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Abstract

We broaden the well-known Gneiting class of space-time covariance functions by

introducing a very general parametric class of fully nonseparable direct and cross-

covariance functions for multivariate random fields, where each component has

a spatial covariance function from the Matérn family with its own smoothness

and scale parameters and, unlike all currently available models, its own correla-

tion function in time. We present sufficient conditions that result in valid models

with varying degrees of complexity and we discuss the parameterization of those.

Continuous-in-space and discrete-in-time simulation algorithms are also given,

which are not limited by the number of target spatial coordinates and allow tens

of thousands of time coordinates. The application of the proposed model is illus-

trated on a weather trivariate dataset over France. Our new model yields better

fitting and better predictive scores compared to a more parsimonious model with

common temporal correlation function.

Keywords: Spatio-temporal modeling; matrix-valued covariance function;

pseudo-variogram; Matérn covariance; spectral simulation
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1 Introduction

An increasing amount of multivariate data indexed by space-time coordinates are available in numerous

scientific and engineering applications, which range from environmental and climate studies to remote

sensing and monitoring systems in industrial operations and process management. For statisticians

analyzing these data, one of the key issues is to model the space-time dependence structure not only

for each variable separately, but also across the variables. This requires versatile models that can

account for different scale and smoothness parameters for each variable, and yet whose parameters

can be accurately estimated. Bourotte et al. (2016) proposed valid multivariate space-time classes

based on Matérn and Cauchy spatial covariance functions, inspired by the multivariate Matérn model

in Gneiting et al. (2010) and Apanasovich et al. (2012). For both classes, each variable has its own

scale and own degree of smoothness in space, while allowing for some degree of cross-correlation.

However, in this construction, the marginal temporal correlation function is identical for all variables,

which, as discussed in Bourotte et al. (2016), was already seen as a restrictive assumption because it

was found that the time correlations of the three variables in the analyzed dataset were different from

one variable to the other.

To account for different scale parameters in time, space-time linear models of coregionalizations can

be proposed, as in Finazzi et al. (2013). However, there are two major drawbacks to this construction.

First, the smoothness of any component of the multivariate field is restricted to that of the roughest

underlying univariate field (Gneiting et al., 2010). Second, the number of parameters to be estimated

increases quickly as the number of components of the model increases, thus raising issues of robustness

and over-fitting. Porcu et al. (2021) discussed several strategies for building valid multivariate space-

time covariance functions, but they all lead to models with temporal correlation functions with an

identical smoothness parameter in time.

In this work, we propose new classes of multivariate space-time covariance functions with Matérn

spatial traces that allow, for each variable, different correlation functions in time and different smooth-

ness and scale parameters in space. Our main contribution is to establish sufficient validity conditions

for a very general class of matrix-valued covariance functions of the type

Cij(h, u) = σij(u)M(h; rij(u), νij(u)), (h, u) ∈ Rd × R, i, j = 1, . . . , p,

where M(·; r, ν) denotes a Matérn covariance function with scale and smoothness parameters r and

ν. We offer two main constructions. The first one builds on the substitution approach proposed in

Allard et al. (2020) for simulating univariate space-time random fields with nonseparable Gneiting-

type covariance functions. The second construction uses results on multivariate spatial covariance

models established in Emery et al. (2022). These constructions offer new modeling possibilities, in

particular negatively nonseparable covariance functions.
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The weather dataset analyzed in Bourotte et al. (2016), consisting of a 10-year record of three daily

variables (solar radiation, temperature and humidity) is revisited using a specific model obtained with

the second construction. We will show that the advantages of the fully nonseparable model proposed

in this work over the less flexible model are twofold. On the one hand, the new model offers a better

fit to the data thanks to the additional parameters in the temporal covariance. On the other hand,

we will show improved performances for both temporal prediction (i.e. predicting values at existing

weather stations for day t using values from all weather stations at days t− 1, t− 2, . . . ) and spatio-

temporal interpolation (i.e. predicting values at locations without a weather station for day t using

values at days t, t− 1, t− 2, . . . ).

The outline of the paper is the following. Section 2 provides the necessary background material on

matrix-valued space-time covariance functions, on the Gneiting class of space-time covariance func-

tions and on matrix-valued pseudo-variograms. Section 3 proposes a first, parsimonious, construction

based on the substitution approach. Section 4 then proposes a versatile, fully multivariate, Gneiting-

Matérn class. In both sections, simulation algorithms are provided for the respective class of models.

Section 5 illustrates the fully multivariate Gneiting-Matérn model on a multivariate weather dataset.

Concluding remarks follow in Section 6. Technical lemmas, proofs of our results and other general

forms of the Gneiting-Matérn model are given in appendices.

2 Background material

Throughout this work, we will use roman letters for scalars and bold letters for vectors, matrices and

matrix-valued functions. In particular, 0 and 1 denote vectors or matrices of all-zeros and all-ones,

respectively. Also, all matrix operations (product, ratio, power, square root, exponential, etc.) are

understood as elementwise.

2.1 Positive semidefinite, conditionally positive semidefinite, and separa-

ble matrices

Let p be a positive integer and a = [aij ]
p
i,j=1 a symmetric real matrix. We write a � 0 (resp.

a � 0) to indicate that a is positive (resp. negative) semidefinite, i.e.
∑p
i=1

∑p
j=1 ωi ωj aij ≥

0 (resp. ≤ 0),∀ω1, . . . , ωp ∈ R. Likewise, a �c 0 (resp. a �c 0) indicates that a is condition-

ally positive (resp. negative) semidefinite, i.e.,
∑p
i=1

∑p
j=1 ωi ωj aij ≥ 0 (resp. ≤ 0),∀ω1, . . . , ωp ∈

R such that
∑p
i=1 ωi = 0. A conditionally null definite matrix is a matrix that is both conditionally

positive and conditionally negative semidefinite. An addition separable (a-separable) matrix is such

that 2aij = aii + ajj for all i, j = 1, . . . , p, and a product separable (p-separable) matrix is such that
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a2
ij = aiiajj for all i, j = 1, . . . , p. It is straightforward to prove that any a-separable matrix is condi-

tionally null definite and that any p-separable matrix with nonnegative entries is positive semidefinite

(see Properties 1 and 2 in Appendix A).

2.2 Matrix-valued space-time covariance functions

We consider multivariate space-time random fields Z(s, t) = [Zi(s, t)]
p
i=1 defined over Rd × R, where

d is the space dimension and p the number of random field components, each being real-valued. A

space-time coordinate will be denoted (s, t), with s ∈ Rd and t ∈ R. For the sake of light notations,

the Euclidean norm of h will be denoted |h|. Without loss of generality, we assume that all random

field components are centered, i.e. E[Zi(s, t)] = 0, ∀(s, t) ∈ Rd × R, ∀i = 1, . . . , p. It will also be

assumed that the multivariate random field Z(s, t) is second-order stationary, so that all the covariance

functions exist and depend only on the space-time lag (h, u) ∈ Rd × R:

Cov(Zi(s, t), Zj(s+ h, t+ u)) = Cij(h, u), (1)

for any pair i, j = 1, . . . , p, ∀(s, s+h) ∈ Rd×Rd and ∀(t, t+u) ∈ R×R. The functions Cij are called

direct covariance functions when i = j and cross-covariance functions otherwise. The matrix-valued

covariance function C : Rd × R→Mp×p, where Mp×p is the set of p × p real matrices, associates

each space-time lag (h, u) with the p × p matrix C(h, u) = [Cij(h, u)]
p
i,j=1. C must be positive

semidefinite in Rd × R, that is, for any finite collection of space-time coordinates (sk, tk)Nk=1, the

matrix
[
[Cij(sl − sk, tl − tk)]pi,j=1

]N
k,l=1

is positive semidefinite.

Setting t = 0 in (1) defines the purely spatial matrix-valued covariance function CS(h) := C(h, 0).

Likewise, CT (u) := C(0, u) is a purely temporal matrix-valued covariance function.

A matrix-valued space-time covariance model is space-time separable if it is the elementwise prod-

uct of a matrix-valued spatial covariance function with a matrix-valued temporal covariance matrix,

i.e. when Cij(h, u)Cij(0, 0) = Cij(h, 0)Cij(0, u) for all i, j = 1, . . . , p. The direct covariance Cii is said

to be positively (resp. negatively) space-time nonseparable if Cii(h, u) ≥ Cii(0, 0)−1 Cii(h, 0)Cii(0, u)

(resp. ≤) for all (h, u) ∈ Rd × R.

A matrix-valued space–time covariance model is said to be a proportional model when it is ob-

tained as the product of a p × p covariance matrix R and a valid univariate space–time correlation

function ρ, i.e. C(h, u) = R ρ(h, u),∀(h, u) ∈ Rd×R. It is proportional-in-time if C(h, u) = R ρ(0, u)

and proportional-in-space if C(h, u) = R ρ(h, 0), ∀(h, u) ∈ Rd × R. Bourotte et al. (2016) proposed

nonproportional multivariate space-time covariance models in which the purely spatial part is a non-

proportional multivariate model but the purely temporal part is a proportional multivariate model,

i.e., the model is proportional-in-time but not in space. In this work, we will build valid and flexible

parametric classes of matrix-valued space–time covariance functions such that both the spatial and
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temporal components are multivariate and nonproportional. Such matrix-valued space-time covari-

ances are referred to as being fully nonseparable.

2.3 The univariate Gneiting class of space-time covariance functions

We first restrict ourselves to the univariate setting, i.e., p = 1. We thus choose to drop temporarily the

use of subscripts for the ease of notation. The Gneiting class of spatio-temporal covariance functions

was originally presented in Gneiting (2002). For an easier exposition of our results, we follow Allard

et al. (2020) and consider the extended class of functions of the form

C(h, u) =
1

(γ(u) + 1)d/2
ϕ

(
|h|2

γ(u) + 1

)
, (h, u) ∈ Rd × R. (2)

Zastavnyi and Porcu (2011) showed that the function in (2) is a second-order stationary covariance

function for any continuous and completely monotone function ϕ on [0,∞) if and only if the function

γ : R→ [0,∞) is a variogram on R. Recall that the variogram of an intrinsically stationary temporal

random field Z(t), t ∈ R, is defined as

γ(u) =
1

2
E
[
(Z(t+ u)− Z(t))

2
]
, ∀t, u ∈ R,

and is a conditionally negative semidefinite function (Chilès and Delfiner, 2012). The Gneiting class

of spatio-temporal covariances thus involves two functions ϕ and γ: the former is associated with

the “spatial” structure, since CS(h) = ϕ(|h|2), whereas the latter is associated with the temporal

structure, with CT (u) = (γ(u) + 1)−d/2. Notice that CT (u) → 0 as |u| → ∞ if and only if γ(u) is

unbounded. Allard et al. (2020) further showed that a Gneiting covariance as in (2) has a spectral

density if and only if γ(u) is unbounded and its spectral measure is absolutely continuous. From a

modeling point of view, the formulation (2) offers more flexibility than the original formulation in

Gneiting (2002) and provides a direct geostatistical interpretation in the temporal dimension.

Examples of such classes include the Gneiting-Matérn and Gneiting-Cauchy covariance functions,

in the cases where ϕ(|h|2) is the Matérn or the Cauchy spatial covariance, respectively. The expression

of the Matérn covariance is

M(h; r, ν) =
21−ν

Γ(ν)
(r|h|)ν Kν (r|h|) , h ∈ Rd, (3)

where r > 0 is a scale parameter (1/r is called the range), ν > 0 is a smoothness parameter and Kν
denotes the modified Bessel function of the second kind of order ν. A second-order stationary spatial

random field Z(s) with Matérn covariance is κ times mean square differentiable if and only if ν ≥ κ,

see Chilès and Delfiner (2012) for a detailed exposition. The Cauchy covariance is

C(h; r, α) =
(
1 + r|h|2

)−α
, h ∈ Rd, (4)

with α, r > 0.
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2.4 Proportional-in-time multivariate Gneiting classes

Going back to the multivariate setting, Bourotte et al. (2016) proposed classes of multivariate space-

time covariance models that are extensions of the Gneiting class in (2), where the completely monotone

real-valued function ϕ is replaced by a matrix-valued function ϕ = [ϕij ]
p
i,j=1, with each component

ϕij having specific parameters. In particular, they showed that the multivariate Gneiting-Matérn

space-time model CM =
[
CMij

]p
i,j=1

with

CMij (h, u) =
σiσjρij

(γ(u) + 1)d/2
M
(
h;

rij
(γ(u) + 1)1/2

, νij

)
, (h, u) ∈ Rd × R, (5)

is a valid second-order stationary matrix-valued covariance function if, for all i, j = 1, . . . , p,

2r2
ij = r2

i + r2
j ; 2νij = νi + νj ; ρij = βij

Γ(νij)

Γ(νi)1/2Γ(νj)1/2

rνii r
νj
j

r
2νij
ij

, (6)

where Γ is the gamma function, β = [βij ]
p
i,j=1 is a correlation matrix and ri, νi > 0 for i = 1, . . . , p.

Using matrix notations, the model in (5) is valid if the matrices ν = [νij ]
p
i,j=1 and r2 = [r2

ij ]
p
i,j=1 have

positive entries and are a-separable, and if ρr2ν/Γ(ν) � 0.

Similarly, the multivariate Gneiting-Cauchy space-time model CC =
[
CCij
]p
i,j=1

with

CCij(h, u) =
σiσjρij

(γ(u) + 1)d/2
C
(
h;

rij
(γ(u) + 1)1/2

, αij

)
, (h, u) ∈ Rd × R, (7)

is a valid matrix-valued covariance function if, for all i, j = 1, . . . , p,

2r−1
ij = r−1

i + r−1
j , 2αij = αi + αj , ρij = βij

Γ(αij)

Γ(αi)1/2Γ(αj)1/2

r
αij
ij

(rαii r
αj
j )1/2

, (8)

with ri, αi > 0, and β = [βij ]
p
i,j=1 being a positive semidefinite matrix. The sufficient conditions in

(8) are thus that α and r−1 are a-separable and ρr−α/Γ(α) � 0. Proofs are given in Bourotte et al.

(2016).

Setting h = 0 in both cases, the entries of the associated temporal matrix-valued covariance

functions are

CMij (0, u) = CCij(0, u) =
σiσjρij

(γ(u) + 1)d/2
, u ∈ R.

As discussed in Section 2.2, these are proportional-in-time models, since they are the product of a

covariance matrix with a single time correlation function ρT (u) = (γ(u) + 1)−d/2. In order to build

nonproportional multivariate models both in space and time, an essential building block is to define

admissible and relevant temporal matrix-valued covariances of the form [(γij(u) + 1)−d/2]pi,j=1. This

point is addressed in the next section.
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2.5 Matrix-valued variograms and pseudo-variograms

Consider a p-variate temporal random field Z(t) = [Zi(t)]
p
i=1, t ∈ R. Under an assumption of joint

intrinsic stationarity, the direct and cross variograms of Z are defined as

γij(u) =
1

2
Cov (Zi(t+ u)− Zi(t), Zj(t+ u)− Zj(t)) , (9)

for all t, u ∈ R and any pair i, j = 1, . . . , p. One can define a p× p matrix-valued variogram function

u 7→ γ(u) = [γij(u)]pi,j=1. For a second-order stationary random field Z, the matrix-valued covariance

C and variogram γ are related by the identity γ(u) = C(0) − (C(u) +C(−u))/2. A necessary and

sufficient condition for γ to be a matrix-valued variogram is that γ(0) = 0, γ(u) = γ(−u) = γ(u)>

for all u ∈ R and
p∑
i=1

p∑
j=1

N∑
k=1

N∑
l=1

ωik ωjl γij(tl − tk) ≤ 0

for all choices of the positive integerN , the time coordinates t1, . . . , tN and the real values ((ωik)pi=1)Nk=1

such that
∑N
k=1 ωik = 0 for all i = 1, . . . , p (Dörr and Schlather, 2021).

The matrix-valued variogram γ is not the only function that can describe the cross-variations

between the random field components Z1(t), . . . , Zp(t). The pseudo-variogram is the p × p matrix-

valued function η with entries

ηij(u) =
1

2
Var
[
Zi(t+ u)− Zj(t)

]
, t, u ∈ R, i, j = 1, . . . , p. (10)

The right-hand side of (10) does not depend on t under the assumption that the direct and cross-

increments are intrinsically stationary. Notice that all the entries of the pseudo-variogram matrix are

nonnegative and that, unlike the variogram in (9), the pseudo-variogram is not necessarily an even

function. Notice also that ηii(u) = γii(u), ∀u ∈ R and for any i = 1, . . . , p.

A necessary and sufficient condition for η to be a matrix-valued pseudo-variogram is that ηii(0) = 0

for i = 1, . . . , p, η(u) = η(−u)> for all u ∈ R and

p∑
i=1

p∑
j=1

N∑
k=1

N∑
l=1

ωik ωjl ηij(tl − tk) ≤ 0

for all choices of the positive integerN , the time coordinates t1, . . . , tN and the real values ((ωik)pi=1)Nk=1

such that
∑p
i=1

∑N
k=1 ωik = 0. Equivalently, η is a matrix-valued pseudo-variogram if, and only if,

u 7→ exp(−tη(u)) is a matrix-valued correlation function, i.e., a matrix-valued covariance function

whose diagonal entries are equal to 1 at u = 0, for all t > 0 (Dörr and Schlather, 2021).
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3 First proposal: parsimonious Gneiting-Matérn and Gneiting-

Cauchy multivariate models

In this section, we propose an approach to build multivariate space-time models that are neither

proportional in space nor in time. It is based on the substitution approach proposed in Allard et al.

(2020) for simulating univariate space-time Gaussian random fields characterized with Gneiting-type

covariance functions. It also uses the integral representation of completely monotone functions. Com-

pared to the model in (5), the univariate variogram model is generalized into a matrix-valued pseudo-

variogram, as defined in (10). This construction is less general than the class that will be presented

in Section 4, but it is more parsimonious and the construction is more direct.

3.1 Model construction

Theorem 1. Let σ = [σij ]
p
i,j=1 be a symmetric positive semidefinite matrix, u 7→ η(u) = [ηij(u)]pi,j=1

be a matrix-valued pseudo-variogram on R, and t 7→ ϕ(t) = [ϕij(t)]
p
i,j=1 be a matrix of completely

monotone functions on [0,∞) such that ϕij(t) =
∫∞

0
e−rt(fi(r)fj(r))

1/2dr, where fi and fj are prob-

ability density functions on [0,∞). Then, the matrix-valued function C : (h, u) 7→ [Cij(h, u)]pi,j=1

with

Cij(h, u) =
σij

(ηij(u) + 1)d/2
ϕij

(
|h|2

ηij(u) + 1

)
, (h, u) ∈ Rd × R, (11)

is positive semidefinite in Rd × R.

Example 1 (Gneiting-Matérn model). Let fi be the probability density of an inverse gamma distri-

bution with shape parameter νi > 0 and scale parameter r2
i /4 > 0:

fi(r) =
1

Γ(νi)

(ri
2

)2νi
r−νi−1 exp

(
− r

2
i

4r

)
, r > 0.

Based on the fact that an inverse gamma mixture of Gaussian covariances is a Matérn covariance

(Emery and Lantuéjoul, 2006), the direct and cross-covariances are found to belong to the Gneiting-

Matérn family:

Cij(h, u) =
Γ(νij)√

Γ(νi) Γ(νj)

rνii r
νj
j

r
2νij
ij

σij
(ηij(u) + 1)d/2

M
(
h;

rij
(ηij(u) + 1)1/2

, νij

)
, (12)

with 2νij = νi + νj, 2r2
ij = r2

i + r2
j and M the Matérn covariance defined in (3).

Example 2 (Gneiting-Cauchy model). Let fi be a gamma probability density with shape parameter

αi > 0 and scale parameter ri

fi(r) =
1

Γ(αi)
exp

(
− r
ri

)
r−αii rαi−1, r > 0.
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Based on the fact that a gamma mixture of Gaussian covariances is a Cauchy covariance (Emery and

Lantuéjoul, 2006), the direct and cross-covariances are found to belong to the Gneiting-Cauchy family:

Cij(h, u) =
Γ(αij)√

Γ(αi) Γ(αj)

r
αij
ij

r
αi/2
i r

αj/2
j

σij
(ηij(u) + 1)d/2

C
(

h

(ηij(u) + 1)1/2
; rij , αij

)
, (13)

with 2αij = αi + αj, 2r−1
ij = r−1

i + r−1
j and C the Cauchy covariance defined in (4).

The two previous examples generalize (5) and (7), with a matrix-valued pseudo-variogram η instead

of a usual variogram γ.

The advantage of this construction is that it is easy to understand and that it is straightforward to

simulate realizations of the multivariate random field Z, as shown in the next subsection. However,

an implicit assumption is that ϕij(t) =
∫∞

0
e−trfij(r)dr, with fij being p-separable: fij = f

1/2
i f

1/2
j .

This is a parsimonious parameterization, but also a restrictive condition. As shown in Emery et al.

(2022) and in Section 4.1, this condition may entail weak correlations between Zi and Zj . In Section

4, we will propose a more general class of multivariate Gneiting-Matérn models that encompasses the

model presented in Example 1.

3.2 Substitution simulation algorithm

A realization of the p-variate random field Z = [Zi]
p
i=1 with approximate Gaussian distribution can be

constructed from the standardized sum of a large number M of independent copies of non-Gaussian

random fields as in Equation (23) (Appendix B), each of which depending only on two random variables

R and Φ, two random vectors V and Ω and a temporal p-variate random field W . This is summarized

in Algorithm 1 hereinafter, where 〈·, ·〉 stands for the usual scalar product in Rd, R ∼ f is the short

notation for “R is distributed according to the distribution f”, U(0, 2π) is the uniform distribution on

(0, 2π), Nd(0,Σ) is the d-dimensional normal distribution with expectation 0 and variance-covariance

matrix Σ, and Id is the d× d identity matrix.

The intrinsic random field W = [Wi]
p
i=1 with Gaussian direct and cross-increments can be simu-

lated with the covariance matrix decomposition method (Algorithm 2 below), by setting W1(0) = 0

and using the nonstationary covariance function (Papritz et al., 1993, Equation (6))

Cov(Wi(t),Wj(t
′)) = Cov(Wi(t)−W1(0),Wj(t

′)−W1(0)) = −ηij(t− t′) + ηi1(t) + η1j(−t′). (14)

This construction (as well as the more general class presented in Section 4) is limited to multivariate

random fields W with Gaussian direct and cross-increments that are characterized by the pseudo-

variogram η. The discussion on valid classes of pseudo-variograms is differed to Section 4.3.

The method is applicable as long as the number of time coordinates targeted for simulation is

not too large (in practice, up to a few tens of thousands), so that the square root matrix can be
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Algorithm 1 Substitution simulation algorithm

Require: Admissible Matérn or Cauchy parameters as given in Theorem 1

Require: Admissible pseudo-variogram η

Require: A probability density function f on [0,∞) whose support contains the supports of f1, . . . , fp

Require: A large integer M

1: Initialize Zi(s, t) = 0, for all i and at each target space-time coordinate (s, t) ∈ Rd × R

2: for m = 1 to M do

3: Simulate R ∼ f

4: Simulate Ω ∼ Nd(0, Id)

5: Simulate Φ ∼ U(0, 2π)

6: Simulate V ∼ Np(0,σ)

7: Simulate a p-variate intrinsic random field W = [Wi]i=1,...,p with zero-mean Gaussian incre-

ments and pseudo-variogram η at each target time coordinate t

8: for each target space-time coordinate (s, t) do

9: Compute

Zi(s, t) = Zi(s, t) +

√
2

M

√
fi(R)

f(R)
Vi cos

(√
2R 〈Ω, s〉+

|Ω|√
2
Wi(t) + Φ

)
, i = 1, . . . , p

10: end for

11: end for

Algorithm 2 Matrix decomposition algorithm

Require: Admissible pseudo-variogram η

Require: Set of time coordinates t1, · · · , tnT targeted for simulation

1: Calculate the (p nT )×(p nT ) variance-covariance matrixCW = [[Cov(Wi(tm),Wj(tn))]pi,j=1]nTm,n=1,

as per (14)

2: Simulate X ∼ Np nT (0, Ip nT )

3: Compute W = [[Wi(tn)]pi=1]nTn=1 = C
1/2
W X, with C

1/2
W the principal square root (Horn and John-

son, 2013, Theorem 7.2.6) of CW
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computed. For larger numbers, iterative simulation methods based on Gibbs sampling can be used,

still with the nonstationary covariance function (14) (Lantuéjoul and Desassis, 2012; Arroyo and

Emery, 2020). Also, for specific classes of pseudo-variograms such as the one presented in Section 4.3,

the multivariate random field W can be constructed by combinations of stationary Gaussian random

fields and intrinsic random fields with Gaussian increments, for which discrete (Dietrich and Newsam,

1997; Stein, 2002) and continuous (Emery et al., 2016; Arroyo and Emery, 2017) spectral simulation

algorithms are available.

The distribution f in Algorithm 1 can be any positive probability density function on Rd. From a

practical viewpoint, f should be chosen so as to quicken the convergence of the simulated random field

to a Gaussian random field as M tends to infinity. Since in Examples 1 and 2 all fis belong to the same

family of distributions, it is reasonable to choose f in that same family. Following Arroyo and Emery

(2021), it is recommendable to set f as the distribution fi with the heaviest tail. Accordingly, in the

Gneiting-Matérn case, f will be an inverse gamma distribution with shape parameter ν = min1≤i νi.

In the Gneiting-Cauchy case, f will be a gamma distribution with shape parameter α = max1≤i αi.

4 Second proposal: fully multivariate Gneiting-Matérn classes

We now present a very general class of multivariate space-time covariance models for which the purely

spatial part belongs to the Matérn family. This construction uses results on multivariate spatial

covariance models establihed in Emery et al. (2022).

4.1 Main result

Theorem 2. Let ν, b2 and a2 be p × p symmetric conditionally negative semidefinite matrices, all

with positive entries, such that a2−ν �c 0. Let u 7→ ρ(u) be a p×p matrix-valued covariance function

on R and let u 7→ η(u) be a p × p matrix-valued pseudo-variogram on R. Then, the matrix-valued

function C : (h, u) 7→ [Cij(h, u)]pi,j=1 with

Cij(h, u) = σij(u)M(h; rij(u), νij), (h, u) ∈ Rd × R,

is positive semidefinite in Rd × R for

r(u) = [rij(u)]pi,j=1 =

√
αη(u) + a2

βη(u) + b2 and σ(u) = [σij(u)]pi,j=1 =
ρ(u)Γ(ν) exp(ν)

(αη(u) + a2)
ν (
βη(u) + b2

)d/2 ,
(15)

where α and β are nonnegative.
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Corollary 1. Let ν, b2, a2, η, α and β be as in Theorem 2. Let τ be a p× p symmetric real matrix.

The matrix-valued function C : (h, u) 7→ [Cij(h, u)]pi,j=1 with

Cij(h, u) =
τij

(βηij(u) + b2ij)
d/2(αηij(u) + a2

ij)
νij
M

(
h;

√
αηij(u) + a2

ij

βηij(u) + b2ij
, νij

)
, (h, u) ∈ Rd × R,

(16)

is positive semidefinite in Rd × R if the matrix τe−ν/Γ(ν) is positive semidefinite.

The multivariate space-time covariance model (16) is of Gneiting-Matérn type. The sufficient

conditions on the parameters call for several comments.

1. A sufficient condition for a2 − ν �c 0 is that a2 �c 0 and ν is a-separable (see Property 4 in

Appendix A). This more restrictive condition is also found in Apanasovich et al. (2012), Genton

and Kleiber (2015) and Bourotte et al. (2016). Even though a-separability is not necessary, it is

convenient because it is easy to satisfy. From a statistical point of view, it reduces the number

of parameters from p(p+ 1)/2 to p and therefore leads to a more parsimonious model.

2. The conditional negative semidefiniteness condition on a2 is similar to that in Apanasovich et al.

(2012) in a spatial context. It is weaker than the a-separability condition in (6) that applies to

the Gneiting-Matérn model in Bourotte et al. (2016).

3. Since ν �c 0, the matrix exp (−ν) is positive semidefinite (see Property 3 in Appendix A). Hence,

based on Schur’s product theorem, a sufficient condition is that τ/Γ(ν) is positive semidefinite.

4. The positive semidefiniteness condition on τ in Corollary 1 only depends on the smoothness

parameters ν. In contrast, the positive semidefiniteness condition implied by the Gneiting-

Matérn example for the substitution approach in (12) (which is similar to the condition (6) from

Bourotte et al. (2016)) depends on both ν and r(u), which is a stronger condition. Theorem 2

therefore offers much more flexibility for modeling multivariate space-time data. As a striking

illustration of this point, let us consider a bivariate Matérn spatio-temporal field as in (16),

with α = 0, β = 1 and b being an all-ones matrix. According to (6), the absolute value of the

collocated correlation between the two field components is bounded from above by

Γ(ν12)aν1111 a
ν22
22√

Γ(ν11)Γ(ν22)a
2νij
ij

.

With the conditions of Theorem 2, the upper bound is Γ(ν12)/
√

Γ(ν11)Γ(ν22) when ν is a-

separable. For example, with ν11 = 0.5, ν12 = 1.5, ν22 = 2.5, r11 = 1.25, r22 = 0.66, we get

|ρ12| ≤ 0.229 with condition (6) corresponding to Bourotte et al. (2016) and |ρ12| ≤ 0.577

according to Theorem 2. The gain is substantial.
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This Gneiting-Matérn class is quite versatile, even though more general classes, with the smooth-

ness parameters ν depending on the temporal lag u, can be elaborated (see Theorems 3 and 4 in

Appendix C). The space-time properties depend very much upon the values of α and β. Obviously,

if α = β = 0, the model is purely spatial. In this context, setting b to be the all-ones matrix, the

condition on σ reduces to the condition of Theorem 3B in Emery et al. (2022). Hence, as a side-result,

Theorem 2 also provides new classes of multivariate Matérn spatial models.

When α = 0, accounting for the fact that exp(−ν) and all p-separable matrices with nonnegative

entries are positive semidefinite (see Properties 2 and 3 in Appendix A), the models in (15) and (16)

generalize the Gneiting-Matérn models (5) and (12). If, furthermore, the direct variograms ηii are

increasing functions for i = 1, . . . , p, the scale parameters rii(u) = aii(βηii(u) + b2ii)
−1/2 decrease as u

increases. The space-time direct correlations are thus higher than what would happen for a separable

space-time covariance function, i.e., they are positively nonseparable.

When β = 0 and under the same monotonicity assumption for the direct variograms, the scale

parameters rii(u) =
√
αηii(u) + a2

ii/bii increase with u. This a very original feature, since for all

Gneiting-type spatio-temporal models of our knowledge, the scale parameter decreases with u. Ap-

plying the same reasoning as above, the resulting space time direct covariances are thus negatively

nonseparable.

When α and β are both positive, the model is positively or negatively space-time nonseparable,

depending on the relative values of the other parameters involved in r(u). However, in the common

case when ηij(u) → ∞ as u → ∞, r(u) asymptotically tends to a matrix with all elements equal to√
α/β. The space-time covariance is thus asymptotically separable as |u| → ∞.

4.2 A spectral simulation algorithm

It is of interest to simulate a p-variate space-time random field Z with zero mean and with a matrix-

valued covariance function of the form C : (h, u) 7→ σ(u)M(h; r(u),ν), as stated in Theorem 2, on a

grid of Rd with nS nodes s1, . . . , snS crossed with a grid of R with nT nodes t1, . . . , tnT . Let q = p nT

and, for ω ∈ Rd, define the q × q matrix F (ω) = [[Fi,m;j,n(ω)]pi,j=1]nTm,n=1 whose generic entry is the

spectral density of the Matérn covariance h 7→ σij(umn)M(h; rij(umn), νij), with umn = tm − tn,

evaluated at ω (Lantuéjoul, 2002):

Fi,m;j,n(ω) = σij(umn)
π
d
2 2d Γ

(
νij + d

2

)
rij(umn)d Γ(νij)

(
1 +

|2πω|2

r2
ij(umn)

)− d2−νij
.

In the same way as in the proof of Theorem 2 given in Appendix B, the p-variate random field Z

to simulate at the nS × nT target nodes of Rd × R can be viewed as a q-variate random field Y

at nS nodes of Rd with a multivariate Matérn covariance with parameters
[
[rij(umn)]pi,j=1

]nT
m,n=1

,
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[
[νij ]

p
i,j=1

]nT
m,n=1

and
[
[σij(umn)]pi,j=1

]nT
m,n=1

. The simulation can be done by means of the continuous

spectral algorithm presented in Emery et al. (2016), which relies on importance sampling and on the

square root decomposition of the q×q positive semidefinite matrix F (Ω) evaluated at a random vector

Ω. In addition to parameters verifying the conditions of Theorem 2, a probability density function

g that does not vanish on Rd is required to define Ω. Owing to the central limit theorem, a random

field with an approximately Gaussian distribution is obtained by rescaling properly the sum of a large

number M of independent copies of Y .

Algorithm 3 Spectral simulation algorithm

Require: Admissible parameters for ν, b2 and a2

Require: Admissible pseudo-variogram η

Require: A probability density function g not vanishing on Rd

Require: A large integer M

1: Initialize Y (sk) = 0 for each target spatial coordinate sk, k = 1, . . . , nS

2: for m = 1 to M do

3: Simulate Ω ∼ g

4: Compute the principal square root H(Ω) of the matrix 2F (Ω)/g(Ω)

5: Simulate Φ ∼ U(0, 2π)

6: Simulate a random integer P uniformly distributed in {1, . . . , p}

7: for each target spatial coordinate sk do

8: Compute

Y (sk) = Y (sk) +

√
p

M
H(Ω;P ) cos(2π〈Ω, sk〉+ Φ)

where H(Ω;P ) denotes the P -th column of H(Ω)

9: end for

10: end for

11: Z := re-ordering of Y into a p-variate random field at nS × nT space-time coordinates

The spectral simulation algorithm is applicable when q is not too large, say, less than a few tens of

thousands, so that the square root decomposition of the spectral density matrix F (Ω) can be achieved.

There is no such restriction on the number of spatial nodes nS , which can be much higher, insofar as

the simulation in space is achieved in a continuous manner, the spatial random field being a mixture

of cosine waves that can be computed at as many coordinates as desired.

Following the reasoning of Section 3.2, the density g can be chosen as a multivariate distribution

with p independent marginal gamma distributions with shape parameter ν = min1≤i νii.
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4.3 Models for unbounded pseudo-variograms

Recall that the temporal structure is described by a matrix-valued pseudo-variogram η : u 7→

[ηij(u)]pi,j=1, which must be unbounded as discussed in Section 2.3. Matrix-valued variograms can

easily be constructed by use of the Linear Model of Corregionalization (LMC) (Chilès and Delfiner,

2012; Genton and Kleiber, 2015). However, as shown in Chen and Genton (2019) the LMC-based ap-

proach cannot be used to construct matrix-valued pseudo-variograms with different diagonal entries,

which is necessary for a fully nonseparable multivariate model. In Papritz et al. (1993) it is shown

that for a matrix-valued pseudo-variogram η, the following large distance behavior holds:

lim
|u|→∞

ηij(u)

ηii(u)
= 1, (17)

for any pair i, j = 1, . . . , p. In other words, all entries of a matrix-valued pseudo-variogram must have

the same behavior for very large lag separation u.

As a simple model for an unbounded matrix-valued pseudo-variogram with different diagonal

entries (direct variograms), we propose the following construction. Let us define

Wi(u) = Y0(u) + Yi(u), u ∈ R, (18)

where Y1, . . . , Yp are second-order stationary random fields with direct and cross-covariance functions

R : u 7→ [Rij(u)]pi,j=1 and Y0 is an independent intrinsic random field with unbounded variogram γ0.

Then, the pseudo-variogram of W = [Wi]
p
i=1 is such that

ηij(u) = γ0(u) +
Rii(0) +Rjj(0)

2
−Rij(u), u ∈ R.

In matrix notation, a valid class of unbounded matrix-valued pseudo-variogram is thus

η(u) = γ0(u)1p +R0 −R(u), u ∈ R, (19)

where 1p is the all-ones matrix of size p×p, R is any matrix-valued covariance function and R0 is the

a-separable matrix with entries R0
ij = (Rii(0) + Rjj(0))/2. Notice that 1p and R0 are conditionally

negative semidefinite matrices, whilst R is a positive semidefinite matrix-valued function.

A more general model consists in replacing Y0(u) in (18) by Y0(u + δi), with δi ∈ R, which leads

to the matrix-valued pseudo-variogram η(u) = [γ0(u+ δi − δj)]pi,j=1 +R0 −R(u), u ∈ R.

5 Application to a weather dataset

5.1 Introduction

We now illustrate the use of the fully nonseparable multivariate Gneiting-Matérn model proposed in

(16) on a weather dataset consisting of three daily variables (solar radiation R, temperature T, and
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humidity H) recorded at 13 stations in Western France from 2003 to 2012. A previous analysis of this

dataset (Bourotte et al., 2016) has shown that a proportional-in-time multivariate Gneiting-Matérn

improved the modeling and the prediction scores as compared either to a model with a separable

spatio-temporal covariance function or to univariate models. In this analysis, we shall compare a

specific fully nonseparable multivariate model (FULL), as proposed in (16), to a Proportional-In-

Time (PIT) model proposed in Bourotte et al. (2016). These models will be applied to residuals, after

centering in time and space, in order to filter out any seasonal and regional effect.

An exploratory analysis was performed to assess the nonseparability of those residuals. For each

of the three variables, the separability index S(h, u) = C(h, u)−CS(h)CT (u) was computed from the

space-time empirical variogram obtained with the function EVariogram from the package CompRandFld

(Padoan and Bevilacqua, 2015), using spatial bins of 50 m. Recall that, since the variograms have

been computed on residuals, their sill are equal to 1 and the separability index must be in the interval

[−1, 1], with S(h, u) = 0 indicating separability of C(h, u). Figure 1 shows the separability index of

all variables at the first three time steps. Without having to compute a formal test for separability

as for example in Mitchell et al. (2006), it is clear from these plots that the residuals are uniformly

positively space-time nonseparable for |h| ≤ 500 m and u ≤ 3, which is actually often the case for

climate variables. The same analysis was performed using other values for the spatial bins and similar

results were consistently obtained (not shown).

Figure 1: Separability index S(h, u) computed at u = 1 (blue solid lines), u = 2 (red dashed lines)

and u = 3 (green dotted lines).

Maximum likelihood estimation requires computational costs of the order of pN , where N is the

total number of space-time records, and p the number of variables. Maximizing the likelihood is thus

computationally demanding, when possible. Composite likelihood methods have proven efficient in
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the context of spatio-temporal data, with less time-consuming steps and good asymptotic properties

(Bevilacqua et al., 2012). Pairwise Likelihood (PL) is the product of marginal Gaussian likelihoods

computed on all pairs {Zi(sα, tα), Zj(sβ , tβ)} such that |sα − sβ | ≤ dm and |tα − tβ | ≤ tm, where

i, j = 1, . . . , p and α, β = 1, . . . , N . On a simulation study mimicking the sampling design of the

dataset, it was shown in Bourotte et al. (2016) that, for the smoothness and scale parameters, Pairwise

Likelihood (PL) provides estimates with only a slight loss in efficiency as compared to a Full Likelihood

(FL) approach, with a significant gain in terms of computation. Moreover, for prediction, the difference

between PL and FL is negligible on all tested prediction scores. We have thus decided to estimate the

parameters of our model using PL in this same way, since it has already been proven efficient. We

have set dm = 250 km and tm = 2 days because these values have been shown to minimize the trace

of the estimated covariance matrix, thus providing optimal estimation for all parameters (Bourotte

et al., 2016). The maximization algorithm will be detailed in Section 5.3 hereinafter.

Two validation stations were selected, neither too close, nor too far from the other stations (Le

Rheu and Bourran). The other 11 stations were used to estimate the parameters of both the FULL

and the PIT models, reported in Table 1. In order to restrict ourselves to data being stationary in

time, we have selected data recorded in January, from 2003 to 2012.

5.2 Model specification

Given the positive nonseparablity of the residuals, and in light of the discussion in Section 4, the

parameter α in (16) is set to α = 0, which results in a significant reduction of parameters. The

temporal structure is described by a matrix-valued unbounded pseudo-variogram as proposed in (19).

Since d = 2 here, the entries of the matrix-valued covariance function thus read:

Cij(h, u) =
τija

−2νij
ij

βηij(u) + b2ij
M

h;
aij√

βηij(u) + b2ij

, νij

 , (h, u) ∈ Rd × R, (20)

with the condition that τe−ν/Γ(ν) � 0. Setting h = 0 and u = 0 in (20), one gets the generic entry

of the covariance matrix

Cij(0, 0) = τija
−2νij
ij (β[R0

ij −Rij(0)] + b2ij).

For identifiability reasons, we further set β = 1 and b2ij = 1−R0
ij with maxi{Rii(0)} < 1. According

to Property 4 in Appendix A, the matrix b2 is conditionally definite negative, as required. As a

consequence, we get the simpler expression Cij(0, 0) = τija
−2νij
ij /[1−Rij(0)].

The pseudo-variogram η needs to be specified. For ease of comparison with Bourotte et al. (2016),

we choose the parametric form also advocated in Gneiting (2002)

γ0(u) = (1 + |cu|2a)b − 1, u ∈ R,
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with c > 0, 0 < a ≤ 1, 0 ≤ b ≤ 1. This variogram is reminiscent of the generalized Cauchy covariance

model which will also be used for R:

Rij(u) = AiAj(1 + |ru|2λ)−b, u ∈ R,

with r > 0, 0 < λ < 1 and 0 ≤ Ai < 1 for i = 1, . . . , p, and where for the sake of parsimony the

parameter b is set identical to the parameter b in γ0. Notice that the matrix [AiAj ]
p
i,j=1 is p-separable

and thus positive semidefinite (see Appendix A). R is therefore a valid matrix-valued covariance

function. The covariance model that we thus obtain is:

Cij(h, u) =
τija

−2νij
ij

(1 + |cu|2a)b −AiAj(1 + |ru|2λ)−b

×M

(
h;

aij

[(1 + |cu|2a)b −AiAj(1 + |ru|2λ)−b]
1/2

, νij

)
.

In the above parameterization, the space–time nonseparability parameter b acts both inside and out-

side the Matérn functionM, implying a constant perfect correlation in time if b = 0. Following Gneit-

ing (2002) and Bourotte et al. (2016), a reparameterization is thus useful. Multiplying the above equa-

tion by the temporal matrix-valued covariance function ρ̃(u) =
[
(1 + c|u|2a)δ −AiAj(1 + r|u|2λ)−δ

]−1

with 0 ≤ δ ≤ 1 leads to the parametric family that will be used in the rest of this section. The param-

eterization is further simplified by setting τii = σ2
i a

2νii
ii (1−A2

i )
2 and, for i 6= j, τij = ρij

√
τiiτjj , with

[ρij ]i,j=1,...,p being a correlation matrix. With this parameterization, the matrix τ is positive definite

by construction. Finally, the fully multivariate Gneiting-Matérn covariance model reads

Cij(h, u) =
1

(1 + |cu|2a)δ −AiAj(1 + |ru|2λ)−δ
ρija

−2νij
ij

√
τiiτjj

(1 + |cu|2a)b −AiAj(1 + |ru|2λ)−b

×M

(
h;

aij

[(1 + |cu|2a)b −AiAj(1 + |ru|2λ)−b]
1/2

, νij

)
, (21)

with (h, u) ∈ Rd × R and i, j = 1, . . . , p.

The model in (21) provides interpretable parameters for a fully nonseparable, i.e. a multivariate

Gneiting-Matérn covariance function, which is space-time nonseparable and neither proportional-in-

time nor proportional-in-space:

• The collocated covariance matrix [Cij(0, 0)]i,j=1,...,p has elements

Cij(0, 0) = ρijσiσj
aνiiii a

νjj
jj

a
2νij
ij

(1−A2
i )(1−A2

j )

(1−AiAj)2
, (22)

which simplify to Cii(0, 0) = σ2
i if i = j. This is the elementwise product of a covariance

matrix [ρijσiσj ]i,j=1;...,p with a weight matrix whose elements are ratios combining the other
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parameters. Notice that the quantities σ2
i a

2νii
ii appearing in these ratios are precisely the micro-

ergodic quantities that can be consistently estimated by Maximum Likelihood under Gaussian

assumption in an infill asymptotics setting (Zhang, 2004).

• The vector A = [Ai]
p
i=1 describes the multivariate aspect of the temporal covariance function.

When Ai = 0 for i = 1, . . . , p, the above model reduces to the model in Bourotte et al. (2016,

Equation 9), up to a slight reparameterization.

• The temporal parameters are, on the one hand, (a, c) that characterize the common part of the

temporal covariance function and, on the other hand, (r, λ,A) that characterize the multivariate

part of it. In addition, the parameters (b, δ) act on both parts of the temporal covariance

function.

• The spatial parameters are the scale matrix a, with a2 �c 0, and the smoothness matrix ν,

which must verify a2 − ν �c 0. For simplicity, and for a fair comparison to Bourotte et al.

(2016), a2 and ν will be chosen as a-separable. The two above conditions on a and a2 − ν are

thus always verified.

• The parameter b, which appears in both the spatial and temporal terms, is the separability

parameter. It can vary from b = 0 (separability) to b = 1 (full spatio-temporal nonseparability).

5.3 Estimation of the parameters

The data analyzed here are standardized residuals after centering for spatial and temporal trends. We

thus set σi = 1, for i = 1, . . . , p. There is a total of p(p + 2) + 6 parameters to estimate, where p is

the number of variables. Here p = 3, leading to a total of 21 parameters. Compared to the model

in Bourotte et al. (2016), our more flexible model contains only 6 additional parameters describing

the multivariate nature of the temporal covariance. Let us denote θ the vector of all parameters, and

let Θ be the space of parameters for which the model (21) is valid. The optimization of the PL is

not straightforward. First, the space Θ has a complex shape owing to the semidefinite positiveness

condition on τe−ν/Γ(ν). Checking this condition at every call of the function computing the PL

prevents the optimization functions to work properly. It was thus decided to consider a hyper-box

shape for Θ and check the condition at convergence. It was found that the semidefinite positiveness

condition was always verified. Second, employing blindly an optimization function to maximize the PL

in the high-dimensional space Θ is likely to fail. As a way to alleviate this problem, PL was maximized

sequentially in subspaces of Θ corresponding to blocks of related parameters, while keeping all other

parameters fixed to the values previously attained.
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The following procedure builds on the procedure presented in Bourotte et al. (2016), which was

proven to be efficient.

1. The p× p marginal empirical covariance matrix with elements ĉij , i, j = 1, . . . , p is computed.

2. The separability parameter b, known to be difficult to estimate, is successively fixed to 0, 0.1, . . . , 1.

3. For every fixed value of b:

(a) Initial temporal parameters (c, a, r, λ, δ,A) are estimated by maximizing the PL for the

temporal covariance model CT . Using (21) and (22), one gets

CT,ij(u) =
1

(1 + |cu|2a)δ −AiAj(1 + |ru|2λ)−δ
ĉij(1−AiAj)2

(1 + |cu|2a)b −AiAj(1 + |ru|2λ)−b
.

(b) Using the estimates Â from the previous step, initial spatial parameters (a,ν) are estimated

by maximizing the PL for the spatial matrix-valued covariance CS with entries

CS,ij(h) = ĉijM

h;
aij(

1− ÂiÂj
)1/2

, νij

 .

(c) The estimates ρ̂ij are computed using (22), given â, ν̂, Â.

(d) The temporal parameters are updated, considering all other parameters fixed, by maximiz-

ing the PL of the multivariate spatio-temporal model (21).

(e) The spatial parameters are updated, considering all other parameters fixed by maximizing

the PL of the multivariate spatio-temporal model (21).

(f) Step (c)-(e) are iterated until a stopping criterion is reached and the positive semi-definiteness

of τe−ν/Γ(ν) is checked.

Iterations are stopped when PL is increased by less than 0.5 unit after one iteration from (c) to

(e). Finally b̂ is the value of b among {0, 0.1, . . . , 0.9, 1} corresponding to the highest maximized PL.

To perform the maximization in the subspaces of Θ, we used the package nlminb implemented in R

with lower and upper bounds for the parameters when mathematically necessary. In addition, for the

sake of numerical stability, the smoothness parameter ν was upper bounded at 6.0.

Figure 2(left) shows the maximum log-PL as a function of the separability parameter b for the fully

multivariate Gneiting-Matérn model, referred to as FULL. The maximum is reached for b̂ = 0.1 with

log PLFULL(θ̂b=0.1) = −615135.3. For comparison purpose, PL was also maximized for the PIT model,

i.e. when A = 0. For this simpler model, log PLPIT(θ̂b) is monotonically decreasing from −615635.2

to −615701.5 as b varies from 0 to 1. The difference between the maximum PL for both models
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Temporal parameters

c a r λ δ A1 A2 A3

FULL 0.098 0.999 0.686 0.796 1.000 0.946 0.822 0.802

PIT 2.016 0.699 N/A N/A 0.971 0 0 0

Spatial parameters

a1 a2 a3 ν1 ν2 ν3

FULL 13.5 10−3 4.0 10−3 16.7 10−3 6.000 0.566 0.722

PIT 37.0 10−3 7.8 10−3 34.3 10−3 4.774 0.671 1.009

Correlation parameters PL

ρ12 ρ13 ρ14

FULL −0.066 −0.926 −0.112 −615 135.3

PIT −0.082 −0.278 −0.114 −615 635.2

Table 1: PL parameter estimates for the weather dataset with dm = 250 km, tm = 2 days. FULL:

fully nonseparable model as in (21) with b = 0.1. PIT: simplified Proportional-In-Time model with

b = 0.

is thus approximately equal to 500 units, indicating strong evidence in favor of the more complex

model, considering that the number of data is moderate with a total of 10 independent repetitions

of 1023 correlated data. As a point of comparison, if all the data were independent, the Bayesian

Information Criterion penalization to the full likelihood of the more complex model would be equal

to 2.5 ln(10230) ' 23.

Looking at the temporal marginals, the models show very different behaviors – as we expected.

Figure 2(right) shows the temporal empirical covariances for variables R and H with their fitted

models. Thanks to the flexibility of the FULL model, the temporal covariance functions able to fit

the empirical values for both variables. In contrast, the unique covariance function of the PIT model

lies somewhere between the empirical covariance of the two variables, thus being unable to provide a

satisfactory fit to any of the two variables. Table 1 reports the estimated parameters maximizing PL

for both models. It is interesting to note that the parameter c of γ0(h) is close to 0 in the FULL model,

thereby showing that the pseudo-variogram of the FULL model is mainly driven by its multivariate

part. It must also be noted that the parameter δ is equal or close to 1 in both cases. Figure 3

shows the spatial (at time lag u = 0) and spatio-temporal covariances (at time lags u = 1, 2) for all

variables and pairs of variables. Experimental covariances between all pairs of stations and the FULL

model with estimated parameters from Table 1 are shown. Overall, the fit is good. On the top left

panel representing the covariance function for variable R, the very high smoothness of the covariance

function near the origin is clearly visible. The spatial smoothness parameter is indeed larger for R,

and even equal to the upper bound for the FULL model.

21



Figure 2: Left: PL as a function of the space-time separability parameter b. Right: (R,H) temporal

correlation functions. PIT model with unique direct correlation and cross-correlation in dotted black

lines. FULL model with direct correlation for R and H in solid and longdashed lines, respectively, and

cross-correlation in dotdashed line. Squares: empirical correlations.

Figure 3: Empirical and fitted spatial-temporal correlation at u = 0 (black solid lines and circles),

u = 1 (blue dashed lines and squares) and u = 2 (red dotdashed lines and triangles).
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5.4 Prediction

We considered two different prediction settings. In the first setting, prediction of the three variables

at a validation station at day t is made knowing the trivariate data at the 11 estimation stations at

day t, t− 1 and t− 2. This setting is called Spatial Interpolation because data from the same day at

different location are used (as well as data from previous days). In the second setting, prediction is

made with data from days t−1 and t−2 only at all 13 stations (estimation and validation station). In

this second setting, called Temporal Prediction, purely temporal covariances are thus introduced. The

first setting corresponds to interpolation at an ungauged location while the second setting corresponds

to the classical one-day ahead forecast. Predictions are computed from January 3rd to January 31st

since the two previous days must be used as conditioning data.

In the Gaussian framework, the conditional expectation is the best linear unbiased prediction,

also called (co)kriging in the geostatistics literature, while the conditional covariance matrix is the

covariance matrix of the cokriging errors. The reader is referred to (Chilès and Delfiner, 2012) for a

detailed exposition.

The two models (FULL and PIT) were compared by means of four different scores: the Root Mean

Square Error (RMSE), the Mean Absolute Error (MAE), the Continuous Ranked Probability Score

(CRPS) and the Logarithmic Score (LogS) (Gneiting and Raftery, 2007). The first two scores, RMSE

and MAE, compare the conditional expectation to the true value. The other two scores, CRPS and

LogS, assess not only the prediction but its variance as well. The CRPS measures the discrepancy

between the predictive cumulative distribution function and the true value. The marginal logarithmic

score (LogS) is the opposite of the logarithm of the marginal predictive density at the true value.

They are easily computed in the case of a normal predictive distribution and details can be found

in Bourotte et al. (2016). Notice that the conditional variances are identical for all days since the

configuration of the conditioning data remains identical.

Table 2 reports our results. As a benchmark, we also report the scores obtained with a trivial

prediction where all predicted values are set to the expectation (equal to 0) and all variances set to

the theoretical variance (equal to 1). Recall that lower scores indicate a better adequacy between the

model and the data, that the first three scores are bounded from below by 0 whilst LogS is unbounded.

Overall, both settings show better (sometimes comparable) performances for the FULL model as

compared to the PIT model. Specifically, for variables R and T, Spatial Interpolation is more accurate

than Temporal Prediction, which in turn is more accurate than the trivial prediction. This is in

accordance with the fact that more conditioning data are available in the Spatial Interpolation setting.

Moreover, the FULL model brings an interesting improvement over PIT for the scores involving the

conditional variance, particularly in the Temporal Prediction setting. In contrast, for variable H,
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the situation is reverse: Temporal Prediction is more accurate than Spatial Interpolation, which

indicates that the temporal dependencies are much more important than the spatial ones for this

variable. Notice also that FULL improves over PIT for all scores in the Temporal Prediction setting,

in accordance with the fact that the FULL model is able to better fit the data thanks to the extra

parameters in the temporal matrix-valued covariance function.

Finally, Figure 4 shows the predictions of the three variables from January 3rd to January 31st

2003 following the Spatial Interpolation setting. The predicted residuals were back-transformed to the

original scales to be compared to the real values. An envelope of ±2 conditional standard deviations

was added to the plot.

RMSE MAE CRPS LogS

R T H R T H R T H R T H

Spatial interpolation

FULL 0.746 0.582 0.864 0.587 0.464 0.732 0.427 0.335 0.509 0.268 0.015 0.393

PIT 0.751 0.584 0.864 0.593 0.462 0.731 0.430 0.335 0.509 0.271 0.010 0.393

Temporal prediction

FULL 0.919 0.837 0.813 0.784 0.706 0.667 0.531 0.482 0.470 0.421 0.329 0.311

PIT 0.933 0.835 0.825 0.780 0.714 0.684 0.537 0.483 0.479 0.437 0.331 0.330

Trivial interpolation

0.933 0.893 0.919 0.801 0.777 0.782 0.540 0.521 0.538 0.439 0.403 0.443

Table 2: RMSE, MAE, CRPS and LogS of predicted values at the validation stations at day t, using

ML estimates. FULL: fully nonseparable model as in (21) with b = 0.1. PIT: simplified Proportional-

In-Time model with b = 0. The best scores among FULL or PIT are shown in bold font.

6 Concluding remarks

We have proposed new parametric classes of matrix-valued covariance functions for multivariate spatio-

temporal random fields, where each component has its own smoothness and scale parameter in space

and its own correlation function in time. We have also designed computationally efficient algorithms

for simulating Gaussian random fields with these covariance functions, which are not restricted in

the number of target spatial coordinates and allow tens of thousands of time coordinates, hence are

applicable to large-scale space-time prediction problems. Our constructions generalize the Gneiting

class of space-time covariance functions and are fully nonseparable, in the sense that they are space-

time nonseparable and that they are neither proportional-in-space nor proportional-in-time. This is

a major improvement to the models proposed up to date where the marginal temporal correlation

function is identical for all the variables, which is overly restrictive.
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Figure 4: Predictions of R, T and H at Le Rheu from January 3rd to January 31st 2003 following

the Spatial Interpolation setting. Predictions (continuous line), real values (dots) and envelope of ±2

conditional standard deviations (colored ribbon).

The main class proposed in Section 4 allows for a general behavior for the spatial scale parameter

as a function of the time lag u, depending on the values taken by the parameters. It is well known that

the Gneiting class of models is positively nonseparable. A very original feature of our construction is

that the models can be negatively nonseparable or asymptotically separable as |u| → ∞.

Since these models are continuous over Rd × R, their application is not limited to data organized

as regular records at measurement stations. More complex designs are in principle possible, such as

irregular or incomplete records, heterotopic designs or even mobile measurement devices. We hope to

see applications of our models to such dataset in a near future.

From a statistical point of view, the main challenge is to find the right balance between the

flexibility of the model, which must be able to account for the complex interactions between space

and time across several variables, and the number of parameters which should remain interpretable

and not too numerous. More complex models should only be preferred if strongly supported by

the data. The dataset analyzed in this work is of moderate size with 10 independent repetitions
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of 11 × 31 = 341 space-time trivariate data. Its analysis has shown that our model improves the

fitting and the predictive performances over the more parsimonious model in Bourotte et al. (2016),

in particular when the time dimension is important for prediction. In Section 5.3, it was shown

that the maximum PL difference is around 500. Combined with the improved prediction scores, this

provides strong evidence in favor of our new model for this dataset. The analysis of other datasets,

in particular with more spatial locations, is necessary for confirming this first result.

Estimating the parameters of a parametric model such as the one in Section 5 is a challenge. Here,

we have used Pairwise Likelihood because it was proven efficient on the proportional-in-time model

in Bourotte et al. (2016). It is however relatively slow since on a recent laptop computer reaching

convergence with our optimization algorithm and the function nlmbinb takes typically a couple of

hours. There is thus certainly room for improvement for a an easier use of such complex models. At the

cost of even larger computing times, composite likelihood with larger sets of elements than pairs might

be an interesting option for a more accurate estimation of the parameters, considering the complex

interactions between space, time and the variables. Conducting a thorough comparison of several

composite likelihoods was out of the scope of this work and left for future research. In our opinion,

more interesting improvements can be expected by using Vecchia’s Gaussian process approximation

(Katzfuss and Guinness, 2021). We are looking forward to (multivariate) spatio-temporal versions of

the GPVecchia package (Katzfuss et al., 2020).

In Appendix C we have proposed even more general constructions where both the spatial scale and

spatial smoothness parameters can vary with the time lag u. Also, all the models presented in this work

can easily be generalized to Rd×R`, where ` is an integer greater than one. Other constructions based

on characterizations established in Porcu et al. (2022) are also possible. Extensions of our models to

other spaces that are of interest in environmental sciences, atmospheric sciences and geosciences, such

as a sphere crossed with an Euclidean space (Sd × R`), are left to further research.
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A Technical lemmas and properties

Lemma 1. Let a = [aij ]
p
i,j=1 be a real, symmetric conditionally negative semidefinite matrix. Then,

there exist random variables Y1, · · · , Yp such that:

aij =
ai + aj

2
+

1

2
Var(Yi − Yj), i, j = 1, · · · , p.
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Proof. The matrix b = [bij ]
p
i,j=1 with bij = aip + apj − aij − app is positive semidefinite (Berg et al.,

1984, Chapter 3, Lemma 2.1). Let Y1, · · · , Yp be Gaussian random variables with variance-covariance

matrix b. Then

1

2
Var(Yi − Yj) =

bii + bjj
2

− bij = aij −
aii + ajj

2
, i, j = 1, · · · , p.

Property 1. A matrix is conditionally null definite if and only if it is a-separable.

Property 2. All p-separable matrices with nonnegative entries are positive semidefinite.

Property 3. If a �c 0, then exp (−ta) � 0 for all t ≥ 0.

Property 4. If a �c 0 and b is a-separable, with a and b of size p×p, then a+b �c 0 and a−b �c 0.

In particular, 1− b �c 0, where 1 is the all-ones matrix of size p× p.

Proof. The fourth property derives from the first one, which can be proven by using Lemma 1,

and from the fact that the sum of two conditionally negative (positive) semidefinite matrices is still

conditionally negative (positive) semidefinite. For a proof of the second and third properties, see Berg

et al. (1984, Chapter 3, Property 1.9 and Theorem 2.2).

Lemma 2. Let C : u 7→ [Cij(u)]pi,j=1, u ∈ R, be the matrix-valued covariance function of a p-

variate second-order stationary random field Y in R. Then, ∀nT ∈ N∗, ∀t1, · · · , tnT ∈ R, the matrix

C0 = [[Cij(tm − tn)]pi,j=1]nTm,n=1 is positive semidefinite.

Proof. It is immediate, asC0 is the variance-covariance matrix of the random vector [Y (t1), · · · ,Y (tnT )].

Lemma 3. Let a = [aij ]
p
i,j=1 be a conditionally negative semidefinite matrix and η : u 7→ [ηij(u)]pi,j=1,

u ∈ R, be the matrix-valued pseudo-variogram of an intrinsically stationary multivariate random field

Y = [Yi]
p
i=1 in R. Then, ∀nT ∈ N∗, ∀t1, · · · , tnT ∈ R, the matrix η0 = [[aij + ηij(tm − tn)]pi,j=1]nTm,n=1

is conditionally negative semidefinite.

Proof. Let Λ = [[λm,i]
p
i=1]nTm=1 be a real vector with entries adding to zero. Define Λ̃ = [λ̃i]

p
i=1 with

λ̃i =
∑nT
m=1 λm,i and C̃0 = [[Ci,j;m,n]pi,j=1]nTm,n=1 with Ci,j;m,n = Cov(Yi(tm)−Y1(t1), Yj(tn)−Y1(t1)).
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Then:

nT∑
m=1

nT∑
n=1

p∑
i=1

p∑
j=1

λm,iλn,j [aij + ηij(tm − tn)]

=

nT∑
m=1

nT∑
n=1

p∑
i=1

p∑
j=1

λm,iλn,j [aij +
1

2
Var(Yi(tm)− Y1(t1) + Y1(t1)− Yj(tn))]

=

nT∑
m=1

nT∑
n=1

p∑
i=1

p∑
j=1

λm,iλn,j [aij + ηi1(tm − t1) + ηj1(tn − t1)− Cov(Yi(tm)− Y1(t1), Yj(tn)− Y1(t1))]

=

 nT∑
n=1

p∑
j=1

λn,j

( nT∑
m=1

p∑
i=1

λm,i ηi1(tm − t1)

)
+

(
nT∑
m=1

p∑
i=1

λm,i

) nT∑
n=1

p∑
j=1

λn,j ηj1(tn − t1)


+

p∑
i=1

p∑
j=1

λ̃iλ̃jaij −
nT∑
m=1

nT∑
n=1

p∑
i=1

p∑
j=1

λm,iλn,j Ci,j;m,n.

Since the entries of Λ add to zero, the first two terms in the last equality are zero, while the last two

terms are negative or zero since, on the one hand, the entries of Λ̃ add to zero and a is conditionally

negative semidefinite and, on the other hand, C̃0 is a variance-covariance matrix, hence positive

semidefinite.

B Proofs

Proof of Theorem 1. The proof is constructive and based on an extension of the substitution approach

proposed in Allard et al. (2020). Consider the p-variate space-time random field Z = [Zi]
p
i=1 defined

as

Zi(s, t) =

√
2fi(R)

f(R)
Vi cos

(√
2R 〈Ω, s〉+

|Ω|√
2
Wi(t) + Φ

)
, (s, t) ∈ Rd × R, (23)

where R is a nonnegative random variable with a probability density f whose support contains that of

f1, · · · , fp, V = [Vi]
p
i=1 is a centered Gaussian random vector with covariance matrix σ = [σij ]

p
i,j=1, Ω

is a standard Gaussian random vector with d independent components, Φ is a uniform random variable

in (0, 2π), and Wi, i = 1, · · · , p, are random fields on R whose direct and cross-increments are second-

order stationary as in (1), characterized by the matrix-valued pseudo-variogram η, and Gaussian.

The random variable R, the random vectors Ω, Φ and V and the random field W = [Wi]
p
i=1 are

independent.

Following Allard et al. (2020, Theorem 3), it is straightforward to show that, for any i, j = 1, · · · , p,

Zi and Zj have a zero mean and that the covariance function between Zi and Zj is

E[Zi(s, t)Zj(s
′, t′)] =

σij
(2π)d/2

∫ ∞
0

∫
Rd

√
fi(r)fj(r) cos(

√
2r 〈ω, s− s′〉) exp

(
−|ω|2 ηij(t− t

′) + 1

2

)
dωdr

=
σij

(ηij(t− t′) + 1)d/2
ϕij

(
|s− s′|2

ηij(t− t′) + 1

)
, (s, t) ∈ Rd × R, (s′, t′) ∈ Rd × R.
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The cross-covariance between Zi and Zj depends only on the spatial and temporal lags h = s−s′ and

u = t− t′. Accordingly, the random field Z is second-order stationary with zero mean and covariance

function C : (h, u) 7→ [Cij(h, u)]
p
i,j=1, with Cij(h, u) given as in (11).

Proof of Theorem 2. Without loss of generality, let us consider a regular design of nS×nT space-time

coordinates (s1, t1), · · · , (snS , t1), · · · , (snS , tnT ) ∈ Rd × R. Define umn = tm − tn, hkl = sk − sl and

M = [[[σij(umn)M(hkl; rij(umn), νij)]
nS
k,l=1]pi,j=1]nTm,n=1. For C to be a positive semidefinite function,

we need to show that M is positive semidefinite for any such design in Rd × R. This can be done

by viewing the p-variate spatio-temporal random field at nT time coordinates as a q-variate spatial

random field, with q = p nT , and using the sufficient validity conditions for multivariate spatial Matérn

models given in Emery et al. (2022). Specifically, if one sets ψ(u) = βη(u) + b2, under the conditions

of Theorem 2, the q× q matrices
[
[ψij(umn)]pi,j=1

]nT
m,n=1

and
[
[r2
ij(umn)ψij(umn)− νij ]pi,j=1

]nT
m,n=1

are

conditionally negative semidefinite (see Lemma 3 in Appendix A). Furthermore, the matrix[
[σij(umn)e−νijrij(umn)2νijψij(umn)νij+d/2/Γ(νij)]

p
i,j=1

]nT
m,n=1

=
[
[ρij(umn)]pi,j=1

]nT
m,n=1

is positive semidefinite (see Lemma 2 in Appendix A). Hence, according to Emery et al. (2022, Theorem

2B), the matrix-valued function h 7→ σij(umn)M(h; rij(umn), νij) is the covariance function of a q-

variate random field Y = [Yv]
q
v=1 in Rd. M is therefore positive semidefinite since it is the variance-

covariance matrix of the random vector [[Yv(sk)]nSk=1]qv=1.

Proof of Corollary 1. In Theorem 2, ρ(u) must be a matrix-valued covariance function. Here, we set

ρ(u) = ρ, for all u ∈ R. By comparing (16) with (15), it is thus required that τe−ν/Γ(ν) = ρ is a

positive semidefinite matrix.

C General forms of Gneiting-Matérn covariances with temporal-

lag dependent parameters

The following theorems provide sufficient validity conditions for a nonseparable multivariate space-

time covariance model in which the spatial direct and cross-covariances belong to the Matérn family,

with collocated correlation coefficients, scale and/or smoothness factors that depend on the temporal

lag. The proof follows the line of that of Theorem 2 and are based on the sufficient validity conditions

for multivariate spatial Matérn models given in Emery et al. (2022, Theorems 1, 2, 3), Du et al. (2012,

Theorem 3), Apanasovich et al. (2012, Theorem 1) and Gneiting et al. (2010, Theorem 1). Also, the

spectral algorithm 3 can be adapted to simulate space-time random fields having such a covariance.

Theorem 3. Let d, p be positive integers, r and ν be positive real numbers. Let µ0, ν0 and ψ0 be

p × p symmetric conditionally negative semidefinite matrices, the first two ones with positive entries
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and the last one with nonnegative entries. Also, let u 7→ µ(u)−µ0, u 7→ ν(u)−ν0 and u 7→ ψ(u)−ψ0

be p× p matrix-valued pseudo-variograms in R and u 7→ ρ(u) be a p× p matrix-valued covariance in

R. Then, the matrix-valued function C : (h, u) 7→ σ(u)M(h; r(u),ν(u)) with generic entry

Cij(h, u) = σij(u)M(h; rij(u), νij(u)), (h, u) ∈ Rd × R, i, j = 1, · · · , p,

with M the Matérn covariance defined in (3), is positive semidefinite in Rd×R if one of the following

sets of sufficient conditions holds:

(A) r(u) =
√
ψ(u)+ν(u)
µ(u) and σ(u) = ρ(u)r(u)−2ν(u)Γ(ν(u)) exp(ν(u))µ(u)−ν(u)−d/2

or

(B) r(u) = r
√
ψ(u) + ν(u) and σ(u) = ρ(u)Γ(ν(u)) exp(ν(u))

(
r(u)
r

)−2ν(u)

or

(C) r(u) =
√
ν(u)
µ(u) and σ(u) = ρ(u)r(u)dΓ(ν(u)) exp(ν(u))ν(u)−ν(u)−d/2

or

(D) ν(u) ≤ ν, r(u) =
√
µ(u) and σ(u) = ρ(u) Γ(ν(u))

Γ(ν(u)+d/2)

[
Γ(νii(u)+νjj(u)+d/2)

rij(u)2ν+νii(u)+νii(u)

]p
i,j=1

or

(E) ν(u) = ν1, r(u) = µ(u) and σ(u) = ρ(u)r(u)−b
d+1+3d2νe

2 c

or

(F) r(u) = r1 and σ(u) = ρ(u) Γ(ν(u))
Γ(ν(u)+d/2)

or

(G) νij(u) =
νii(u)+νjj(u)

2 , r(u) = r1 and σ(u) = ρ(u)Γ(ν(u))
Γ(ν(u)+d/2)

[√
Γ(νii(u)+d/2)Γ(νjj(u)+d/2)

Γ(νii(u))Γ(νjj(u))

]p
i,j=1

,

with 1 standing for the all-ones matrix of size p× p, and b·c and d·e for the floor and ceil functions.

Theorem 4. Let q ∈ N∗ and x1, · · · ,xp ∈ Rq. Let B1 and B2 be Bernstein functions (i.e., positive

primitives of completely monotone functions) in [0,∞) and u 7→ ρ(u) a p×p matrix-valued covariance

in R. Then, the matrix-valued function C : (h, u) 7→ σ(u)M(h; r(u),ν(u)) with

ν(u) =

[
B1(

√
|u|2 + |xi − xj |2)

]p
i,j=1

,

r(u)2 =

[
1

B2(
√
|u|2 + |xi − xj |2)

]p
i,j=1

and

σ(u) =
ρ(u) r(u)dΓ(ν(u))

Γ(ν(u) + d/2)

is positive semidefinite in Rd × R.
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Allard, D., Emery, X., Lacaux, C., and Lantuéjoul, C. (2020). Simulating space-time random fields

with nonseparable Gneiting-type covariance functions. Statistics and Computing, 30(5):1479–1495.

Apanasovich, T. V., Genton, M. G., and Sun, Y. (2012). A valid Matérn class of cross-covariance

functions for multivariate random fields with any number of components. Journal of the American

Statistical Association, 107(497):180–193.

Arroyo, D. and Emery, X. (2017). Spectral simulation of vector random fields with stationary Gaus-

sian increments in d-dimensional Euclidean spaces. Stochastic Environmental Research and Risk

Assessment, 31(7):1583–1592.

Arroyo, D. and Emery, X. (2020). Iterative algorithms for non-conditional and conditional simulation

of Gaussian random vectors. Stochastic Environmental Research and Risk Assessment, 34(10):1523–

1541.

Arroyo, D. and Emery, X. (2021). Algorithm 1013: An R implementation of a continuous spec-

tral algorithm for simulating vector Gaussian random fields in Euclidean spaces. Transactions on

Mathematical software, 47(1):8.

Berg, C., Christensen, J. P. R., and Ressel, P. (1984). Harmonic Analysis on Semigroups: Theory of

Positive Definite and Related Functions. Springer-Verlag.

Bevilacqua, M., Gaetan, C., Mateu, J., and Porcu, E. (2012). Estimating space and space-time

covariance functions for large data sets: a weighted composite likelihood approach. Journal of the

American Statistical Association, 107(497):268–280.

Bourotte, M., Allard, D., and Porcu, E. (2016). A flexible class of non-separable cross-covariance

functions for multivariate space–time data. Spatial Statistics, 18:125–146.

Chen, W. and Genton, M. G. (2019). Parametric variogram matrices incorporating both bounded and

unbounded functions. Stochastic Environmental Research and Risk Assessment, 33(10):1669–1679.

Chilès, J.-P. and Delfiner, P. (2012). Geostatistics: Modeling Spatial Uncertainty, Second Edition.

John Wiley & Sons.

Dietrich, C. and Newsam, G. (1997). Fast and exact simulation of stationary Gaussian processes

through circulant embedding of the covariance matrix. SIAM Journal of Scientific Computing,

18(4):1088–1107.

31
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Emery, X. and Lantuéjoul, C. (2006). TBSIM: A computer program for conditional simulation of

three-dimensional Gaussian random fields via the turning bands method. Computers & Geosciences,

32(10):1615–1628.

Emery, X., Porcu, E., and White, P. (2022). Flexible validity conditions for the multivariate Matérn co-

variance in any spatial dimension and for any number of components. arXiv:2101.04235v2 [stat.ME].
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Lantuéjoul, C. and Desassis, N. (2012). Simulation of a Gaussian random vector: a propagative version

of the Gibbs sampler. In Presented at: Ninth International Geostatistics Congress, pages 1–8.

Mitchell, M. W., Genton, M. G., and Gumpertz, M. L. (2006). A likelihood ratio test for separability

of covariances. Journal of Multivariate Analysis, 97(5):1025–1043.

Padoan, S. A. and Bevilacqua, M. (2015). Analysis of random fields using CompRandFld. Journal of

Statistical Software, 63:1–27.
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