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Simple Summary: The urban environment is considered to be challenging for urban birds due to the
deep modification of biotic and abiotic factors compared to natural habitats. However, some studies
on physiology have showed that urban breeders appear to be of better health than rural breeders. A
hypothesis can explain these results: cities act as a filter on individuals, and only the best-performing
birds can access and succeed in reproduction. To test this hypothesis, we compared the quality of
urban and forest Great Tits before and during breeding to highlight potential differences between
the general population (winter) and breeders in each site. Quality was estimated from body size
and body condition, as well as telomere length, a DNA marker of bird health and longevity. No
differences in body condition were observed. However, urban birds were smaller than forest birds,
and, in the city only, breeders were smaller than birds captured in winter. These results highlight that
urban habitats potentially favor smaller birds. Finally, urban individuals had longer telomeres than
forest ones, but only in winter. The decrease in telomere length between winter and reproduction
only in the city suggests a higher cost of reproduction in the city compared to the forest.

Abstract: Phenotypic divergences of birds are common between urban and natural habitats and can
result from different selective pressures between habitats or maladaptation to the city. No uniform
patterns were observed, especially concerning markers of bird health, such as, for example, telomere
length. Telomeres are involved in maintaining genome integrity and naturally shorten with age,
but environmental stressors can accelerate their attrition. Thus, telomere length can be an indicator
of individual quality. Some studies showed that urban breeders had longer telomeres than forest
individuals. Two hypotheses can explain this result: (1) urban breeders are younger than forests
breeders, and (2) cities act as a filter on individuals and only high-quality birds can successfully
reproduce. In this context, we compared the age category (molting pattern) and morphological and
physiological characteristics of urban and forest Great Tits before and during breeding. No differences
in age or body condition were observed. However, urban breeders were smaller and had shorter
telomeres than birds captured in winter. Urban birds had longer telomeres than forest birds, only
in winter. These results highlight that urban habitats potentially favor smaller birds. However, the
decrease in telomere length between winter and reproduction only in the city suggest a higher cost of
reproduction in the city compared to the forest.

Keywords: urbanization; telomere; selection; Parus major; individual quality

1. Introduction

Each individual must optimize the energy allocation between survival and repro-
ductive investment in order to maximize its fitness because resources are limited in the
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field [1,2]. These optimized trade-offs between somatic maintenance and reproduction de-
pend on individual capacity to exploit these resources [3]. Some individuals more efficient
in resource acquisition are able to reduce the trade-off and allocate energy to both reproduc-
tion and self-maintenance, allowing high reproductive success while limiting the impact
of reproduction on their survival [4,5]. These individuals are so-called of better ‘quality’,
and will display a higher level of individual performance [5,6]. In this case, phenotypic
traits such as morphological, physiological and behavioral ones are positively correlated
with both fitness components, namely reproduction and survival [6,7]. Heterogeneity in
individual quality and performance will therefore depend on environmental constraints.
To some extent, resource limitations will favor good-quality individuals which are able to
survive and reproduce, while poor-quality individuals exhibit high reproductive costs [6].
However, too harsh conditions may decrease the heterogeneity due to the important mor-
tality of poor-quality birds, leading to a homogenization of the phenotypes. For a given
phenotype, individual performance can also fluctuate with age and/or experience [8–10].
This implies that individual quality can vary over time. In fact, experimented birds tend to
have a better reproductive success than first-year breeders [8,11,12], and the maturation
hypothesis [13] supports the suggesting that this may be due to improvements in some
skills, such as foraging ability [12], better timing of reproduction [14,15], or the increasing
efficiency of the endocrine system (i.e., increase in prolactin levels) [16].

The urban environment, whose area extent is increasing every year with human
population expansion (United Nations 2018), is considered to be challenging for urban
birds [17–19] due to its deep modification of biotic and abiotic factors compared to natural
habitats. In fact, among other things, urbanization leads to habitat fragmentation and a
significant decrease in vegetal cover, as well as an increasing lighting duration and noise
levels, a local temperature increase and chronic exposure to numerous toxic chemical com-
pounds [20]. Changes in interspecific relationships have also been observed, resulting in a
decrease in invertebrate availability during bird reproduction [21,22] or the modification
of predator species, with a higher prevalence of opportunist nest predators [23] such as
corvid predators [24,25] and mesopredators such as feral cats [26,27]. Modified avian
productivity is also observed in cities [28,29]. Some studies have reported a decreasing
reproductive success among passerine birds [18,30–32], while others showed no difference
or a better reproductive success rate [29]. Even when buildings, artificial nest boxes or
human structures offer new nesting opportunities, especially for cavicole species [24], insect
availability during the breeding period remains lower [22,33], and food nutritional quality
is inadequate [34–36]. Thus, the energy expenditure associated with foraging is higher
in the city [36,37], as well as parental nest attendance [38], potentially leading to higher
energy expenditure for urban birds than forest birds.

At the scale of bird communities, moderate urbanization leads to an increase in species
richness [39]. All the same, homogenization of bird communities has been observed in
cities, with the same urban-tolerant species thriving from one site to another [40,41] and
exhibiting similar functional traits [42,43]. For these urban-tolerant species, physiological
and morphological divergences are observed in many studies when comparing rural and
urban populations [29]. Among these differences, many studies have shown that urban
birds are often smaller and lighter than their rural counterparts [18,44,45], although this
pattern is not always recurrent [46]. The question of the adaptive functions of these mor-
phological divergences remains open. In the one hand, higher food predictability in cities
due to anthropogenic food provisioning reduces the necessity of energetic reserves [47],
leading to lighter birds. Smaller and lighter birds are able to escape from predators more
quickly [48,49], an advantage for survival and access to reproduction. On the other hand,
morphological differences may be the result of growth impairment related to nutritional de-
ficiencies [18,45,50] or greater competition between individuals for access to resources [47].
Considering that a smaller size and weaker body condition may be indicators of poorer
quality [44] due to a negative relationship with the reproduction [6,51] and survival of
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birds [52,53], these studies tend to show that urbanization contributes to a decrease in the
quality of individuals.

Physiological and genomic changes are also observed in urban individuals, and several
studies suggest environmental pressures on individual health and survival [29]. Telomeres,
non-coding repeat sequences in the distal region of chromosomes, contribute to main-
taining genetic integrity during cell division [54]. The attrition of telomeres determines
the senescence of the cells [55]. The age-dependent attrition of telomeres is observed in
many species [56], and thus telomere length and attrition rate can be considered as a
marker of longevity [57,58]. In addition, exposure to chemical pollutants [59,60], noise
pollution [61,62] or excessive stress [63] contribute to accelerating the attrition of telomeres,
in particular by influencing the oxidative status of individuals [64–67]. Telomere length is
therefore representative of an individual’s ability to maintain somatic integrity in the face
of environmental constraints and to cope with the energetic cost of reproduction [4], thus
reflecting individual quality [68]. Although some studies have shown that urban individu-
als have shorter telomeres than forest individuals [69], our previous results (Saulnier et al.,
submitted) and another study showed an opposite pattern for Great Tits [70]. These results
suggest that the urban environment plays a selective role, where only high-quality indi-
viduals are able to survive and/or reproduce in the city. In particular, in studies on Great
Tits, breeders consist of individuals that have been able to invest energy in reproduction
while being able to invest in self-maintenance because they are generally caught when
nestlings are already 1 week old, when the risk of desertion is lowest. Birds that fail their
reproduction early (egg laying or early hatching) are not included, and thus breeders are
not representative of the general population. Another possibility to explain the longer
telomeres in urban breeders is, as telomeres tend to shorten with age, that birds are younger
in the city than in the forest, with mature individuals either dying or migrating to more
favorable sites less constraining for the reproduction.

The first aim of this study was therefore to determine whether the urban environment
really plays a filtering role on the quality of the individuals living in this environment.
In this context, we monitored an urban population and a forest population of Great Tits
nesting in artificial nest boxes in the Eurometropole of Strasbourg (Alsace, France). Adult
birds were caught during winter and spring in order to compare the quality of individuals
in the population before the breeding period and the population of breeders for both sites.
The quality of birds was assessed using telomere length, morphology and reproductive
success of birds. Following the hypothesis of the filtering role of the urban environment on
bird quality, we expected to observe longer telomeres, larger size and better body condition
for individuals captured during the breeding period compared to individuals captured in
winter in the city, whereas no difference would be detected in the forest population. Based
on molting pattern, the age category of the individuals (2 years old young breeders versus
older breeders >2 years old) was also estimated in order to test the hypothesis of younger
breeders. The second aim of this study was to test the existence of reproductive costs in
terms of body condition and telomere length using the longitudinal data of individuals
captured in winter and recaptured during the breeding period. Considering higher re-
productive constraints in the city, we expected a greater decrease in body condition and
telomere length in the urban site than the forest site.

2. Materials and Methods
2.1. Study Site and Animal Sampling

This study, conducted between February and June 2019, is part of a long-term moni-
toring of populations of the Great Tits (Parus major) living in artificial nest boxes along an
urbanization gradient in the Eurometropole of Strasbourg (Alsace, France). The Great Tit is
a common passerine that breeds easily in artificial nest boxes, facilitating the monitoring
of reproduction and adult captures. Moreover, this species is considered to be an urban
adapter, and is able to live in both anthropogenic and natural areas. Great Tits breed
between April and June and lay, on average, 7.5 eggs in the city and 9 eggs in forests (in our
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populations, Saulnier et al., submitted), which are incubated for approximately 13 days.
Two populations were monitored: an urban population living in different urban parks
and tree-lined walkways in the core area of Strasbourg (48.5793 N; 7.7677 W, population
density = 3488 inhab./km2), and a forest population living in La Wantzenau forest within
12–20 km of Strasbourg (48.6480 N; 7.8337 W, population density = 231 inhab./km2). The
urban site is characterized mostly by no-vegetation (roads, bare rock, soil, and building)
and low-vegetation (herbaceous and small bushes) surfaces, whereas the forest site is an
alluvial forest composed of tree species such as ash, beech, sycamore, maple, and oak. Some
of our previous results (Saulnier et al., submitted) show that the pollutant concentrations of
the two sites are similar. However, concerning the food availability, urban birds are often
fed at bird feeders in winter by residents, especially in urban parks, but the invertebrate
abundance is 1.5- to 2-times less than in forests during reproduction.

Individuals from both sites were captured during two sessions: one in winter (between
February and March), after birds disperse but before breeding, and one during reproduction
(first clutch, April–May). Great Tits are mostly insectivorous during the breeding period, but
in winter they are granivorous, and are frequently found near bird feeders. Two methods
were used simultaneously to capture individuals in winter. The first method consisted of
using trap feeders placed as close as possible to areas where humans fed birds (mostly for
urban sites). The second method was the use of mist nets with dimensions of 10 × 2.5 m
placed preferentially near dense vegetation areas. The low vegetation cover made the
nets overtly visible to the birds in urban sites, and the majority of urban individuals were
caught with the trap feeders (21/28 individuals). On contrary, in the forest site, birds are
not accustomed to feeders and no birds were captured with the trap feeder. During the
breeding period, adults were captured using a trapdoor system installed at the entrance
to the nest boxes. The capture occurred when nestlings were between 8 and 16 days old
(before 8 days, nest desertion probability is high and after 16 days, the risk of early fledging
is very high). Thus, we only captured birds that successfully raised nestlings until 8 days
old. During the breeding season, we also monitored the reproduction of birds to estimate
the breeding success. For each occupied nest box, we recorded the laying date, the clutch
size, the hatching date (±0.5 d), the number of hatchings and the number of fledglings. The
number of hatchings was calculated as the difference between clutch size and the number
of unhatched eggs. Thirty nest boxes were occupied by Great Tits among the 92 monitored
boxes in the urban site, and 36 nest boxes were occupied among the 65 monitored boxes in
the forest site (see Appendix A for more details on nest box occupation rate). Only 3 nests
were deserted before hatching, all in the city. Several desertions at the nestling stage were
observed in both sites: 7 and 2 nests were deserted in the urban and forest sites, respectively.
One nest was also predated in the forest site, but before the capture of adults. The nest
predation rate in our study sites was relatively low, and did not exceed 2 to 3 nests per
year and per site. The major predators observed were domestic cats in the city and some
Mustelidae species in the forest.

All captured individuals were ringed with a metal ring for identification. The recapture
rate of fledglings in the recruited population was very low, and the number of individuals
with known age was only 12 birds (4 and 8 birds in the urban and forest sites, respectively).
For this reason, the age of birds was estimated from the color of the primary coverts on
the wings. This technique allowed a distinction between individuals in their second year
(2 years old or 2 y.o.) with a partial post-juvenile molt (bluish edges only in greater coverts)
of the previous year from older individuals (>2 years old or >2 y.o.) with a complete post-
breeding molt and all wing feathers with bluish edges (see Appendix B for more details on
sample size). Individuals were also sexed using the width of the ventral black tie (larger
for males), but also with the presence of a brood patch for females during reproduction.

Several morphometric measurements were used to estimate the body size and body
condition of the birds: body mass, measured with a precision balance (±0.1 g), tarsus length
and head-to-beak distance (from the back of the head to the tip of the beak), measured with
a caliper (±0.1 mm) and length of closed, flattened wing, measured with a ruler (±0.5 mm).
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Finally, for each individual, we took a blood sample (75 µL) from the brachial vein using a
heparinized capillary after skin breach with a sterile needle. In the field, the blood samples
were kept at +4 ◦C in a cooler. At the end of each daily field session, the samples were
centrifuged at 4000× g for 10 min to separate the plasma from the erythrocytes. Then,
samples were stored at −80 ◦C until laboratory analysis.

In winter, 28 individuals were captured in the city and 30 in the forest. Among
these individuals, 16 were recaptured during the breeding period in the urban site and
15 in the forest site. During the breeding season, 31 individuals not previously captured
in winter were also captured in the urban site and 40 in the forest site. This work was
conducted in accordance with the guidelines of the French legislation concerning the
capture and biological sampling of wildlife, and was approved by the Bas-Rhin department
prefect, a French national ethical committee and the CRBPO (National Museum of Natural
History)—see more details in the Institutional Review Board Statement.

2.2. Relative Telomere Length Analysis

The relative telomere length (RTL) was measured using a quantitative polymerase
chain reaction (qPCR) from DNA extracted from the erythrocytes of birds. This method
gives a relative length corresponding to a ratio between the length of amplified telomeres
sequence (T) and the length of an amplified control gene sequence (S), which is identical for
all individuals. The control gene used for this species is the Parus major zinc finger protein
(ZENK) gene (GenBank: EF568148). The qPCR method for RTL measurement in the bird
was described and validated by Criscuolo et al. [71].

The DNA extraction was realized on a column using the NucleoSpin© Blood Quick
Pure (Macherey-Nagel©, Düren, Germany) kit from erythrocytes diluted at 1:40 in PBS
1X. The qPCR was performed on a 96-well plate. The reaction volume in each well was
10 µL with 2 ng of DNA. Each sample was measured in duplicate, and on each plate, an
inter-plate control sample, a negative control (DNAse-free water), and a standard range
obtained by the cascade dilution of a DNA control (8, 4, 2, 1 and 0.5 ng) as a control of
amplification efficiency were deposited. Amplification of telomere sequences and the
control gene took place on separate plates. The amplification cycle was performed with a
final volume of 10 µL per well with 2 ng of DNA (2 µL), and 8 µL of reaction mix containing
a GoTaq® qPCR (Promega, Madison, WI, USA). For the control gene, amplification started
with 2 min at 95 ◦C, followed by 40 cycles of 15 s at 95 ◦C, 30 s at 56 ◦C and 1 min 30 s
at 72 ◦C. The conditions of telomere amplification were similar except for the number of
cycles and the elongation step: 30 cycles of 15 s at 95 ◦C, 30 s at 56 ◦C and 30 s at 72 ◦C.
Both assays were followed by melting curve analysis. Primers sequences are provided in
Appendix C. The mean efficiency of amplification for the control gene was 97.5 ± 4.9% and
99.9 ± 4.5% for telomeres. The mean intra-individual Cq (number of cycles necessary to
detect amplified DNA above basal signal) variation was 1.50 ± 1.33% for the control assay
and 2.51 ± 2.39% for the telomere assay. The mean inter-run Cq variation was 2.40% and
4.90% for the control gene and telomeres, respectively. In total, 151 samples were analyzed.
Ten birds were excluded from the telomere analysis either because (1) we did not manage
to obtain a sufficient amount of blood (n = 7), or (2) the sample quality was not sufficient
(n = 3). These individuals were excluded from the telomere analysis.

2.3. Statistical Analysis

Statistical analyses were performed using R software (version 4.1.0, [72]) with a signif-
icance threshold set to α = 0.05%. All tested models were followed with type II ANOVA,
and post hoc significance effects of interaction, or factor variables, were tested using Tukey
tests. The model application conditions were tested using the Kolmogorov–Smirnov test
(normality), the Levene test (homoscedasticity), and the collinearity test (variance inflation
factor < 5). For all analyses, telomeres were z-transformed [73], and the hatching date was
expressed as the relative day from 1 March.
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Tarsus length, head-to-beak distance and wing length were scaled and included in a
principal component analysis (PCA) to estimate a body size index for each bird. The body
size index corresponded to the first dimension of the PCA and explained 62.26% of the total
variation. This body size index was used to estimate the body condition of birds, which
corresponded to the residuals of the linear regression between body mass and body size
index (R2 = 0.37, p < 0.001). The residuals of body mass associated with the integrative
measure of structure size is a reliable size-independent index of body condition [74,75]. We
aimed to compare the quality of birds between seasons and sites. To address this aim, we
used mixed models with the entire dataset, i.e., including all caught birds. The differences
in age class were tested using a generalized linear mixed model with a binomial family
(function glmer (package lme4 [76]), 0: 2 y.o. birds, 1: >2 y.o. birds). The differences in body
condition, body size index and RTL were tested using T linear mixed models (function
lmer, package lme4). In all models, bird ID was included as a random factor to take into
account recaptures. Each model included the following covariates: the site (urban or forest),
the season (winter or reproduction), the sex, the interaction between site and season, and
the interaction between site and sex. For body size index, body condition and RTL, the
age and the interaction between sites and age was also included in the models. For RTL,
the body condition was also included in the model. Non-significant interactions were
removed sequentially.

The second aim was to test the individual changes in telomere length and body
condition with longitudinal data. For this, we used only a subset of the dataset, including
only birds that were captured on both occasions. Changes in body condition and RTL
were calculated by subtracting the measure made during breeding to the measure made
during winter. Linear models (function lm) included the site, the sex and the age as
explanatory variables, but also the fledgling number and the hatching date, to take into
account reproductive investment and the timing of breeding. For the RTL model, winter
RTL was also included to take into account the initial telomere length in telomere attrition.

3. Results

Age of captured birds was significantly different between sex, whatever the season or
the site (Table 1, also see Appendix D for estimates). Captured females were younger than
captured males (Tukey, p < 0.001). For body condition, none of the tested variables were
significant (Table 1, also see Appendix D for estimates).

Table 1. Result of statistical analyses of morphological and genomic parameters between urban and
forest birds and between seasons (winter and reproduction).

Age (n = 161) Body Size Index
(n = 161)

Body Condition
(n = 161) RTL (n = 151)

Variable Chi2 df p F df p F df p F df p

Site 0.156 1, 154 0.693 45.66 1, 153 <0.001 0.6002 1, 149 0.440 0.548 1, 142 0.461
Sex 61.35 1, 154 <0.001 39.97 1, 153 <0.001 1.6297 1, 149 0.203 0.395 1, 142 0.531

Season 0.400 1, 154 0.527 4.46 1, 153 0.042 3.9457 1, 149 0.051 0.623 1, 142 0.432
Age 5.82 1, 153 0.017 1.1800 1, 149 0.280 0.812 1, 142 0.370

Body condition 0.577 1, 142 0.450
Site × Age

Site × Season 4.18 1, 153 0.048 4.525 1, 142 0.037
Site × Sex

Note: RTL means relative telomere length. Significant values (under p = 0.05) are in bold.

For the body size index, a significant interaction between the season and the site was
observed (Table 1, Figure 1, Appendix C). Forest birds were larger than urban birds in both
seasons (Tukey, all p < 0.001). However, the difference was more important during the
reproduction season. In the urban environment, individuals captured during the repro-
ductive season were smaller than birds captured during the winter (Tukey, p = 0.005). The
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body size index also varied significantly according to the age of birds—young individuals
tended to be smaller than older ones (Tukey, p = 0.02). A significant effect of sex was also
observed, with smaller females than males (Tukey, p < 0.001).

Figure 1. The body size of birds between sites across seasons. Means and standard errors are
represented. Different letters represent significant differences between seasons for the same site and
bars represent the difference between sites for the same season (see text for details).

The interaction between the season and the site was also significant for RTL (Table 1,
Figure 2, see also Appendix D for estimates). Urban birds in winter had longer telomeres
than urban birds captured during reproduction (Tukey; p = 0.039) and forest birds in
winter (Tukey, p = 0.034). No site-dependent differences in telomeres were observed during
reproduction (Tukey, p = 0.48).

Figure 2. The relative telomere length of birds between sites across seasons. Means and standard
errors are represented. Different letters represent significant differences between seasons for the same
site and bars represent the difference between sites for the same season (see text for details).

Ultimately, we analyzed variation in body condition and RTL for birds captured
in both seasons. None of the tested variables significantly explained change in body
condition or change in RTL between winter and reproduction (Table 2, also see Appendix D
for estimates).
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Table 2. Result of statistical analyses of morphological and genomic parameters changes between
seasons for re-caught birds.

Body Condition (n = 27) RTL (n = 23)

Variable F df p F df p

Site 0.048 1, 21 0.829 0.161 1, 16 0.694
Sex 0.523 1, 21 0.478 1.105 1, 16 0.310
Age 2.287 1, 21 0.146 0.069 1, 16 0.796

Fledging number 0.850 1, 21 0.367 0.689 1, 16 0.419
Hatching date 0.111 1, 21 0.742 2.778 1, 16 0.115

RTL Winter 0.527 1, 16 0.479
Note: RTL means relative telomere length.

4. Discussion

No differences in body condition were observed between sites or seasons. The body
condition before breeding is correlated with breeding success [51,77] due to the high
energetic requirements associated with reproduction. Nevertheless, a difference in body
condition is not consistently observed in studies on urbanization in different bird species,
especially for adult birds [29]. The lack of prey in cities is compensated for by anthropogenic
food, which is more reliable and abundant. However, human-provided foods are often of
poor quality compared to natural ones, often containing an inadequate protein content,
and can lead to potential physiological impairments [78]. However, our study highlighted
that urban individuals had a smaller body size than forest individuals, whatever the
season, and that, for the urban site only, birds captured during breeding were smaller
than birds captured during winter. The smaller size of urban individuals is a common
pattern, and has been found in many studies [79–81]. Several hypotheses can explain
this result. Some studies tend to show that smaller size is a response to microclimates
and urban heat islands according to Bergmann’s law [46]. Urban pressures during the
early stages of life can also lead to growth delays and impairment [18,50] that may still
be visible in adulthood. Other studies highlight the advantages of a smaller size in an
urban environment. In fact, a smaller size improves the maneuverability of birds, but
also the climb rate and the maximum speed [82]. The flight performance improvement
can ensure better mobility in a complex and fragmented urban matrix, but it also ensures
better avoidance of predators [44,83,84]. Following this hypothesis, the smaller body size
of urban breeders compared to winter birds suggests that the urban environment would
have a filtering role based on bird morphology, with a smaller size conferring an advantage
regarding reproduction success, potentially since these birds are more agile or less prone
to predation. Therefore, these size differences are either the result of micro-evolutionary
processes or due to phenotypic plasticity resulting from environmental constraints, as
demonstrated in a different population of the same species [80]. Further studies are
required to determine the selective pressure exerted by the urban environment on the body
size, for example by testing the correlation between body size and survival.

Our results also point to a positive relationship between body size and the age of
birds, whatever the site or season. As the body size index is partly correlated with the
wing size, this relationship may be the result of feather quality and molt stage of the birds.
This hypothesis is supported by a correlation observed between wing lengths and age in a
study on common blackbirds [46]: younger blackbirds tended to have shorter wings than
older birds. In fact, for multiple passerine species, including Great Tits, feather quality
and length tend to increase between the post-fledging partial molt and the post-breeding
adults molts [85,86]. However, no age-distribution difference between sites or seasons
were observed, suggesting that smaller breeders occur regardless of the age of birds. No
difference in age distributions also suggests that, although the urban environment imposes
high reproductive constraints [28], both experimented and non-experimented birds have
the potential to reproduce and may succeed.
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The direction of the change in telomere length in urban birds was opposite to that in
our prediction concerning the filter hypothesis for the city. In fact, our results demonstrate
longer telomeres for urban individuals in winter compared to the breeding period. On
the other hand, as expected by the filter hypothesis, no difference between season was
detected in forest birds for this parameter. Long telomeres are generally associated with a
better health and survival [57,87] and longevity [88], and can be considered as a quality
index for most animal species. Longer telomeres for urban birds during winter might
suggest that environmental pressures favor individuals that can manage their somatic
maintenance in harsh environments such as in the city compared to forests. However, the
hypothesis of younger individuals in the city cannot be totally excluded either. Although
our models did not show any difference in proportions of individuals in the 2 y.o. and
>2 y.o. categories, it is possible that age differences exist within the >2 y.o. category. In
this case, longer telomeres in winter in urban birds would be the consequence of higher
mortality or emigration of older birds. These populations of Great Tits have been followed
since 2015, but the recapture rate is still very low, restricting longitudinal studies based on
known age. To test our hypothesis concerning the age effect on telomere attrition rate, this
experiment should be carried out over several years on known-age birds.

In addition, the lack of difference in telomere length between sites during the breeding
season is not consistent with a previous study on the same species that showed that telom-
eres were longer in urban than in forest birds [70]. Nevertheless, we showed in a previous
study on the same population longer telomeres in urban breeders (Saulnier et al., submit-
ted), but not every year. In fact, this study showed that the different length of telomeres
between urban and forest breeders was not significant during years with harsh weather
conditions. During the year of the present study, despite a high hatching success (89.4% in
the city and 97% in the forest site), the number of fledglings was very low in the city (4.5 in
the city and 7.1 in the forest), notably because of cold temperatures during rearing. Some
studies highlighted the impact of reproductive costs on telomere length [4,89,90] through a
trade-off between reproductive investment and somatic maintenance [4]. Harsh weather
conditions during rearing might increase the reproductive cost related to the foraging of
birds faced with the increased energy requirements of nestlings for thermoregulation [91],
but also to a decrease in prey availability [92]. Then, the shorter telomeres observed in
urban individuals during the breeding season therefore seem to reflect the higher cost of
breeding in years with unfavorable weather conditions. The absence of a seasonal change
in telomere length in re-caught birds and the absence of a correlation with the fledging
number may not seem consistent with this hypothesis. Nevertheless, the sample size of
re-caught birds was small, and this study was realized during a single year. It would
be interesting to carry out this experiment across several years with contrasting weather
conditions to properly understand the correlations between telomere length, reproductive
costs and weather in the city.

Additionally, a potential influence of the capture technique on the seasonal variation of
telomere length and body size pattern cannot be excluded. The trap feeder system required
the birds to enter into a cage. It is conceivable that this system may select for bolder and
lesser neophobic birds, or that there is a specific cognition aspect where the mist net and
nest box capture techniques are more random and less selective. Some studies on birds
showed that bolder birds had a lower maximum corticosterone concentration [93], higher
antioxidant capacity [67,94] and also a lower concentration of reactive oxygen metabolites,
leading to lower oxidative stress. The observation of higher telomere length for urban
birds in winter might therefore be due to the selection of birds with a higher capacity for
self-maintenance or less metabolic cost, impacting telomeres. In the same way, the trap
feeders were placed on artificial food supply spots, which are an essential part of the winter
diet of urban birds. It could be conceivable that bigger individuals, requiring higher energy
requirements, favor these spots more than smaller individuals, thereby increasing their
chance of being caught.
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5. Conclusions

In conclusion, our results reveal morphological and genomic differences between
winter individuals and breeders, but the question of the filtering role of the city remains
open. If we consider that a smaller size confers an advantage in an urban environment, and
that smaller individuals are of greater quality, then the urban environment does indeed
have a filtering role on the quality of individuals. However, more studies are necessary to
confirm the advantage of a smaller body size in the city, especially to test the correlation
between body size and bird survival. However, the results obtained for telomere length
during the reproduction period do not support the filter hypothesis. These results rather
support a higher cost of reproduction in the city dependent on weather conditions. Long-
term studies are therefore necessary to improve the understanding of selection mechanisms
that take place in cities and the dynamics associated with inter-annual weather variations.
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Appendix A

Table A1. Geographical Coordinates of the Nest Box Groups on each Site.

Site Groupe Coordinates (Lat. Long.) Type Nb Nestboxes

Urban Campus 1 48.5843 N; 7.7637 W Urban square 26
Campus 2 48.5794 N; 7.7677W Busy road 11
Citadelle 48.5759 N; 7.7748 W Urban park 40
Heyritz 48.5727 N; 7.7442 W Urban square 15

Forest La Wantzenau 48.6480 N; 7.8337 W Alluvial forest 65
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Appendix B

Table A2. Number of Birds in each Age Category at Different Seasons for Urban and Forest Site.

Urban Forest

Winter Reproduction Winter Reproduction

F M Total F M Total F M Total F M Total

2 years old 4 7 11 16 5 21 8 6 14 20 9 29
>2 years old 5 12 17 9 18 27 4 12 16 12 14 26

Total 9 19 28 25 23 48 12 18 30 32 23 55

Appendix C

Table A3. Primers Sequence for qPCR RTL Analysis.

Forward Reverse

Control gene
P. major Zinc finger
protein
(GenBank:EF568148)

ZENK1: 5′-TACATGTGCCATGGTTTTGC-3′ ZENK2:5′-AAGTGCTGCTCCCAAAGAAG-3′

Telomeres Tel1b:
5′-CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT-3′

Tel2b:
5′-GGCTTGCCTTACCCTTACCCTTACCCTACCCTTACCCT-3′

Appendix D. Estimates of Generalized Linear Model Used for Morphological and
Physiological Parameters

Table A4. Difference of quality parameters between seasons for each site.

Age Body Size Body Condition Relative Telomere Length

Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

Intercept −9.17 (1.96) −0.9 (0.2) 0.07 (0.17) 0.27 (0.25)
Site [Forest] −0.65 (1.66) 1.05 (0.21) −0.1 (0.13) −0.58 (0.27)

Sex [M] 20.67 (2.67) 1.11 (0.17) −0.18 (0.14) 0.11 (0.18)
Season [Reproduction] −0.92 (1.45) −0.29 (0.1) 0.23 (0.11) −0.54 (0.25)

Age [2 years old] −0.43 (0.17) −0.15 (0.14) 0.16 (0.17)
Body condition 0.08 (0.11)

Site [Forest]:Season [Reproduction] 0.29 (0.14) 0.73 (0.34)

Table A5. Change of body condition and telomere length with reproduction for re-caught birds.

Body Condition Relative Telomere Length

Estimate (SE) Estimate (SE)

Intercept −1.83 (2.62) −3.83 (2.46)
Site [Forest] −0.14 (0.63) 0.25 (0.61)

Sex [M] 0.27 (0.38) −0.35 (0.34)
Fledging number 0.08 (0.09) −0.06 (0.07)

Hatching date 0.02 (0.05) 0.08 (0.05)
Age [2 years old.] 0.56 (0.37) −0.09 (0.35)

RTL Winter −0.03 (0.23)
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