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Abstract
In today’s monitoring solutions, each application involves custom de-

ployment and requires significant configuration efforts to accommodate
sensor changes. In contrast, in this paper, a massive deployment of
battery-powered sensors is considered and we propose a more versatile
monitoring solution that is not tied to physical device deployment.

We characterize a monitoring strategy by formally defining a function
that modifies the transmission period of a sensor that has just transmitted.
Such a function can be customized to manage the tradeoff between overall
monitoring accuracy and sensor energy consumption, for which we suggest
a formalization through a generic metric of monitoring accuracy (to be
weighed versus the monitoring network lifespan).

We introduce a specific two-parameter instantiation for the period up-
date function, that ensures strictly periodic emissions from sensors even
when new sensors join the system over time. We show through simulations
how the two parameters–target emission period and number of jointly used
sensors–can be chosen according to the objectives for the monitoring, by
highlighting the Pareto front for accuracy and energy-efficiency.

1 Introduction

1.1 Context: flexible and generic solutions for the future
of monitoring

Advances in electronics and signal processing have enabled the miniaturization
of hardware. Thanks to the emergence of new energy-saving communication
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techniques, a new class of applications has arisen: miniaturized devices deployed
on a large scale capable of sensing their environment [6], [15], [23].

In a classical approach, a few highly reliable sensors are placed at the points
of relevance, so as to provide meaningful information. This solution is static
and rigid in time. In contrast, the so-called massive Internet of Things (mIoT)
considers a large quantity of cheap energy-autonomous sensors, with no prior in-
formation about their quality or position. This paradigm shift is a game-changer
for the development of monitoring solutions, as it requires great flexibility in
sensor management [11], [13], [18]. This allows the development of versatile
solutions, independent of the physical development.

1.2 Overview of research on wireless sensor energy effi-
ciency

Sensors are usually battery-powered, whose energy is consumed during the
transmission of information. The more the data transmitted, the more accu-
rately the environment is monitored but at the same time, the faster the energy
is consumed. Due to these energy limitations, it is necessary to propose efficient
management of sensor emissions, finding the compromise between monitoring
quality and resource consumption.

First, from the early 2000s, energy-saving functionalities for devices have
been proposed [2], [19]. Triggered and adaptive sensing methods allow the
sensor’s sampling rate to be adapted to variations in the environment.

In 2018, the authors of [17] propose to aggregate the information provided
by multiple surrounding sensors to a single collector. The paper uses the fuzzy
methods AHP and TOPSIS to determine cluster-heads that forward the ag-
gregated information to the gateway. This energy-efficient solution significantly
reduces the gateway traffic load. Other information aggregation methods, based
on index tree structures, are proposed in [21], [22]. Those last approaches are
particularly suitable for heterogeneous geographical distributions of sensors.

In 2014, [1] introduces the concept of “Self-Organized Things”, where sen-
sors are self-managed, following energy optimization mechanisms. Those mech-
anisms allow sensors to be put into sleep mode if their spatial coverage is already
guaranteed by other active sensors. In 2017, [14] proposes a complete energy-
efficient hierarchical architecture for IoT. The paper develop a continuous mod-
ification of the sensors’ sleep times, based on the battery level, the standard
variation of the returned values and the distance to other sensors. New results
of [14] are proposed in 2019 [12], validating the relevance of the sleep mode
usage.

The solutions presented above lack applicability in a context such as mIoT
monitoring. Indeed, it is important to consider the following characteristics:
• mIoT solutions are mostly based on LPWANs, as the least energy intensive
network model. This is a star architecture, where direct sensor-to-sensor com-
munications are not allowed.
• Sensors are built to send periodic messages, and their transmission period
can only be changed during a short window-time after a message is sent to the
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gateway.
• One of the main goals we can expect from mIoT is automatic deployment.
Therefore, it is needed to handle dynamic integration of sensors without having
any prior knowledge about location.

To the best of our knowledge, there is no solution for the problem of optimally
monitoring an environment under these hypotheses.

1.3 Positioning and development of the proposed solution

In this paper, we consider a large amount of ”things” deployed in an area,
that we want to use for monitoring purposes. The goal is to minimize the gap
between the environment to monitor and its representation by the system. This
is in general at the cost of more measures being sent by sensors, hence a tradeoff
between the accuracy of the monitoring and the energy consumption.

The sensors we consider are transmitting messages periodically and are in
sleep mode between each message, to save energy. Following the behavior of
LoRaWAN class A objects, a listening window is open after each message sent,
during which the monitoring system can modify the emission period. Sensors
have limited energy in their battery, that is consumed over time. Note that
the system does not know how many sensors will be in use, nor their respective
positions, and will have to integrate them in the monitoring.

In this paper, we first introduce a standard formulation of a monitoring
strategy, through the formal definition of a period update function, modifying
the emission period of a sensor that has just transmitted. In addition, to mea-
sure the relevance of these functions, we propose a generic metric of monitoring
quality, somehow quantifying the informative value of the messages received by
all sensors, with the value of data depleting over time. By choosing the total
monitoring duration as the overall energy efficiency indicator, this leads us to a
clear definition of a multi-objective problem.

We apply our approach to a specific case where an additional constraint
is imposed: taking into consideration that the simple but effective method for
tracking a physical quantity over time is to obtain information at regular time
intervals [10], we want the sensors to be programmed so that a message is
sent periodically by one of them. We then develop a period update function
that ensures the periodic transmission of messages from one (and only one) of
the sensors, and dynamically adapts to new sensors entering the monitoring
system. The function is configured by two parameters, namely the number of
jointly emitting (through a cycle) sensors and the target emission period. We
observe that the greater the number of sensors transmitting jointly, the greater
the diversity of the data stream, but the more energy-consuming the solution.
Therefore, we show that a compromise must be made between the diversity
of the information received (i.e., the quality of the monitoring) and the total
monitoring duration (i.e., the energy efficiency).

The contributions of this paper can be summarized as follows.

• We formalize the definition of a period update function.
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• We propose a generic monitoring quality indicator, which together with
the total network lifetime characterize a multi-objective problem.

• We construct a 2-parameter period update function, ensuring the strict
periodic emission by one of the sensors. We compute analytical bounds
on the monitoring duration according to the parameters used.

• We perform a numerical comparison in order to illustrate the approach and
discuss the fitting parameters of the developed period update function.

The rest of the paper is organized as follows. Section 2 defines the studied
mathematical problem and proposes a formal definition of the period update
function. We propose a definition of the monitoring quality, which together
with the total monitoring duration forms the two performance indicators of a
period update function. In Section 3, we introduce a two-parameter period
update function ensuring periodic emissions, and derive bounds for the total
monitoring time according to the chosen parameters. Numerical investigations
applying the proposed monitoring strategies are carried out in Section 4. Finally,
we conclude and highlight the limits of the studied model in Section 5, suggesting
directions for future works.

2 Problem statement and model

2.1 Assumptions and notations on sensors

We are interested in the monitoring of an environment with IoT sensors. Sensors
are dynamically integrated in the management system at the time of their first
emission, also called instant of activation. We consider a total of n sensors
on battery indexed by their order of activation: 0 being the first sensor to be
activated and n− 1 the last.

The sensor i activates at time ti, with an initial energy ei. It sends messages
periodically. Following each transmission, it is possible to modify the transmis-
sion period of the sending sensor, through a downlink message sent during the
sensor reception window.

This paper revolves around how to define the new emission period to assign
to each sensor after its emission, so as to ensure periodic emissions overall,
while managing a tradeoff between the monitoring quality (through a measure
of diversity) and energy efficiency (through the total lifetime of the monitoring
network). We therefore use the notion of period update function f , defined
in more detail hereafter, for that purpose.

A sensor is said to be active at a time t if, at that time, it is activated
and has enough energy to emit again. Conversely, a sensor that is not active
anymore at time t is said to be dead. We talk about the end of monitoring
when there are no more active sensors. Thus, we consider for the whole paper
that the n sensors activates without the monitoring stopping in the meantime.

In the strategy developed hereafter, we also consider a specific consumption
model: only the consumption related to emissions and period changes is taken
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into account (with respective energy cost of ce and cr), since the other con-
sumptions can be considered as negligible [3], [4]. Finally, we assume that each
sensor spends its energy until its battery is exhausted.

2.2 Formalization of the monitoring strategy: the period
update function

A monitoring strategy defines the requirements for receiving data from active
sensors in the environment. It is characterized by the period update function
which, upon reception of a sensor message, redefines its emission period. The
function takes as an argument the history of transmissions until then, and re-
turns a new period of emission.

Definition 1. Let us denote by Ht the transmission history up to and including
time t, summarizing the gateway’s knowledge.

A period update function is a function f :

f : Ht −→ R+∗, (1)

where f(Ht) represents the new transmission period for a sensor that has just
sent a message at time t.

For the function developed hereafter, each message sent by a sensor contains:
its ID, the remaining energy in the battery, its transmission period; all that
information is added to Ht for each new message sent.

The function f is used for each new received message. In particular, f defines
the initial period of sensors. In practice, if the function f returns a different
period from the sensor’s current one, a downlink transmission from the gateway
(with an energy cost cr to the sensor) takes place to modify that period, so that
after sending a message at time t, a sensor’s period always equals f(Ht).

2.3 Defining a monitoring quality metric

In most monitoring applications, the objective is to obtain a spatio-temporal
coverage of the study area thanks to adapted sampling [7], [16]. However, here
we assume that we do not know the position of the sensors. This is why we
introduce the notion of average diversity: the amount of information from
different sources weighted by their relative relevance. We characterize here the
relevance of a data by its aging.

The freshness of a message evaluated at t [5], [9], [20] will represent the
relevance of the transmitted information as a function its age. We model it
through a positive decreasing function taking as argument the difference between
the observation time t and the message sending time t′, i.e., ∆t = t− t′ > 0.

Sensors send messages to the management system, updating their emission
period after an emission if told so by the gateway. We apply the notion of
freshness to a sensor by considering its most recent emission, in order to propose
the following definition of diversity.
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Definition 2. The diversity at time t is defined as the sum of the freshnesses
of all sensors that have been activated at that time.

For a given period update function f , we define the average diversity as
the average of the diversities over the entire monitoring duration. The average
diversity related to a period update function f is denoted by D(f).

Below are two examples of freshness functions:

• uT (∆t) = 1∆t<T , for some value T > 0, meaning that the value of some
received data remains constant during T then suddenly drops to 0.

• vT (∆t) = exp (−∆t
T ), with a smoother depletion of the information value

over time.

The parameter T characterizes the relevance time of data: if T is large, then we
consider that “old” data remains relevant.

To illustrate the meaning of the diversity measure, consider the freshness
function uT (t): if a period update function f induces a diversity X, then that
means that over a sliding window of size T , messages are received on average
by X different sensors.

2.4 A multi-objective problem

In this paper, we are also interested in the overall energy efficiency, rather than
in local efficiency: our metric for energy efficiency will be the total monitoring
duration, that is the time between the activation of the first sensor and the
end of the monitoring.

In this way, we characterize a bi-objective problem: we can quantify and
compare the qualities of period update functions through our two performance
metrics, for energy efficiency and monitoring quality.

3 Ensuring periodic emissions from at most M

sensors

In this section, we develop a strategy to guarantee, by defining the period update
function, that there is one (and only one) periodic emission, with a period τ ,
and that at most M sensors emit in turn (M and τ are chosen by the monitoring
manager).

3.1 Definition of effectiveness

An effective method for tracking an average physical quantity over time is to
collect regular samples [10]. Hence, starting from the instant of the first message
received at time t0, we want in this paper to receive exactly one message at
regular time intervals from one of the active sensors. By introducing the time
step parameter τ , that property will be named effectiveness, as formalized
below.
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Definition 3. A period update function is said to be effective over the in-
stants of period τ if the sensor emissions verify that:

• Starting at t0, one and exactly one emission is made at each time step τ
as long as there are active sensors.

• Apart from the activation, no sensor emits a message between each time
interval τ .

For such periodic update functions, we can quantify the energy efficiency
relative to a fixed τ , called the sample span.

Definition 4. Given an efficient period update function f , its sample span
L(f) is defined as the number of consecutive emissions at time steps τ until the
end of the monitoring.

The monitoring duration is then simply defined as τL(f).
We develop below an analytical upper bound for the span (and thus, dura-

tion) of efficient period update functions.

Proposition 1. If no sensor activates exactly at an instant of the form t0+kτ
for an integer k, then any effective period update function will have a sample
span upper-bounded by:

Lmax :=

∑n−1
i=0 ei − nce − (2n− 1)cr

ce
(2)

The proof is developed in Appendix B.
In the rest of this section, we develop a specific function, that we will denote

by fM,τ , and that we will show is effective over the instants of period τ , while
jointly using up to M sensors to provide some diversity.

3.2 Toward an effective period update function with con-
trolled diversity

Considering the scenario of tracking an average physical quantity, we want to
develop a periodic update function allowing to receive messages at regular in-
tervals; the target time τ between two emissions will be the first parameter of
our function.

In a context such as the one predicted for mIoT, it is possible to have some
misplaced or faulty sensors. Moreover, in some cases, it may be necessary to
receive spatially diversified information to get a more accurate global view. It
may then be necessary to receive information from various sources (quantified
by the average diversity). The second parameter of the function, that we will
denote byM , will be the number of sensors transmitting in a round-robin fashion
(when possible), to take into account this possible requirement.
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For given parameters M and τ , we therefore want to define a period update
function fM,τ such that at most M sensors transmit in turn, will overall periodic
emissions with period τ . If any, the other sensors will be set in sleep mode, and
successively take over the dead sensors. Hence,
• when the number of active sensors is below M , all active sensors emit in
turn. In that case, the active sensors have an emission period set to τ times the
number of active sensors. If a new sensor activates, all the sensors then change
their emission period to maintain that property.
• As soon as they are more than M active sensors, our proposed scheme works
differently: M sensors emit periodically, with a period of Mτ , and the period
of all the other sensors is set so that they successively take over dead sensors.
When one such sensor takes over the death of another one, its period is set to
Mτ , to ensure the same role.

An illustrative example of sensor emissions using the period update function
is shown in Fig. 1.
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Figure 1: Illustration of sensor emissions using fM,τ for M = 3 and τ = 1. 7
sensors, of equal battery-capacities e = 15 and with emission and period change
consumption ce = cr = 1, randomly activate between time 0 and 40. The
emissions of sensor i appear as dots on the y = i line. Black points indicate
period changes after an emission, through the function fM,τ . As was the initial
goal, there is exactly one emission on each blue vertical line, meaning that we
receive exactly one message every τ . Note that when there are at least 3 active
sensors, the emissions are only shared between 3 sensors emitting periodically.

3.3 Detailed definition of the period update function

First of all, we define the function in the case where the emitting sensor is
already active. When the total number of active sensors does not exceed M
i.e. an insufficient number of sensors has activated or a too important number
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of sensors is out of battery. In this case, the function defines for each sensor a
period f(Ht) = |Π(t)|τ . When there are enough active sensors (|Π(.)| > M),
then f(Ht) = Mτ . Thus, for already active sensors, the period update function
is defined by:

fM,τ (Ht) = min(M, |Π(t)|)
When a sensor activates, there are 2 different cases. If the number of active

sensors is less than M , then new sensors get included in the round-robin. The
activating sensor should emit τ after the sensor that has emitted just before.
We firstly consider that the previous emission corresponds to a sensor already
active. Thus, the period update function is defined by:

fM,τ (Ht) = τ |Π(t)| − (t− last emission)

The previous sensor emits on the instants of period τ . Thus, denoting ”%”
the operator remainder of the division algorithm, (t−last emission) = (t−t0)%τ ,
so that:

fM,τ (Ht) = τ |Π(t)| − (t− t0)%τ (3)

This last formula generalizes to the case where the previous emission does
not come from an already active sensor.

We consider now the second case: there are already at leastM active sensors.
Then, a sensor that activates is put to sleep until a sensor dies. The sensor takes
over from a sensor whose relay is not taken i.e. emits Mτ after its last emission:

fM,τ (Ht) = death time of a sensor − t+Mτ

We now introduce an object allowing to keep in memory the deaths of each
sensor. We define death-date the list sorted by ascending date of the dead
sensors whose relay is not assured. The list is updated with each new message
from a sensor.

Algorithm 1 defines the death update algorithm, updating the list death-
date. This algorithm is executed each time a message is received, following the
use of the period update function.

This lead us toa formal definition of fM,τ :

Definition 5. The period update function fM,τ used for a sensor just after it
sent a message is defined by:

• if first message received from that sensor ,

fM,τ (Ht) =

{
τ |Π(t)| − (t− t0)%τ if |Π(t)| ≤ M
death-date[0]− t+Mτ if |Π(t)| > M

• Else, fM,τ (Ht) = min(M, |Π(t)|)τ

(4)

The death-date list, whose size is at mostM , is updated to always contain the
sorted list of sensor death instants whose relays are not covered. In particular,
when a sensor activates while |Π(t)| ≥ M , the death date of the sensor whose
relay has just been taken is replaced by the predicted death of the new one.

Note that for the special cases M = 1 and M = n, combinatorial and
memory space simplifications can be used to implement the function fM,τ .
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Algorithm 1 Death update algorithm
i corresponds to the sensor ID, ei the energy of the sensor just after it has
emitted the message and pi the period which is set by fM,τ . The function called
”add” (and ”update”) add (and update) elements to the list while sorting it in
ascending date order. The function ”remove” is working if the element is still
in death-date.
Require: death-date,time t , sensor index i, period pi, remaining energy ei
1: if |Π(t)| ≤ M then
2: if ei < ce then
3: Remove sensor i from death-date
4: else if pi ̸= Mτ then

5: Update death-date of sensor i with value t+ pi +Mτ
⌊
ei−ce−cr

ce

⌋
6: else if pi = Mτ then

7: Update death-date of sensor i with value t+ pi +Mτ
⌊
ei−ce
ce

⌋
8: end if
9: else

10: if fst emission from i then
11: add death-date of sensor i with value death-date[0] +Mτ(1 +

⌊
ei−cr
ce

⌋
)

12: remove death-date[0] from death-date
13: end if
14: end if

3.4 Properties and performance of fM,τ

The following propositions establish that fM,τ behaves as we wanted it to and
guarantees a minimum monitoring duration.

Proposition 2. The fM,τ period update function is effective on the instants of
period τ .

Proposition 3. Considering sensors with the same initial energy e, the sample
span of fM,τ is at least:

Lmin(fM,τ ) :=
ne− nce − (2n− 1 +M(M − 1))cr

ce
(5)

and at most:

Lmax(fM,τ ) :=
ne− nce − (2n− 1M=1)cr

ce
(6)

Proof (sketch). As long as there are no more than M active sensors, in the worst
scenario each new sensor that activates disrupts the existing schedule, forcing
all other sensors to consume energy to change their emission period.

To get the upper bound, we on the contrary consider the most favorable
scenario, that is when the first M sensors activate in the same time interval
of length τ , and n is a multiple of M . If all sensors are activated (almost)
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simultaneously, the scheduling is only disturbed once, which has little impact
on the overall system energy. In that case, the solution is close to the global
optimum Lmax of Proposition 1. Except in that condition, at a fixed τ , an
increase in theM parameter generally has a negative influence on the monitoring
duration.

Formal demonstrations of Propositions 2 and 3 are respectively developed
in Appendices C and D

In addition to reducing monitoring time, choosing a large value of M can
induce high downlink consumption, which in the worst case increases quadrati-
cally with respect to M . Downlink consumption congest the network, and can
have a significant impact on Quality of Service [8].

4 Performance results

This section discusses the experimental analysis of the period update function
fM,τ , carried out through simulations. We propose to study the performance
by using the function fM,τ for different values of the number of sensors jointly
emitting M and of the target emission period τ . From the initial conditions
defined in Table 1, we apply the period update function fM,τ for each emission
of sensor until the end of the monitoring, in order to determine monitoring
duration and average diversity performance indicators.

Parameter Meaning Value
n Number of sensors 300
ei = e Battery capacity 500
ce = cr Emission and reception energy cost 1
ti − ti−1 Time between 2 consecutive activations 15π
T Relevance time of a data 20
Freshness function Depletion of the data over time v20

Table 1: Simulation parameters

4.1 Influence of the number M of sensors jointly transmit-
ting

For a fixed target emission period τ , the parameter M influences both perfor-
mance metrics, as Fig. 2 illustrates. The sample span (thus, the monitoring
duration) decreases when M increases (Fig. 2(a)), confirming the trends of the
bounds developed in Proposition 3. Between M = 1 and M = 300, we observe
a relative decrease of 6.2% for τ = 7.4 of the total monitoring time. It drops to
34.02% of relative difference for τ = 0.8, since the sensors get scheduled more
quickly and therefore are disturbed more times when new sensors activate.
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Figure 2: Representation of some performance indicators using the period up-
date function fM,τ , varying the number of jointly emitting sensors M , for a few
target emission periods τ . (a) corresponds to the sample span with analytical
bounds, (b) the diversity.

At a fixed τ , larger values of M offer greater diversity, as more sensors
update their value periodically (Fig. 2(b)), with diminishing diversity gains as
M increases (hence a concave function).

4.2 “Diversity versus duration” trade-offs

We represent in Fig. 3 the monitoring time and average diversity metrics ob-
tained with fM,τ , for different values of (M, τ). Of course, one would like to
be as north-east as possible in the figure (high diversity and high monitoring
duration). Interestingly, the Pareto front is not always attained with the same
value of M : if the network designer preferences (or the application needs) favor
the monitoring duration, smaller values of M should be preferred, while larger
values should be chosen if diversity matters most.

If the need for diversity is not very strong, then choosing a small value of M
and a relatively large τ time step (compared to the relevance time of data T )
allows to extend considerably the total monitoring duration ( and induce a low
consumption of the downlink). On the other hand, if the need for diversity is
more important, it is necessary to choose a larger value of M , and a small time
step τ , leading to a more frequent energy consumption, at the price of a shorter
monitoring duration. As an example, if the diversity requirement is D > 10,
then choosing M = 44 and τ = 1.97, ensure a monitoring duration of 2.9 ∗ 105.

Hence the methodology leading to Fig. 3 can be adapted to the specific
parameters of a new scenario, and applied to determine the best-performing
parameters M and τ for the needs of the application.
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Figure 3: Performance of the update period function fM,τ , for several values of
M (given in the legend) and τ (from 0.5 to 10 by 0.1 increments). Each point
corresponds to the two-dimensional performance metrics (Diversity on the x-
axis and monitoring duration on the y-axis), for fixed parameters M, τ of the
update function.

5 conclusions and future works

This paper presents a method for scheduling sensor emissions in an initially un-
coordinated environment, thanks to a 2 parameters emission scheduling strat-
egy. Considering a massive number of deployed battery sensors, we show that a
trade-off has to be made between a precise tracking and an extended monitoring
time. We present a method to set the appropriate parameters of the proposed
solution to find a compromise according to the preferences (energy efficiency vs.
monitoring quality).

In addition, we provide new general bases for the development of centralized
approaches based on requirement one can expect for mIoT. Starting from the
first approach proposed in this paper, the forthcoming challenge will be to look
for more dynamicity in monitoring strategies: (i) the hypothesis of strict regular
message transmission should be relaxed in order to gain flexibility and robust-
ness, (ii) In addition to the dynamic inclusion of sensors already managed in the
proposed strategy, the solution must also adapt to unplanned departures, (iii)
We supposed here that all the sensor data where equivalent. In a real system,
messages can be very disparate; it is important to characterize this information
heterogeneity to include it in monitoring policies.
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B Upper bound of all the period update func-
tions effective over the instants of period τ

The following notation is introduced:

Definition 6. Let f be an effective period update function. Then we denote by
ri(f) the number of period changes of the sensor i.

Proposition 4. The sample span of a period update function f , effective over
the instants of period τ is:

L(f) =

n−1∑
i=0

⌊
ei − ce − crri(f)

ce

⌋
(7)

Proof. We denote by di(f) the number of emissions (excluding activation) on
time steps τ without collisions with other emissions.

The consumption of a sensor is divided between: it first emission ce, each
period change crri(f), and since f is effective, the collision-free emissions on
the time steps τ cedi(f)

ei ≥ ce(1 + di(f)) + crri(f)

By definition of the behavior of the sensor, it sends messages until the battery
is empty:

di(f) =

⌊
ei − ce + crri(f)

ce

⌋
The total number of emissions on the time steps τ corresponds to the num-

ber of emissions (excluding activation) of each sensor without collision i.e. by
definition of di(f):

L(f) =

n−1∑
i=0

di(f)
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Lemma 1. Let f and g be 2 effective period update functions. If ∀i, ri(f) ≥
ri(g), then the sample span of g is greater than that of f : L(f) ≤ L(g).

Proof. We use directly Proposition 4.

Demonstration of Proposition 1(page 7):

Proof. We will show that for a period update function, the minimum number
of period changes for a sensor is:

ri(fmax) = 1 + 1i>0

In order to exclude particular cases, let us suppose that the sensors do not
activate at the instants of period τ i.e.

ti ̸≡ t0[τ ] (8)

Then, let us consider g an effective period update function. We will show
that ∀i, ri(g) ≥ ri(fmax).
-i = 0. Necessarily, g change at least one time the period of the sensor 0. Then
r0(g) ≥ r0(fmax).
-i > 0. Let us suppose ri(g) < 2, then ri(g) = 1. We note p its period of
emission. Since g is effective, its first emission after activation is on the time
steps τ i.e. ti + p ≡ t0[τ ]. But from (8), ti ̸≡ t0[τ ], so p ̸≡ 0[τ ]. Looking at the
following emission, ti+2p, we come across an absurdity. Thus ri(g) ≥ ri(fmax).

Hence, fmax gives a minimum number of changes for each sensor. From
Lemma 1, fmax gives a maximum bound to the sample span. The sample span
is equal to:

L(fmax) =

n−1∑
i=0

⌊
ei − ce − cr(1 + 1i>0)

ce

⌋

C demonstration of the effectiveness of the pro-
posed period update function

We first introduce some tools to track the behavior of sensors over time, and
then propose a proof of the effectiveness of the function fM,τ .

C.1 Sensor representation set and characterization over
the instants of period τ

Definition 7. A sensor i active at time t is represented by Ei(t) such that:

Ei(t) :=

 ei(t) ≥ ce : remaining energy at time t
pi(t) > 0 : emission period
δi(t) > 0 : time before sending a message after t

(9)
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Ei(t) := ∅ if the sensor i is not active at time t (didn’t activate yet or is dead).
We denote by Π(t) the set of active sensors at time t, |Π(t)| is the quantity

of active sensors at time t i.e.

i ∈ Π(t) ⇔ Ei(t) ̸= ∅

We define E(t), so that:

E(t) := (Ei(t))i∈Π(t)

The formalization of the state E(.) will help to prove that the function fM,τ

is effective, i.e. the emissions of the sensors (except activations) are on the
instants of period τ .

First of all, we can define E(.) until the first emission of the first sensor:

t < t0, E(t) = ()

E(t0) = (E0(t0)),E0(t0) =

 e0(t0) = e0 − ce − cr
p0(t0) = f(Ht0)
δ0(t0) = f(Ht0)

(10)

The initial emission period of the sensor is defined by f . The sensor consume
energy for its first emission and the setting of its period: ce + cr. Then, from
time t0, the next emission occurs after a duration of f(Ht0).

Moreover, E(.) evolves over time, for each emission. We characterize the
variations from state E(t) to state E(t+∆t).

A sufficient condition for the sensors to transmit at most once between t and
t + ∆t is that their period is larger than the time step ∆t, or more generally
that the minimum of the period update function is greater than ∆t.

f ≥ ∆t (11)

We now characterize the evolution from t to t+∆t under condition (11).
If i is a sensor that is active at time t, i.e. i ∈ Π(t). Moreover, if the sensor

does not transmit between t and t + ∆t, δi(t) > ∆t. Then, the periods and
energies states don’t change. The duration before the next emission at time
t+∆t is decreased by ∆t:

Ei(t+∆t) =

 ei(t+∆t) = ei(t)
pi(t+∆t) = pi(t)
δi(t+∆t) = δi(t)−∆t

(12)

If i emits between t and t+∆t: 0 < δi(t) ≤ ∆t. Then, it consumes an energy ce.
Moreover, the function f is used to determine the new emission period of the
sensor. It will consume an additional energy cr if the defined period is different
from the current one. The sensor is represented in E(t+∆t) only if it is active
at t + ∆t i.e. if it has enough energy to transmit again. In order to define a
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simple form of Ei(t+∆t), we define the energy remaining in the sensor i at time
t+∆t. ei(t+∆t) = ei(t)− ce − cr1f(Ht+δt )̸=pi(t) (1 is the indicator function).

Then:

Ei(t+∆t) =


∅ , if ei(t+∆t) < ce ei(t+∆t)

pi(t+∆t) = f(Ht+δt)
δi(t+∆t) = δi(t)−∆t+ f(Ht+δt)

, else

(13)
Finally, if a new sensor i activates between t and t + ∆t, i.e. i ̸∈ Π(t), i ∈

Π(t+∆t) and ti ∈]t, t+∆t]. In this case, f defines the emission period of i and:

Ei(t+∆t) =

 ei(t+∆t) = ei − ce − cr
pi(t+∆t) = f(Hti)
δi(t+∆t) = ti − (t+∆t) + f(Hti)

(14)

In all these cases, if (11) is verified, then δ.(.) > 0.
As explained above, the notations are used here to help the proof of efficiency

of fM,τ . Thus, we use the following notations allowing simplification in the
writings.

Definition 8. We define the characterization of the sensor set over the
instants of period τ :

Ek := E(t0 + kτ)

In the same way, we define (Πk)k∈N := {Π(t0 + kτ), k ∈ N}.
For i ∈ Πk:

Ei,k := Ei(t0 + kτ) =

 ei,k = ei(t0 + kτ)
pi,k = pi(t0 + kτ)
δi,k = δi(t0 + kτ)

.

From Definition 8, we mathematically define the effectiveness:

Definition 9. A period update function is said to be effective over the in-
stants of period τ if, using characterization of the sensor set over the instants
of period τ :

∀k ∈ N, |Πk| > 0 ⇒ ∃!i ∈ Πk : δi,k = τ
∀j ∈ Πk, j ̸= i ⇒ δj,k > τ

(15)

We then define its sample span L by:

L := max{k, |Πk| > 0}+ 1 (16)
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C.2 Proof of the effectiveness of the function

Demonstration of Proposition 2 (page 10)

Proof. First, we consider that the description of the algorithm is sufficient to
assert that

Assertion 1. death-date is a list updated at each new emission such that it
corresponds to the list sorted by ascending order of death of sensors whose relay
is not already provided by other sensors.

We will show by induction the statement called P (k):
Looking at the instant t0 + kτ :

• If the number of active sensors does not exceed M , then the active sensors
emit exactly on the next consecutive jτ instants, 1 ≤ j ≤ |Πk|.

• Otherwise, the jτ instants are covered for the first M instants by M
sensors. The next emission of the other sensors occurs at least Mτ after
the death of the next sensor. There is exactly one that emits Mτ after
the death of the next sensor.

Mathematically, introducing Ik = {i ∈ Πk, δi,k > Mτ}, P (k) means:

-If |Πk| ≤ M, ∀j, 1 ≤ j ≤ |Πk|,∃!i ∈ Πk : δi,k = jτ

-Else,

 ∀j, 1 ≤ j ≤ M,∃!i ∈ Πk : δi,k = jτ
∃!i ∈ Ik : δi,k = next-death(k)− (t0 + kτ) +Mτ
∀i ∈ Ik, δi,k ≥ next-death(k)− (t0 + kτ) +Mτ

Where next-death(k) represents the death time of the next sensor after t0 + kτ .
Initialization: We want to prove P (0). |Π0| = 1 ≤ M . fM,τ sets the period

to τ , so that δ0,0 = τ , hence P (0) is true.
Heredity : Assume P (k) is true for some k ≥ 0. We define n := |Πk|.
Disjunction of cases.

-If |Πk| ≤ M and |Πk+1| ≤ M .
• If there is no variation in the set of active sensors, |Πk| = |Πk+1| = n ≤ M .
By using P (k), ∃!i ∈ Πk : δi,k = τ so that from the definition of fM,τ , we have
δi,k+1 = nτ . Moreover, ∀j, 1 < j ≤ n, ∃!i : δi,k = jτ so δi,k+1 = (j−1)τ . Finally

∀j, 1 ≤ j ≤ n, ∃!i : δi,k+1 = jτ,

which means P (k + 1) is true.
• We now consider that m new sensors indexed (l + r)r∈[1,m] activate between
states Ek and Ek+1 and no sensor dies. l represents the number of sensors
activated from the beginning of the monitoring. Since |Πk+1| ≤ M , n+m ≤ M .
We consider without loss of generality that t0 + kτ < tl+1 < tl+2... < tl+m ≤

18



t0 + (k + 1)τ . Πk+1 = Πk

⋃
{(l + r)r∈[1,m]} so that |Π(tl+r)| = n + r. Since

tl+r − t0 − (tl+r − t0)%τ = kτ , from Eq. (14) we can simplify δl+r,k+1 :

∀r, 1 ≤ r ≤ m,
δl+r,k+1 = tl+r − (t0 + (k + 1)τ)

+(τ |Π(tl+r)| − (tl+r − t0)%τ)
= τ(|Π(tl+r)| − 1)
= (n+ r − 1)τ

Now from induction hypothesis, ∃!i ∈ Πk : δi,k = τ , so that δi,k+1 = (n+m)τ .
Moreover, 1 < j ≤ n, ∃!i ∈ Πk : δi,k = jτ ⇒ δi,k+1 = (j − 1)τ . Finally:

∀j, 1 ≤ j ≤ n+m,∃!i ∈ Πk+1 : δi,k = j

Which means P (k + 1) is true.
• If a sensor indexed l dies between t0 + kτ and t0 + (k + 1)τ , Πk+1 = Πk|{l}
and δl,k = τ . Since j > 1,∃!i, δi,k+1 = (j − 1)τ , P (k + 1) is true. It can
be further shown that if between the states Ek and Ek+1, one sensor dies and
several activates, P (k + 1) remains true.
-If |Πk+1| > M .
• If there is no variation in the active sensors Πk = Πk+1. From P (k), ∀j, 1 ≤
j ≤ M,∃!i ∈ Πk : Πk = jτ . Then, since the period of these sensors is Mτ
(definition of fM,τ ), from the same reasoning as above ∀j, 1 ≤ j ≤ M,∃!i ∈
Πk+1 : Πk+1 = jτ . No sensor dies, so next-death(k) = next-death(k+1). Thus,
about the other sensors (which do not emit on the first M instants): from
Eq. (12), ∃!i ∈ Ik+1 : δi,k+1 = next-death(k+1) − (t0 + (k + 1)τ) + Mτ and
∀i ∈ Ik+1, δi,k+1 ≥ next-death(k+1)− (t0 + (k+ 1)τ) +Mτ . Hence, P (k+ 1) is
true.
• If m sensors, indexed (l+ r)r∈[1,m] activates and no one dies. Then, if |Πk| <
M , the sensors activates in the same way as a case already studied above, until
|Πk| = M . Without loss of generality, we consider now that (l + r)r∈[1,m]

activates while there are already M active sensors. Then ∀j, 1 ≤ j ≤ M,∃!i ∈
Πk+1 : δi,k+1 = τj. Moreover, fM,τ fix the period of l + 1 to death-date[0] −
tl+1 +Mτ and delete death-date[0] from death-date. The same thing is done for
all l + r. In that case, δl+1,k+1 = death-date[0] − (t0 + (k + 1)τ) +Mτ . and it
is the same for the other sensors indexed l + r. Hence, P (k + 1) is true.
• If a sensor l ∈ Πk dies. Then, δl,k = τ and Πk+1 = Πk/{l}. Then next-death(k) =
t0+(k+1)τ . We consider,from hypothesis P (k), i so that δi,k = next-death(k)−
(t0 + kτ) +Mτ = (M + 1)τ and δi,k+1 = Mτ . Hence :

∀j, 1 ≤ j ≤ M, ∃!i ∈ Πk+1 : Πk+1 = jτ

Moreover, next-death(k+1) is updated to the death date of the next sensor,
and from assertion 1, fM,τ fix the period of a sensor so that it emit Mτ after
the death of the next sensor i.e. ∃!i ∈ Ik+1 : δi,k+1 = next-death(k+1) − (t0 +
(k + 1)τ) + Mτ . Moreover, all the other sensors will emit after that time:
∀i ∈ Ik+1, δi,k+1 ≥ next-death(k+1)− (t0 + (k + 1)τ) +Mτ . P (k + 1) is true.

P (k+1) remains true if multiple sensors activates and one sensor die between
t0 + kτ and t0 + (k + 1)τ .
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D Proofs of the bounds of the sample span of
the defined function

Proposition 5. The lower bound of the period update function fM,τ , for sensors
with same energy e is:

n
2 > M,L(fM,τ ) ≥

∑M−1
i=0

⌊
e−ce−(i+1+1i>0)cr

ce

⌋
+ (n− 2M) ∗

⌊
e−ce−2cr

ce

⌋
+

∑M−1
i=0

⌊
e−ce−(i+2)cr

ce

⌋ (17a)

M ≥ n
2 , L(fM,τ ) ≥

∑n−M−1
i=0

⌊
e−ce−(M−i+1i>0)cr

ce

⌋
+

∑M−1
i=n−M

⌊
e−ce−(2M−n+1i>0)cr

ce

⌋
+

∑n−1
i=M

⌊
e−ce−(i−n+M+2)cr

ce

⌋ (17b)

Proof. Let a sensor indexed i. It modifies 1 + 1i>0 times its emission period to
adjust itself with respect to the other sensors during its first two emissions.

|Π(.)| varies at each activation and death of a sensor. We will study the
case where sensor i is subject to the most period changes. If i activates while
|Π(.)| ≤ M , it can modify its emission period for any new sensor activating,
until there are M active sensors i.e. at most M − i−1 additional times. In that
case, the sensor i emits at least once between each activation. This is the case
if the time between two activations is greater than the period of i. Focusing on
the sensor indexed 0:

∀i, 1 ≤ i ≤ M − 1, ti − ti−1 > τi

Furthermore, if we consider that a sensor i activates when there are no more
than M remaining active sensors, it can change its emission period for each
sensor death from the time when there are M remaining sensors. Considering
that the sensors are activated at sufficiently spaced instants, and that they have
the same initial energy, then the activation index corresponds to the death index
of the sensors. Thus, the sensor i will change its emission period at the death of
sensors if i ≥ n−M . It will thus change at most i− (n−M) additional times.

However, depending on the chosen value of M , the results are different. It
is necessary to split in 2 cases:
If M is small relative to n i.e. M < n

2 .
The sensors will have a different number of period changes following these 3

intervals Fig. 4:

• 0 ≤ i ≤ M − 1, ri = M − i+ 1i>0.

• M − 1 ≤ i ≤ n−M, ri = 2.

• n−M ≤ i ≤ n− 1, ri = i− (n−M) + 2.
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Figure 4: Representation of the number of period changes depending on the
index of the sensor when M < n

2

Using Definition 6, we can define the number of emissions on the time steps
τ without duplicates, and thus have a lower bound formula for the sample span:

L(fM,τ ) ≥
∑M−1

i=0

⌊
e−ce−(M−i+1i>0)cr

ce

⌋
+ (n− 2M) ∗

⌊
e−ce−2cr

ce

⌋
+

∑n−1
i=n−M

⌊
e−ce−(i−n+M+2)cr

ce

⌋
Hence, by changing indices in the sums, we get the formula (17a).
If M is close to n i.e. M ≥ n

2 .
In this case, the intervals [0,M − 1] and [n −M,n − 1] overlap. We study

the 3 following intervals (Fig. 5):

• si 0 ≤ i ≤ n−M, ri = M − i+ 1i>0.

• si n−M ≤ i ≤ M − 1, ri = 2M − n+ 1i>0.

• si M − 1 ≤ i ≤ n− 1, ri = i− (n−M) + 2

Figure 5: Representation of the number of period changement depending on the
index of the sensor when M ≥ n

2

We can then get the minimization:

L(fM,τ ) ≥
∑n−M−1

i=0

⌊
e−ce−(M−i+1i>0)cr

ce

⌋
+

∑M−1
i=n−M

⌊
e−ce−(2M−n+1i>0)cr

ce

⌋
+

∑n−1
i=M

⌊
e−ce−(i−n+M+2)cr

ce

⌋
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This leads us directly to the simplified expression Eq. (5).

Proposition 6. We can define an analytical expression for the upper bound of
the period update function fM,τ , for sensors with the same initial energy e:

L(fM,τ ) ≤
n−1∑
i=0

⌊
e− ce − cr(1 + 1M>1 or i>0)

ce

⌋
Proof. We consider that the first M sensors are activated in the first time in-
terval τ i.e.

∀i, 1 ≤ i ≤ M, ti ∈ [t0, t0 + τ ]

Let us consider the first M sensors. In this case, considering the first sensor of
index 0 : fM,τ modifies its emission period a first time to τ , then modifies it to
Mτ if M ̸= 1. For the sensors of index 0 < i < M , their first emission period is
τ |Π(ti)|− (t− t0)%τ . Their second period is exactly τM . Each sensor performs
exactly ri = 2 period changes.

Moreover, for the following sensors, they also change their emission period
a first time to emit following the death of a sensor, then the period is fixed to
Mτ . Finally, since all the sensors turned on at the same time and consumed
a similar amount of energy, if n ≡ 0[M ], then the cycles of M sensors will be
renewed each time at the same time, and thus the M last sensors will die at
the same time in turn (no additional period change consumption). In this case,
all sensors must change their emission period twice except for the 0 sensor if
M = 1. In the latter case, the upper bound on monitoring time is reached with
respect to the period update functions effective over the instants of period τ .

Hence:

L(fM,τ ) ≤
n−1∑
i=0

⌊
e− ce − cr(1 + 1M>1 or i>0)

ce

⌋

This lead us to the approximation Eq. (6), and then we proved Proposition 3
(page 10)
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