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Abstract:  

In this paper, we present a method for the fault detection based on the residual generation. 
The main idea is to reconstruct the outputs of the system from the measurements using the 
extended Kalman filter. The estimations are compared to the values of the reference model 
and so, deviations are interpreted as possible faults. The reference model is simulated by the 
dynamic hybrid simulator, PrODHyS. The use of this method is illustrated through an 
application in the field of chemical process. 
Keywords: Fault Detection, Extended Kalman Filter, Dynamic Hybrid Simulation, Object 
Differential Petri Nets 

1 Introduction 

With the evolution of the computer power, dynamic simulation has become an efficient study 
tool in process design and analysis. Indeed, it is a great point of interest, for instance, for the 
studies of the system behaviour faced with disturbances around a set point (sensitivity to the 
parameters) or for the initialization of a steady-state simulation (i.e. distillation column). 
However, the operation states –such as batch production mode, material physical state 
changes or also abrupt evolutions- make the use of purely discrete or purely continuous 
models difficult. In this context, the taking into account of these phenomena induces 
discontinuities of the model and so requires the use of Hybrid Dynamic Systems (HDS). 
Thanks to their large application field, these systems are a great point of interest for 
researchers and industrials[1]. 
In order to model them, two dynamic schemes have to be described: on the one hand, the 
continuous dynamic, which are generally represented by a Differential and Algebraic 
Equations (DAE) set, and on the other hand, the discrete one, which are represented by a sets 
and transitions set. Several formalisms have been defined to combine the continuous and 
discrete elements. In the literature, these formalisms are generally classified as: 
- approaches, which extend models of the continuous field, such as unified models[2], bond-

graphs with switches[3]; 
- approaches, which extend models of the discrete field, such as hybrid Petri nets[4], batch 

Petri nets[5], time Petri nets[6], timed automata[7]; 
- and finally mixed approaches, in which discrete and continuous models are exploited in 

the same structure (the hybrid aspects are taken into account in the interface between the 
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two parts): hybrid automata[8], hybrid statecharts[9], mixed Petri nets[10], differential 
predicate-transition Petri nets[11]. 

At the same time, several softwares have been developed for the simulation of hybrid 
systems, such as gPROMS[12], Omsim[13], BaSIP[14], Shift[15], Chi[16]. In these softwares, the 
hybrid aspect is described via an imperative language.  
The considered systems are batch and semi-continuous processes, which are the prevalent 
mode of production for low volume of high added value products. Such systems are 
composed of interconnected and shared resources, in which a continuous treatment is carried 
out. For this reason, they are generally considered as hybrid systems, in which discrete 
aspects mix with continuous ones.  
In this context, the research works performed, for several years within the PSE research 
department (LGC), on process modelling and simulation, have led to the development of 
PrODHyS[17]-[20]. The adopted hybrid formalism is based on a mixed approach and the object 
concepts: the Object Differential Petri nets (ODPN). 
Otherwise, numerous research works in the field of the Hybrid Dynamic Systems deal with 
modelling, stability and controllability[21]. These last years, many works are dedicated to the 
observability. While the theory of the state observability is well defined in the field of the 
continuous and discrete systems, some efforts must be made for the field of the hybrid 
dynamic systems. 
Moreover, the state observability is a point of interests for the fault detection and diagnosis 
studies[22]. As a matter of fact, the decisions are based on a great number of information. 
Then, the residual generation with data reconciliation consists in the estimation of the state, or 
generally of the system outputs and in the use of the estimation mistakes for the residual 
generation. Clark was one of the first researchers to study this concept[22]-[25]. Next, this 
approach has been widely exploited and particularly gives rise to the switching state 
generator[26]-[28]. Whereas the conception of observers for the linear systems seems to be 
mastered, for the non-linear systems, there is not satisfactory overall solution.  
Thus, the first suggested answers consisted in the linearizing of the problem (for example 
around a steady point), in order to apply the Kalman-Luenberger estimators[29]-[32]. 
Nevertheless, these methods are not generic. Indeed, let us consider the case where the 
residual generator is based on a model, which is linearized around a steady point. When the 
system state deviates appreciably from this steady point, great drifts can be noticed, because 
of the nonlinear behaviour of the system[33]. The main drawback of these methods is that they 
apply only under very restrictive conditions[34]. Consequently, these methods are not generally 
used for the non-linear problems[35]-[37].  
Thus, some more adapted methods have been developed. Among them, let us quote some 
well-known observers: 
- In practice, the extended Kalman filter and its derived methods are widely exploited[38]-

[40].  
- Gauthier et al. defined a high gain observer[41]. This observer works either for autonomous 

systems or for nonlinear systems that are observable for any input. 
- Also let us quote the non-linear adaptive observer, used when the state and the parameters 

of the system are unknown. This algorithm estimates both the state and the parameters of 
the system[34]. 

- There are also implicit observers (differential-algebraic equations)[42].  
Kalman filter variants have found widespread applications due to their simplicity and ability 
to handle reasonable uncertainties and nonlinearities[43]. The extended Kalman filter doesn’t 
use a lot of CPU times and provides good results for systems with a moderate non 
linearity[44][45]. Consequently, in this paper, the proposed approach uses an extended Kalman 
filter for fault detection. 
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The contributions of this paper are fivefold: 
- Since the developed methodology (called SimAEM) is based on a hybrid dynamic 

simulation model, it allows a general and rigorous representation of the monitored 
process. Indeed, the reference model is built owing to the Object Differential Petri nets 
formalism. This formalism allows on the one hand an effective description of the 
synchronization, parallelism and sequencing constraints and on the other hand, a precise 
and reliable representation of the continuous dynamics thanks to the algebraic differential 
equations. 

- Moreover, the extended Kalman filter has been used and developed for the hybrid 
dynamic systems. It rests on the dynamic simulation of these systems: during the same 
simulation, several models are instantiated. Then, the state vector and the covariance 
matrix have been judiciously initialized for each model change. Thus, the monitoring 
system is powerful during the transient states. 

- In a general way, the use of the object concepts generates a high level description, 
supports the modularity of the models, allows the creation of generic, extensible and 
reusable entities (particularly with the specialization and composition mechanisms). So, a 
whole of fundamental elements models has been developed and allows the creation of 
more complex models. Thus, this approach is evolutional owing to the creation of new 
entities according to the needs.  

- The monitoring system is robust with noises and process uncertainties, by the use of the 
extended Kalman filter, which masks these disturbances and thus avoids false alarms.  

- Lastly, the methodology SimAEM has been implemented within the dynamic simulation 
platform PrODHyS. This simulator provides software components allowing the 
integration of the methodology SimAEM and its exploitation within the monitoring 
system. The monitoring module has been demonstrated by the simulation of a monitored 
process. 

This framework is organized as follows. The first part of this communication presents the 
platform PrODHyS and describes the main fundamental concepts of the ODPN formalism. 
Next, the proposed detection approach is presented. This exploits the extended Kalman Filter 
to a hybrid dynamic system. The main idea is to reconstruct the outputs of the system from 
the measurement, using observers or Kalman filters and using the residuals for fault 
detection[46]-[51]. The purpose is to detect the presence of a fault and to locate the occurrence 
time. The estimations are compared to the nominal parameter values and so, deviations are 
interpreted as faults. In section 4, a didactic example and its modelling are described. This is a 
process of addition-evaporation. Then, our detection approach is implemented, and for this, 
some adjustments are made. Next, the performance of our approach is illustrated through the 
simulation of a process, during which a fault is introduced at an unknown moment. Finally, 
Section 7 summarises the contributions and achievements of the paper and some future 
research works are suggested. 

2 PrODHyS environment 

Nowadays, object technology is a concrete and efficient answer to extensibility, reutilisability 
and software quality needs. That is why, PrODHyS is based on object concepts and so offers 
extensible and reusable software components allowing a rigorous and systematic modelling of 
processes.  

2.1 Software architecture 
This environment provides a library of classes dedicated to the dynamic hybrid simulation of 
processes. The primal contribution of these works consisted in determining and designing the 
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foundation buildings classes. Currently, this library is made up of more than one thousand 
classes distributed into three functional layers and nine modules (Figure 1): 
- The internal layer corresponds to the simulation kernel of the platform. It provides the 

basic elements allowing the simulation of any dynamic systems. Today, this layer 
includes: 

o the module Disco[18],[52], which constitutes the numerical kernel of the systems 
and allows an object representation of the continuous mathematical models; it 
provides a set of solvers and integrators (DAE, NLAE); 

o the module Hybrid[19] which contains the set of classes used for the description 
of the ODPN formalism as well as the hybrid simulation kernel. 

- The second layer includes a set of classes allowing the modelling of processes. The 
"modelling" layer rests on the "simulation" layer and provides a set of general and 
autonomous entities which can be exploited by any user who wishes to build its own 
simulation system or prototype. This layer includes: 

o the module ATOM[17] which constitutes the thermodynamic data base of the 
system; it is based on an object representation of the material and allows the 
computing of thermodynamic properties. 

o the module Odysseo[53] which gathers the elementary and generic entities 
allowing the modelling of a process. It is divided into three sub-modules: 

 the sub-module Process which gathers a set of often abstract classes, 
corresponding to a very general description of the process; 

 the sub-module Reaction which allows the modelling of chemical 
reactions; 

 the sub-module Device which gathers the "concrete" elementary 
devices. 

o the module CompositeDevice which gathers devices resulting from the 
composition and the specialisation of the elementary devices defined in the 
module Odysseo. 

- The higher layer corresponds to a set of classes dedicated to the process supervision. This 
“supervision” layer rests on the "simulation" and “modelling” layers and provides a set of 
entities allowing the realization of monitoring studies. Then, this layer includes: 

o the module Scheduling[54], which couples the simulation module with 
stochastic optimization methods; 

o the module PrODHySAEM[20] (Process Object Dynamic Hybrid Simulator for 
Abnormal Event Management), which contains a set of classes, in charge of 
the management of the monitoring studies of the processes. 

The interest to separate the "simulation" and the "modelling" layers is to build platforms 
dedicated to various field of applications (mechanical, electronic, etc.) only by developing the 
suitable engineering "modelling" layer. 

2.2 ODPN formalism 
A detailed description of this formalism can be found in [19][20]. The PrODHyS components 
allow a modular and hierarchical modelling of different processes. In consequence, the object 
concepts and the Petri nets have been exploited in a combined approach in the ODPN 
formalism. It consists in making interact these features according to two manners (Figure2). 
Firstly it aims at “introducing the objects into Petri nets”. The subjacent philosophy is to 
model a subsystem by a single Petri net, which handles individualised tokens carrying 
information. The second approach is based on “the introduction of Petri nets into objects” to 
describe the internal behaviour of the object (cf. class t). The marking of the Petri net 
indicates the current state of the object.  
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The ODPN formalism makes collaborate, within the same structure, DAE systems to describe 
the continuous evolution of the system with a high level Petri net used to specify the legal 
sequences of commutation between this set of DAE systems. Moreover, the integration of the 
DAE system of a differential place can require several tokens of the same type and/or of 
different types. In this case, the consistency must be assured by the modelling or validated by 
the simulation. Thus, the Petri net can be seen as DAE monitor. It allows the dynamic 
creation of a unique simulation model, whose size and structure change between two events 
(no fixed size of state vector). Besides the resolution of the DAE system (integration based on 
the Gear method) and of the discrete models (Petri net player specific to this class), the kernel 
manages other functionalities, such as the exact calculation of the commutation times, the 
state failing, the checking of the consistency of the new models generated after the 
commutation, the initialisation of the state variables and their derivatives[19]… 

2.3 Process modelling with PrODHyS 
To carry out the simulation of such a system, it is necessary to model the command part (the 
supervisor) and the operative part (the process) at the same time. The model is a priori 
specific to the recipe and the considered process topology. So, it is completely dissociated 
from the model of devices, since this model must be reusable whatever the studied context 
(concept of component).  
Moreover, the material model is dissociated from the device which contains the material. 
These different models are merged just at the time of the instantiation of the simulation 
model, according to the present state of the process. As a result, a hierarchical organization of 
models is introduced: the command level contains the recipe to execute, whereas the process 
level simulates the process behaviour[19][20]. At this level, two kinds of entity are 
distinguished: 
- The active entities: they are devices, whose Petri net has one or several command places, 

such as the valves, the pumps, the energy feeds, etc. 
- The passive entities: they are entities, whose Petri net doesn’t have command place (so 

without direct connection with the recipe Petri net) such as storage tanks, reactors or 
material. 

The evolution of the different models is conditioned by two distinct kinds of event. On the 
one hand, we have “extern” events, which entail the controlled commutations. These are the 
signals exchanged between the command level and the process level. So they correspond 
either with commands send from the recipe Petri net in order to manage the active entities, or 
with the occurrence of a state event (detection of a threshold) or a temporal event. These 
events are defined by the user and clearly appear in the recipe Petri net. In this way, all the 
Petri nets of the command level manage all the Petri nets of the process level and can be 
compared to the GRAFCET in a DCS of the command level. On the other hand, we have the 
“intrinsic” events, whose occurrence depends only on the spontaneous process evolution. For 
example, these autonomous commutations correspond with the state change of a passive 
entity or with the change from the liquid to the vapour state when the boiling temperature is 
reached. These commutations don’t appear on the recipe Petri net (so the user doesn’t specify 
them) and are dealt with exclusively in the model of the concerned entity (device or material). 

3 Supervision module 

In chemical plants faults may cause process performance degradation (for example lower 
product quality) or fatal accidents (for instance the runaway scenario). Fault monitoring could 
prevent from these undesirable consequences. Several fault diagnosis approaches have been 
mainly proposed for steady-state processes operating. Nevertheless, application of these 
techniques to batch processes remains a challenging task, because of their hybrid and 
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nonlinear dynamics[55]. Among model-based approaches, observer-based schemes have been 
used in numerous application fields. 

3.1 Architecture 
For this purpose, the simulation model of PrODHyS is used as a reference model to 
implement the functions of detection and diagnosis. The simplified principle of this system is 
shown on the Figure 3. A description of this methodology can be found in [20],[56].  
In order to obtain an observer of the physical system, a real-time simulation is done in 
parallel. So, a complete state of the system will be available at any time. Thus, it is based on 
the comparison between the predicted behaviour obtained thanks to the simulation of the 
reference model (values of state variables) and the real observed behaviour (measurements 
from the process correlated thanks to the Extended Kalman Filter). Detection is realized by 
comparison with fixed thresholds. For a consistent execution of this task, the measurements 
must be filtered in order to eliminate the noise. The filter used here is the Extended Kalman 
Filter.  

3.2 Implementation of the Extended Kalman Filter 
In a model-based approach, one of the first problems is to differentiate the deviations due to a 
failure, from those related to the inherent disturbances of the process. For the inherent 
disturbances, we distinguish the measurement noises, the variations of the operating 
conditions and the parametric uncertainties. Thus, the failures, which we want to detect, are: 
the structural variations, which are generated by the wear of the devices, the failures of the 
actuators, and the failures of the sensors.  
In order to mask the inherent disturbances and to avoid the false alarms, we have used an 
extended Kalman filter. A description of this filter can be found in [20]. Figure 4 illustrates 
the steps of the estimation of the system state. There are two main steps:  
- the prediction, which corresponds to the “a priori” estimation  
- and the correction, which corresponds to the “a posteriori” estimation.  
Thus, the state vector is initially evaluated from the estimate of the previous step. Then, it is 
corrected by the measurements in the correction step. Both steps compose of an iterative of 
this filter (Figure 5). 
This filter is described by the class kalmanFilter (Figure 5). Its initialization is carried out by 
the call of the method initialize. The class kalmanFilter has two attributes _systemDynamic 
and _measurementDynamic of type dynamicModel. The first attribute represents the dynamic 
of the system and the second represents the dynamic of the observations. Then, the dynamic 
models are not explicitly included in the computation of the filter, since they are defined by 
the class dynamicModel. Thus, the procedure applies to any type of system: the linear 
physical system or not and the linear dynamics of the observations or not.  
The execution of the filter is made through the call of the method perform (Figure 6). This 
method gathers the two steps of the Kalman filter: 
- The methods predictStateVector and predictCovarianceMatrix manage the prediction 

step,  
- and for the correction step, these are the methods calculateKalmanGain, 

updateStateVector and updateCovarianceMatrix. 

3.3 Simulation in parallel 
According to the suggested architecture (Figure 3), our approach requires the on-line 
simulation in parallel of a reference process and of the extended Kalman filter. A main recipe 
is generated and groups together these both recipes. In order to distinguish the places and the 
transitions of these Petri nets, a prefix is added to their names: 
- “M-“ for the recipe of the reference model, 
- “K-“ for the recipe used by the Kalman filter. 
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Figure 7 represents the general concept. When the transition TRBEGIN is fired, each place 
BEGIN of the Petri nets is marked. When the horizon time of the simulation is passed, the 
place END is marked. 

4 Application 

A didactic example, shown on Figure 8, has been chosen in order to illustrate the proposed 
approach. This is the process of addition-evaporation. This is generally used to change 
solvents. The operation conditions are listed in the Table 1. The values of the minimum and 
maximum hold-ups are respectively 200 and 800 moles. Before each addition of solvent, the 
reactor is cooled up to the temperature of 300.15K. The pressure is supposed to be constant 
during this operation. The goal of this process is to have a molar composition of methanol in 
the reactor at 0.95. 

4.1 Process recipe description 
The operating of the substitution of the solvent A for the solvent B follows the following 
recipe: 

1. The initial holdup is higher than the minimum holdup (Ulmin). The first step consists of 
the concentration of the solvent A. Figure 9 a) represents this step. The mixture is 
heated until its boiling point of and its vaporization is partial. This stage takes place, 
until the minimum holdup (Ulmin) is reached. 

2. The reactor is then filled by a continuous feed (Figure 9 b)). A quantity of the 
substitution solvent (solvent B) is thus added to the mixture.  

3. Then, two evolutions are possible (Figure 9 c)): 
o If the wanted quality of the product B is reached, the operating sequence is 

finished. 
o Otherwise, the feed is closed when the maximum holdup is reached (Ulmax). 

The operating sequence continues with a new evaporation step (step4). 
4. The mixture is then evaporated (Figure 9 d)). The mixture is heated until its boiling 

point of and its vaporization is partial. 
5. Next, two evolutions are possible (Figure 9 e)): 

o If the wanted quality of the product B is reached, the operating sequence is 
finished. 

o Otherwise, the evaporation in the reactor continues until the minimum holdup 
is reached. Then, the cooling of the mixture takes place. 

6. The cooling is maintained until the specified temperature is reached. Figure 9 f) 
represents this step. The next operating sequence is a new addition stage (step 2). 

Its recipe describes a succession of evaporations and additions of the new solvent, until the 
wanted final quality of the substitution solvent is reached. 

4.2 Mathematical model 
The mathematical model of this system at the thermodynamic equilibrium and in its maximal 
state (i.e., liquid/vapour) is as follows. 
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The outlet vapour being open on the outside, the pressure P is supposed to be constant and the 
vapour holdup Uv is neglected in front of Ul. Equations (1), (2) and (3) represent the material 
and energy balances respectively. Equation (4) determines the liquid height hl according to the 
tank area Sc, the molar volume of the liquid phase Vml and the liquid holdup Ul. Equations (5) 
and (6) represent the liquid/vapour equilibrium. Finally, equations (7), (8), (9), (10) and (11) 
are the models used for the liquid/vapour equilibrium constants Ki, the liquid enthalpy h, the 
vapour enthalpy H, the liquid molar volume Vml and the vapour molar volume Vmv within the 
tank. 

4.3 Recipe Petri net 
The recipe of this process is described by the Petri net of the Figure 10. Initially, the tank 
contains the two solvents and the liquid holdup is contained between the minimum and 
maximum values. The material and energy feeds are closed and the detectors are in position 
off.  
- The marking of the place Begin allows the beginning of the operation. Then, the transition 

t1 is fired. The marking of the place mHeat conveys the order sent by the recipe to the 
energy system, and the marking of the place Evaporation means that the first step takes 
place. Next, two evolutions are possible: 

o The composition of the new solvent reaches the target value. This information 
is transmitted to the recipe by the marking of the place mOn of the composition 
detector. In this case, the transition t5 is fired and allows the marking of the 
place End. 

o The minimum holdup is reached. This information is transmitted to the recipe 
by the marking of the place mOn of the low holdup detector. Then, the 
transition t2 is fired and allows the marking of the place Cooling.  

- The cooling is maintained until a preliminary specified temperature is reached. This event 
is transmitted to the recipe by the temperature sensor (transition t3).  

- The next step consists in the adding of the new solvent. This is represented by the marking 
of the place Filling. Then, two evolutions are possible: 

o The composition of the new solvent reaches the target value. This event is 
detected by the composition detector (transition t6). 

o The maximum holdup is reached. This information is transmitted to the recipe 
by the marking of the place mOn of the high holdup detector. The operation 
continues with a new evaporation step (transition t4).  

5 Adjustments of the filter 

To perform a monitoring of a process, some off-line adjustments must be made. As a matter 
of fact, the values of the covariance matrices of the model and measurement disturbances 
have to be determined.  

5.1 Measurements noises 
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The system observations are obtained by the use of specific sensors. So, the measurement 
mistakes are relatively well-known by the manufacturer or by experimentation. Thus, it is 
easy to define an estimate of the measurement covariance matrix.  

5.2 Model disturbances 
Before activating the extended Kalman filter, it is important to estimate the sensitivity of the 
filter to the model parameters. Thus, these works are based on a sampling scheme for the 
measurement perturbations and the model noise. This allows the estimation of the statistics of 
the model uncertainties. Then, we made numerous simulations during which uncertainties are 
generated. These uncertainties are obtained by disturbing at random one of the input 
parameters or one of the modelled physical processes. Therefore, a sampling of possible 
trajectories of the model is established. This method is based on the following hypothesis: the 
sampling average corresponds to the best estimate of the system state (our model is supposed 
to be unbiased), and the dispersion around this average corresponds to a measurement of the 
mistake of this estimate[57],[58]. Thus, we estimate a wide uncertainty on the modelled physical 
processes, in order to be certain that the obtained dispersion includes the real behaviour of the 
system. Then, if the behaviour of the system goes beyond this distribution, its behaviour is 
abnormal. So, the detection thresholds are determined according to the model disturbances. 
In practice, we made a set of simulations in parallel by adding a noise to the process or to a 
parameter, uniformly distributed between -σ and σ (where σ is the typical range). Thus, it is 
possible to deduce the characteristics (average and typical range) of the dispersion of the 
system distribution function. Table 2 summarizes the applied uncertainties. 
For example, Figure 11 represents the results obtained by modifying the initial value of the 
reactor liquid holdup. The curves represent the time evolution of the balanced typical ranges 
of the following state variables: the reactor liquid holdup (Ul), the molar liquid composition of 
the product B (xB) and the temperature (T). Notice that these typical ranges are normalized in 
order to compare them between themselves. The system states are also illustrated on Figure 
11. Notice that the evolution changes of the typical ranges are linked to the change of the 
system state. For example, at t= 258 min, we note a first peak of the typical range of the 
temperature. This corresponds to the change from the state Evaporation to the state Filling. 
Besides, the two following peaks (for the liquid holdup and the molar liquid composition of 
the product B) point out the change from the state Filling to the state Cooling and at t = 390 
min, the third peak underlines the stopping of the system cooling. 
Consequently, the model is more sensitive to the input parameter uncertainties during the 
transient modes. Thus, during these modes, the use of the extended Kalman filter is 
importance.  
This study is reproduced for all the uncertainties exposed in Table 2. Then, a value of the 
modelling uncertainties is estimated (Table3). 
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5.3 Initialization of the extended Kalman filter 
We point out that our works are based on dynamic simulation. Thus, during a simulation, 
there are several models of the system. So, for each model change, it is necessary to initialize 
judiciously the state vector and the covariance matrix. 

5.3.1 Initialization of the state vector 
Since our variables are continuous, the state vector of the new model is initialized with the 
value of the previous state (Figure 12).  

5.3.2 Initialization of the covariance matrix 
The covariance matrix of the modelling uncertainties of the new model could be initialized 
with the value of the previous model. This would mean that we have as much confidence in 
the new model as in the old one. However, the model disturbances are one of the most 
important causes in the divergence of the Kalman filter. This divergence is due to the fact that 
the filter has a too much confidence in the model. This is the case when the model noise is 
low. As a matter of fact, the terms of the covariance matrix representing the model 
disturbances and those of the gain matrix decrease. Thus the filter doesn’t take into account 
the observations. Thus, it is necessary to adjust intelligently the covariance matrices, in order 
to solve this problem. One of the mainly used solutions is to increase the uncertainty of the 
model. For this, we suggest that, for each model change, the covariance matrix of the new 
model is initialized by the initial value of the covariance matrix of (Figure 12), i.e. the value 
of Table 3. 

6 Results 

The simulations of the reference model are first presented. Then, the results of the detection 
are exposed. 
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6.1 Simulation of the reference model 
The simulation of the reference process is made. The dynamics are illustrated on Figure 13: 
they represent respectively the time evolutions of the liquid compositions. 
The final molar methanol composition in the tank is equal to 0.95 (Figure 13) and was 
obtained during the adding of the new solvent. The total operation requires four additions and 
four evaporations. 

6.2 State reconciliation 
Figure 14 shows .that the estimated state fits the reality. Moreover, in the model changes, the 
initialization of the extended Kalman filter allows its convergence. Thus, the state is well 
estimated during the transient modes.  

6.3 Detection 
This process is a system based on thermal phenomena. A fault on the tank thermal system is a 
risk for the success of this operation. That is why, it is important to detect it as soon as 
possible. 
We remind that the thresholds for the detection correspond to the model uncertainties 
obtained by the adjustment of the Extended Kalman filter (Table 3). A fault on the heating 
energy feed of the reactor takes place at t = 20 min. This energy feed provides a heat quantity 
lower than the nominal one. Figure 15 shows the detection step. It illustrates the residuals 
evolution linked to the liquid composition of water and methanol. From t = 80 min, the both 
residuals go beyond the area of the nominal performance. The diagnosis is launched at t = 95 
min. 

7 Conclusion 

In this paper, the feasibility of using the Extended Kalman Filter as a tool for fault detection is 
described. The method developed in this study rests on a hybrid dynamic simulator 
PrODHyS. This simulator is based on an object oriented approach. It brings many advantages 
in terms of software quality (extensibility, reutilisability, flexibility), but especially in terms 
of modelling thanks to a hierarchical and modular description which is both abstracted and 
close to reality. Then, PrODHyS provides software components intended to model and 
simulate more specifically the industrial processes. The implementation of a formalism on 
high level of abstraction associated with powerful numerical methods of integration led to the 
construction of a robust hybrid dynamic simulator. In this communication, the potentialities of 
PrODHyS are illustrated through the modelling and the simulation of a process. The works in 
progress aim at integrating this simulation model within a model based diagnosis system. 
Different diagnosis approaches mixing model-based and data classification techniques will be 
studied and compared. 
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Appendix A. Nomenclature 

Fi  Liquid flow rate (mol/min) 
hi  Liquid enthalpy (J/mol) 
Hi  Vapour enthalpy (J/mol) 
Ki  Equilibrium constant 
nc  Constituent number 
P  Pressure (Pa) 
Qi  Energy quantity (W) 
Sc  Area (m²) 
T  Temperature (K) 
Ul  Liquid holdup (mol) 
Uv  Vapour holdup (mol) 
Vi  Vapour flow rate (mol/min) 
Vml  Liquid molar volume (m3/mol) 
Vmv  Vapour molar volume (m3/mol) 
xi  Liquid composition 
yi  Vapour composition 



 13 

References 

[1] J. Zaytoon, Systèmes dynamiques hybrides, Hermès Sciences publications, 2001 ; p 
378 
[2] M.S. Branicky, Studies in hybrid systems: Modeling, Analysis and Control. PhD-
thesis, MIT, Massachusetts, USA, 1995 
[3] J. Buisson, H. Cormerais, Journal Européen des systèmes automatisés, 1998, 32 (9-
10), 1047-1072 
[4] J. Le Bail, H. Alla, R. David Proceedings of the European Control Conference, France, 
1991 ; pp. 1472-1477  
[5] I. Demongodin, Discrete Event Dynamic Systems: Theory and Applications, 2001, 11 
(1-2), 137-162 
[6] B. Berthomieu; M. Menasche, IFIP Congress Series, 1983, 9, 41-46 
[7] R. Alur, D.L. Dill, Theoretical Computer Science, 1994, 126 (2), 183-225 
[8] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.H. Ho, X. Nicollin, A. 
Olivero, J. Sifakis, S. Yovine, Theoretical Computer Science, 1995, 138, 3-34 
[9] Y. Kesten, A. Pnueli, Lecture Notes in Computer Science (LNCS), 1992, 571 
[10] C. Valentin-Roubinet, Proceedings of Automation of Mixed Processes (ADPM 98), 
March 19-20, Reims, France, 1998, pp. 142-149 
[11] R. Champagnat, H. Pingaud, H. Alla, C. Valentin-Roubinet, J.M. Flaus, R. Valette, 
European Journal of Automation, 1998, 32 (9-10), 1233-1253 
[12] P.I. Barton, C.C. Pantelides, AIChE Journal, 1994, 40, 966-979 
[13] M. Andersson, Object-Oriented Modelling and Simulation of Hybrid Systems, PhD-
Thesis, Lund Institute of Technology, Lund, Sweden, 1994 
[14] K. Wöllhaf, M. Fritz, C. Schulz, S. Engell, Supplement to Computers and Chemical 
Engineering, 1996, 20(972), 1281-1286 
[15] A. Deshpande, A. Göllü, L. Semenzato, IEEE Transaction Automatic Control special 
issue on Hybrid Systems, 1998 
[16] G. Fábián, D.A. Van Beek, J.E. Rooda, Integration of the Discrete and the Continuous 
Behaviour in the Hybrid Chi Simulator, European Simulation Multiconference, Manchester, 
UK, 1998 
[17] L. Jourda, X. Joulia, B. Koehret, Computers and Chemical Engineering, 1996, Suppl. 
A (20), S157-S164 
[18] A. Sargousse, Noyau numérique Orienté-Objet dédié à la Simulation des systèmes 
Dynamiques Hybrides, PhD-Thesis, INP, Toulouse, France, 1999 ; p 207 
[19] J. Perret, G. Hétreux, J.M. Le Lann, Control Engineering Practice, 2004, 12 (10), 
1211-1223 
[20] N. Olivier-Maget, G. Hétreux, J.M. Le Lann, M.V. Le Lann, Chem. Eng. Process, 
2008, doi:10.1016/j.cep.2007.12.009 
[21] A. Birouche, Contribution pour la synthèse d’observateurs pour les systèmes 
dynamiques hybrides, PhD-Thesis, Institut National Polytechnique de Lorraine, Nancy, 
France, 2006 ; p 153 
[22] Y. Chetouani, Asia Pacific Journal of Chemical Engineering, 2008, 3, 597-605 
[23] R.N. Clark, D.C. Fosth, IEEE Transactions on Aerospace and Electronic Systems 
1975, AES-11, 465-473 
[24] R.N. Clark, Proceedings of the 18th IEEE-CDC, Fort Lauderdale, Florida, USA, 1979 ; 
pp. 237-241 
[25] R.N. Clark, State estimation schemes for instrument fault detection. Fault Diagnosis in 
Dynamic Systems: Theory and application, ed. R. Patton, P. Frank and R. Clark, Prentice 
Hall, 1989 



 14 

[26] P.M. Frank, Fault diagnosis in dynamic systems via state estimation – a survey, S. 
Tzafestas, M. Singh, G. Schmidt (Eds.), Systems fault diagnostics, reliability and related 
knowledge-based approaches, 1987, 1, 35-98 
[27] R.J. Patton, J. Chen, Proceedings of IFAC conference on Fault Detection, Supervision 
and Safety for Technical Processes, Baden-Baden, Germany, 1991 ; pp. 65-81 
[28] J.F. Magni, P. Mouyon, Proceedings of the 30th IEEE-CDC, December 11-13, 
Brighton, UK, 1991, 3, 2236-2241 
[29] A.J. Krener, System Control Letter, 1984, 5, 181-185 
[30] R. Marino, P. Tomei, Nonlinear control design., London, New York, Prentice Hall, 
Information and system sciences, 1995 
[31] G. Bastin, M. Gevers, IEEE Trans. on Automatic Control, 1998, 33(7), 650-658  
[32] C. De Persis, A. Isidori, IEEE Trans. on Automatic Control, 2001, 46 (6), 853-865 
[33] D. Maquin, V. Cocquempot, J.P. Cassar, M. Staroswiecki, J. Ragot, Proceedings of 
IEEE Int. Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, 
SDEMPED’97, Carry-le-Rouet, France, 1997 ; pp. 270-276 
[34] A. Xu, Observateurs adaptatifs non-linéaires et diagnostic de pannes, PhD-Thesis, 
Université de Rennes 1, Rennes, France, 2002 ; p 131 
[35] D. Hengy, P.M. Frank, Proceedings of the IFAC Workshop on Fault Detection and 
Safety in Chemical Plants, Kyoto, Japan, 1986 ; pp. 153-157 
[36] P.M. Frank, Fault diagnosis in dynamic systems via state estimation – a survey, S. 
Tzafestas, M. Singh, G. Schmidt (Eds.), Systems fault diagnostics, reliability and related 
knowledge-based approaches, 1987, 1, 35-98 
[37] K. Adjallah, Contribution au diagnostic de systèmes par observateur d’état, PhD-
Thesis, Institut National Polytechnique de Lorraine, Nancy, France, 1993 ; p 153 
[38] A.H. Jazwinski, Stochastic Processes and Filtering Theory, Libri, 1970 ; p376 
[39] K. Reif, R. Unbehauen, IEEE Trans. on Signal Processing, 1999, 47 (8), 2324-2328 
[40] G.A. Einicke, L.B. White, IEEE Trans. on Signal Processing, 1999, 47 (9), 2596-2599 
[41] J.P. Gauthier, H. Hammouri, S. Othman, IEEE Trans. on Automatic Control, 1992, 37, 
875-880 
[42] R. Nikoukhah, IEEE Trans. on Automatic Control, 1998, 43(2), 229-231 
[43] K. Salahshoor, M. Mosallaei, M. Bayat, Measurement, 2008, 41, 1059-1076 
[44] G.A. Einicke, L.B. White, IEEE Trans. on Signal Processing, 1999, 47 (9), 2596-2599 
[45] K. Reif, R. Unbehauen, IEEE Trans. on Signal Processing, 1999, 47 (8), 2324-2328 
[46] V. Venkatasubramanian, R. Rengaswamy, K. Yin, S.N. Kavuri, Computers and 
Chemical Engineering, 2003, 27, 293-346 
[47] M. Basseville, Proceedings of IFAC Safeprocess 2003. Washington, DC, 2003. 
[48] R.K. Mehra, J. Peschon, Automatica, 1971, 5, 637-640 
[49] S. Simani, C. Fantuzzi, Mechatronics, 2006, 16, 341-363 
[50] G. Welch, G. Bishop, An introduction to the Kalman filter, Technical Report TR 95-
041, University of North Carolina, 1995 
[51] R. Xiong, P.J. Wissman, M.A. Gallivan, Computers and Chemical Engineering, 2006, 
30, 1657-1669 
[52] J.M. Le Lann, Des mathématiques à la simulation dynamique robuste des procédés : 
le traitement algébro-différentiel des équations EDA, Habilitation à Diriger les Recherches, 
INP, Toulouse, France, 1999 
[53] A. Moyse, Odysseo : plate-forme orientée-objet pour la simulation dynamique des 
procédés, PhD-Thesis, INP de Toulouse, France, 2000 ; p 260 
[54] G. Hétreux, F. Fabre, R. Thery, J.M. Le Lann, Récents Progrès en Génie des Procédés, 
ISBN 2-910239-70-5, Ed. SFGP, Paris, France, 2007, 96 



 15 

[55] F. Pierri, G. Paviglianiti, F. Caccavale, M. Mattei. Engineering Applications of 
Artificial Intelligence, 2008, 21, 1204-1216 
[56] N. Olivier-Maget, Surveillance des Systèmes Dynamiques Hybrides : Application aux 
procédés, PhD-Thesis of the Toulouse University (INSA), France, 2007 ; p 344 
[57] G. Evensen, Ocean Dynamics, 2003, 53, 343-36 
[58] V. Maget, Développement et comparaison de méthodes d’assimilation de données 
appliqués à la restitution de la dynamique des ceintures de radiation de la Terre. PhD-Thesis 
of the Toulouse University (École Nationale Supérieure de l’Aéronautique et de l’Espace), 
France, 2007 ; p 223 



 16 

SUPERVISION

Hybrid

DISCo

Numerical kernel and

object representation of

continuous models

SIMULATION

MODELLING

ATOMOdysseo

Process

Formalism ODPN and

Hybrid simulation kernel

Scheduling

Fault detection

and localisation 

based on the

model-based

approach

Monitoring

General description 

of the process

Thermodynamic database

and object representation

of the material

Odysseo

Reaction

Modelling of

chemical

reactions

Composite 

Device

Devices obtained

by specialisation

and composition 

of elementary

devices

Odysseo

Device

Concrete elementary devices built

with the classes belonging to the sub-

modules Process and Reaction

Scheduling

generated by 

the coupling

between a  

stochastic

procedure of

optimization

and the

simulation 

module

SUPERVISION

Hybrid

DISCo

Numerical kernel and

object representation of

continuous models

SIMULATION

MODELLING

ATOMOdysseo

Process

Formalism ODPN and

Hybrid simulation kernel

Scheduling

Fault detection

and localisation 

based on the

model-based

approach

Monitoring

General description 

of the process

Thermodynamic database

and object representation

of the material

Odysseo

Reaction

Modelling of

chemical

reactions

Composite 

Device

Devices obtained

by specialisation

and composition 

of elementary

devices

Odysseo

Device

Concrete elementary devices built

with the classes belonging to the sub-

modules Process and Reaction

Scheduling

generated by 

the coupling

between a  

stochastic

procedure of

optimization

and the

simulation 

module

 
Figure 1. Software architecture of PrODHyS[20] 
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Figure 2. Elements of ODPN formalism 
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Figure 4. Extended Kalman filter algorithm 
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Figure 5. Class diagram of the extended Kalman filter 
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Figure 7. Petri net of the main recipe 
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Figure 8. Flowsheet of the example 
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Figure 9. Process recipe 
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Figure 11. Results of the sampling method 
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Figure 13. Results of the reference process 
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Figure 14. Results of the state reconciliation 
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Figure 15. Detection results 
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Table 1. Operating conditions 

Cooling energy quantity

Uncertainties

Composition threshold

Maximum holdup threshold

Minimum holdup threshold

Composition in the reactor

Heating energy quantity

Flow rate of the material feed

Liquid retention in the reactor

Parameters

Cooling energy quantity

Uncertainties

Composition threshold

Maximum holdup threshold

Minimum holdup threshold

Composition in the reactor

Heating energy quantity

Flow rate of the material feed

Liquid retention in the reactor

Parameters

20,0NavecUref
l

5.0,0NavecFref
B

05.0,0Navecxref
A

05.0,0Navecxref
B

20,0NavecUref
maxl

20,0NavecUref
minl

100,0NavecQref
cool

100,0NavecQref
heat  

Table 2. Uncertainties of the parameters and of the initial conditions 

30 mol0.0150.0150.0150.013.5 K

yB xAyA xBT Ul

30 mol0.0150.0150.0150.013.5 K

yB xAyA xBT Ul

  
Table 3. Modelling uncertainties 


