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Abstract—In today’s monitoring solutions, each application in-
volves custom deployment and requires significant configuration
efforts to accommodate sensor changes. In contrast, in this paper,
a massive deployment of battery-powered sensors is considered,
to propose a more versatile monitoring solution that is not tied
to physical device deployment.

We characterize a monitoring strategy by formally defining a
function that modifies the transmission period of a sensor that has
just transmitted. Such a function can for example be customized
to manage the tradeoff between overall monitoring accuracy and
sensor energy consumption, for which we suggest a formalization
through a generic indicator of the monitoring accuracy (to be
weighed versus the monitoring network lifespan).

We introduce a specific two-parameter instantiation for the
period update function, that ensures strictly periodic emissions
from sensors even when new sensors join the system over
time. We show through simulations how the two parameters—
target emission period and number of jointly used sensors—can
be chosen according to the objectives for the monitoring, by
highlighting the Pareto front for accuracy and energy-efficiency.

I. INTRODUCTION

A. Context: flexible and generic solutions for the future of
monitoring

Advances in electronics and signal processing have enabled
the miniaturization of hardware. Thanks to the emergence of
new energy-saving communication techniques, a new class of
applications has arisen: miniaturized devices deployed on a
large scale capable of sensing their environment [1-3].

In a classical approach, a few highly reliable sensors are
placed at the points of relevance, so as to provide meaningful
information. This solution is static and rigid in time. In
contrast, the so-called massive Internet of Things (mloT) con-
siders a large quantity of cheap energy-autonomous sensors,
with no prior information about their quality or position. This
paradigm shift is a game-changer for the development of
monitoring solutions, as it requires great flexibility in sensor
management [4-6]. This allows the development of versatile
solutions, independent of the physical development.

B. Overview of research on wireless sensor energy efficiency

Sensors are usually battery-powered, whose energy is con-
sumed during the transmission of information. The more
the data transmitted, the more accurately the environment
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is monitored but at the same time, the faster the energy is
consumed. Due to these energy limitations, it iS necessary
to propose efficient management of sensor emissions, finding
the compromise between monitoring quality and resource
consumption.

First, from the early 2000s, energy-saving functionalities
for devices have been proposed [7,8]. Triggered and adaptive
sensing methods allow the sensor’s sampling rate to be adapted
to variations in the environment.

In 2018, the authors of [9] propose to aggregate the informa-
tion provided by multiple surrounding sensors to a single col-
lector. The paper uses the fuzzy methods AHP and TOPSIS to
determine cluster-heads that forward the aggregated informa-
tion to the gateway. This energy-efficient solution significantly
reduces the gateway traffic load. Other information aggrega-
tion methods, based on index tree structures, are proposed
in [10,11]. Those last approaches are particularly suitable for
heterogeneous geographical distributions of sensors.

In 2014, [12] introduces the concept of “Self-Organized
Things”, where sensors are self-managed, following energy
optimization mechanisms. Those mechanisms allow sensors
to be put into sleep mode if their spatial coverage is already
guaranteed by other active sensors. In 2017, [13] proposes a
complete energy-efficient hierarchical architecture for IoT. The
paper develop a continuous modification of the sensors’ sleep
times, based on the battery level, the standard variation of the
returned values and the distance to other sensors. New results
of [13] are proposed in 2019 [14], validating the relevance of
the sleep mode usage.

The solutions presented above lack applicability in a context
such as mIoT monitoring. Indeed, it is important to consider
the following characteristics:

e mloT solutions are based on LPWANSs, as the least energy
intensive network model. This is a star architecture, where
direct sensor-to-sensor communications are not allowed.

e sensors are built to send periodic messages, and their trans-
mission period can only be changed during a short window-
time after a message is sent to the gateway.

e One of the main goals we can expect from mloT is automatic
deployment. Therefore, it is needed to handle dynamic inte-
gration of sensors without having any prior knowledge about
location.

To the best of our knowledge, there is no solution for the
problem of optimally monitoring an environment under these



hypotheses.

C. Positioning and development of the proposed solution

In this paper, we consider a large amount of “things” de-
ployed in an area, that we want to use for monitoring purposes.
The goal is to minimize the gap between the environment to
monitor and its representation by the system. This is in general
at the cost of more measures being sent by sensors, hence a
tradeoff between the accuracy of the monitoring and the energy
consumption.

The sensors we consider are transmitting messages period-
ically and are in sleep mode between each message, to save
energy. Following the behavior of LoORaWAN class A objects,
a listening window is open after each message sent, during
which the monitoring system can modify the emission period.
Sensors have limited energy in their battery, that is consumed
over time. Note that the system does not know how many
sensors will be in use, nor their respective positions, and will
have to integrate them in the monitoring.

In this paper, we first introduce a standard formulation
of a monitoring strategy, through the formal definition of a
period update function, modifying the emission period of a
sensor that has just transmitted. In addition, to measure the
relevance of these functions, we propose a generic metric of
monitoring quality, somehow quantifying the informative value
of the messages received by all sensors, with the value of data
depleting over time. By choosing the total monitoring duration
as the overall energy efficiency indicator, this leads us to a
clear definition of a multi-objective problem.

We apply our approach to a specific case where an addi-
tional constraint is imposed: taking into consideration that the
simple but effective method for tracking a physical quantity
over time is to obtain information at regular time intervals
[15], we want the sensors to be programmed so that a message
is sent periodically by one of them. We then develop a
period update function that ensures the periodic transmission
of messages from one (and only one) of the sensors, and
dynamically adapts to new sensors entering the monitoring
system. The function is configured by two parameters, namely
the number of jointly emitting (through a cycle) sensors
and the target emission period. We observe that the greater
the number of sensors transmitting jointly, the greater the
diversity of the data stream, but the more energy-consuming
the solution. Therefore, we show that a compromise must be
made between the diversity of the information received (i.e.,
the quality of the monitoring) and the total monitoring duration
(i.e., the energy efficiency).

The contributions of this paper can be summarized as
follows.

o We formalize the definition of a period update function.

« We propose a generic monitoring quality indicator, which
together with the total network lifetime characterize a
multi-objective problem.

o We construct a 2-parameter period update function, en-
suring the strict periodic emission by one of the sensors.
We compute analytical bounds on the monitoring duration
according to the parameters used.

e We perform a numerical comparison in order to illustrate
the approach and discuss the fitting parameters of the
developed period update function.

The rest of the paper is organized as follows. Section II
defines the studied mathematical problem and proposes a
formal definition of the period update function. We propose a
definition of the monitoring quality, which together with the to-
tal monitoring duration forms the two performance indicators
of a period update function. In Section III, we introduce a two-
parameter period update function ensuring periodic emissions,
and derive bounds for the total monitoring time according to
the chosen parameters. Numerical investigations applying the
proposed monitoring strategies are carried out in Section IV.
Finally, we conclude and highlight the limits of the studied
model in Section V, suggesting directions for future works.

II. PROBLEM STATEMENT AND MODEL
A. Assumptions and notations on sensors

We are interested in the monitoring of an environment
with IoT sensors. Sensors are dynamically integrated in the
management system at the time of their first emission, also
called instant of activation. We consider a total of n sensors
on battery indexed by their order of activation: 0 being the
first sensor to be activated and n — 1 the last.

The sensor ¢ activates at time ¢;, with an initial energy e;.
It sends messages periodically. Following each transmission,
it is possible to modify the transmission period of the sending
sensor, through a downlink message sent during the sensor
reception window.

This paper revolves around how to define the new emission
period to assign to each sensor after its emission, so as to
ensure periodic emissions overall, while managing a tradeoff
between the monitoring quality (through a measure of diver-
sity) and energy efficiency (through the total lifetime of the
monitoring network). We therefore use the notion of period
update function f, defined in more detail hereafter, for that
purpose.

A sensor is said to be active at a time ¢ if, at that time, it is
activated and has enough energy to emit again. Conversely, a
sensor that is not active anymore at time ¢ is said to be dead.
The end of the monitoring is when there are no more active
Sensors.

In the strategy developed hereafter, we also consider a
specific consumption model: only the consumption related
to emissions and period changes is taken into account (with
respective energy cost of c. and c,), since the other con-
sumptions can be considered as negligible [16,17]. Finally,
we assume that each sensor spends its energy until its battery
is exhausted.

B. Formalization of the monitoring strategy: the period update
function

A monitoring strategy defines the requirements for receiving
data from active sensors in the environment. It is characterized
by the period update function which, upon reception of a
sensor message, redefines its emission period. The function



takes as an argument the history of transmissions until then,
and returns a new period of emission.

Definition 1. Let us denote by H; the transmission history up
to and including time t, summarizing the gateway’s knowledge.
A period update function is a function f:

foHy— R, (D

where f(Hy) represents the new transmission period for a
sensor that has just sent a message at time t.

For the function developed hereafter, each message sent by
a sensor contains: its ID, the remaining energy in the battery,
its transmission period; all that information is added to H; for
each new message sent.

The function f is used for each new received message. In
particular, f defines the initial period of sensors. In practice,
if the function f returns a different period from the sensor’s
current one, a downlink transmission from the gateway (with
an energy cost ¢, to the sensor) takes place to modify that
period, so that after sending a message at time ¢, a sensor’s
period always equals f(Hy).

C. Defining a monitoring quality metric

In most monitoring applications, the objective is to obtain a
spatio-temporal coverage of the study area thanks to adapted
sampling [18,19]. However, here we assume that we do not
know the position of the sensors. This is why we introduce
the notion of average diversity: the amount of information
from different sources weighted by their relative relevance.
we characterize here the relevance of a data by its aging.

The freshness of a message evaluated at ¢ [20-22] will
represent the relevance of the transmitted information as a
function its age. We model it through a positive decreas-
ing function taking as argument the difference between the
observation time ¢ and the message sending time t/, i.e.,
Ay=t—t' >0.

Sensors send messages to the management system, updating
their emission period after an emission if told so by the
gateway. We apply the notion of freshness to a sensor by
considering its most recent emission, in order to propose the
following definition of diversity.

Definition 2. The diversity at time t is defined as the sum of
the freshnesses of all sensors that have been activated at that
time.

For a given period update function f, we define the average
diversity as the average of the diversities over the entire
monitoring duration. The average diversity related to a period
update function f is denoted by D(f).

Below are two examples of freshness functions:

e ur(A¢) = 1a, <7, for some value T' > 0, meaning that
the value of some received data remains constant during
T then suddenly drops to O.
o vr(At) = exp (—%), with a smoother depletion of the
information value over time.
The parameter 1" characterizes the relevance time of data: if
T is large, then we consider that “old” data remains relevant.

To illustrate the meaning of the diversity measure, consider
the freshness function ur(t): if a period update function f
induces a diversity X, then that means that over a sliding
window of size 7', messages are received on average by X
different sensors.

D. A multi-objective problem

In this paper, we are also interested in the overall energy
efficiency, rather than in local efficiency: our metric for energy
efficiency will be the total monitoring duration, that is the
time between the activation of the first sensor and the end of
the monitoring.

In this way, we characterize a bi-objective problem: we can
quantify and compare the qualities of period update functions
through our two performance metrics, for energy efficiency
and monitoring quality.

III. ENSURING PERIODIC EMISSIONS FROM AT MOST M
SENSORS

In this section, we develop a strategy to guarantee, by
defining the period update function, that there is one (and only
one) periodic emission, with a period 7, and that at most M
sensors emit in turn (M and 7 are chosen by the monitoring
manager).

Note that for reasons of space, the formal proofs of Propo-
sitions 1 to 4 are developed in the separate document [23].

A. Definition of effectiveness

An effective method for tracking an average physical quan-
tity over time is to collect regular samples [15]. Hence, starting
from the instant of the first message received at time fg,
we want in this paper to receive exactly one message at
regular time intervals from one of the active sensors. By
introducing the time step parameter 7, that property will be
named effectiveness, as formalized below.

Definition 3. A period update function is said to be effective
over the instants of period T if the sensor emissions verify
that:

o Starting at tg, one and exactly one emission is made at
each time step T as long as there are active sensors.

o Apart from the activation, no sensor emits a message
between each time interval T.

For such periodic update functions, we can quantify the
energy efficiency relative to a fixed 7, called the sampling
interval.

Definition 4. Given an efficient period update function f, its
sample span L(f) is defined as the number of consecutive
emissions at time steps T until the end of the monitoring.

The monitoring duration is then simply defined as 7L(f).
We develop below an analytical upper bound for the span
(and thus, duration) of efficient period update functions.

Proposition 1. If no sensor activates exactly at an instant of
the form to+ kT for an integer k, then for any effective period



update function, the maximum sample span L(f) (removing
the integer parts) is:
-1
Lo Yoy ei —nce — (2n— 1)c, )

Ce

B. Functioning of fur -

Considering the scenario of tracking an average physical
quantity, we want to develop a periodic update function
allowing to receive messages at regular intervals. The first
parameter 7 of the function is defined by the target time
between two emissions.

In a context such as the one predicted for the mloT, it is
possible to have some misplaced or faulty sensors. Moreover,
in some cases, it may be necessary to receive spatially di-
versified information to get a more accurate global view. It
may then be necessary to want to receive information from
various sources (quantified by the average diversity). The
second parameter of the function is M to take into account
this possible requirement, defined as the number of sensors
transmitting in turn.

For given parameters M and 7, the period update function
fu,r is defined such that at most M sensors transmit in turn,
spaced by a time 7. If any, the other sensors are in sleep mode
and successively take over the sensors when one dies.

e As long as the number of active sensors does not exceed
M, all the active sensors are emitting in turn. In that case,
the sensor already active have an emission period set at 7
multiplied by the number of active sensors. If a new sensor
activates, all the sensors change their emission period, since
the number of active sensors change.

e As soon as they are more than M active sensors, it works
differently. M sensors emit periodically, with a period of M
multiplied by 7. The period of each other sensor is set so
that it takes over successively when one of the M sensors
dies. When the sensor takes over the death of another one, its
period is set to M, to ensure the same role.

An illustrative example of sensor emissions using the period
update function is shown in Fig. 1.

C. Definition of the period update function

In order to build an understandable definition of fys ., we
refer to the notations of [23]. TI(¢) is the set of elements
active at time ¢ so that |II(¢)| represents the number of active
elements. A sensor is included in the set of elements II(¢)
when it activates and is removed as soon as it can no longer
transmit.

Moreover, we define death-date the list sorted by ascending
date of sensor deaths whose relay is not assured. The list
is updated at each message thanks to the death update
algorithm. death-date is defined so that the first element of the
list (i.e., death-date[0]) corresponds to the next sensor death
whose relay is not already assured.

We use the notation % to indicate the rest of the division
algorithm. This leads us to this definition of fas -.

Representation of the sensor emission over time
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Fig. 1. TIllustration of sensor emissions using far - for M = 3 and 7 = 1.
We considered 7 sensors randomly activating between O and 40, of equal
battery-capacities e = 15, with emission and period change consumption
ce = ¢ = 1. The emissions of a sensor indexed ¢ appear on the horizontal
with ordinate line 4. The points circled in black mean that the function fp; -
changes the period of the sensor in question. There is exactly one emission
on each blue vertical line, meaning that we receive exactly one message at
each time 7 = 1. Moreover, as soon as there are at least 3 active sensors, the
emissions are shared between 3 sensors emitting periodically.

Definition 5. the period update function fyr r is defined by:

e if first message received from that sensor
far iy — 4 THOI= (= )% if [0(1)| < M
M death-date[0] —t + M if |II(t)| > M
e Else, fr-(Hy) = min(M, [II(¢)|)T
3)
death-date is updated by using the death update algorithm
after each use of the fyr, function.

To apply the period update function fjs -, it is necessary to
keep in memory the list death-date, whose size is at most M,
and to update it when it is necessary. As long as the number
of active sensors is less than M, the list is updated at each
transmission: find the date of death of the sensor in the list,
then update it and insert it in the sorted list. When a sensor
activates while |TI(¢)| > M, death update algorithm replaces
the death date of the sensor whose relay has just been taken
by the predicted death of the new one.

For M =1 and M = n, combinatorial and memory space
simplifications can be done for the implementation of the
function fas -.

D. Properties and boundaries of fur -
Proposition 2. The fur, period update function is effective

on the instants of period T.

Proposition 3. Considering sensors with the same initial
energy e, the lower bound of the sample span of far - is,
by simplifying (removal of integer parts):

ne—nc.— (2n—1+ MM — 1))e,

Ce

L(fa,-) > 4

The bound is reached if some conditions are verified.
Namely, as long as there are no more than M active sensors,
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Fig. 2. Representation of some performance indicators using the period update function far -, varying the number of jointly emitting sensors M, for different
target emission periods 7. (a) corresponds to the sample span, (b) the diversity, and (c) the total number of downlink emissions.

Parameter Value
n 300
e, =e 500
Ce = Cp 1
ti —ti—1 157
T 20
Utility function V20
TABLE I

SIMULATION PARAMETERS

the time between two activations must be greater than the
period of the sensors:

Vi € [1,M—1],ti—ti,1 > T

®)

As long as there are no more than M active sensors, in
the worst scenario each new sensor that activates disrupts the
existing schedule, forcing all other sensors to consume energy
to change their emission period.

Proposition 4. Considering sensors with the same initial
energy e, the upper limit of the sample span of fur r, is, by
simplification (suppression of the integer parts):

ne —nce — (2n — pr=1)c,

L(fM,T) <

This bound is reached under some conditions; the first M
sensors must activate in the same time interval of length T
and all sensors can be separated into subsets of exactly M
sensors:

(6)

Ce

Vi € [1, M],t; € [to, to + 7]
n = 0[M]

If all sensors are activated simultaneously, the scheduling
is only disturbed once, which has little impact on the overall
system energy. In that case, the solution is close to the global
optimum Ly, Proposition 1.

Apart from this condition, at a fixed 7, an increase in the M
parameter generally has a negative influence on the monitoring
duration.

)

IV. NUMERICAL SIMULATIONS

This section discusses the experimental analysis of the
period update function fys,. We propose to compare the

performances by using the function fj, . for different values
of the number of sensors jointly emitting M and of the
target emission period 7. From the initial conditions defined
in Table I, we apply the period update function fy . for
each emission of sensor until the end of the monitoring, in
order to determine monitoring duration and average diversity
performance indicators.

A. Influence of the number of sensors jointly transmitting M
on indicators

For a fixed target emission period 7, the parameter M
influence the performance Fig. 2. The sample span (i.e., the
monitoring duration) decreases when M increases Fig. 2(a),
confirming our suppositions based on the bounds developed in
Proposition 3. Between M = 1 and M = 300, we observe a
relative decrease of 6.2% for 7 = 7.4 of the total monitoring
time. We reach 34.02% of relative difference for 7 = 0.8,
because the condition (5) is valid for a greater number of
Sensors.

At a fixed 7, larger values of M offer greater diversity, as
more sensors update their value periodically Fig. 2(b), even if
the diversity varies much less strongly for high values of M.

B. Optimal solutions for the multi-objective problem

Considering the two-objective problem, there is only a
subset of relevant solutions, all other solutions are suboptimal.
The set of optimal solution (i.e., the pair of parameters)
consists of the points closest to the upper right corner of Fig. 3,
constituting a Pareto front.

For extreme values of the number of jointly transmitting
sensors M (M < 10, or M > 150), the period update
function give suboptimal performances. However, depending
on the needs, a discussion must be made on the parameters to
find the fitting solution. If the need for diversity is not very
strong, then a small value of M and a relatively large 7 time
step (compared to relevance time of data 7" allows to extend
considerably the total monitoring duration. On the other hand,
if the need for diversity is more important, it is necessary to
choose a larger value of M, and a small time step 7, leading
to a more frequent energy consumption, and thus to a shorter
monitoring duration. We notice that choosing a big value of M
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Fig. 3. Each point in the graph represents the performance of an update

function of period fys -, for several values of M (in the legend) and values
of 7 between 0.5 and 10, spaced by 0.1. Each point corresponds to a chosen
parameterization for the update function, whose x-axis corresponds to the
diversity and y-axis the total network lifespan.

induces a high downlink consumption Fig. 2(c), which must
be minimized, since it has a significant impact on Quality of
Service [24]. Thus, when possible, it is preferable to choose
a smaller number of joint transmitting sensors in order not to
saturate the network.

V. CONCLUSIONS AND FUTURE WORKS

This paper presents a method for scheduling sensor emis-
sions in an initially uncoordinated environment. We show that
it is possible to optimize the monitoring by choosing the
appropriate parameters, relative to the quality requirements.
In particular, we proove that only a limited number of sensors
should actively participate in the monitoring, so as to ensure
sufficient diversity without overly disturbing the scheduling.

In addition, we provide new general bases for the develop-
ment of centralized approaches based on requirement one can
expect for mloT. Starting from the first approach proposed in
this paper, the forthcoming challenge will be to look for more
dynamicity in monitoring strategies: (i) the hypothesis of strict
regular message transmission should be relaxed in order to
gain flexibility and robustness, (ii) In addition to the dynamic
inclusion of sensors already managed in the proposed strategy,
the solution must also adapt to unplanned departures, (iii) We
supposed here that all the sensor data where equivalent. In a
real system, messages can be very disparate; it is relevant to
include the available metadata in monitoring policies.
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