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF]Lemma 2.2], so this explains the first orbit with 160 lines. For constructing the second orbit, one requires some more material. Let W = G 37 = W(E 8 ) acting on a vector space V 8 of dimension 8. The list of degrees (resp. codegrees) of W is [START_REF] Boissière | Counting lines on surfaces[END_REF][START_REF] Bosma | The Magma algebra system. I. The user language[END_REF][START_REF] Festi | Counting elliptic fibrations on K3 surfaces[END_REF][START_REF] Lusztig | Some examples of square integrable representations of semisimple p-adic groups[END_REF][START_REF] Naskręcki | Explicit equations of 800 conics on a Barth-Bauer quartic[END_REF][START_REF] Sarti | Pencils of symmetric surfaces in P 3[END_REF][START_REF] Shephard | Finite unitary reflection groups[END_REF][START_REF] Xiao | Galois covers between K3 surfaces[END_REF] (resp. (0, [START_REF] Bonnafé | K3 surfaces with maximal finite automorphism groups containing M 20[END_REF][START_REF] Degtyarev | 800 conics on a smooth quartic surface[END_REF][START_REF] Festi | Counting elliptic fibrations on K3 surfaces[END_REF][START_REF] Michel | The development version of the CHEVIE package of GAP3[END_REF][START_REF] Naskręcki | Explicit equations of 800 conics on a Barth-Bauer quartic[END_REF][START_REF] Schütt | Elliptic fibrations of some extremal K3 surfaces[END_REF][START_REF] Van Luijk | Quartic K3 surfaces without nontrivial automorphisms[END_REF]). Applying [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF]Theorem 3.13] with W and e = 4 shows that there exists an element w 4 ∈ W such that dim V 8 (w 4 , i) = 4, W (V 8 (w 4 , i)) = {1} and W V8(w4,i) acts on V 8 (w 4 , i) as a reflection group whose list of degrees is [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF][START_REF] Festi | Counting elliptic fibrations on K3 surfaces[END_REF][START_REF] Sarti | Pencils of symmetric surfaces in P 3[END_REF][START_REF] Shephard | Finite unitary reflection groups[END_REF]: in fact, W V8(w4,i) ≃ G 31 (as a reflection group). Therefore, we may identify V with V 8 (w 4 , i) and G 31 with W V8(w4,i) . Now, let ϕ = (1 + √ 5)/2 be the golden ratio. By [14, §3], there exists an automorphism φ of V 8 satisfying φ 2 = φ + Id V8 and such that dim V 8 (φ, ϕ) = 4 and W V8(φ,ϕ) acts faithfully on V 8 (φ, ϕ) as the complex reflection group W(H 4 ) = G 30 . Using again [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF]Theorem 3.13] with W V8(φ,ϕ) ≃ G 30 , we see that we may choose the above element v as belonging to W V8(φ,ϕ) . Moreover, E = V 8 (v, i) ∩ V 8 (φ, ϕ) has dimension 2, and its stabilizer W E acts faithfully on E as the complex reflection group G 22 , whose list of degrees is [START_REF] Festi | Counting elliptic fibrations on K3 surfaces[END_REF][START_REF] Sarti | Pencils of symmetric surfaces in P 3[END_REF] (as they are the only degrees of W which are divisible by 4). Hence, the restriction of f 1 to E having degree 8 and being invariant under W E = C W (w 4 ), this implies that f 1 vanishes on E. So, if we let L ′ = P(E), then L ′ is a line contained in Z (f 1 ), whose stabilizer in G 31 has order 12 × 20 = 240. This shows that the G 31 -orbit of L ′ contains 192 lines which are all contained in Z (f 1 ).

The group G 31 (continued): elliptic fibrations

We will use here the constructions of Appendix B. Let x be a singular point of the branch locus R λ . Since x belongs to the branch locus, there is a unique point ẋ ∈ X 31 λ above x. Let p x : P 2 (C) \ {x} → P 1 (C) be the projection from the point x. We denote by P2

x (C) the blow-up of P 2 (C) at x and by Xx λ the blow-up of X 31 λ at ẋ. Then: • The projection p x lifts and extends to a morphism px : P2

x (C) → P 1 (C). This gives lots of elliptic fibrations, and the particular values λ k of λ must also be treated separately. For this reason, we will not compute the singular fibers in all cases. We will just provide general facts about sections, use them to determine the intersection graph of the curves contained in π -1 λ (B ′ 2 ) and just focus on singular fibers of the fibration φd6 λ . Question. Are there other elliptic fibrations on the surface X31 λ ?

Sections

Let us first discuss the question of sections of the elliptic fibration associated with φx λ , using Proposition B.3. For this, let Êx denote the exceptional divisor of the blow-up P2

x (C) (it is isomorphic to P 1 (C) and maps isomorphically to P 1 (C) through px ). If we denote by m the Milnor number of ẋ and by ∆ x 1 , . . . , ∆ x m the smooth rational curves of the exceptional divisor of X ẋ λ , then Proposition B.3 implies that:

• If m ⩾ 2 and x is an A m -singularity (and if we assume that the smooth rational curves ∆ x j are numbered so that the extremal vertices of their intersection graph are ∆ x 1 and ∆ x m , then ∆ x 1 and ∆ x m are exchanged by σ and are mapped isomorphically to Êx . This gives two sections θ ±

x :

P 1 (C) -→ X31 λ of the elliptic fibration φx λ satisfying θ - x = σ • θ + x .
• If x is not of type A, then only one of the smooth rational curves ∆ x j maps isomorphically to Êx . This leads to a section θ x : P 1 (C) -→ X31 λ of φx λ . Note also that any line L of P 2 (C) not containing x maps isomorphically through the projection p x , so its inverse image L ≃ L in P2

x (C) maps isomorphically to P 1 (C) through px . Applied to the line B2 , and using the fact that B2 lies in the branch locus (and so the map B ′ 2 -→ B2 is an isomorphism), we see that, if x ̸ ∈ B2 , then the elliptic fibration φx λ admits a section θ B

x : P 1 (C) -→ X31 λ whose image is the strict transform B′ 2 of B ′ 2 in X31 λ . We summarize the above discussion in the next proposition: Recall that a 3 and d 6 are the only singular points of R λ belonging to B ′ 2 . It will be interesting for computing Picard numbers to determine the intersection graph between the smooth rational curves of π -1 λ ( ḋ6 ), the ones of π -1 λ ( ȧ3 ) and the strict transform B′ 2 of B ′ 2 in X31 λ . This will be done thanks to the elliptic fibrations constructed in this section. We need some notation. The point ḋ6 ∈ X 31 λ is always a D 6 singularity. We assume that the 6 smooth rational curves (∆ d6 k ) 1 ⩽ k ⩽ 6 of the exceptional divisor π -1 λ ( ḋ6 ) are numbered in such a way that the intersection graph is given by i

∆ d6 1 i ∆ d6 2 d d i ∆ d6 3 i ∆ d6 4 i ∆ d6 5 i ∆ d6 6
We denote by m 3 (λ) the Milnor number of the singularity ȧ3 . If λ ̸ = λ 2 = -1/3 (resp. λ = λ 2 ), then a 3 is an A 3 (resp. a D 5 ) singularity, so m 3 (λ) = 3 (resp. m 3 (λ) = 5) and we assume that the m 3 (λ) smooth rational curves (∆ a3 k ) 1 ⩽ k ⩽ m3(λ) of the exceptional divisor π -1 λ ( ȧ3 ) are numbered in such a way that the intersection graph is given by 

i ∆ a3 1 i ∆ a3 2 d d i ∆ a3 3 (resp. i ∆ a3 1 i ∆ a3 2 d d i ∆ a3 3 i ∆ a3 4 i ∆ a3 5 ) Now, if x is a singular point of X 31 λ different
( ḋ6 ) = p a3 (d 6 ). Therefore, ( φa3 λ ) -1 (p a3 (d 6 )) = ∆ a3 m3(λ) ∪ B′ 2 ∪ 6 k=1 ∆ d6 k .
The Kodaira-Néron classification of singular fibers then shows that the only possibility is that ( φa3 

(a 3 ). So ( φd6 λ ) -1 (p d6 (a 3 )) = π -1 λ ( ȧ3 ) ∪ B′ 2 ∪ 4 k=1 ∆ d6 k ,
and the result follows from the description of the intersection graph. □

The elliptic fibration φd6

λ Since d 6 = [1 : 0 : 0], the maps p d6 : P 2 (C) \ {d 6 } -→ P 1 (C) and φ d6 : X 31 λ \ { ḋ6 } -→ P 1 (C) are easily described by

p d6 ([z 1 : z 2 : z 4 ]) = [z 2 : z 4 ] and φ d6 ([z 1 : z 2 : z 4 : t]) = [z 2 : z 4 ].
Since ḋ6 is a D 6 -singularity of X 31 λ , the reduced fiber (π d6 λ ) -1 (d 6 ) is isomorphic to P 1 (C) and contains two singular points of X31 λ : one, which we denote by a, is an A 1 singularity and the other, which we denote by b, is a D 4 -singularity. A Magma computation shows that φd6 (a) = [1 : -4λ(λ + 1)] and φd6 (b) = [0 : 1] = φ d6 (a 3 ). The singular fiber above [0 : 1] has been described in Lemma 7.2(b) so we concentrate now on the fiber above [1 : -4λ(λ + 1)].

We denote by ∆ λ the closure of φ -1 d6 ([1 : -4λ(λ + 1)]) in X 31 λ : if we denote by s λ (z 1 , z 2 ) the quadratic form

s λ (z 1 , z 2 ) = z 2 1 + (-71 λ 2 -52 λ -8) z 1 z 2 + (8 λ 4 + 28 λ 3 + 36 λ 2 + 20 λ + 4) z 2 2 ,
we have 6 . However, it must be noticed that ∆ λ is not necessarily irreducible. Indeed,

∆ λ = {[z 1 : z 2 : z 4 : t] ∈ X 31 λ | z 4 = -4λ(λ + 1)z 2 } ≃ {[z 1 : z 2 : t] ∈ P(1, 1, 3) | t 2 = z 2 r λ (z 1 , z 2 , -4λ(λ + 1)z 2 )} = {[z 1 : z 2 : t] ∈ P(1, 1, 3) | t 2 = -16 λ 3 (2λ + 1) 3 z 4 2 s λ (
s λ = z 1 - 71 λ 2 + 52 λ + 8 2 z 2 2 -λ 17 λ + 8 4 3 z 2 2 .
So ∆ λ is irreducible if and only if λ ̸ = 0, -8/17 (we retrieve the same special value as in Lemma 7.3). We deduce from this the following result:

Corollary 7.5. If λ ̸ = 0, -1/2, -8/17, then E λ is a singular fiber of type I 2 .
Proof. The hypothesis implies that E λ contains two irreducible components, namely ∆λ and ∆ d6 6 . It then follows from the classification of singular fibers that E λ is of type Ã1 or III. Now, let ∆λ denote the strict transform of ∆ λ in X31 λ . From the equation of ∆ λ , we see that d 6 is an A 3 singularity of ∆ λ so that, after blowing-up, a is an A 1 singularity of ∆λ . So, after blowing-up a, we see that ∆λ meets ∆ d6 6 in two different points, so that E λ is of type Ã1 . □ Proposition 7.6. Let λ ∈ C × . Then the singular fibers of φd6 λ are given by Table IV.

Proof. Assume first that λ ̸ = -1/2, -8/17. Then a Magma computation shows that, if x and y are two different singular points of X 31 λ \ { ḋ6 }, then φ d6 (x) ̸ = φ d6 (y). Then the result follows from Lemmas 7.2(b) and 7.3 and the same argument based on Euler characteristic in the proof of Corollary 5.11 to distinguish between the different possibilities.

The case, where λ = -1/2, will be treated in §7. and ∆2 -8/17 . Since these extremal curves both meet ∆ d6 6 , the only possibility for the singular fiber ( φd6 λ ) -1 (φ d6 ( ȧ2 )) is to be of type Ã4 . The other singular fibers are obtained as in the previous case, using again Euler characteristic to remove ambiguities. □

̸ = λ k , -8/17 ∅ D 6 + A 3 + 3 A 2 + 2 A 1 ⩾ 18 ( †) D7 + 3 Ã2 + 3 Ã1 0 ( ‡) -8/17 ∅ D 6 + A 3 + 3 A 2 + 2 A 1 19 D7 + Ã4 + 2 Ã2 + 2 Ã1 0 λ 145 = -8/25 960 A 1 D 6 + D 5 + A 3 + 2 A 2 19 D7 + D5 + 2 Ã2 + Ã1 0 λ 245 = -81/175 480 A 1 E 6 + D 6 + A 3 + A 2 + A 1 19 Ẽ6 + D7 + Ã2 + 2 Ã1 0 λ 1 = 1 1920 A 1 D 6 + A 5 + A 3 + A 2 + 2 A 1 19 D7 + Ã5 + Ã2 + 3 Ã1 Z/2Z λ 2 = -1/3 1440 A 2 D 6 + D 5 + 3 A 2 + A 1 19 D9 + 3 Ã2 + 2 Ã1 0 λ 3 = -1/2 640 A 3 D 6 + 2 A 3 + 2 A 2 +
Recall from Proposition 7.1(b) that the elliptic fibration φd6 λ admits a section whose image is ∆ d6 5 : Proposition 7.7. Let λ ∈ C × . Then the Mordell-Weil group MW( φd6 λ ) is given by Table IV.

Proof. In all cases, the rank of the Mordell-Weil group is equal to 0. The torsion is given by [START_REF] Shimada | On elliptic K3 surfaces[END_REF].

□

We summarize all the datas collected in this section and the previous one in Table IV. Observe that in all the cases except when the Mordell-Weil group has torsion, the Picard group of the K3 surface is U ⊕ D (where D is the direct sum of the Dynkin diagrams of the singular fibers), i.e., in the generic case is U + D 7 + 3A 2 + 3A 1 . In the case when the Mordell-Weil group is Z/2Z then one has to add the 2-torsion section to get the whole Picard group.

Three particular cases

We study here the cases, where λ ∈ {-8/17, 1, -1/2}, which are all particular in their own way. The case λ = λ 1 = 1. We assume here, and only here, that λ = λ 1 = 1. We set So, if we denote by Q 1 = Z (q 1 ) and C 1 = Z (c 1 ), then Q 1 is a smooth conic while C 1 is a cuspidal cubic. Then (7.9)

q 1 = z 1 z 2 -
R 1 = B2 ∪ Q 1 ∪ C 1 .
The singular points of R 1 are given by ]. It is easily checked that

d 6 ∈ B2 ∩ Q 1 ∩ C 1 , a 3 ∈ ( B2 ∩ C 1 ) \ Q 1 , a 2 ∈ C 1 \ ( B2 ∪ Q 1 ), a 5 , a ± 1 ∈ (Q 1 ∩ C 1 ) \ B2 . We denote by Q ′ 1 the preimage of Q 1 in X 31
1 , endowed with its reduced structure (so that Q ′ 1 ≃ Q 1 ) and we denote by Q′ 1 the strict transform of

Q ′ 1 in X31 1 . Since Q ′
1 is a smooth rational curve, we get that (7.10)

Q′ 1 ≃ Q ′ 1 ≃ Q 1 .
A model for the minimal resolution of U z is given by 5 Ũz = {((a, b, c), [u 1 :

u 2 : • • • : u m ]) ∈ U z × P m-1 (C) | ∀ 2 ⩽ j ⩽ m, au j = b j-1 u j-1 , ∀ 1 ⩽ j ⩽ m -1, cu j = b m-j u j+1 , ∀ 1 ⩽ j < j ′ ⩽ m, u j u j ′ = b j ′ -j-1 u j+1 u j ′ -1    .
Note that the last equation is automatically fulfilled if j ′ = j + 1.

We then define φk,l : Ũz -→ P An immediate computation from the equations of U z shows that φk,l is welldefined and satisfies the required property. □

Let ∆ 1 , . . . , ∆ m-1 be the smooth projective lines in the exceptional divisor π -1 (p) and we assume that they are numbered so that, in the open subset Ũz described in the proof of (A. Then Ũz is the blowing-up of J 0 J 1 • • • J m-1 = ⟨(A m-j B j(j-1)/2 ) 1 ⩽ j ⩽ m ⟩: the variable u j corresponds to the generator A m-j B j(j-1)/2 . ξx : π -1 x ( ẋ) -→ β -1 x (x) ≃ P 1 (C). Here, we endow π -1 x ( ẋ) with its reduced structure. A first answer is given in the next proposition: Proposition B.3. Let x be an ADE singularity of R. Then:

(a) If x is an A 1 singularity, then π -1 x ( ẋ) ≃ P 1 (C) and the morphism ξx : π -1 x ( ẋ) -→ β -1 x (x) is a double cover admitting no section. (b) If x is an A m singularity with m ⩾ 2, then π -1

x ( ẋ) is the union of two smooth rational curves (≃ P 1 (C)) intersecting transversally at one point, and both smooth rational curves map isomorphically to β -1

x (x). This gives two sections of ξx , each one being obtained from the other by composing with the involution σ. (c) If x is a DE singularity, then π -1

x ( ẋ) ≃ P 1 (C) mapping isomorphically on β -1

x (x). This gives one section of ξx . Proof. As in the proof of the previous Proposition B.1, we may assume that x = [0 : 0 : 1] and we keep the notation introduced in this above proof. In particular, Let us go on with the case where x is an ADE singularity of R. We denote by πx : Xx -→ X the resolution of X only at the point ẋ. It factorizes through Xx -→ Xx -→ X . Let m denote the Milnor number of ẋ. Then π-1 x ( ẋ) is the union of m smooth rational curves whose intersection graph is denoted by Γ x . If x is not of type A 1 , we denote by Γ #

x the graph obtained from Γ x by removing the smooth rational curves which are mapped isomorphically to P 1 (C) under φx . According to the discussion of Proposition B.3, easy computations give the following consequences about the behaviour of φx and the action of σ on the corresponding intersection graph (here, type D 2 means type A 1 × A 1 and type D 3 coincides with type A 3 ):

  §3.1]) are denoted by (d 1 , d 2 , . . . , d n ) and (d * 1 , d * 2 , . . . , d * n ), respectively. If e ∈ Z ⩾1 , we set δ(e) = |{1 ⩽ k ⩽ n | e divides d k }| and δ * (e) = |{1 ⩽ k ⩽ n | e divides d * k }|. With this notation, we have δ(e) = max w∈W dim V (w, ζ e ) ,

Proposition 4 . 6 .

 46 and C3 denote the respective strict transforms of C 2 and C 3 in X29 . The curves C 2 and C 3 are smooth rational curves.

  with the coordinates a = x3 4 , b = x 4 j and c = j 3 , one gets

  Let us denote by (D 1 , D 2 , . . . , D 20 ) the elements written in the statement of the theorem, in the same order. Let I • = (D j • D k ) 1 ⩽ j,k ⩽ 20 . Then det(I • ) = -360. This shows that the family (D k ) 1 ⩽ k ⩽ 20 is Z-free and, as ρ( X29 ) = 20 by Corollary 4.2, this shows that (D k ) 1 ⩽ k ⩽ 20 is a Q-basis of Pic( X29 ) ⊗ Q. We denote by Λ the sublattice of Pic( X29 ) generated by (

Proposition 5 . 6 .

 56 The stabilizer W (10) of L 10 in W is equal to C W (w 10 ) and has order 600. Moreover,B = x∈W x(L 10 )consists of 24 lines, which split into two G ′ 30 -orbits of cardinality 12. Proof. This is mainly a consequence of[START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF] Theorem 3.13]. Indeed, the fact thatB = x∈W x(L 10 )follows from[START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF] Theorem 3.13(d)]. Moreover, by [5, Theorem 3.13(f)], we have that W (10) = C W (w 10 ) is a reflection group for its action on V[START_REF] Degtyarev | 800 conics on a smooth quartic surface[END_REF], and admits[START_REF] Sarti | Pencils of symmetric surfaces in P 3[END_REF][START_REF] Xiao | Galois covers between K3 surfaces[END_REF] as list of degrees. So |W (10)| = 20 • 30 = 600 by[5, (3.1)].

  and since det w k = ζ -60 k = 1 (see [5, Theorem 3.13(f)]), this implies that the W -orbit Ω k of z k has cardinality 14400/k and splits into two W ′ -orbits. We denote by a (k/10)-1 the image of z k in Z (f 2,λ )/W ≃ P(1, 2, 3): it follows from [5, Theorem 3.13(d)] that a 1 = [0 : 1 : 0] and a 2 = [0 : 0 : 1].

1 :

 1 is a double cover of P 2 (C) ramified on the sextic R λ = B2 ∪ R ′ λ . The rational map y 2 : y 4 : j] 2,1,2,5 -→ [y 1 : y 2 2 : y 4 : y 2 j] 1,1,1,3

  [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF]| = 8 • 24 = 192 by[5, (3.1)], and so the W -orbit of L 8 contains 240 lines. (b) δ(12) = δ * (12) = 2, so dim V (12) = 2. We denote by L 12 the lineP(V (12)) ⊂ P(V ) = P 3 (C). Then W (12) = C W (w 12) is a reflection group for its action on V (12), and its degrees are[START_REF] Festi | Counting elliptic fibrations on K3 surfaces[END_REF][START_REF] Shephard | Finite unitary reflection groups[END_REF]. So |W (12)| = 12 • 24 = 288 by [5, (3.1)], and so the W -orbit of L 12 contains 160 lines. (c) δ(20) = δ * (20) = 1, so dim V (20) = 1. We denote by z 20 ∈ P 3 (C) the point defined by the line V (20). Then W (20) = C W (w 20 ) = ⟨w 20 ⟩ is cyclic of order 20.

two points d 6

 6 and a 3 of respective multiplicity 3 and 2 and whose coordinates are given by d 6 = [1 : 0 : 0] and a 3 = [1 : 0 : 1].

Proposition 6 . 15 .

 615 2, 2) and |N 123 /W 123 ⟨w 4 ⟩| = 24. Moreover: -L 123 ∩ B 1 contains 8 elements which form a single N 123 -orbit. Again, Proposition 6.13(b) allows an easy computation which implies that the image of z is smooth. -L 123 ∩ B 2 contains 12 elements which form a single N 123 -orbit. Again, Proposition 6.13(b) allows an easy computation which implies that the image of z is a D 6 -singularity. -It remains no point in (Z (f 3,λ ) \ B) ∩ L 123 . The proof of the corollary is complete.□ If k ∈ {145, 245, 1, 2, 3}, then the singularities of X 31 λ k are given by Table

  (b) By (♣), ρ( X31 -1/4 ) ⩾ 18. Note that m = 17 in this case. On the other hand, 193 ∈ P -1/4 and P -1/4,193 = (T -193)(T 4 + 212 T 3 + 10422 T 2 + 7896788 T + 1387488001). This shows that Q -1/4,193 = T 4 + 212 T 3 + 10422 T 2 + 7896788 T + 1387488001. Since this polynomial has no root of the form 193ζ with ζ a root of unity, we get that ρ -1/4,193 = ρ g -1/4,193 = 1 and so ρ( X31 -1/4 ) ⩽ 18 by (♠). This proves (b) for λ = -1/4 and so this proves (b) for λ generic. (c) We explain how to prove (c) whenever λ = λ 145 = -8/25, the other cases being treated similarly. Note first that m = 18 in this case. By (♣), ρ( X-8/25 ) ∈ {19, 20}. Note that 23 and 47 belong to P -8/25 . We have P -8/25,23 = (T -23) 2 (T 2 + 38 T + 529) and Q -8/25,23 (23)/23 ≡ 21 mod Q ×2 , P -8/25,47 = (T -47) 2 (T 2 + 22 T + 2209) and Q -8/25,47 (47)/47 ≡ 29 mod Q ×2 . Assume that ρ( X-8/25 ) = 20. Then 20 = ρ( X-8/25 ) = m+ρ -8/25,23

Proposition 7 . 1 . 7 . 2 .

 7172 Let x be a singular point of R λ . Then: (a) If m ⩾ 2 and if x is an A m singularity, then the elliptic fibration φx λ admits two sections θ ± x whose images are the two extremal smooth rational curves of the exceptional divisor π-1 λ ( ẋ). (b) If x is not a type A singularity, then the elliptic fibration φx λ admits a section whose image is one of the smooth rational curves of the exceptional divisor π-1 λ ( ẋ). (c) If x ̸ ∈ B2 (i.e., if x ̸ ∈ {a 3 , d 6 }), then the elliptic fibration φx λ admits a section whose image is B′ 2 . Intersection graph in π -1 λ (B ′ 2 ) and the elliptic fibration φa3 λ

1 /108 z 2 2 + 1 /54 z 2 z 4 - 1 /108 z 2 4 and c 1 = z 2 1 z 2 -54 z 1 z 2 2 + 1 /8 z 2 1 z 4 -9 z 1 z 2 z 4 - 1 /4 z 1 z 2 4 + 1 /8 z 3 4 .

 121414221441414 Then q 1 and c 1 are irreducible andr 1 = -864q 1 c 1 .

d 6 =

 6 [1 : 0 : 0], a 3 = [1 : 0 : 1], a 5 = [1 : 3 : 21], a 2 = [1 : 1/27 : -1/3],

  1 (C) by φk,l ((a, b, c), [u 1 : u 2 : • • • : u m ]) (A.2) = [u j : b k-j u j+1 ] if u j ̸ = 0 and j ⩽ k, [b j-1-k u j-1 : u j ] if u j ̸ = 0 and j ⩾ k + 1.

Proposition A. 3 .5

 3 [START_REF] Barth | Polyhedral groups and pencils of K3-surfaces with maximal Picard number[END_REF],∆ j = {0} × {[u 1 : • • • : u m ] ∈ P m-1 (C) | ∀ r ∈ {1, 2, . . . , m} \ {j, j + 1}, u r = 0}. Let ∆ x = {[x : y : z] ∈ P(k, l, m) | x = 0} and ∆ y = {[x : y : z] ∈ P(k, l, m) | y = 0}.Then ∆ x and ∆ y are smooth rational curves and ∆ x ∩ ∆ y = {p}. Let ∆x and ∆y denote the respective strict transforms of ∆ x and ∆ y in P(k, l, m). The fiber φ-1 k,l ([1 : 0]) (resp. φ-1 k,l ([0 : 1])) is the union of the smooth rational curves ∆y , ∆ 1 , . . . , ∆ k-1 (resp. ∆ k+1 , . . . , ∆ m-1 , ∆x ). The intersection graphs are given respectively by i One only needs to determine the intersections of the fibers φ-1 k,l ([1 : 0]) and φ-1 k,l ([0 : 1]) with the open set Ũz of P(k, l, m). But this can be done from the explicit model and formula (A.2) given in the proof of (A.1). □ For 0 ⩽ j ⩽ m -1, let J j denote the ideal of the algebra C[Uz] = C[A, B, C]/⟨B m -AC⟩ generated by A and B j .

π - 1 x

 1 ( ẋ) ≃ {[A : B : T ] ∈ P 2 (C) | T 2 = α(0, 0)A 2 + β(0)AB + γ(0)B 2 } and ξx ([A : B : T ]) = [A : B]. Let us examine the different cases. (a) If x is an A 1 singularity, then a linear change of coordinates in a, b allows to assume that α(0, 0) = γ(0) = 0 and β(0) = 1. Then π -1 x ( ẋ) ≃ {[A : B : T ] ∈ P 2 (C) | T 2 = AB} and the result follows. (b) If x is an A m singularity with m ⩾ 2, then a linear change of coordinates in a, b allows to assume that α(0, 0) = 1 and β(0) = γ(0) = 0. Then π -1 x ( ẋ) ≃ {[A : B : T ] ∈ P 2 (C) | T 2 = A 2 } = ∆ + ∪ ∆ -, where ∆ ± = {[A : B : T ] ∈ P 2 (C) | A = ±T }. The result follows. (c) If x is a DE singularity, then α(0, 0) = β(0) = γ(0) = 0, so π -1 x ( ẋ) ≃ {[A : B : T ] ∈ P 2 (C) | T = 0} ≃ P 1 (C), so the result follows.□

Table I .

 I Numerical information for G 29 , G 30 and G 31

	W	|W |	|W/Z(W )| |W ′ |	Deg(W ) Codeg(W )
	G 29	7 680	1 920	3 840	4, 8, 12, 20 0, 8, 12, 16
	G 30 = W(H 4 ) 14 400	7 200	7 200	2, 12, 20, 30 0, 10, 18, 28
	G 31	46 080	11 520	23 040	8, 12, 20, 24 0, 12, 16, 28

Table II .

 II K3 surfaces of the form Z

  orbit, and one checks with Magma that the stabilizer of z in P G′ 29 is the quaternionic group of order 8. This leads to a D 4 singularity in X 29 , which we denote by d 4 .• Assume now that e z = 4. If |W v | = 1 or 2, then W ′ z = ⟨w 4 ⟩ and so the stabilizer of z in P G ′ 29 is trivial. So the image of z in X 29 is smooth. By [5, Corollary 2.4], the group W v cannot have rank 3, for otherwise z would be singular in X Mu . So W v has rank 2. There are three conjugacy classes of parabolic subgroups of rank 2, and representatives are given by W 12 = ⟨s 1 , s 2 ⟩, W 13 = ⟨s 1 , s 3 ⟩ and W 23 = ⟨s 2 , s 3 ⟩.We denote by L jk the projective line P(V W jk ) in P(V ). Since X Mu is smooth, it follows that L jk meets X Mu transversally[5, Corollary 2.8], and we set E jk = L jk ∩ X Mu . Then |E jk | = 4 and it follows from [5, §4.1, (c)] that two elements of Ω jk are in the same W ′ -orbit if and only if they are in the same (W ′ ∩ N jk )-orbit. Now the next results can be obtained with Magma: -The group W 12 is of type A 2 and |(W ′ ∩ N 12 )/W 12 ⟨w 4 ⟩| = 2. Moreover, the stabilizer of any point in E 12 is equal to (W ′ ∩ W 12 )⟨w 4 ⟩, so its stabilizer in P W ′ is cyclic of order 3. This leads to 2 A 2 singularities in X 29 , which we denote by a ± 2 . -The group W 13 is of type

. Complements: conics in X Mu As

  while Triv θ+ ( φ) is generated by all these classes except [∆ explained in [6, Proposition 4.3], the K3 surface X Mu is the Kummer surface of the abelian surface E i

	4.5√	10 × E i √	10
	a -4 2 ] (see Remark 4.14) and we fix ∆	a + 4 2	as the zero
	section of the fibration.			□

  y 1 , y 2 , y 4 )}.But P(2, 1, 2) ≃ P(1, 1, 1) = P 2 (C), so there exists a polynomial r λ (z 1 , z 2 , z 4 ) ∈ C[z 1 , z 2 , z 4 ], which is homogeneous of degree 5 if we assign to z 1 , z 2 , z

		4 the
	degrees 1, 1, 1, respectively, and such that
	(6.1)	X 31 λ = {[y 1 : y 2 : y 4 : j] ∈ P(2, 1, 2, 5) | j 2 = r λ (y 1 , y 2 2 , y 4 )}.
	Through this description, the action of the unique non-trivial element σ of
	G 31 /G ′ 31 is given by
	σ([y and the morphism X 31 λ -→ P 2 (C) is given explicitly by
		[y 1 : y 2 : y 4 : j] -→ [y 1 : y 2 2 : y 4 ].
	So the branch locus of ξ λ is
	(6.2)	

1 : y 2 : y 4 : j]) = [y 1 : y 2 : y 4 : -j] = [y 1 : -y 2 : y 4 : j],

  λ 145 , λ 245 , λ 1 , λ 2 , λ 3 are the five values of λ such that Z (f 3,λ ) is irreducible and singular. By [4, Proposition 3.6 and Table 4] and the correction statement at https://doi.org/10.1080/10586458.2018.1555778, the singularities of Z (f 3,λ

k ) are given by

(6.7) 

  With the above notation, we have that z 24 ∈ Z (f 3,λ ), that L 8 and L 12 are contained in Z (f 3,λ ) and that z 20 ̸ ∈ Z (f 3,λ ).Proof. The facts that z 24 ∈ Z (f 3,λ ) and that L 8 and L 12 are contained inZ (f 3,λ ) follow from [5, Lemma 2.2].Again by [5, Lemma 2.2], we have f 1

					13(f)] that, if e ∈
	{8, 12, 20, 24}, then the eigenvalues of w e are ζ -7 e , ζ -11 e	, ζ -19 e	and ζ -23 e	and
	so			
	(6.8)	det(w e ) = ζ -60 e	=	-1 if e ∈ {8, 24}, 1 if e ∈ {12, 20}.
	Proposition 6.9.			

  15, 123}. Computations with Magma show that: • W 14 , W 15 , W 123 are representatives of conjugacy classes of parabolic subgroups of rank 2. • W 14 is a Coxeter group of type A 2 and |N 14 /W 14 ⟨w 4 ⟩| = 6. Moreover:

  of the Picard group of X 31 λ . We denote by Pic g (( X31 λ ) p ) the geometric Picard group of ( X31 λ ) p , namely the Picard group of F p × Fp ( X31 λ ) p . Then Artin-Tate Conjecture and (♢) say that Moreover, if these two groups have the same rank, then their discriminant are equal modulo Q ×2 . By Artin-Tate Conjecture and (♡), this forces

	(♡)	m + ρ λ,p = rk Pic(( X31 λ ) p ) and m + ρ g λ,p = rk Pic g (( X31 λ ) p ).
	Reduction modulo p induces an injective map Pic X31 λ → Pic g (( X31 λ ) p ) (see [28,
	Proposition 6.2]). Hence
	(♠)	ρ( X31

λ ) ⩽ m + ρ g λ,p .

  = m+ρ g -8/25,23 = m+ρ -8/25,47 = m+ρ g -8/25,47 , so it follows from (♠ + ) that 21 ≡ 29 mod Q ×2 , which is impossible. So Remark 6.17 (Supersingular surfaces). Keep the notation of the proof of Corollary 6.16. For each exceptional value of λ (i.e., λ ∈ {λ 145 , λ 245 , λ 1 , λ 2 , λ 3 }) there exist prime numbers p such that X31 λ has good reduction modulo p and ( X31 λ ) p is a supersingular variety (i.e., has geometric Picard number 22). We give here a (non-exhaustive) list of examples. So assume that (λ, p) is a pair, where λ ∈ {λ 145 , λ 245 , λ 1 , λ 2 , λ 3 } and p is a prime number such that:

	ρ( X31 -8/25 ) = 19, as expected.	□

  from a 3 and d 6 (there always exists such a point), then ( φx

	two singular
	fibers (because they contain π -1 λ ( ḋ6 ) and π -1 λ ( ȧ3 )). Since B′ 2 is a section of the elliptic fibration φx λ by Proposition 7.1, B′ 2 meets π -1 λ ( ḋ6 ) and π -1 λ ( ȧ3 )
	transversally at only one curve with multiplicity 1. Recall that the multiplicity
	1 curves of π -1 λ ( ḋ6 ) (resp. π -1 λ ( ȧ3 )) are ∆ d6 1 , ∆ d6 2 and ∆ d6 6 (resp. ∆ a3 1 , ∆ a3 2 and ∆ a3 m3(λ) , where m 3 (λ) denote the Milnor number of the singularity ȧ3 ).
	Since σ( B′ 2 ) = B′ 2 and σ(∆ a3 1 ) = ∆ a3 2 , this forces that B′ 2 meets π -1 λ ( ȧ3 ) transversally at ∆ a3 m3(λ) .
	To determine which curve of π -1 λ ( ḋ6 ) meets B′ 2 , we use the elliptic fibration φa3 λ . First, ( φa3 λ ) -1 (p a3 (d 6 )) contains π -1 λ ( ḋ6 ) and B′ 2 . Moreover, φa3 λ (∆ a3 m3(λ) )
	is a point by Proposition B.3, so it must be the same point as φa3 λ ( B′ 2 ), which
	is φa3 λ

λ ) -1 (p x (d 6 )) and ( φx λ ) -1 (p x (a 3 )) are

  The singular fiber( φd6 λ ) -1 (p d6 (a 3 )) is of type D7 if λ ̸ = λ 2 and of type D9 if λ = λ 2 = -1/3.

	Moreover:
	(a) The singular fiber ( φa3
	Proof. Only the statement (b) has not been proved. First, π -1 λ ( ȧ3 ) and B′ 2
	are contained in ( φd6
	2 meets ∆ d6 1 (by ex-λ ) -1 (p a3 (d 6 )) is of type Ẽ7 and B′ 1 and ∆ d6 changing ∆ d6 2 if necessary). So we have shown most of the following
	lemma:

λ ) -1 (p a3 (d 6 )) is of type Ẽ7 . (b) λ ) -1 (p d6 (a 3 )).

Moreover, it follows from Proposition B.3 that the curves (∆ d6 k ) 1 ⩽ k ⩽ 4 are sent, through φd6 λ , to a single point of P 1 (C). Since B′ 2 meets ∆ d6 1 , this point is necessarily p d6

  z 1 , z 2 )}. Note the following fact: If λ ̸ = 0, -1/2, -8/17, then the closed subvariety ∆ λ meets the singular locus of X 31 λ at only one point (the point ḋ6 ). Proof. This follows from a Magma computation.□ If λ ̸ = 0, -1/2, -8/17, then E λ = ∆λ ∪ ∆ d6

	Lemma 7.3. Let ∆λ denote the strict transform of ∆ λ in X31 λ , recall that ∆ d6 6 = (π d6 λ ) -1 (a)
	and let E λ denote the fiber ( φd6 λ ) -1 ([1 : -4λ(λ + 1)]). Then it follows from
	Lemma 7.3 that:
	Corollary 7.4.

Table IV .

 IV 4.3. So it remains to check the case, where λ = -8/17. The numerical facts in what follows can be checked with Magma. Whenever λ = -8/17, ∆ -8/17 is not irreducible and contains one of the A 2 singularities of X 31 -8/17 (let us call it ȧ2 ), the singularity ḋ6 and Some numerical data for the family of K3 surfaces ( X31 λ ) λ∈C × ( †) With equality for λ generic ( ‡) Only for λ generic

	λ	Z sing (f 3,λ )	singularities of X 31 λ	ρ( X31 λ ) singular fibers of φd6

λ MW( φd6 λ )

  One can check that they are both smooth at ȧ3 and that the tangent line of ∆ 1 -8/17 at ȧ2 is different than the one of ∆ 2 -8/17 . Therefore, E -8/17 is the union of five irreducible components ∆ d6 6 , ∆1 -8/17 , ∆2 -8/17 , ∆ a2 1 and ∆ a2 2 and the last four form an A 4 configuration whose extremal curves are ∆1

	2 A 1	19	D7 + D5 + 2 Ã2 + Ã1	0
	no other singular points of X 31 -8/17 and splits into two irreducible components
	which we call ∆ 1 -8/17 and ∆ 2 -8/17 . Their intersection contains only the points
	ḋ6 and ȧ2 .			

-8/17

7.4.1. The case λ = -8/17.

  We assume here, and only here, that λ = -8/17. As shown in Proposition 7.6, the elliptic fibration φ d6 -8/17 of the K3 surface X 31 -8/17 has the property that ∆ λ contains a singular point of X 31 -8/17 different from d 6 and the corresponding singular fiber E -8/17 is of type Ã4 . This has the following consequence for its Picard number, which makes X31 -8/17 a special member of the family obtained from minimal resolutions of quotients by G ′ 31 of the smooth family of icosics (Z (f 3,λ )) λ∈C × \{λ145,λ245,λ1,λ2,λ3} : Proposition 7.8. ρ( X31 -8/17 ) = 19. Proof. For proving that ρ(X 31 -8/17 ) ⩾ 19, we shall use the elliptic fibration φd6 λ . Indeed, this fibration admits a section, so ρ(X 31 -8/17 ) ⩾ 2 + m ′ , where m ′ is the rank of the subgroup of Pic(X 31 -8/17 ) generated by irreducible components of the singular fibers (here, 2 comes from the section and a general smooth fiber of φd6 λ ). It follows from Table IV that m ′ = 17, so ρ( X31 -8/17 ) ⩾ 19. Now, proving that ρ( X31 -8/17 ) = 19 is done as in the proof of Corollary 6.16, thanks to Magma computations and the Artin-Tate Conjecture.

□ 7.4.2.

Recall that W is said primitive if there does not exist a decomposition V = V 1 ⊕ • • • ⊕ Vr with r ⩾

and V k ̸ = 0 such that W permutes the V k 's.

Erratum: the singularities of the five singular surfaces of degree 20 defined by fundamental invariants of G 31 given in TableIIdiffer from the ones given in[START_REF] Bonnafé | Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF]

ble 4]: in fact, there is a mistake in[START_REF] Bonnafé | Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF], as can be checked with Magma thanks to[START_REF] Bonnafé | Magma codes for "Some singular curves and surfaces arising from invariants of complex reflection groups[END_REF], and the correct values are given in TableII. See the correction statement at https://doi.org/10.1080/10586458.2018.1555778.

j → ∆ j is an isomorphism.
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(c) If P is a parabolic subgroup of rank 2 and if z ∈ (Z (f 3,λ ) \ B) ∩ P(V P ), then W v = P and W z = P ⟨w 4 ⟩.

Proof. (a) Assume first that W v = {1}. Then W z = ⟨w ez ⟩ and 4 divides e z (see [5, §4.1, Fact (a)]). Since e z divides one of the degrees, we have e z ∈ {4, 8, 12, 20, 24}. Note that e z ̸ = 20 by Proposition 6.9.

If e z = 4, then (P W ) z = {1} and so z ′ is smooth. If e z ∈ {8, 12, 24}, then δ(e z ) = δ * (e z ) and the eigenvalues of w ez on the tangent space T z (Z (f 3,λ )) are given by [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF]Corollary 3.15(b)] and the determinant of w ez is given by (6.8). So we get:

• If e z = 8, then det(w ez ) = -1 and so W ′ z = ⟨w 2 8 ⟩ = ⟨w 4 ⟩. So (P W ′ ) z = {1}, which implies that z ′ is smooth.

• If e z = 12, then det(w ez ) = 1 and the eigenvalues of w ez on T z (Z (f 3,λ )) are ζ -8 12 and ζ -24 12 = 1, so w ez acts as a reflection on T z (Z (f 3,λ )). This implies that z ′ is smooth.

Since the smooth conic Q 1 goes through the point d 6 , we get that Q′ 1 is a section of the elliptic fibration φd6

1 . By Table IV, we get:

Proposition 7.11. The smooth rational curve Q′ 1 is a section of the elliptic fibration φd6

1 . It is 2-torsion and generates the Mordell-Weil group MW( φd6 1 ). 7.4.3. The case λ = λ 3 = -1/2. We assume here, and only here, that λ = -1/2. We set

Let L denote the line in P 2 (C) defined by Z (z 2 -z 4 ) and let R

13-184 27

13-184 27

: -13 √

13-37 6

].

a 

Let L ′ denote the preimage of L in X 31 -1/2 endowed with its reduced structure. Then

We denote by L′ its strict transform in X31 -1/2 . Then ( φd6 -1/2 ) -1 (φ λ (a 3 )) contains ∆ d6 6 , L′ and the exceptional divisors above the singularities ȧL 1 and ȧL 3 : the smooth rational curve L′ meets ∆ d6 6 , the exceptional divisor above ȧL 1 and at least one of the exceptional divisors above ȧL 3 , so the only possibility is that ( φd6

The other singular fibers are now determined easily and fit with the data in Table IV. Note also that L′ provides another section of all the fibrations φa1

Appendix. Morphisms to P 1 (C)

We describe here two basic constructions of morphisms to P 1 (C) which are used in the body of the article for constructing elliptic fibrations on our K3 surfaces.

A. Weighted projective space

Notation. We fix two natural numbers k and l such that gcd(k, l) = 1, we set m = k + l and we denote here by p the point [0 : 0 : 1] of P(k, l, m). It is an A m-1 -singularity of P(k, l, m). We denote by π : P(k, l, m) → P(k, l, m) the minimal resolution of the singularity p.

Note that we have only resolved the singularity p, so that π -1 (P(k, l, m)\{p}) may still have two singular points (above [1 : 0 : 0] and [0 :

Then there exists a unique morphism of varieties φk,l : P(k, l, m) -→ P 1 (C) making the diagram (A.1)

Proof. The uniqueness is trivial, so let us prove the existence. It is sufficient to work in the affine chart

We denote by Ũz its minimal resolution of singularities. Through the variables a = x m , b = xy and c = y m (and setting z = 1), we have

and p corresponds to the point 0 of U z while the restriction of φ k,l to U z \ {0} is given by

Remark A.4. It follows from (A.2) that the restriction of φk,l to the smooth rational curve ∆ k is an isomorphism: this provides a section P 1 (C) -→ P(k, l, m) to the morphism φk,l : P(k, l, m) -→ P 1 (C).

Remark A.5. Let p ∈ P 1 (C) \ {[1 : 0], [0 : 1]}. Then φ -1 k,l (p) is a smooth rational curve. Indeed, write p = [1 : α] with α ̸ = 0 (and assume that k ⩽ l, the other case being similar). Then

(here, the variable v j stands for y j z k-j ). Therefore, Then σ stabilizes X and ξ is the double cover of P 2 (C) associated with σ. We denote by R ⊂ P 2 (C) its branch locus

we denote by ẋ = [a : b : c : 0] its unique preimage in X . We also define p x : P 2 (C) \ {x} -→ P 1 (C) to be the projection from x and let β x : P2

x (C) -→ P 2 (C) denote the blow-up of P 2 (C) at x. Then the map

x (x) -→ P 1 (C) extends uniquely to a morphism px : P2

x (C) -→ P 1 (C), which admits a section ŝx :

. Finally, we denote by π x : Xx -→ X the blow-up of X at ẋ. Proposition B.1. Assume that x is a singular point of the branch locus R. Then the morphism ξ : X -→ P 2 (C) lifts uniquely to a morphism ξx : Xx -→ P2

x (C) making the diagram

Remark B.2. The reader can easily check that, if x is not a singular point of R, then the conclusion of Proposition B.1 fails. We now investigate the question of sections of this morphism, whenever x is an ADE singularity of the branch locus R (by [START_REF] Bonnafé | Complex reflection groups and K3 surfaces I, Épijournal Géom[END_REF]Proposition 4.4], this implies that ẋ is a simple singularity of the surface X of the same type as x). First, note that, if s x : P 1 (C) -→ Xx is a section of φx , then ξx • s x is a section of px . Therefore, the question amounts to study sections of the morphism Corollary B.4. All the smooth rational curves belonging to the same connected component of Γ # x are mapped to the same point of P 1 (C) under φx . If two smooth rational curves do Γ #

Proof

x do not belong to the same connected component, then they are mapped to different points of P 1 (C) under φx . Moreover: x is of type A 5 and σ acts on Γ x as the unique non-trivial involutive automorphism. (e) If x is an E 7 (resp. E 8 ) singularity, then Γ #

x is of type D 6 (resp. E 7 ) and σ acts on Γ x as the identity.